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'BLOCK INTRODUCTION

In Block 1 you have studied the basic concepts of mechanics. You have learnt the language
for describing motion. You have applied Newton's laws of motion to a variety of systems
executing linear as well as angular motion. In addition you have studied the concepts-of
work, energy and gravitation. In the process you have also learnt 1o apply the principles of
conservation of linear momentum, angular momentum, and energy.

In almost all the applications you must have noticed one common feature. We have
represented each object by a single particle, be it a’cricket ball, a car or the moon. We have
seen that the single-particle models were good enough. However, there are many situations
in which we need to deal with systems of many particles. For example, the Solar System
cgmprising the sun, the planets, their satellites, comets and asteroids is a many-particle
system. A cylinder containing gas, and a rigid body are othe r examples. We need 10 extend
the concepts of Block | to study the motion of such systems,

We shall begin by discussing the moticn of objects under central conservative forces in Unit
6. We will. mainly deal with the inverse squarc forces. This will enable you to understand the
motign of planels, their satetlites and comets. In Unit 7 we shall first consider two-body
systems. You will learn to express their motion in terms of the centre-of-mass and relative
coordinates. We shall then extend these concepts to analyse the motion of a three-body and
N-body systems.

In Unit 8 we shail study the phenomenon of scatlering of two or more particles. You wili
learn some new concepts. such as the scattering cross-sections and impaci parameters. You
will study the motion of rigid bodies in Unit 9. We shall chiefly concenlrate on their
rolational motion.

In Block 1 you have studied the motion of cbjecis from the point of view of an inertial
observer. The same will be the case upto Unit 9 of this block. However, there’ are many
phenomena which are easier (o analyse from the point of view of non-inertial observers. We
experience many of them daity. For example, we are pushed sideways in a bus when it 1akes
i lurn. Many important natural phenomena. such as cyclones, variation of g with latitude.
£ic. arise due to the rotation of the earth. Therefore, we shall discuss miotion of objects in
-non-inential frames of reference in Unit 10.

The study lime required for each unit is atmost equal which comes to about 4h. It will also
depend on how well you have studied Block L. The tables of conswants given in Block | are
being repeated here for your convenience,

Study Guide

In order to understand this block you will have 1o keep in mind the suggestions we gave in
the study guide to Block 1. Go through it again and foltow those suggestions. As in Block
1, here too we are giving the answers 10 SAQs and terminal guestions at the end of euach
unit. But we hope that you will try to solve them on your own,

You may find some derivations in this block difficult, particularly the ones in Secs. 8.2.4
and 10.3.1. You need not memorise these derivations, The purpose is to demonstrate that
there is a logic behind each result. The appendices given at the end of 1he block are for
enrichment only. You will no1 be examined lor that material.

We once again hope that you will enjoy reading these units, Our best wishes are with you.
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UNIT 6 MOTION UNDER CENTRAL
CONSERVATIVE FORCES

Structure
6.1 Inmoduction
Obiecti

6.2 (Central Conservative Force
Properties of Motion under Central Conssrvative Forces
6.3 Inverse Square Central Conservative Forces

6.4 Summary
6.5 Termina! Questions
6.6 Answers

6.1 INTRODUCTION

In Block 1 you have studied the basic concepts of mechanics. In Unit 5 of Block 1 we have
discussed gravitation, You know that the planets move under the infiuence of the
gravitational field of the sun. How do we solve the equation of motion of a planet ? In this
unit we will try to answer this and similar questions. i

In fact one of the most important problems of mechanics is to understand the motion of a
particle movin} under the influence of a force field: The force may be due to another particle
or a system of particles, as in the Solar System or'a system of fixed charged particles. It
could even be due to an electromagnetic field. In this unit we will restrict ourselves 1o what
we call central conservative forces. You will first learn what a central conservative force is.
The motion of particles under the influence of such forces has special properties which
stmplify its description. So you will also study these properties,

There are many examples of such motion. We have mentioned the motion of pl nets around
the sun. Other cxamples are the molion of satellites around the earth, of spacecrafis sent out
to probe the universe and that of two charged particles with respect to each other. The forces
associated with these systems, namely the gravitational and electrostatic, obey the inverse
Square law. We shall see that the inverse square central conservative forces are of special
imponance. So we shall corcentrate chiefly on inverse square central conservative forces. We
shail solve the equation of motion of a particle moving under the influence of such forces.
We shall then apply the results to determine the passible orbits of a bedy moving around the
sun. This provides the theoretical basis for Kepler's empirical laws. We shall also determine
the trajeclory of an alpha particle approaching the nucleus. Such a calculation led 1o the
nucle r model of the atom.

So far we have studied single particle motion. In the next unit, we shall turn our attention to
many-particle systems. In this unit we shall refer to the contents of Units 3,4and 5 of
Block 1 very ofien, So we suggest that you £o through ticse umits once again before
stmdying this unit. You may also go through Appendix A on conic sections before studying
Sec. i1 Tris given after Ifnie 10,

Objectives
After studying this unit you should be able o
¢ identify a central conservative force

® solve problems by applying the properties of motion under a central conservative force

® determine the possible orbits under a given inverse square central conservative force.
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b‘y;illﬂ of Partlcles

Fig. 6.1 : A panicle moving
under a contral force,

0 = Centre of force

P = Particle

AP =Trsjectory

Fig. 62 : Work done on a particle
moving from A to B. Since dl is
infinitesimal, the angle indicated by
double stripes can be considered
alternate and hence equal o .

Have you wondered about the use of
the termn *conservalive” force field?
You lmow that for a conservative
force, the work done in taking o
system armund a closed path is zero.
If this were not so, we could find a
closed path, raversing which wouid
yicld negative work, i.c. ciergy Lo
us. Thus we could recover any
amount of energy going around the
loop. That this does not happen is
related to the cohservation of encrgy.
Thus path independence of work in a
‘conservative' force field is related 1o
'energy conservation’.

6.2 CENTRAL _CONSERVATIVE' FORCE

In nature we come across many forces which are either directed towards or daway from a fixed
point. For example, the gravitational force experienced by a mass due to a fixed point mas:
Is directed towards the point mass. Again the force experienced by a positive charge due 1o
another fixed positive charge is directed away from the latter charge. The force on a particle
of mass /m atiached to a string and moving in a circle in a horizontal plane is also directed
toward the centre of the circle (see Fig. 4.17 of Guic 4). Such forces are examples of central
forces. We define a central force s one that is everywhere directed towards or away from a
fixed point. This fixed point is called the centre of force. Mathematically, we can express

a central force acting on a particle as ' :
F=FrT 6.1)

where T is a unit vector pointing from the centre of force to the particle (see Fig. G.i). For
the above mentioned first three examples of central forces, £ depends only on the separation
between the centre offforce and the particle. For such forces Eq. 6.1 can be written as
A
F=f(r)r. (6.2)

We can show that the central forces given by Eq. 6.2 are also conservative. For this recall
the definition of a conservative force from Sec. 3.3 of Unit 3. Let us compute the work done
by the force on particle P as it moves from point A to 8 (Fig. 6.2).

Let dW be the work done by the central force on the particle as it undergoes a displacement
dl along the path. It is given by

aW = F.dl =f(r) tdl =f() dlcosa, (6.3)

where (¢ is the angle between T and dl . Since dl is infinitesimal, from Fig. 6.2 you can see
that
dl cosa=dr,

where dr is the change in'the particle's separation from O, as it undergoes displacement dl.
S0 Eq. 6.3 becomes
aw =£1r) dr.

The work done by the force on the particle as it moves from the point A to B is given as

.
W = J.f(r)dr. (6.4)
A

Now, the value or this integral depends on its limits only_ So the work done depends only
on the end points and not on the path being followed by the particle. Thus, the central force
given by Eq. 6.2 is conservative. We term the forces represented by Eq. 6.2 as central
conservative forces.

You may like to use this concept to identify some central conservative forces in the
foltowing SAQ.

S5AQ 1
Which forces among the following are ceniral 7 Also identify the central conservative force.

1
1 g e e = em o — — e — -
: £ el Ity
~ 5 e Pty Tty
té Hm 4 ?iU_D.Q.U.lU:E*'
(a) _ (b, (c)

Fig. 6.3 ; (a) Ideal spring-mass system: {b) real spring-mass sysiem; {c) 2 current-carrying conducinr
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a) ‘The force acting on a particle of mass m in the spring-mass system shown in Fig. 6.3a Motlon Under Central
for which F = - &x, Conseru_live Forces

b) The force acting on a particle of a real spring-mass system kept inside water (shown in
Fig. 6.3b). Iis vibration is subject to damping due to water. For such a system

¥ = — kaX — k3x
where %, and k5 are constants.

¢) The force acting on a charge P due to an element 4l of a current-carrying conductor
shown in Fig. 6.3c for which

F ok .Pydl-(v.d)#.
r2

.where v is the velocity of the charge and k&, is a constant depending on the magnitude of
the current and the nature of the medium.

Now that you know what a central conservative force is, let us find out the equation of
maotion for a particle of mass m moving under its influence. From Newton's second law it is

given as
ma=f(r}T (6.5)

We {ind that the study of motion under ceniral conservative forces is much simplified
because it has cerain general properties. Let us first discuss these properties.

6.2.1 Properties of Motion under Central Conservative Forces

The central force is directed along T. So, the torque on the particle aboult the centre of force
is

IT=r X F=rxFr = 0.

Angular momentum is constant

You know from Unit 4 that T = dr So for zero nel torque, L is a constani. This means
L]

that for motion under central force, the magnitude and direction of angular momentum is
constant. We shall now see that another inferesting property arises only from the fact that
the direction of angular momertum is constant.

Motion is restricted to a plane @‘ P
»

We know from Unit 4 that L =r X p =r Xm v. So L is a vector perpendicular to r. In
other words, the vector r always remains in a plane perpendicular to L. Since the direclion of
L is fixed, this plane is also fixed {Fig. 6.4).

Since the motion is restricted 1o a plane, we can use a two-dimensional coordinate systemto  Fig. 6.4 : A panicle having

describe the particle’s motion. Since r will be occurring very oiien in the mathemanical covstamt ’“f,"’;"'m““'“'mm L o
- - - - . - - Maves & hx |:u|:u|d.|cu

treatment, it will be convenient to use plane polar coordinates which you have studied in oLl ety

Unit 4.

We have already determined the magnitude of L in Unit 4‘. From Eq. 4.25

L=mr8 (6.6)

e —_———
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The property that angular momentum is constant for central force motion gives nse to the
following law.

Law of equal areas

Refer to Fig. 6.5. Let r be the radius vector of a particte at a time ¢, executing central force 7
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Systems of Particles

Fig. 6.5 : Arca swepl oul by the
radius vector. OX —~ polar axis,
OP=r,0Q=r+ar,

The arca of a triangle can be
expressed as half of the product of the
length of arffv wwo sides and Lhe sine
of the angle contained between them.

Fig. 6.6

motion. Lei its radius vector be r + Ar a1 1ime ¢ + Ar. The polar coordinates of the particle at
rand 1 + Araré (r, 0) and \r + Ar. 8 + AB), respectively. The area AA swepl out by the radius
vector during the lime interval At is shown shaded in the figure. For small values of A8,the
area AA is approximately equal to 1he area of the riangle OPQ, i.c.

AA = %; {r+ Ar)sin AB = % {r + Ar A8, (' sin AD = AB. for small A8)

. At 1,88
Ignoring the term ArA8, we get VIRV

Therefore, the rate at which area is swepl out is given by

dA_ tim 2 i (1289 1, . 48 1 .o

dr = aiBo ar = 4100 (2 A fTan Aimg ar 7270
From Eq. 6.6. we understand that 726 = a constant for a particle of given mass m . So % is
a constant, which gives the law of equal areas. It states that for any central force the
radius vector of a particle sweeps out equal arecs in equal times. Kepler's second [aw of

planetary motion is precisely this law applied to the central force of gravitation. You will
understand the physical meaning of this law better after deriving Kepler’s first [aw.

The property that angular momentum is a constant vector holds for atl central forces. Motion
under cenlral conservative fosces has another property that the total mechanical energy is
constant. ;

Total mechanical energy is constant
From Eg. 3.2] of Unit 3, you know that the total mechanical energy E for a conservative
force is conslant, ie.,

E = %mv2+ U () = constant. (6.7a)

The potential energy U(r) is given by

r
Uin-Ur)= - J-f (rydr {6.7b)
e

where rg is some arbitrary reference position. Both these equations 6.7a and 6.7b apply {0
those central forces which are conservative.,

Let us now apply the concepls that angular momentum and total mechanical energy of a
particle moving under a central conservative force are constants of motion.

Exampie 1

A spacecraft is launched from the point 4 of the surface of 4 spherical planet of mass M
having no aimosphere with a speed vp at an angle of 30° from the radial direction. It goes
into an orbil, where its maximum distance 08 from the centre of the planet is twice its
radius R. Find vpin terms of G, R and M.

Refer o Fig. 6.6. Let the mass of the spacceraft be m, When the spacecraft is at position r |

. - - GMm
with respect 10 the centre of the planet then the force of gravilation on it is F = —- .2 r.

On comparing with Eq.6.2 we realise that this is a central conservative force, This means
that the spacecrafl is moving under the influence of a central conservative force. Hence, its
angular momentum and ihe total mechanical enerpy £ are conslant. We know thal
£ =KE + P.E. From Eqg. 5.16 we aiso know thart the P.E. of a mass m at a point at a
M

r
energy of the spacecraft at point A on the surface of the planet is

distance r from the centre of a spherical mass M is — . Therefore, the total mechanical

E, =%mvg - G—'ﬁm -

EERO=110 11 | 1] Ceeepa
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The total mechanical energy of the spacecralt at point B corresponding to the maximum
Jistance 2R is '
1

Eg =-mv?-

2 2R

We know that E4 = Ejp, since the lotal mechanical energy is constant. The conservation of

angular momentum gives us another relation. Recalling that L = m r X v, we gel for the
magnitudes of angular momentum at peints 4 and B,

L, = mRv, sin 30°=%,

Ly =mv (2R ) 5in 90°= 2mRv.

Since Ly = Ly, we get

h

0

v= o

¥,
Setting E, = Egand putting v = -42 in the equation, we get

So fat we have studied some general properties of motion under central conservative forces.

“We shall now use these properties to determine the path of a particle moving under inverse
square central conservative forces. Examples of such forces are the familiar gravitational and
electrostatic forces.

6.3 INVERSE SQUARE CENTRAL CONSERVATIVE
FORCES

For any general inverse square central conservative force, Eq. 6.2 is expressed as

A

F==r, (6.8)

Ll

If k is positive, then the force is repulsive and if it is negative, the force is atiractive. For
example, you know that the force between two like charges is repulsive and that between
two unlike charges is attractive. Similarly, gravitation is an attractive inverse square force.
Let us now solve the equation of motion to determine the orbit of a body moving under the
influence of gravitational force of the sun. We will regard the sun to be stationary. In order
to determnine the orbit, we need 1o know r () and 8 (f), or r as a (unction of 8, We wiil now
use 2 simple method to cbmin 7 ().

Refer 1o Fig. 6.7. As has been poinied oul in Sec. 6.2.1, we shall be using plane polar
coordinates. Eet the sun be at the origin located at the centre of force. The equation of
motion of the body undzr the influence of the gravitational atiraction of the ¢un ic givan by

E__GMH’I-A :
my =T b {6.9a)

where m and M aremem.assesofthebodyéndlhcsun,respecﬁvely.

Motion Under Central
Conservative Forces

Fig. &7 : Motion of 2 body
moving undes the gravitationa] foree
of the sun (S ). P i the position of-

thebody str =0,

pAP A

BT el Al A P

ey p = [ f) Srprom

i o]



Systems of Particles

10

dv__CM 4
2

ar - r, _ (6.9b)

Let us first solve this equation to obtain v. Then we will use Eq. 4.13a to obtain r from the
expression of v,

Since the force is central, we have from Eq, 6.6 that L = ms? § = a constant.

. A
We also know from Eq. 4.10 that ;;?- =-8F. Using Egs. 4.10 and 6.6 we can write
Eq. 6.9b as

dv _GM B _GMm B _ A 48
&t " pgd T L d& T L. dr
where A = GMm = a constant,
L A
or Ad‘v-—a‘B.
On integrating, we get
L A
Zv=0+C. (6.10a)

where C is a constant vector of integration. We shall use the inilial conditions to determine
C. Let us choose the origin of time (1 = 0) at the instant when the body is closest to the

sun, i.e., r is a minimum. Thu d—if- =0at+=0. Again v (0) (i.e. vats=0)isin the same

direction as 8 (0) (L. 6 at £ = 0). Let § (0)= A. Hence, from Eq. 6.10a we get

L A A
N v n=n +C,

C =(A£ v (0) —1)=3=e3, say

I

where e = A_ v (0) - 1 = a constant. {6.10b)
Hence, from Eqgs. 6.10a and b, we gel
fv:é-‘-ea. (6'1&:)

Now that we have obtained an expression for v, we can find r as 2 function of 8 in a simpic
i)
ranmer. Taking the scalar product of Eq.6.10c with @ , we get

fv.ﬁ:ﬁ.&uﬁ.a:lncose. 6.11)
We know from Eq4.13a thatv=r £ +768 .

Since # .8 =0and8.8 =1, wegerv.8=ro =:—r2.9 =ﬁ from Eq. 6.6.

So we get from Eq. 6.11,

L2 1
T —=l+ecosO. 6.12)
Am r
Comparing Eq. 6,12 and Eq. 4.3 of Appendiz A, we gei
I?
= Am 6.13

So we can say that the orbit of the body is a coaic with its pole inside. e is called Lhe
eccentricity, of the conic. Now this conic can be either a parabola, a hyperbola or an
ellipse depending on whether ¢ is equal to, greater than or less than 1.
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in the special case when ¢ = 0, the conic is a circle. Motion Under Ccniral
Conservative Forces
The solution thal we have obtained for the path of a body moving under the sun's

gravitational field is based on some simplifying assumptions. We have assumed that the sun
is slationary and Lhat the only force acting on the body is the gravitational attraction of the
sun. We know that both these assumplions are not exactly true in the real Sclar System,
The sun is not stationary and all other members of the Solar System also exert gravilational
forces on the body. However, these forces are negligible in comparison with the gravitational
attraction of the massive sun. For our Solar System containing one huge sun and a small
number of little planets (called a Keplerian system) these assumptions are reasonable.

Let us now analyse what kinds of orbits (elliptical, parabolic or hyperbolic) are followed by
the various bodies in the Solar System. For this we shall relate the eccentricity ¢ to the total
mechanical energy of the moving body.

Energy and eccentricity
We know that £E =K.E. + P.E. (6.14a)

To caleulate K.E. in polar coordinates we use Eq.6.10¢ to gel

K.E.:’zﬂg—;(a yem). (D+enm) = ';;”’ (1+2¢cos8+el). (6.14b)
Similarly, from Eq.5.16 we know that P.E. = ~ Q?—"-' =- :1
From Eq. 6.12, PE. = - %”-’- (I + ¢ cos 8). | (6.14c)
From Eqs.6.14a, 6.14b and 6.14c we pet

E =fii;(93~ . (6.15)

> 2
or ¢ =‘\} | + “'L,'E (6.150)
A-m

Eqgs. 6.13 and 6.15b give the values of p and ¢. which together determirke the orbit of the
body moving under the sun's gravitation. These can be calculated if we know the values of
£.L and A. Although we have determined the orbit of 4 body moving under the sun’s
gravilation, these resulls can be applied more generally. These equations hold lor every .
particle of mass pr moving under the influence of an atuactive inverse square force given by

R

F=-%r.

1J

n

" Before proceeding further you may like 1o solve an SAQ to get some praclice on Egs. 6.12
1o G.15.

SAQ 2
The elliptical orbit of a 2000 kg saiellite about the eaeth is given by the cquation

O b,
awnry kil

I + 0.5 cosP

Find the {a) cecentricity of the orbit: (b} angular momentum and (c) totzl mechanical energy
of the saiellite. (Note that for this problem ar and M are the masses of the satellite and the .
carth, respectively.) . 11
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Systems of Parlicles

Fig. 6.8: Possible orhits under an
inverse square altractive centml

conservalive for

Te.

Table 6.1
Planet [
Mercury 02056
Venus | 0.0068
Eanh 00167
I
Jupiter 004K
_ I i .__ -
Salum 0.0564
Unanus 0461
Neplune 0.0100
Plulo 0.2484

Let us now consider the various kinds of orbits corresponding to different values of E.

Case 1: £ > 0. For this ¢ > | and the orbit is hyperbolic. This mcuns (hat lhe object
slarts its motion 4; an inlinite distance from the sun and slowly falls towards the sun. [1s
loss in P.E. appeuars as a gain in K_E. It passes by the sun at some minimum separation and
goes away along the hyperbola, never to return {see Fig. 6.8). Some comels have been seen
with hyperbolic orbits.

Case 2: E = 0. For zero energy. ¢ = | and the abject moves along o parabola. It too
passcs the sun once and moves away, without ever returning. Parabelic orbits are highly
unlikely because £ =1) means thit a perfect balance is required beiwceen the negalive P.E. and
the positive K.E.

Case 3: £ <0, In addition, we have to put another condition on £. namely £ 2 ',;E_:—-

HE< -,;JE" the number under the square root in Eq. 6.15b becoines negative and no orbit is
—-Alm

possible. For St S s« wehave U< e < 1. For 0 < e < 1, the orbil is an ellipse and
for ¢ = 0, it is a circle. Nepalive 101al energy means that the gravitational PLE. is always
greater in magnitude than the positive K.E. The object never gains enough K.E. 10 escape,
So it remains bound 1o the sun or to the cenire of force forever in a clesed clliplical orbit.
Such'is the case for all planets and the asteroids of the Solar System. Let us consider these
orbits in some detail.

Orbits of planets and comels

You have already read about Kepler's laws of planetary motion in Unit 5 of Blogk 1. As you
know Kepter had arrived at these laws on the basis of the detailed observations made by
Tycho Bruhe. Here we have applied Newton's laws of motion to show thal i planci. comet,
meleor or any heavenly body that orbits the sun must move along a conic seetion given by
Eq. 6.12. The shape of the orbit is determined by Eqs. 6.13 and 6.15.

In fact, Case 3 corresponds to Kepler's first law. Let us recall the law of equal areas derived
in Sec. 6.2, 1. When applied to planetary motion, this is Kepler’s second law. Kepler
observed that a planet did not orbit the sun with a constant angular speed 6. For constant 8
the law of equal arcas demands 1hat » shoutd remain constant, i.e. the orbil should be
circular. Since 8 varied. Kepler conjectured that the planetary orbits were not circular but
elliptical. This turned oul to be consistent with the observations. However, the
eccentricities (¢ ) of mosl of the plenetary orbits are very small and they are very nearly
circular (Tabie 6.1, For example, the eantlt’s distance from the sun varies by only 3%
throughout the year. From Table 6.1, you can see Lhal the approximation that u planet’s
orbit 15 circular, made in Sec. 5.2.1.0 08 quile justifizble.

Let us complete the discussion of planetary orbits by deriving Kepler™s third faw lrom his
first and second laws,

. ; L . -
Uning the rexull 6 = w Kepler's second law can be wrilien as

da _ 1 .4 _ L |
dr "2 8= 2m (6.16)

IF the lime uisen e complele one elliptical orbit is 7. then integrating Eq. 6.16 fromr =0
tor =T, we find

f‘f:'—‘m = :-!: - rm = :U
J LT I
1] 1

Fie quanbity on (he fefL side o the abuve eyuation is e arei of e wegon enciosed vy ine
ellipre. Now, the area ol an ellipse’= Rah. where ¢ §s the semi-nujor axis and b the semi-
minw itkis ol the eltipse. So we have,

L
mth=—""T
..H

C e e et

A= =
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We know that for an ellipse (see Eqs. A.5 1o A.8 of Appendix A),

b =a? (1-¢2) and p = a (1-¢?). Hence. from Eq. 6.13,

T

3=
all-ed=
So. we gel
2 _ (2mn Y a_f2muN L2,
T _(L ) a‘{l—e)—(L ) yyets
5 _an® me
orT*= A

Since A = GMm, we have Kepler's third law :

243
p=ira

OM = ka’, 6.17)

where £ = (6—4-;;) depends only on the mass of the sun, and is the same for all the planets.
Kepler's third law holds not only for planetary orbits but also for elliptical orbits of the
satellites of planets. For the motion of satellites, M, in Eq. 6.17, is the mass of the planet.

So we have studied the laws of planetary motion. We shall now study comets very briefly.

The motion of comets remained an enigma for a long time even afier Kepler formulated the
three laws. In fact, it was Isaac Newton who abserved a comet in 1682 and was the first to
explain its trajectory. He could see that the orbit of the comet was governed by the same
' principles of dynamics that applied (o the motion of the planets. He realised that some
_ comets could move past the sun in parabolic and hyperbolic orbits and so would never
return. But other comets should move along the elliptical path like the planets. Only the
eccentricity woutd be much higher. Newton's insight revealed that comets are members of
the Solar System. You must be familiar with Halley’s comet which retums every 76 years
It has a highly elliptical orbit with e 0.967.

We liave seen earlier that L. and E are constants of motion. We¢ must also be able to
determine these constants provided the geometrical features of the orbils are known. We can
2

and A = GMm in Eq. 6.15a to obtain the following

use the resulis p =g (1-¢) = ALm

relation between E and a.
GMm
2a

&£ =- (6.18)

You may now like to apply these results (Eq. 6.15 to 6.18) to some actual situations. So”
tow about trying the following SAQ.

SAQ 3
a) Given that e =0.0167 and @ = 1.5 X 10" km for the eanh’s orbit. calculate its energy
and angular momentum about the sun.

b) The absolute magnitude of energy of 2 meteor approaching the sun is given by

L Gem? . .
£t = - wiliere M and ni are the masses of the canh and the meteor, respectively.

L is the angular momemum of the meleor. What are the 1ypes of the possible orbits?

o, wa hava 1akan cars of the Factors that deermine the ofhit ol a planet. a comel or
suteilite. Let us now try 10 see haw the orbil of a body can he determined il sone initial
conditions are known.

Example 2: Calculating the orbit from initial conditions
Let us consider the example of a satedlite of nuss i aunched from i spaee shuule aa,
diskamee £y, itom the centre (€73 af the carth (see Fig. 6,91 The initial velocity v, of the

Molion Under {enlral
Cunservalive Farces
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Nistems of Particles

\
Yow d

Fig. 6.9 Orbit of a ~atelline,

The poini ona planetary arbil where
the planet is nedrest Irom he sun s
cullesd \he perificfion ind whene it is

tanhest is called the aphefion.

14

satellite with respect 10 the earth and the angle of launch ¢ are given as initial conditions.
What will the orbit of the saellite be?

" Let us first determine the energy of the saellite which is a constant. A5 you know the value

of E will give us the shape of the orbil. It is given by

1 GMm
2 0 I

where M is the mass of the earth. If the orbit of the satellite is 10 be a closed one. then
E <O e

1 , GMm
TS T
27 'n
2 2GM 26M
orvi < or 1p<
{ L ) o

Thus. for the satellite 10 be in an elliptical or a circular orbit v must satisfy the above
conditicn. The size of the orbit will be determined from the length of the major axis which
is givon from Eq. 6.18 as

- GMm
Qda=-—"75 .
E
Similarly. the angular momentum of the saleltite remxiins a constant eguitl 10 its initial value
given by

L= LU sin ¢. (6.]9)

The eccentricity of the orbit can thenr be lound from Egy, 6.15h. Then we can find the poim
where the satellile is nearest from 1he earth (called the perigee ) and where il is farthest
{called 1he apogee). From Eq. A.6 of the Appendia A. these painls are. respeclively. given

- s

h=d{l-e) ru‘=u(l+v ) (6.2

This is how the shape of the orbil given by “e". and its size given by o can be found from
the initial conditions. To completely specify the saellite’s orbit we ulso peed 10 know it .
orientation in space. It is specified by the line joining the focus to the perigee. We can lind
this Jine by determining the angle 6, berween this line and the knewn vector ry as shown in
Fig. 6.9. The angle 6, can be found lrom the polar cquation of 1he ellipse by puning the
values of rg. ¢, mand L. i.c.

Y S
, T Am (] + ecos 8)

However. from the equation only cos B, is determined. It does not tell us the sign of 8,
which can be positive or negative depending on whether we are moving away from the
perigee or approaching it. This information is obizined by cansidering the angle ¢ in Fig.
6.9. You can sec that § < 90° when moving away from the perigee and ¢ > 90° when
approaching il. You cun now apply these results 10 determine the orbit of an actual satellite.

SAQ 4

A sitellite of mass 3000 kg is taunched in spac: with an initial speed of 3000 ms~" ala
dintanee 3.6 x 107 m irom the centre of the carth. [Uis projected at-an angle of 30" with
respect 1o the radiat direetion. Caleulate () the lengths of semi-major and semi-minor axcs.
{b) the angular momentum, ang (c) The apogee and perigee distances of 1he ordII

So fur we have determined 1he possible orbits of a body moving under an attraciive inverse
syuare force. As you know the electrostatic force between 1wo positively charged particles is
a repulsive inverse syuare central conservatve loree. Wh_in will the path of a particle acted
uoon by sueh 1 loree be

CT TR ST T iy
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Motion Under Ceniral

Orbits under a repulsive inverse square force
: Conservative Forces

We cun follow the samie procedure that we adopted for determining the planetary orbits. But
we have 10 replace the right hand side of Eq. 6.9a by ’% r . where k is a positive constant.
You can now determine such an orbit by solving he following SAQ.

SAQ 5

Show that the path followed by an alpha particle approaching ap alomic nucleus is a
hyperbola.

Lel us now summarise what we have studied in this unit.

6.4 SUMMARY

e A central force is one which. everywhere, is directed lowards or away from a fixed point
called the centre of force. It is represented us

F=Fr

e A central force whose magritude depends only on # is also conservative. A central
conservalive force can be represented as ;

A
F=f{rr.

e For motion under central conservative forces. angular momentum L and total
mechanical cnergy £ are constant, The faw of equal areas holds for such a motion which
is restricied (o a plane.

. . . . . koa.

e The equation of an orbit for an inverse square central conservative force F = :i:;j,_ Fisa

conic given by
+ 1 +ecosB
P

For a repulsive force, the orbit will be a hyperbola. For an auractive force, its shape wouid
depend on the value of e, Eccentricity depends on E and is piven by

i
-

6.5 TERMINAL QUESTIONS

I, lIndicate which of the following central force fiefds are altractive and which are
repulsive.

a
X

N

a) Had the torce 9f gravitational uttraction been inverse cube instead of being inverse
square, which one of the three Kepler's laws would still be rrue?

) F=-4rF. (ii)F= (iii) F=:;:_l| .

-J

b) Justify tie statement: The angular speed of a planet in its orbit ts minimun at
aphelion and maximum at the perihelion.

3. A rockel is fired from Thumba with an initiat speed

3. [2GM:

T4 N R

where R and M are the rudius and mass of the earth, respectively.

lgnore air resistance and the earth™s rotation. Consider conservation of energy and
angular moementum and calculate the Farthest distance it reaches from the centre ol the
carth if it is Vired off ta) radiatly ancd (b tngentially. :

LI T P Bt =1 v+ oPPD
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Systems of Particles

Fig. £.10; Diagram for SAQIa.

<16

Itis given that the eccentricity of the orbit of Halley's comet is 0.967 and the length of

ils semi-major axis is approximately 2.7 X 10/2m. Calculate the following for the
comet :

a) the perihelion and the aphelion distances.
b) the period.

6.6 ANSWERS

SAQs

a) Since F = - ix where x = OX (Fig. 6.10), the lorce is directed towards the fixed
point &. So it is central.

The work done in siretching it from A (x = x)'to B (v = vp) is given by

B Xg
W= fF.dx = J-— kx 7? (—dx .!? )
A X
Xp
Kos
or W= fk.\‘ dv = 5 b= x3)
. o 2

So lhe work done is dependent only on the initial and linal pasitions. Hence, the
force is also conservative,

b} This force is again directed 1owards a fixed point and hence it is central. However,
from the working of part (a), it is evident that the work done in taking the particie
from x = x4 10 x = vz will not only depend on the initial and final positions of 1he
pall., it would also depend on the velocity. So the force is not conservative,

¢) The given force can be eapressed as F = m 1 — n T where s and # are scalars
(" v.r and v, dl are scalar quantities). ftis eviden: from the expression of ¥ thal
it is not along Fasm#0in general. Hence. it is not central.

On comparing the given equation with Eq. 6,12, we get

a) e =0.5uand

b) -F— = R000 x 1000m = & x 10%m
Am

Bura =GMm

=(6.673 % 10-"'Nm? kp~?) x (5.97 x 10™ kg) x {2000kg)
= 7.97 x [0'7 Nm?

or L =(7.97 x 10!"Nm?) x (2000kg) % (8 x 10¢ m)
=797 x 16 X 10 kg? m?s-2,

or L =113x10"kgm?s"!

Alm
ZI--

¢} FromEq.6.15a £ = (er-1)

(7.97 x 10" NIm! x (2000kg) x ( 3

; ; .. y=-3.73 % t00F ,
IX (L3 X 10H)2 kgs m* 52

£

a} From Eq. 6.18. E =—m

6,673 x 10-'"TNm? kg-2) x (1.99 x 10 kg) x (5.97 x 10> kg)
: 2x 1.5%x 10''m

=-2.6x10%]

Tl i e et
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2 ' Mation Under Ceneral

‘Sincc fromEq.6.13p= “{I;?—I’ and also p = ¢ (| — ¢?) (See Eq. A.5 of Appendix A.) Conservalive Forces
we get
2
A =u(l-e7). andas A=GMm
L2 = GMm? a (1-¢2).

For the earth's orbil e =0.0167
5 L2= (6.673 x 10-1INm2 kg-?) x (1.99 X 10%%g) X (5.97 x 102 kg)?
x (1.5%10'm) x (0.9997) = 7.1 x 10* kg? m* 52
~oL =27 x 109k mP 5!

2WE
Alm

b) From Eq.6.15b, e =\f1 +

Since, the absolute magnitude of £ is given, it can be positive as well as negative. |

3 2083 e}
ITE >0, e = 1 +£,L*— QM =V 3, so the orbit is a
A-m L:

hyperbola.

IFE <@ e= Vi2 = ‘J—_I . §0 orbit is not possible,

Using Eq. 6.18, we gel

_GMm ©(621)

a=""3E

Now, we know that the initial energy is
3 . GMm ~.
=y Yo~ 3P
where rg = 3.6 x 10'm, v, =4000ms~!, m = 5000 kg and M is the mass of the earth.
Putting these values alongwith those of G and M, we get £ = -1.5 x 10'7).

Putting this value in Eq. 6.21, we get @ = 6.6 x 10'm.

The angular momentum L =-mvgry sing (where ¢ = 307). Putting the values of m, v, ry
and §, we get L = 3.6 x 10" kgm? s,

Once we know both £ and L, we can use Eg. 6.15b to calculate e. Ly Ta "eln
Fig. 6.11: O:bil of the sarcllite of

‘){2
¢ =‘\/1 + 2L here A= GMm . SAQ4.
A~m :

Putting the values of L.E,G.M and m, we get ¢ =0.9. .. b =29 x 107m

1
|
i
1
1
|
1
]
|ﬂ

The apogee and perigee distances are given by
rpa=a{l+e)=13x 10%m, ,
p=all-) =6.6x 10“rn_.

The orbit is shown in Fig. 6.11.

Refer to Fig. 6.12, Let the charges on the positively charged nuclens ¥ and the alpha-
particle A he g, and g, respectively. Let the mass of alpha-particle be m. So. as we have
obuined Eq. 6.5a. we can get ere,

m % =C qiz: £. where C is a constant dependent on the
nature of the medium. \
, Fig. 6.12 : An nlpﬁa parivwle
o T_Lp (6.22)  approaching a nucleys.
dr r-
' c -
where k = o 192=1 positive constant 17
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Systems of Particles

A A
You may recall from Eq. 4.10 of Unit 4 that L] =.9r.orr =-l—. LS
dr g dr

dv k49 km 4B

o L & o _m 4dy L 3
Thus, pr 2 d L4 (JL=m®

or dv -—i—mdﬁ

km ~
v .=—L—"'e +C,, (6.23)

where C, is a constant veclor of integration. We shal] now determine the constant C,,
For this we shall follow the same procedure as we did for determining C in the problem
of planetary orbits. So looking back al the few steps worked out after Eq. 6.10a you

will realise that v (0) and 6 (0) are in the same direction. Lel b {0) = 0 then
v0)=v(0)1.

Hence, from Eq, 6.23, we get

C, =I:v (0) + »‘ﬂ] 1':1\ =k ﬁ , where k| is a posilive constant,
km A
vy =- Z_ 6 + k]n .

Taking dot product with 8 on both sides and using v. 6= ro, 8. 6 =1 and
A
n. s=cosB.weget

; km

r@ =—T+k|cose

L _ _km Y[ = pp? £
o ST =T, +4yco50 [ L=r?0)

1 km? mk,
o T =TTty cos B

| ket LK .
or =2 I:mk cosf — | jl {6.2d)

Egq. 6.24 can be compared with Eq . A.9 of Appendix A
| _ccosé-t P S 2.3
r p km? O T mk

which is the equation of a conic with pole outside.

Such a conic can only be a hyperbola. Hence, the orbit is hyperbolic, with the nucleus
being the pole, i.e. the focus.

Terminal questions

L.

|1+

18

(i) The negative sign indicales that the force is directed wowurds the centre of lorce and
hence it is atiractive.

(iiy The posilive sign on the right-hand side indicates that the force is directed away
Diun e venite and bewuce ii s repuisive,

(iii) Theierce is auractive for 0 <r <1 and repulsive for » >1. It vanishes at » =1.

oy rymrra Ty s - r =yen - 1
3l Solong 2 the Toree is ceatral we have from Sec. 6201 that

a .
T=0or ﬁ =0, i.e. L = a conslant veclor.

_ We have seen that the law of equal areas fotlows from the constancy of angular
momentum vector. Kepler's second law is precisely the law of equal areas. So
Kepler's second Faw will siill be true.

———— -
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o Motion Under Central
b  Fromthe law of equal areas we know that »°8 = a constam for all the planets. Al Canservative Forcea
aphelian r is maximum, 5o 8 is minimun. And at perihelion r is minimum, so 8 '
is maximium. So a planet moves faster as it approaches the sun and slower when it
moves fur away from the sun.

(a) Refer to Fig. 6.13. The total mechanical energy of the rocket at point 7 on the
surface of earth is
_ , GMgm 7 GMgm
Ep=3m%™ "R, " 6. Re

The total mechanical energy of the rocket at point A corresponding to the maximum
disiance « is

: GMem
'EA = .1. 'ﬂll"l.f'l.l - —E- )

2

where v, = the velocity of the rocket at A,

We know from the principle of conservation of energy that Ep =E,

GMgm 7 GMgm Fig. 6.13: Trajeciorics of the

. l
1.¢, —my;, - — — =-
2 4 a 16 RE

(e radiul and 1angential dircclions of
o B liring the rockel.
We know that L = r X mv. At P, r = OP which is parallel 1o v,. So the magnitude of

angular momentun at P is zero. Hence [ » =0, Again Ly =mar, (v, is
perpendicular 1o the radial direction QA). Now since, Lp =L, . v, =0.

Hence, we et from Eq. 6.25 that a = l.';(! R

b) The total mechanical energy of the rocket al point B corresponding to the maxirmum
distance b is
] . GMgm

where vy = the velocily of the rocketat B . Now Ep = £y
, GMpm T GMm

mvg - b =~Te R, (6.26)

) —

Now, at P, r is perpendicular to vy~ Lp= mRg vy,

. . , Revy
Apain Ly =mbvg Since Lp=Ly we petvg = b -

_:_Ri:"lu__R_i‘ 9 2GMg 9 GM R,
AT o TR 16 Ry T8 W
So. we gel lrom Eq. .26, thal

9 GMemRy GMm 7 GMem

1

6 » b T 16 Rg
o ey T
1602 ~ b~ 16R;
or 9R] - 16hR: = -1}
ar Th? — 16bR; + 9k, =0
or (Th —OR ) (h =R 1 =0
IR,

But h:tR;_.sob:-.’;—
a) The perihelion and aphelion distances are given by
pea(l—elandr, =a(l+e).
For Halley’s comet @ = 2.7 x 10°m and ¢ =0.967. Hence we get

r, =89 x10%m,r, =53 x 10°m,

(6.25)  rocket.PR and PT show, Tespectively.

oD r2 Py H o) ety
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I;nrllcles

b) From Ey. 6.17, we get

where M is the-mass of the sun. So cn putting the values oi @. G and M. we pet

S ,\/ (2.7x102P m?
- (6.673 x 10-1 Nm2 kg-?) x (1.99 x 10%° kg)

=242 x 10% = 76.7 years.

FETERC== 8 3] | L) = ey




UNIT 7 MANY-PARTICLE SYSTEMS

Structure
7.1 Introduction
Objectives
7.2 Motion of Two-Body Systems

Equation al’ Mation ip Cemre-pi-mass and Relative Coordinales

Linear and Angular Momentum and Kinelic Energy
7.3 Dynuamics of Many-Particle Systems

Lancar Momcinum. Angulae Momenium and K.E. af an M-particle Sysiem
7.4 Summary
7.5 Terminal Questions

7.6 Answers

7.1 INTRODUCTION

So far you have studied the metion of single particles. In Unil 6 we did 12ke up the example
of a planet moving in the sun’s gravitational field. However. we assumed that the sun was a1
resl, You may have wondered as to why only the planet moves due to their mutual
gravitational autraction. Should not 1he sun also move ? Indeed. as we shall find in this unit
the sun also has a motien. Then why did we neglect it in Unit 6 ? We can answer this
question if we analyse the motion of the two-body system of the sun and the planet.

In this unit we shall first study 1he motion of twe bodies moving under 1he influence of their
mutual interaction force. We shall, of course, be applying the basic concepts of mechanics to
this system. In addition. you will learn the concepts of the motion of centre-of-mass and the
relative coordinates and apply them to two-body systems. We shall then determine the other
dynamical variables like the linear and the angular momema and the K.E. of cach SYSICITL,

We shall next extend these conceprs 1o siudy the motion of many-panicle systems, The
Solar System made up of planets and their satellites, asteroids and comets is one such
syslem. Gas filled in a cylinder is also a many-particle system il ils molecules can ve
regarded as point masses in a given problem. Objects such as explading stars, an acrobat. a
Javelin thrown in air. a cup of tea, a planer, a car, a ball are all sysiems composed of many
particles. [n some systems, &.g. a so'id metailic sphere the distances beiween the panticles
remain fixed. We shall study the motion of such systems in Unit 9. In other systems the
constituent particles move with respect 1o one another. In this unit you will learn the basic
_concepts needed (o understand these more complex and realistic systems. However,
predicting the motion of even more complicated many-particle systenis, such as air masses
that determine earth’s weather, is stilt very difficult. We need supercomputers to apply these
cencepts to such systems,

In the neat unil we shall use Lhe ccaceprs of mechanics to study the phenomenon of
scatlering.

Objectives

After siadying this unit you shouid be able to

» deline the centre-of-mass and relative coordinates, and reduced mass
e solve problems involving motion of two-body systems

e  derive and explain the physical significance of the expressions of linear and angular
nomenta and K.E. of « many-paricle system,

21
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Sislemis of Particles

Fig. 7.1: A 1wo-body syslem

(a)

(b)

Fiz. 7.2' (a) The cenlrc-of-mass
of a two-body ystem; (B} Posihon
veclors of the twa bodies wilh respecr
o Lie c.m.

I
tJ
i
f

7.2 MOTION OF TWO-BODY SYSTEMS

The motion of a planet around the sun is an example of a two-body maotion. In Unit 6 we
had approximated this motion as a one-body motion around a slationary sun, for reasons yon
will study in this section. However, when the masses of the two bodies are comparable, such
an approximation cannot be made. Such is the case for the earth-moon sysiem or the system
of two charges. For these sysiems we need to solve the equation of motion of both the
bodies moving under each oter’s influence. In this section we will study a method of
solving these equations.

Let us consider the motion of a system of two particles 1 and 2 of masses m, and m,,
respectively. Let their position vectors be r| and r, at time ¢ with respect to an origin O in
an inertial frame of reference (Fig. 7.1). We will study the case when no external force acts
on the system. The only forces responsible for their motion are .he mutual action and
reuction forces, For example, planels interact via gravitational attraction and molecules
interact via inicr-molecular forces. Two charged bodies camrying like charges repel each other,
In all these rases no external force acts on the systems.

Let the force on 1 due to 2 be F,,. then the force on 2 due ta 1 is F|; (=-F,, from

Newiun’s third taw of motion). The equations of motion for the two particles are
fﬂl -I.-I =le. (7.1&}

m, ¥, =F,=-F,,. (7.1b)

We need 10 solve these two ditlerential equations in order (o delermine the path of the two
particles, However, we can reduce these two equations 1o a single differential equation of
mation. We will use another sel of coordinates, namely the centre-of-mass and relative
coordinates lo arrive at that single equation of motion.

7.2.1

Refer 1o Fig. 7.2a. We define the position of the centre-of-mass (c.m.) of this system to be

Equation of Motion in Centre-of-mass ana Relative Coordinates

Ty 4

mpt+ ma (7-2)

R is referred to as the cenlre-of-mass coordinate. The relative coordinate of m with
respect o 1, is defined as

r=r-r, (7-3)

The position vectors (Fig. 7.2b) of the particles with respect to the c.m. are given by

) 1y
rp=r,-R= ITL (7.4a)

(1.4b)
where M =m| +m,.

Eq. 7.2 defines the centre-of-muss coordinate which logether with the relative coordinate of
Eq. 7.3 constitutes u new coordinate system 1o study the two-hody motion. Let us now
express the equalions of motion in termns of these coordinates.

Addine Fae 72 1a ami 7 Th wa nat
WOOINE TOR AL ant Aon we gol

moE 4+, T, =0,

or -5 {mr, L) = 4.
dr? { [ 2 _]

From Eq. 7.2. we gel

-

d
ar [(n, + my) R} =0,

T YT T T

B R FE = -
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d‘R
or M R =0, (7.5a)

Again from Eqs. 7.1 a and 7.1b, we gel

h F ..._EL'

I m T ’"z‘

or f,-izz(ml»me}F
1 2.

r= (__‘_ f _—1) le' (]-Sb)
Let us now introduce a quamily 1 such that

! | |
- = — +

poom oy
. __mymy
e W= m, + . (7.6)

K is called the reduced mass of the system. So Eq. 7.5b becomes
ur = F,,.

The equations of motion for particles | and 2 given by Eqgs. 7.1a und 7.1b are thus equivalent
to

MR =0, : (7.7}
and ur =F,,. (7.8)
Let us now study the significance of these two equaltions.

Centre-of-mass motian
Eq. 7.7 describes the motion of the centre-of-mass. This can be integrated 10 give

MR = constant. (7.9

Since M is a constant. we have R = a constant. i.e. e centre-ol-mass moves with constani
velocity. 1 et us now choose an ineriial [ ame of reference which is moving with respect to
the present fram. with » velocity R. Using Bq. 1,37 of Unit § we lind that the ¢.m, will be
al rest in this iew {rame,

So we have lfound an inertial frime in which the c.m. is al rest, Such a frame of reference s
called the centre-of-mass frame of reference. s origin lies at *he c.m. In this Itame

we need not solve Eq. 7.7. Sa it is very convenient to describe the motion in the c.m, frame
of reference. The position vectors of 1 and 2 with respect 10 the c.m., ar¢ given by r|” and r.’
as bwcn by Eqs. /7.4aand 7.4b. Now, if we want Lo arrive at Lhe sclution m any other frame
of reference we may use Eqs. 7.42 and 7.4b 10 find r, and r, in terms of ¥, .n and R, These

may also be used for deterrnining Whe velocilies ) and £,

Relative motion

In the c.m. frame we have o solve anly Eqg. 7.8 [t is the equalion of motion for a single
Fclitiouc panicle of Alass u movinq under the I‘nrce F‘.I If we mlve lhi\ dil'l'c:rcnlial

p..mclc 2 W:, can alsdy delermine the p.x'lh ul the o paru ies 1 and 2 Dy \nl\lng rnr rI ind
r, using Eqs. 7.4a and 74b.

So, by introducing the concept of c.an. we have reduced 1he task of sulving 1wo second order
differential cquations (7.1n und 7.1b) to solving a single equation 7.8. If we can solve this
one-body problem then we can also solve Lhe two-body problem. Thus, the motion of i two-
body system is equivalent 10 a vne-body systzm. All the concepts and laws concerning single
particle motion which you studied in Block ! can now be applied, once the mutual

Many-Parlicle

Syslems

Epa=c1hn ju) e
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Systems of Particles

interaction force is known. If it is a central conservative furce then the concepls that you

have studied in Unit 6 will apply. Note that a mutual force need not always be central as you
have worked out in the SAQ 1(c) of Unit 6.

You may how like to work out an SAQ.

SAQ 1
a)  Verify the relations (7.4a) and (7.4b).

‘bj  Write down Eqgs. 7.1a and 7.1b wlhen an external force alongwith the mutual forces of

interaction, acts on the system. Recast lhese equations using the centre-of-mass and
relative coordinates. Does it still reduce to an equivalent one-body problem ?

¢} What happens if the external force in (b) is the ferce of gravity ?

Now that you have solved this SAQ, you must have realised the following fact. The
reduction of two-body problem to an equivalent one-body problem is possible if no external
force acts on the system. The force of gravily, of course, is an exception.

Let us now consider a system in which the mass of one particle, say m,. is very large

m
compared with the other, so that m__z « | as in the case of the earth and the sun. Then
I

mym; my

u=m]+m2 = 7 ~ m,, and (7.10 a)
1+ —
m
my
r, +;ﬂ—l—r2
R=—"7"7— =~ r, , {7.10b)
2
l —
my

So, the reduced mass is equal 10 the smaller mass. And the centre-of-mass is locafed almost
at the posilion of the greater mass, which can then be regarded as fixed. The motion of the

" two-body system is thus equivalent 1o the motion of the lighter body around the heavier one.

Let us consider the example of a planet orbiting the sun. In Unit 6, we should have, in
principle, determined the planet’s orbit by solving Eq. 7.8. Instead we regarded the sun as -
fixed and solved the equation of motion of the planet with respect to the sun. Can that
method be criticised ? We know that the sun is much more massive than any other planet,

m
the ratio m_z being 2.5 x 10 for the most massive planet Jupiter. So you can apply
1

Eqs. 7.10a and 7.10b, and see that the approximate method which we adopied in Unit 4 is
quile valid.

However, even when one particte is very heavy, its motion should be considered and we
should use Eq. 7.8. Note that if #7, and m, occur in the expression of the force F,,. then ihey

shouid be retained as such and no replacement with t is to be made ! Let us now work out an

example 1o have a comparative study between the use of Eq. 7.8 and the method adopted in
Unit 6 towards the analysis of the planetary moticn problem.

Example 1

‘Wrile down Eq. 7.8 for the case of a two-body system comprising a planet of mass m and
the sun of mass M. Hence explain how Eg. 6.17 (Kepler’s third law) of Unit € will be
modified.

Let the relative coordinate ol the planet with respect 10 the sun be r. Then Eq. 7.8 1akes Lhe

" form
. TGMm -
Hr = =7327T
Mm
where p= Mam
So we gel,
HF =- Gﬁnp . where M, =M + m = the sum of the masses of the

planet and the sun.
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This is similar to Eq. 6.9b of Unit 6 with M replaced by M. So we can solve this equation
in the same way as we did in-Sec. 6.3.

Then in place of Eq. 6.17 we shall obtain the following :
2
Tz = M N
GMo
where gg is the semi-major axis of the relative orbit (Fig. 7.3) and My = M + m.

So the orbital period does not depend only on the semi-major axis. It also depends on the
mass of the planet. Hence, Kepler's third' law is only approximately true.

You may now like to work out an SAQ on these concepts.

SAQ 2
One of the most massive stars known at present is a binary or double star, i.e. it consists of
two stars bound together by gravitation, It is known [rom spectroscopic studies that

(a) The period of revolution of the stars about their c.m. is 14.4 days (1.2 x 105s),

() Each component has a velocity of about 220 km s-!. Since both components have
nearly equal, but opposite velocities we may infer that they are at nearly the same
distance from the centre-of-mass, and so their masses are nearly equal.

(c) The orbit is nearly circular.

From this data calculate the reduced riass and the separation of the 1wo €C:mponents.

We have thus seen that a two-body motion can be reduced 1o the centre-of-mass and relative
motion. In such cases, various kinematical quantities, like linear and angular momenta and
kinetic energy of the two bodies can also be expressed in terms of c.m. and relative

coordinates. We can also say that these quantilies are redisributed in the centre-of-mass and
relative motion. Let us see how this is done.

7.2.2 Linear and Angular Momentum and Kinetic Energy

From Eq. 2.20 of Unit 2, the lotal lincar momentum of the two-bedy system of Fig, 7.1 is
given as

P = p, +p,, where Py and p, are the linear momenta of 1 and 2,
OF P =0T + Myl (7.11a)
Differentiating Eq. 7.2 wit; respect (o lime we get
(m, +my)R = my |+ RT,
or p=MR. 7.11b)

According to Eq. 7.9, MR, te. p is a constant provided no external force acts na the syslem
Thus, we arrive at the principle of conservation of linear momentum for a two-body system
which is as follows:

The total llnear momenium of a two-body system remains constant
provided no external force acts on it. If the mass of the two-body system remains

ceastant, then it leads o the following staiement:

The velocity of the centre-of-mass of a two-body system remains constant provided no
eviernal force acts on it,

Let us now work out a simple example on 1his concent

Many-Particle System-
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Fig. 7.3: Orbits of a planet and the
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Systems of Particles
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Example 2
A 70 kg man tries 1o step out of a 35 kg boat, initially at rest. onto a platform P beside

lake (Fig. 7.4). What happens if he tries to step |m sideways from the boat without liolding
on lo the platform ?

The boat has no keel. So we can assume that the reaction of the water on the boat, sideways
to it is negligible for the brief lime in which the action takes place. Thus. the net external
force on the two-body system (man and boat) is zero and the »elocity of c.m- of the sysiem
remains constant. Before the man jumped from the boat, the c.m. of the system was at rest,
Therefore, it should remain at rest, i.e.

mrb) 4 mary
R = ————— =azaconslant.
m, +m,

where m,, m; and r,, r, are the masses and position vectors of the man and the boat,
respectively.

If we select the origin of the coordinate system at the position of the c.m., as in Fig. 7.2b,
then R =0, ie, :

mry +mr, =0,
Substituting the values of m|, m; and r, we get
(70 kg) (1m) ?’, =—(35 kg) r,, where Ar, is the unit vector in the direction of r,.
Fa
or r,=-2mT,.

The boal will thus move 2 m in a direction opposite to the man. So the man has to hold on
to something or bring the boat nearer, otherwise he will be in danger of falling in the lake.

You may now like to work out an SAQ.

SAQ 3

Suppose in a nighimare you find yourself locked in a light cage on rollers on the edge of a
cliff (Fig. 7.5) | Assuming that no external forces act vn the system consisting of you and
the cage, what could you do to move the cage away from the edge ? What must you avoid
doing ? If you weigh 60 kg and the cage weighs 90 kg and is 2m lopg. how far can you
move the cage ?

So far we have discussed the linear momentum of a 1wo-body system. Let us now find an
expression for the angular monentum of a two-body systen.

The total angular momentum of the two-body sysiem is the vector sum of the angular
momentum of each body.

L=L+L,
SO X Pt py
or L =mMiN X Y +mr X Vs,

Substituting r, and r, from Egs. 7.4 a and b, we get

mj m
L= ml(R + Hr)x v,+m, |R - -Er)x v,

= Rx(my, +mv,)+ El#:;’-lz (rxv, —-rxv).
Using Eqs. 7.3. 7.6 and 7.1! we get
L=MRXR)+prX v,

L=RxMV +prxv, (7.12)
where V=Randv=r=r -r,.

You may now try an SAQ. The first part is concerned with Eq. 7.12 and the second part is
associated with the K.E. of the two-body system,
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SAQ 4
a) Use Eq. 7..2 to prove that the angular momentum of a two-body system is conserved
provided that no extzeral force acts on it and they move only under their mutual

interaction force which is central.

b) Express the K.E. of the two-body system as T = :1—! m lif + -;'mzig and use the relevant

equations to show that

_Lyepr 1

=3 MR+ 3 w?, (7.13)
You can see from Eqgs. 7.11b, 7.12 and 7.13 that 1o obtain the values of dynamical variables
in any frame from those in c.m. frame, we only need 10 add the contribution of a particle of

mass M located at the c.m. R.

So [ar we have analysed the motion of a two-body system. We saw that the introduction of
ae centre-of-mass and relative coordinates made it easier to study this system. We could teat
the motion of individual bodies as equivalent to the motion of one body relative 1o the
.entre-of-mass. Can we cxlend such an analysis to a many-particle system ? Let us find oul.

7.3 DYNAMICS OF MANY-PARTICLE SYSTEMS

To begin with,let us consider u system of three particles A, 8, C of masses m |, m, and m,
and position veclors r, Iy, ry, respeciively,ai » ime ¢ with respect lo an origin O in a given
frame of reference (Fig. 7.6). We will analyse the molion of this systam and extend each
result to an N-particle system. We define the position vector of the c.m. of the three-body
system as -

3
myr mhHI mar 'Dﬂiri
R = 1Py + Moy 4 Myl - =1 (7.142)
m,+m,+m, M

where Z, as you know, represents the sum over the three terms in the numerator of Eq. 7.14a
and
3
M=m +my+m; = _ZJ]ni .
I =

We also define he relative coordinate of the /” particle with respect (o the /& particle as

C=r—r =, . ‘ (7.14b)
Let us now write down Lhe equation of motion for particie | of the sysieni. In general this
particle may be subjected to an external force F,, and the mutual forces of interaction due to

the other two particies in the system (Fig. 7.7). Fe,
Fﬂ f
m, Fy, E Fu oy
e
_F a Fy
Fy,
F,
m,

Fig 7.7: Forces acting on » throe-panticle system
So the net force experienced by particle 1 is
F =F, +¥,+F,. (7.19)

Since the particle does not exent 4 force on itself, the lerm F,| does not appear in Eq. 7.15.
The equatjon of motion for particie 1 then becomes

mg, =F, +Fy + Fy {7.16)

Miny-Particlt Systems

Fig. 7.6: Three-pariicle system
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Systems of Particles

Fig. 7.8: The carth and the moon
exccule elliptical molion aboul their
cm,

You can now work out the following SAQ to obtain the equations of motion for particles 2 -

and 3.

SAQ 5
a) Write down the relative coordinates of each particle with respect 1o the other for the
three-particle system of Fig, 7.7.

) Let the external forces acting on the particles 2 and 3 be F,, and F,,, respectively. Write
down the equations of mation for these two nanticles, '

Now that you have writlen the equations of motion for the other two particles, let us add the
equations of motion of all the three particles. This gives

mt, +apf+mins F o+ Fy + Fy
+F, + F, + Fy

+F,, + Fj; + |

Now the mutuai forces of interaction between each pair of particles are equal and opposite, so
that

F; = -F;. F\3=-F;,. Fy = -F;, and we get
mir +me+mey= F + Fy+ F

3 3
or ¥Ym¥; = XF,.=F,

i=1} i=1

7.17a)

where F is the net external force acting on the system. Now il we differentiate Eqd. 7.142

i 3
twice with respect to time, we obtain MR = ¥ m; T, , provided m,, m,, m, are constant.

i=1
Eq. 7.17a then becomes
MR=F, (7.17b)

This is the equation of motion of a single particle of mass M sitvated at R under an external
force F,. So, the introduction of the centre-of-mass atlows us to apply Newton's second law
1o the entire system rather than 1o each individual particle. As far as its overall motion is
concerned, the system acts as if its entire mass were concentrated al the c2ntre-of-mass.
However, using Eqs. 7.17a and b we cannot obiain a general analytical solution for the
individual motion of the three bodies.

However, we can use the concept of the centre-of-mass 1o explain many importani features of
the molion of a three-body system: We will illustrate this with the three-body system of the
earth, moon and the sun.

=TI
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Example 3: A three-body system—earth, moon and sun
Recall your study of the two-body problem. If we consider the earth-moon (E.M.) system
only, then both the bodies would execule elliptical mation about their centre-of-mass

(Fig. 7.8). Lel us see what happens when we include the sun in the system. The c.m. of the
earth-meon-sun sysicm lies at

MR, + M R+ MR,
R = Mo+ M_+M, ’ (7.18)

where M, M_. M, arc the masses and R,. R, . R 1he position vectors of the earth, moon
and the sum, respertively. Dividing the nemerator and dencminaior by M, W can stiow Unai

R = R, since M_ is much larger Lhan M, and M Thus, (o a good approximation, the c.m.
dus 1o the gravilimional attraction of other celestial bodies are negligible. So. the ¢, Iuves
with a conslant velocity. We have seen in Sec. 7.2.1 that the ¢.m. will be at rest in an
incriial frame of reference moving with the same velogity as that of the e.m. Thus, in such
an inertial frame, the sun is effcctively at rest and we can use a coordinate system wilh its

origin at the centre of the sun, so that R = 0 (Fig. 7.9b). Then we need to consider the
motion of the carth and the meon aboul the sun.



Letr and 1, be the positions of the eanth and moon with respect 1o the sun. Their c.m. lies Many-Particle Systems

al

Mr +M_ r,

R = "M um,

The exteraal toree onthe vurth -imoon system is the gravitational attraction of the sun given
as

M, M,
F:--GM‘(-’- For s ‘Pm)

Ty
I < r.

The equation of mwiion of the c.m. is

(M +M_)R_ =F.

Now you can verify from the table ol physical constants thai the earth and moon are very
close 1o each other when compared wiih their distances from the sun. So we can assume to a @
good approximation thatr,=r,_ =R

rm Fig. 7.9: The canh-moon-sun

With this approximation the equatiop of motion of ¢.m. becomes sysiem. \ -
. - GM, -GM A \
(‘Mr 1 Mrrr) er = RZ“__ [Mr ’}f + Jer ?m:J = R2 __I ('”( + "wm}Rcm' ’ “
S0 the c.m. of the eanth-moon system moves around the sun like p planct of mass !
(M, +M,). Iis otbit can be determined 0 be an ellipse by the metad used in Unit 6 (See ‘I
Fig. 7.10). ~ - 10
N-particle system “M ,"r
Let us now sludy the motion of a system of ¥ -particles of masses LIPSV TR Ly - o |
lorated at positions r . ry. Fy. ... + [y At an instant ¢ with respect te an origin 0. The !
position of the ¢.m. of this N-particle system is given by i
N I
- . . my Xmr; I!
T+ Mo + L+ myty =
R = 20 2l NN l , (7.19) /
my+m;,+ ... +m, M . /
N Fig. 7.10: The c.m. of the canh-
where M= Y m. moon-sun sysicm (C) ties at the
i =1 ! sun. The ¢.m. of the canth-moon

system (C4) moves around the sun.
LetF,,, Fd. - Fpy be the extemal forces acting on the particles 1,2, ..., N, respectively.
These particles are also subject to the mutual forces of interaction. We can now write the
equations of motion for all members of the N - particle system. Each particle is s.ihjected 1o
un external force, and forces of interaction due to the other (V- 1) particles. Thus, we have

mr = F + Fy + F, + + Fy, + F,
mi, = F, + F, + F, + + Fy, + F,
mt; = F3 + Fyy + F, + + Fn + F,.
mg, = F, + F,, + Fy + + F,, + F, (7.20)
mEy = Fpy + Fpy +Fy +Fy + ..+ F

Now, from, Newton's third law we have

F"f =—Fﬂ, fori=1,2,3 .., Nand j=1,2,3, .., N.

Thus, F\,= -F,,, F, =--F,, o gy = —Fy and soon.
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Systems of Parlicles

et "

Fig. 7.12: Centre-ol-niass ol the
diver lollows a parabolic path, cven
though the diver mlales while
moving through the ait.

Now, if we add all these equations, the terms due to mutual inieraction of 1he particles cancei
oul and we gel

Tt myfy+ ki, =F, +F, +  +F,, (7.21a)
Using the summation notation we can write Eq. 7.21a in a compact form as
N N
Ym¥ =3 F,= F, (7.21Db)
=1 i=t
where F, is the net external force on the M-particle system.

These equations may appear difficult to you in the first instance, Do ror feel scared. You
don’t have lo memorisc them. Try to understand the reasoning behind them. The following
SAQ may also help you in this regard,

SAQ 6
Draw the mutual forces of action and reaction acting on each member of the four-particle
system shown in Fig. 7.11. Write down the equation of motion for this sysiem.

Fe, F
m, .—-"_'—' . &4
m‘ /
Fe
/ Fe;
i, *
. /
Fig. 7.11: A four-panicle sysiem
We can aga}n differentiate Eq. 7.19 twice to obtain
I N
MR = 3 m, T sothat Eq. 7.21b becomes
i=l
MR =F,, (7.22)

which is the equatien of mation of the c.m. of the syslen. Again, as long as we are
interested only in the motion of a body as a whole, we may replace il by a particle of mass
M loculed at the centre-of-mass. In Fig. 7.12, you can see an example of this result in action
{or the external force of gravily. In this case we can apply the Eq. 7.35 from the solution of
SAQ 1c. The solution of this equation tells us that the centre-of-mass of a complex object
follows a simple parabolic path under gravity (see Sec. 2,2.2),

Lel us now determine the expressions of the linear and angular momenta and the kinelic
energy of an M-particle system in terms of the c.m. coordinate.

7.3.1 Linear Momentum, Angular Momentum and Kinetic Energy of
an N¥-Particie System

We can extend Eq. 7.11 for a lwo-body sysiem 1o express the toial linear momenium of an
N-particle syslem as

N
P=pit + nmyfy+mfy+ .. + mgr, = .Zlm,rl (7.23a)
I=

Again differentiating Eq. 7.19 with respect (o lime we get

R LA S0 XU
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. N Many-Particle Systems
MR = ¥m,i;, sothat P = MR. (1.23b)
=1

1=
Now, if the net external forze acting on the system is zero then from Eq. 7.22 we get

P = MR = constant. (7.24)

This is the principle of conservation of linear momentum which can also be stated as
follows:

The velocity of the c.m. of an N-particle system remains constant provided no external Jorces
act on ir.

You can now appiy Lhese ideas to work out an SAQ.

SAQ 7

Consider a system of three particles, each of mass m, which remain always in the same
plane. The particles interact among themselves in a manner consistent with Newton's third
law. The three particles A,B,C have positions at various limes as given in Table 7.1, i.e. it
shows the (x,y) components (in metres) of their position vectors at three instants.

Table 7.1
Time(s) A B C
0 (L) (2.2) (3.3)
1 (LOY {00 a3
2 (UR)] (1.2} {(20)

Determine whether any external forces are acting on the system.

The lotal angular momentum of the N-particle system about any origin ¢ is the vector sum
of the angular momenta of individual particles about that origin, i.e.

N
L=mr, Xy +m, X v+ 4+mry X vy= Y mr.xv, (725
=l
The value of L depends on the choice of the origin O, just as it did for a single particle. We
can express L in lerms of R by subtracting and adding the quantity £ m; R X v, from
)
Eq. 7.25. Thus,
N N
L=%m@,-R)X v+ T m R x v,
i=l =l
(r;— R)=r;’, say, is the position vector of the {"particle about the c.m. So m;r;/% v, is

the angular momentum of the " particle about the c.m. Thus. the first term is the sum of
the angular momenta of the particles aboul the c.m. It can be denoted by L.

Since R is constant. from Eq. 7.23a the second term can be expressed as

N
Rx ¥mv, =Rx P.

=l
Therefore. the towal angelar mementum of the N-particle svstem can be expresead as

L=L,+Rx P (7.26)

If no nat extema! foree acts en the system, then a5 we have seenin Example 2. ihke c.n. can
be Laken to be at rest. So we can choose the origin of the coordinate system at the c.m., i.e.
R = 0. In this case the expression of L further simplifies to

N
L=L_=Xmr, Xv, (127
=] 31
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Note that in the Eq. 7.27, r,is the position vector of the '™ particle witiyr2spm Y e the
centre-of-muss. We can make use of the expression to esinbate the angualir mohettum of the
Solar Sysiem.

Exampte 4: Angular momentum of the Solar System -

The sun is very massive when compared with the planets. So aceording to Example 3, the
c.n. of the Solar System is very nearly af the position of the sun. Thus, accardiag 10

Eq. 7.27 the total angular momentum of the Solar System is the sum of the angular
momenta of the planels and that of the sun about the centre of the sun. Let us make an
estimate of the angular momentum of one of the planets, say Jupiter. Since Jupiler's orbit 1y
very nearly circular. the magnitude of its angular momentum aboul 1he centre of the <un i

— 2
Lj = M}- o r,

where M, . w; . r; are Jupiter's mass, angular speed and rnean dislance from the sun,
respectively. But ©; = 2n/T, . where T, is the time period of revolution of Jupiler around the
sun. Substituting the numerical values M; = 1.90 x 10*7 kg. T; = 1 1.9 years,

r; = 7.78 X 10'm, we get

L= (1.9%10M kg) x 2n
(11.9)%(365.25)%(36400)s

Jx (7.78 % 10""'m)?

=1.92x 10 kg m? s\,

Likewise, the angular momenta of other planets can be estimated by assuming circular
orbits.

The angular momentum of the sun about ilts axis is approximately 6 x 10%/kg m2s-). Now,
ail planets move in the same sense around the sun and the sun moves in thal sense about ils
axis. So the directions of the angular meomenta of the planets and the sun are the same.

Therefore, the magnitude of the total angular momenium of the solar sysiem about the centre
of the sun is obtained by simply adding the magnitude of the planets’ and the sun’s angular
momenta. It is 3.2 x 10°3kg m?s~', which is a consi. ni. It can be seen that a huge torque
(which may act for a small duration of time) will be required 1o disrupt this system. You can
also sce that the sun’s angular momenlum aboul an axis through its cenire is less than 2%
of the 10tal angular momentum of the Solar Sysiem. A typically hotler star may carry about
100 times as much angutar momentum as that of the sun. Thus the process of formation of
a planetary system is apparently a mechanism for carmying off angular momentum from a
cooling star,

The total kinetic energy of the system of N particles is

N
T=5 2 mv?. (7.28)
i=1

| —

We can express the lota’ Kinetic cnergy in kerms of the c.m. coordinates. In our discussion
on angular mementum we have defined the posilion vector of the /' particle with respect 1o
the c.m. as

r,=r,-R, i=12, .. Y (7.29)

1
From the definition of the c.m. we gel the condition
N N
2mr, = 2 mR,
f=| i=1
or mir,~-RY+m,(r,-Ry+ . +my{ry-R)=0

or 2 m (r;-Ry= Y nr’ =0, (7.30)
Differentiating Eqs. 7.29 and 7.30 with respect to time, we also get

v/ =v,-R . (7.31a)

aud ¥ ompy =0, (7.310)
i
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. . Many-Particle Sysiem
Substituting (v + R) for v, {from Eq. 7.31a) in Eq. 7.28 we get

1 N ) ¥ : :
T =5 Z"':(V:-Vf)=‘2' 2milvi? + R* + 2v/. R]
i=l i=1
| N NN _
=5 Zmp? + 5 LmR2+ (Tmv) R
i=1 =l 1=l

¢ R is a constant independent of {.)

The last term in this expression is zero in view of Eq.7.31b. Again as R does not depend on

i the second lerm is simply ‘% MR2,

Hence we can express total kinetic energy as

N

T =1 MR, % 3 mi? (7.32)
=1

1
2
The first term in Eq. 7.32 depends on the total mass M and on the motion of the c.m.

The second term depends on the intemal coordinates and velocities of the system. Eq, 7.32
implies that a certain amoum of K.E. is locked up, as it was in the motion of c.m. In the
absence of extemal forces, R remains constant and thus the first term does not change. This
means that during the collision of two abjects, only a certain fraction of their 101al K.E. is
available for conversion lo other purposes. Let us now consider a simple example to expiain
the above facL

Example 5

Show that if a moving object of mass m( {=2 units) strikes a stationary object of mass m,
= | unit), then 66.7% of the initial K.E. is locked up in the motion of ¢.m. and only the
remaining is available for the purpose of producing deformations and so on,when the objects
collide.

We have from Eq. 7.32 that

T=

D [

() + ma) R+ % (m,vi1 +m1v'22] (?.33]
where the underlined part is the contribution of the first term.
Hee m=2,my=1, v, =v (say). v4 = 0.
5 2
omy +m2=3a.ndR=§v.
Again from Eq. 7.31a,

. 2vi ¥ 2vi 2y

T A T ]
From Eqg. 7.33,

FL3 4 L (2 4

279 PR 9

Hence the first term is equal 10 2/3 of the olal. Or in other words (23 x 100, ie. 66.7 per

cent of the initial K.E. is locked up in the motion of c.m. and the remaining is available for
conversion to other purposes,

While studying this unit you must have noticed the remarkable similarities berween the
results for a single particle and a many-particle system. The analogy is direct for the
expression of linear momentum and equations of motion under an applied force. In the 33
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Systems of Partictes

expressions for angular momentum and K.E. of a many-particle sysiem we find an additional
term for each. We are presenting these similarities in a compact form in Table 7.2.

Table 7.2
Results Singlc panicle Many-panticle sysicm
Lincar momentum p=mr P=M R
B Equation of motion p=mr= F, P=MBR= F,
Equalion of motion when :
cxlemal foree is absent p=0 ' P=0
Angular momentum l=rxp L=RxP+Ly
Kinelic Encrgy KE = %m;.: KE MR oL l ;s ‘,,

Let us now summarise what you have learnt in this unit,

7.4 SUMMARY

For two bodics of masses m,. my and position veclos ry. r-. respectively. the
coordinales of ¢c.m. and the relative coordinate of my with respect to m» are given by
ML 4 mars

R
m +m-

The differential equation of motion for each particle in a two-body system under their
mutual interaction force can be expressed as

me;=Fy, mt=F, =—Fy
These can be reduced effectively 1o a single differential equation of motion given by

M B

ur = Fy, where | =

m + nis
H is known as the reduced mass of the system,

The expressions of linear and angulur momenta and K.E, of a two-body syslein are givan
by

p=MV
L=RxMV+prxv.

_1 L2
=5 MR+ 2 Hye,
where

M =m +ms,

nEL oM, T,
=T =ihe velocity ol c.m.
mi + L)

V=T, — I = lhe relative velocity of /m, with respect 1o s,

The ¢.m. coordinate of an N-particle system having masses m,. .. m,, ... and
position vectors r, £y, ry, .... is given by

N N

2mr; 2m;

i=| i=|

N Era

T

TRy 3 p) 17| ey




The differential equation of motion of an N-particle system under the influence of a total Many-Particle Systems
exlernal force F, and mutual interaction forces is given as

. N I
MR=F,where M =Y m;
i =]

This indicates that the motion of the system is equivalent to the motion of its ¢.m. with i
mass M under the influence of the external force only,

The linear and angular momenta and K.E. of an N-particle system are given by

Hl i ey wrrarr—

P=MR
L=L,+RxP,

T ITTRIS F T T

where L, ,,= Angular momentum of the system about the ¢.m. and
i - | N k) - ~
T = 3 MR+ 3 .Zr;;,-v;.' where v; =v; - R
i= :
7.5 TERMINAL QUESTIONS ]

TJ

Twao particles P and (2 of masses 0.1 kg and 0.3 kp. respectively, are initially at rest Im
apirt. Thes avract each other with o constant force | N. No external force acts on the
system. Describe the motion o the c.m. At what distance from P's original position do
the partivias collide”

#  Two astronauts (Fig. 7.13) cach laving a mass of 80 kg are connected by a light
rope 8m long. They are isolated in space, orbiting their c.m. (C ) at a speed of
5my . Treat the astronauts as particles and a) caleulate the apgular momentum and
K.E. of the syuiem.

By pulling the rope, the astronauls move closer Lo each other and their separation
becomes 4m.

b} What is the present angular momentum of 1he system ?

¢} What are their new speeds ?

d) Does the K.E. of the system remain the same as that in case {a) ? ’

Two idenucal ballocns are joined by a thin membrane (Fig. 7.14). Initially one is filled Fig. 7.14 :
with ga< while the other is in a collapsed state. The mass of the material of the ballcons -
is negligible in comparison to the mass of the gas, Al a certain instant the membrane :
ruptures. allowing the gas to fill the balloons equally. Assuming that there is no

friction aiid that'only horizontul molion can occur. geiermine which way (Jefl or right)

must the halioons muve.

7.6 ANSWERS

SAQs

2} Using Eq. 7.2. we pe1

mT oM.y, mir -r (X
naz,..__l_l'*_:__a._.,._l—L_ﬂ_:_L
m; +my m+my M 15
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or

and N LT, b B L LU Wt SV 11
T omp+ s o+ oma M

b} Ifthere is an additional external force then Eqs. 7.1a and 7. Ib take the following
forms :

m vy =Fy +F,, (7.34a)
mifs=F3+ Fo (7.34b)

Adding Eqgs. 7.34a and 7.34b and using ¥y, = -F, we get my 1y + m, 1, = F, ,
where F, = F,| + F,, = the net external force.

Hence using Eq. 7.2, we have

MR =F, (7.35)
where M=m +m,
Again, from Eqs. 7.34a and 7.34b, we gel
£, = F‘rl F(l . I'_'I=ﬂ'-:+ Ef_?.
m] mz nf:
Fo Fe| ..o _
dr? (r, r-,)—|: nh:l Fa +I:rw, - m;:l € Fy=-Fp)
o p=id [Q_ F'—3] (7.36)
n h s

S, we get two equations (7.35 and 7.36). Thus the case cannol be reduced to an
equivalent one-body problem.

¢) If the external force is that of gravity then F_ /m, = F_a/m» = g. Hence Eq. 7.36
can be simplified to pr = Fa, which is the samc as Eq. 7.8. 'I'hg right-hand side of
Eq. 7.35 still remains non-zero. But in this case it reduces 10 R = g whose solution
is quite well-known (see Eq. 2.9 of Block 1,. niis given by R=v s + % g+ B

where the symbols have their usual meanjngs. So effeciively, this reduces to a one-
body problem where we have to solve Eg. 7.36 anly.

Refer to Fig, 7.15. The two stars A and 8 are moving in unilorm circuiar motion aboul
their common centre-of-mass € . Let their masses be sy and ma. According to condition
(b} my =my=m (say}, AC = BC = r and 1he separalion between Lhe slars = 21,

Now, if T be the time period of rotation of a siar then

e _
T =
- 220 x 1000ms-") x (1.2 x 10%)
or e T _ (22 1 x( =8.4%10"m
n n
Our next task is 10 czlculale the redueced mass W :
pose U mtm a
Tmy+m, 2m T 20 -
Again using Eq.7.8 we may wriic that
G B, I
Pa = (7.37)

{2 )

where g = the magnilude ol the relative acceleration of A and 8. At any instant their
acrejeruions ire directed wwards C. They are equai in magniede (=v-/1 1 and oppusite in
direction. So using Eq, 1.36 of Unit !, we understand a = 212/r. So on putting
my=ma=m =2 and v = 20 / T, and wsing Eg, 7.37. we get

G ap® _ 2pand?
42 Ty 7t
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sz2r* _m(2r)
OCH=GTT T G

_ n2x (8.4 % 10'%m)p
T (6.673 x 1071 Nm? kg-2) x (1.2 X 1085)?

L H =6.1 x [P kg.

" As we have assumed that no external force acts on the system, the c.m. of yoursell and
the cage will remain at rest. Thus in order to take the cage away from the edge of a cliff
you must move towards the edge. You must avoid moving towards the other side as in
this case the cage will move towards the edge of the cliff.

For the final part of the problem we shall apply the equation ryv| + myv, = 0,

(. the velocity of the c.m. is zero). where m| and m, are the masses of the cage and
yourself, respectively. Now, your speed vy = x; /t . where xy is the maximum distance
that you can move in the cage, say in a time ¢, i.e.. xa = 2m. Then v, = x/t, where x,
is the maximum distance through which the cage can be moved in the opposite direction
{as v, must be opposile to v,) during the same time . Thus

maYy _ (60kg) Gm) _ 4

T oo ™
a) From Eq.7.12 on applying the resulti (Ax B) = dA xB+AX @,we get
dr dr dr
%— SRXMV+RX M Va4pix v+prx v,

New since R = V and ¥ = v, the first and the third term vanish.

Again 4s no intemal force acts on the system, the velocity of c.m. is constant and

\'/ = 0. So the second term also does not survive and we are left with
I‘ =rx ].u:r N

Now pv = pr = F,, From Eq. 7.7 it is given thal Fy, is central. 'So F,, is either
parallel or anti-paratlel to r. Hence the cross product of r wilh Fy, vanishes.

~ (L—[;‘ =} which means that L is conserved.
| a1 .3
b} Tziml']*'imz'_;
We know from Eqgs. 7.4a and 7.4b that
m,y m,
r,-R=Fr and r2_R=_5T-r'
Lo my . m,
Sor|=R+Fr and fy = R ~w b
T m,)? 2m
F1=F rl=R3+(‘.;3 r2+—»'er
. (m,)? 2m
adri=r,.MHh=R2+ #P—H—I R.F
] | mmy
T=E(m|+ma)R3+5 ;ﬁ F(m +m;)
. mm )
urT:'%MR3+IE'-—.‘__‘!—Z\- (' mamy=M, r=v)
M I UPFEIN I
Nowas = v .wegetT_zMR o

a) FromEg.7.14,we getra=rs— F|, Fiy = T3— 0 and £y = r-ra.
b) The equation of motion for particles 2 and 3 will be as (ollows :
nafy = Fea + Fia+ Fa

amd .ﬂl‘;i;:'!, = F‘._‘ + F|_‘ + l.i-l"

Muany-Parlicle Systems
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F
F" C4
e Fu
F,,

. Fe,

1 FI] Fc! Fc,
m: Fu

FII F.‘.l i

Fig. 7.46: The forces acting on zach member af e Sour parmcte svstem
The equation of molion for this sysiem is

mrp+ms ey + myi+ omgry, =F ) +Fo+FarFo

7. We shall first construct a Table (7.3) following Table 7.! 1o indicate the position
Jveclorsr,, rgand r. of A, 8, and C and the pusition vector Ry of the ¢, atr = 0. 1
and 2s, respecuvely, Remember that m | = pr = pr. = .

Table 7.3
! L g L ’-R :mlr.vm_q FatoPLLEL ;
L f "rlvmsl-nl‘.
0 fed R W Giebp A a4
P+ io+1j Yedj R“:i-—‘—f——p=3i+1j !
i [
| I A Y AT A
1 ] LI g} _Jﬂ_(l?_ﬂ__. +
R = im syt
5 A AL LA A U S !
- I LI | =1 Rj:{"_‘_'_t_ﬂ:hj '
- 1m
MNow the average velocity of the c.m. during the interval
R -Ry -2 =& &
r =0t ls=>"--—S =10 i+ j)
-0 "3 .
i . B--R; -1 3 4
and that during the interval 1 = | 10 25 = =73 T i[ i+j0.
This indicales that the velocity of Lhe c.m. has changed. Hence, some exlemat force has
acted on the system.
Terminal Questions
1. Since there is no external force, the velocity of the c.m. remains censtant. [n other

i 1
I ~ H
r x - -
Fig. 7.17
38

words. the c.m. remains at rest as its initial velocity is zero.

Since the c.m. remains at rest, ity position must coincide with that ot the particles a1
the instant of their cotlision. So they collide at the pasition of their stationery c.m. €
{(Fi1g.7.17). Our ask 1s now Lo obtain C.

Let PC = vm.

Then €@ = (1=v ym. Ax " 1% the c.m. we have
mp(PCHY= My Q)

or ((j.l knyxaem=03kgyx(l—v)m

or 4x =13,

T T

TG




1
ofr x=7,ie. PC =075 m.

2a) Refer to Fig. 7.13. The anpular momentum vectors of the astronauts are parallel
(perpendicular to the planc of the paper and pointing towards us) and equal in
magnil.de. The magnilude of the angular momentum of the system is given by

L =L, %L, =mvr+mvr=2mrr,
where m =80kg.v=5ms™'andr =(82)m =4m.

. L =2 (80 kg) (Sms™) (4m) = 3200kg m?s
The K.E. of the systemn = 2(% ma) = (80 ké) (5ms-1) =2000].

b) The astronauts move close lo each other due 1o equal and opposite intemmal forces
that act along the line joining them. This means thal the mutual force is central.
And there is no exicmal force. Hence the angular momentum of the system remains
conserved, i.¢.3200k g m? s~ in the same direction as that stated in (a).

¢) LetV and R be the new speed and radius. respeclively.
Then we have,
2mVR = 3200 ké m2s-!, where m = B0 kg and R = 4m/2 = 2m.

Ly 3200 kg m?s-! o
V= Saokes (2m = O™

d) The new total K.E. = 2(']2-mV1) = (80kpg) (10ms=')? = 8000J.

So the' new K.E. is greater than that in {a).

Refer 1o Fig.7.18. Here the net exiernal force is zere. So the velocity of ¢.m. remains
invariant. Before the rupture (Fig.7.18a) the c.m. is al rest roughly at the centre of the
gas filled balloon. So after the rupture (Fig. 7.18b) the ¢.m. must remain at the same
position. Now, after rupture, the position of c.m. is at the meeting point of the
balloons. The arrows in Fig. 7.18 indicate the [ ysitions of the c.m. before and after
rupture. In order o maintain this fixed position of c.m. the balloons must move to the
left.

Many-Particle Systems

(a)

(b)

¥

Fig. 7.18
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UNIT 8 SCATTERING

Structure
8.1 Introduction
Objectives
8.2 Scattering Cross-Sections
Differenital Cross-Section
Totat Cross-Section
Laboratory and Centre-of-mass Frames of Reference
Relations Bevween Angles and Scartering Cross-Seclions in the Lab and C.M. Frames of Reference
8.3 Impact Parameters
Elastic Scattering of Two Harg Spheres
Rutherford Scattering
8.4 Summary
8.5 Terminal Questions
8.6 Answers

8.1 INTRODUCTION

In Unit 7 you have learnt to apply the concepts of mechanics to many-particle systems. You
are familiar with the phenomenon of collisions, which you have studied in Unit 3. It is also
called scattering. In this unit we intend to study ‘scattering in more detail. As you know, it
involves Iwo or more particles interacting with eachother for a brief time. Collisions of
particles or scattering of particles is an important feature of our physical universe, On a
larger scale, we wonder if the earth’s collision with an asteroid led to the extinction of
dinosaurs. Galaxies also collide with each other piving risc 10 new {ormations. Much of our
knowledge of alomic and nuclear struciure and clementary panticles comes from scaltering
experiments. These microscopic bodies are bombarded with microscopic particles and the
number of particles scattered in various directions is measured. The angular distribution of
scattered particles is expressed in terms of scaltering cross-sections.

In this unit we shall begin our discussion with scattering cross-scctions. The cross-sections
are calculated in the centre-of-mass frame of reference but experimentaily determined in the

 laboratory frame of reference. So you will study these two frames of reference and determine
the relationship of the relevant physical quantities as observed from each of them. The
impact parameter method makes the study of many a scattering phenomenon fairly easy. So
you will learn this method and study twa of its applications, namely. scattering of two hard
spheres and Rutherford scattering. Rutherford scattering is one of the most dramatic
scattering experiments, Performed in 1911 by Geiger and Marsden it led to the nuclear model
of the atom. Tn Unit 9 you will learn to apply the concepts of mechanics to the rotational
maolion of rigid bodies,

Objectives
Alfter studying this unit you should be able to
e disunguish between the c.m. and laboratory frames of reference

e compuie differential and total scatering cross-sections in ¢.m. and laboratory frames of
reference

® apply the impact parameter method 10 solve problems based on elastic scanering of two
. hard spheres and Rutherford scattering,

D= = T P P 5 eyl e ey
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8.2 SCATTERING CROSS-SECTIONS

You already know what a collision or scattering of particles is. Recall the collision of two
particles with which you are familiar (see Sec. 3.4). We can identify three distinct stages in
the entire scaltering process. We show these three stages of the collision process in Fig. 8.1.
The first stage shown in Fig. 8.1a, comesponds to a time long before the interaction of the
colliding particles. At this stage each particle is effectively free, i.e. its energy is positive.
As the particles approach each other (Fi g. 8.1b}, interaction forces much larger than any
other force acting on them come ino play. Finally, long after the interaction (Fig. 8.1c), the
emerging panicles are again free and move along straight lines with new velocities in new
directions. The emerging particles may or may not be the same as Lhe original particles.

¥) 1 "l
-—-.-p——-—-\;—— Te—vg
m ' v
\ my \
¥z [ my ¥s
m;

(a) {b) (<}

Fig. 8.1: Scauering of two panticles

In a typical scattering experiment, a paralle] beam of particles, also called projectiles, of
given energy and momentum is incident upon a target (Fig. 8.2). The panticles interact with
the targel for a shon time, which deflects or scatters them in various directions. Eventually,
these particles are detected at large distances from the target. The scattered particies may or
may not have the same energies and momenta.

detector

target

>

1’
¥

incident beam

scattered beam

Fig. 8.2: A Iypical scallering process

An experimenter may be interested in knowing the velocities, linear momenta and energies
of whe particies betore and after scaltering. Then the changes brought about in these quantities
can be determined. As you have studied in Unit 3. the principies of conservation of linear
momenium and total energy allow us to determine these parameiers. For example, James
Chadwick discovered the neuiron by rmaking use of simiiar information about scattering of
these unknown particles. When a beam of these particles was bombarded on the hydrogenous
material paraffin, the protons had maximum recoil velocity of 3.3 x 10 'Tm s~). When these
_were bombarded on the nitrogenous material para-cyanogen, the maximum recoil velocity of
ritrogen nuclei was 4.7 x 10°m s-1. Using the methods you have studied in Unit 3, (he
mass of these particles was calculated and it was found 10.be a totally different and new
particle, the neutron. )

Scattering
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scattering plane

o mem oo
L]
L]
LY
1
1
v
A
; i
‘\ o———
1] ’d
A .
v
L
L* 3 .
-
incident
particle

(b}

Fig. 8.4:(a) Let the surface of arca
dA be bounded by a closed curve C
shown in Lhe figure. The lines from
the point @ 1o the points of C
generale a cone. Now visualise the
arca of a uml sphere abowt & (or the
area of a sphere af radius r about O,
divided by r 3). This area intercepted
by Lhe cone is calied the solid angle
subtended at & by the portion 44 of
the sphere’s surface, enclosed by C.
You can think of the solid angle as
the spacc enclosed by a cone, The
measure af & solid angle is defined as
the ratio of the subtended area (dA) 10
the radius (r) squared, 12, Al = '—E—;‘—
Tts unit is cailed steradian {sr). You
can.see that it playy lhe same rote for
e aphere as the angle {in radians) for a
circle; (b) as you know'ap angle in
the planz is the space betdveen twa
intersecting lines. The measure of an
angle, in radians, is defined as the
ralto ol the <subtended arc length 1o

the radias, i.c.

42

There is another aspect of interest in scattering. We may want to know how likely a
particle’s motion in a given direction is, afler its interaction with the target. In other words,
we may want to know the probability of scattering in a given direction. This is important
because it gives us information about the nature of force between the projectiles and the
target, and also their internal struciures. For example, the size of the electron was delermined
by electron-electron scattering experiments. Similarly, electron-atom scattering experimenis
give us information aboul the internal structure of the targel atom, i.e. their energy levels,
configurations-etc. The probability of scattering in a given direction is found by determining
the scattering cross-sectioms. Let us now define the scattering cross-sections for a
Iypical scatiering process.

detector

X!

mcident v #
parli;:lt:/ (.)\ larget z’
y

() (b)

Fig. 8.3: (a) Schemalic diagram of a scattering event showing the angles (8.9, (b) d€2 is the solid angle about
the angle {8, ¢). The particles scauered into the solid angle 401 are received by the delector. d4 is the cross-sectional
arra of the detector,

Let us suppose that a uniform parallel beam of » particles, all of the same mass and energy,
is incident upon a target containing & number of identical particles or scattering centres.
Such scattering centres might, for example, be the positive nuclei of atoms in a thin metal
foil which could be bombarded by o particles. Let us assume that the particles in the beam
do not interact with each other and the scattering centres in the target are sufficiently far
apart. With these assumptions we can regard the incident particles and target particles (o be
sufficiently far apart. Then we can think of 1his scattering event as if at a given time only
one projeclile was being scattered by one larget particle, without being affecied by the
presence of other particles. So, effectively al any instant we deal with a two-body collision
process. For convenience we choose the origin of the coordinale system at the posilion of
the target and one of the axes, say z-axis, in the direction of the incident beam.

The direction of scattering is given by the angles (0,4) as shown in Fig. 8.3a. The angle 8,

. called the angle of scatrering, is the angle between the scattered and the incident directions.

These two directions define the plane of scatiering. The angle ¢ specifies the orientation of
this plane with respect to some reference plane containing the z-axis. The shaded plane in
Fig. 8.3a is a reference plane. The probability of the scattering of a paniicle in a given
direction (8,9) is measured in terms of the dilferential cross-section. So let us understand
what it is.

8.2.1 Differential Cross-Section

Let F be the number of projectiles incident per unit area per unit time on the target. F
represents the incident flux. Lel Ar be the number of particies scatiered into a small solid
angle d€2 about the angle {6,¢) in time Ar(Fig. 8.3b). Study Fig.8.4a and read ils capiion
carefully to understand what a solid anple is. Then the number of scattered particles by a
single target particle in time Ar, must be proportional 10 the incident flux <, the duration Af
and also the solid angle in which they are scattered, i.e.

An e F (dQ){AN. (8.1a)
The constant of proportionality is defined as the differential scatteying

dac .
cross-section and is denoted by the symbol E We also write it as dcs. in short. So
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Scatlerin
m:("—“ )F(dn) (ar), o L. _8an 8.1b) )
dQ) dfd  FAt 4Q Cross-xection lilerally means the
surface formed by culting lhrough
samething. especially a1 right aneles.
&5 The number of particles scarttered per unit time in a solid angle dQ in ihe direction (8,$) Areas, a8 you knuw, are assncialed
&) . Incident flux. i.e. the number of particles incident on the targel per unit area per unit time, W' surfaces.

Thus, we can also express the differential cross-section as the following ratio :

You can see that defined as a ratio like this, the differential cross-section (dcs) gives a
probability. In fact, it is a measure of the probability that an incident particle will be

scattered in solid angle dQ in the direction (8.). You can also see that d_Qg has the dimension

of area. This explains the use of the term 'cross-section’. Therefore, it can also be thought of
. . . . dg .

as the ‘effective’ area offered by the scatterer to the incident particle. More precisely. ﬁ is

equal to the cross-sectional area of the incident beam that contains the number of particles
scattered into the solid angle 2 by a single target particle. The unit of-dcs is m? st -!. The
des depends only on the parameters of the incident particle, nature of the target and the nature
of the interaction between the two.

So far we have discussed the scarttering of particles from a single scallering centre in the
target. For the ¥ scatiering centres the number of particles scattered will be Just ¥ times the
number scattered by a single scattering centre. Thus for N scallering centres, the number of
particles scattered is

d
An' = —;; NFdCO Ar 8.1¢c)

of!

Of course, Eq. 8.1¢ is valid only when the target scattering centres are far enough apar so
that the same particle is not scattered by two of them. Having defined the differential cross-
section we will introduce you to the total scattering cross-seclion.

8.2.2 Total Cross-Section

Let us place the detector at ali possible values of (8.9) and count the tolal number of
scatlered particles entering all the corresponding solid angles. Then we will gel the total
scaitering cross-section (Ics. in short). It is denoted by o. [t can aiso be calculated
from the differential scatlering cross-sections by integrating over all possible vaiues of 4.

Thus,
G= f ( do dl. (8.2a)
_ dQ

So the tus represents the number of pasticles scatiered in ull directions per unit flux of
incident panictes, It hus the dimension of area, $o its unit is m2. Now, we also define the
solid angle sublended by an area (o be 4Q = sind (@ d$, where the limits of 8 and ¢ are 0 10
nand 0 to 27. respectively. You will leam about these relations in the course on
Mathematical Methods in Physics-1. If you wish to understand their proofs now, you may
read the last book given in the references, Using these relations we get, )

n
T/ odo oy
G = f J == |sin® 49 d¢ , (8.2b)
dQ2
o v
We can show Ihat lor the cases in which the force is centrat and its magnitude depends onlby

do . .
onr, E ts independent of ¢ . We will not prove this result hefe. In such cases, we can

integrate over ¢ <o that

i

o=2n J. ( i )sine d6- (8.2c)
dQQ
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. - do
In the discussiun that foll ws, we shall limit ourselves to the cuscs in which == 423 0t
- Q2

depend on ¢. i.c.itis the same for all values of ¢, We will now work out an cxample 'Sased

on these concepts. Then you may like to work out an SAQ to concrelise th~ concepts you
have just studied.

Example 1

A beam of ¢-particles with a flux of 3 x 108 m~2 5! strikes a thin foil of aluminium. which
contains 10?' atoms. A detector of cross-sectional area 400 mm?is placed 0.6 m from the
targel in a direction at right angles 1o the direction of the incident beam. If the rate of
detection of o-particles is 8.1 x 10° 5!, compute the dcs.

Here we shall use Eq. 8.1c to compute the des. It is given that the lux F = 3x10%m25-!,
: A
8 =90°, the rate of detection of a-particles is =" = 8.1 x 1075-! and the number of larget

Ar
atoms, N= 10?1 . From Eq, 8.1 ¢

()3 )

In this case, d€2 is the solid angle subtended by the detector at the target for 6 = 90°. You
know from Fig. 8.4a that

dA
dtl= e
where dA is the area of the detector and L | its distance from the targel.
(400 x 10%m?
—— 3
Thus d§2 ©.6m)? 1.1 x 103 sr.
do 8.1 x 103!
“‘Therefore — = S =2.4%10723 m?sr!

dQ 102! % (3x10¥m—3s1) % 1.1x10-3sr

SAQ !
A beam of neutrons is passed through paraffin. lts incident flux is 5%t0'® m™s™'. The decs is
measured to be 1.5 % 10728 m%sr ! at an angle 60°. Compute the number of particles scauered

per unit time by (i} a single paraffin molecule and (ii) 1022 paraffin molecules, into a solid
angle 107 sr,

So far we have defined the decs and tcs. We would next like 1o find out how these can be
determined for various scatiering processes. To do this we need seme additional information
about the cross-sections. Let us see whar it is !

Experimentalists measure these cross-sections in laboratory experiments. Theoretical
physicists make modcls of the forces of interaclion and calculate these cross-sections. If the
calculated values agree well with the experimental values then those models are held o be
valid.

When a scattering experiment is performed in the laboratory, the 1arget is laken (o be al rest.
But for calculating the cross-sections it is easier to use the frame of reference in which the
c.m. is at resi because (hen the two-body problem can be reduced 10 a one-body problem
(recall Sec. 7.2.1). Then we have to deal with only the relative motion of the target and the
projectile. So the first question is how 1o compare the measured cross-sections with the
calculated ones ? For this we need to define these frames of reference and determine Lhe
relationship of the cross-sections uas observed or valeulated in them.

8.2.3 Laboratory and Centre-of-mass Frames of Reference

In the laboratory frame of reference {Fig. 8.52), the tarpet particle ol masy 2o i leken o be
at rest before the cotlision, It is 1aken 1o be situated at O, the origin of the coordinale
system. Let the projectile of mass s, approach the 1argel wilh velocity u,. After collision,
let the \wo particles have posilion vectors ry. > and velocities vy. v, with respeet lo O at
any instant r. From Eq. 7.2 the position and veloeity vectors of the c.m. in the laboratory
frame bf refercnce after collision. are given by

e e

L R iy =
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R=m,r,+m,r.,

eI—— (8.3a)
+
v =ﬂL!_L_M2_ = _mlil_. (8.3b)
m +m, - My + n

since from conservation of linear momentum, m, u, = m, v,+m- va.

Scattering

y v,
m
A} e
”
/ ’
e o\ o
- - u
u, ms ,’,.‘3 0, u ...-"’/C ‘2
— > S ——— b “«—o—
x nt O™ x m - m,
~ ,I’
\\ //
m\
‘f'z \"1
m,
yl
() (b)

Fig. B.5: (a} The laboratory [mme of reference in which the target panicie of mass r1; is inilially at rest;
(b) centre-of-mass frame of reference in which the c.m, (C) is initially and always al res,

It is convenient to study collisions using the c.m. frame of reference. As you know, in this
frame, the c.m. is initially and always taken 10 be at rest (Fig. 8.5b). The origin of the
coowlinate systemn is located at the c.m. Since the c.m. is at rest always, its linear
momentum and so the Jinear momentum of the entife system is zero before and after
collision. Therefore, the c.m. frame of reference is also known as the zero momentum
frame of reference. For ihe two particle system, let the velocities of the particles in the
¢.m. frame of reference be u"| and u" before collision, Let their velocities after collision be
vl and vj. Then putting lhe velocity of c.m. equal 1o zero. we get

m, l.l|'+ s u2’=0=m| vl'+m2 \r'z',_ (8.4a)
ar
uz.f | "’2’
- e B (8.4b)
u, i ¥ i

Thus, the colliding particles have equal and opposite momenta before and after collision in
the c.m. frame of reference. You can see from Egs. 8.4a and b that for elastic collisions, the
magnitudes of the particles® velocities will remain the same after scattering. In fact, you can
work out this result yourself in the lollowing SAQ.

S5AQ 2

Show that for elastic collisions u;" = v|", 42" = vy" in the c.m. frame of reference. (Hint
Recall the definition of an elastic collision from Sec. 3.4 of Block 1 and use the condition 6f
the censervation of kinetic energy alongwith Eas. 8.4a and h).

We have specified the laboratory and c.m. frames of reference. We would now like to
determine the relationship between the angles and (he differential scattering cross- -sections in
the two frames of reference. For this, let us took at the relation between the position and
velocity vectors of he particles afler scatteriog in these two frames of reference.

Recall that we have chosen the incident direciion along the z-axis. The coordinates of m and
m13 as measured from the origin O of the lab system after collision are r, and ry. The ¢.m.
{C} has the coordinate R with respect to Q. Let r,” and r+” be the coordinales of m, and m-
with respect 10 € after collision. As you know from its definition, the c.m. lies on.the line
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joining m; and ma. Thus r | and r; lie along the same line. So, we can relate the vectors ry,
r2, R, r  andr, in a vector diagram as shown in Fig. 8.6a.

45

g

(@) (b)

Flg. B.6: Relation between {a} the position veclors and {b) velocilies af the colliding particles in lab and c.m.
frames of reference, after collision.

From Fig. 8.6a we have
n=R+r, . ry,=R+r, (8.5a)

The relative coordinate of particle 1 with respect Lo pancie 2 (S rgy =Ty — ry. From Eq. 8.5a
you can see that

rfy) = F-F=r - r:: =r, say. (8.5b)

Thus, the separation of the (wo particles is the saute in both frames of reference. Using Eqs.
8.3a, 8.54 and b. we can write r,” and ry" in terms of 1

, m, , m, 46
rf=———r , 7,= — "I : .
V" m +m, 27 my +m, (8.6)

Differentiating Eq. 8.5a we can relate the velocity vectors in both frames of reference aiter
scatiering :

vi=Va+ v/, (8.7)
vu=V + v, (8.7b)

Similar relations can be derived for the pasition and velocity vectors of particles | and 2
before seattering, so thal

u=V+u (8.7¢)

=Y+, (R.7dy
Since the particle 2 is initially at rest in the lab system, u; = 0 and we have

u,’=-Y. (8.7¢)

Using Eqs. 8.3 to 8.7 we can determine the relations between the angles of scattering and
scailering cross-sections in the laboratory and c.m. frames of reference.

8.2.4 Relations Beiween Angles and Scattering Cross-Sections in the
Lab and C.M. Frames of Reference :

Let 8, and 8, be the angles of scattering in the laboratory and c.m. frames of reference.
respectively (see Fig. 8.6). Resolving Eq. B.7a into its components along the initial =-
direction and perpendiculdr to it (see Fig. 8.6b), we get

‘wicos B, =v,"cos B, + V. (B.8u)

T Ei T, ST T o T
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visin 8, = v" sin 8,,, (8.8b) Scaticring
Dividing Ey. 8.8b by Eqy. 8.8a gives
tan 9L= ’\'I’ Si; Bt'm y - Sin 9,1-,, v
¥ €08 Uem * cos 8, +
¥l
$in Orm Vv
or = ———— with y=— . (8.9
P"“ cos Bcny +Y i 0% )

You can see that v is the ratio of the speed of the c.m. in the laboralory system (o the speed
of the observed particle in the c.m. system. The value of ¥ can be delermined for both elastic
and inelastic scaltering. We shall limit ourselves to the case of elastic scattering. Leat us find

v - . .
— far elaslic scatiering,
‘I’

|

v for elastic ‘scattering

You have already shown in SAQ 2 that v|” = &,". We can obtain «,” in terms of V from Egs.
8.7c and 8.3b as follows: ‘

m
or u’=—ty (8.102)

y=Xz =T (8.10b)

You may now. like to apply these relations to solve a problem.

SAQ 3

An‘experiment is 1o be designed to measure the differential scattering cross-section for elastic

pion-proton scattering. In the c.m. frame, the scattering angle is 70° and kinelic energy of

the pion is5.490 keV. (The eV is the atomic unit of energy.) Find the coiresponding angle in eV =16x107'%
the lab at which the scattered pions should be detecied and the required lab kinelic encrgy in

eV of the pion beam. The ratio of pion (o proton mass is L7,

Let us now determine the relation between the différential scattering cross-sections in the Jab
and ¢.m. frames of reference. The incident flux F and the number of particles (An) scattéred
Pper unit time in the solid engle 422, will be the same in the laboratory and the c.m. systems.
So Eq. 8.1a gives us the condition that-

o N
An:(- m)th(dﬂ}m(N)—( o) F (@ (80,

da - (40
(@)dfﬂw- (dn)(..(dn)m (8.11a)

We know from Eqs, 8.22 and 8.2b that JQ =sin8 49 4. Since we are dealing with
situarions in witich the cross-sections are independent o1 ¢, We Can Wite dys= iy, 50 that

(g’g_) _ { do) SinGm dGum
()

df2 k m)m Sin9L deL
dg\ _( do d(cosBm) y o
or (dn)u (dn)m d(cos8,) | (. d(cosB) = —sind 48) (8.11b) .
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Fig. 8.7

We can use Eq. 8.9 w vimplify Eq. 8.11b further as follows:

. sin@
Since tangy = ———~"— .
oS0, + ¥

you can verify that

cos,, + ¥
NEE

cos 9, = I
i1+ + 2vcos@

1m

d{cos B1) (I + ycos8.m)
d(cos8_) (1 + ¥ +2ycosd )7

o o

Thus, we gel the relation

do (1 + ¥+ 2yc0s0,,,)Y? rdo
(—J = (_) . 8.11c)
rab {1 + ycosb,,) aQ -

dg
Itis (EJ which is obtained from theory. Eq. 8.1 1c tells us how to wransform it to the
om

Taboratory system o compare wilh experimental data.

. . m
For elastic scattering, Y= El and we get

-

mzl i RTA
(1 + 5 +2 -—cose(,,,)
m3

2

BTy G e

+ —cosh
.HI': om

If the masses of the target and projectile are equal, i.e. nzy = p1), then Eq. 8.12 reduces 10

a0 =4cosec—m. g0 . (8.13)
d2 fak 2 dQ' om

The total scartering cross-sections will be the same in both the frames of reference.

You will get some practice on these equations if you work out Lhe following SAQ.

SAQ 4

@) The differential scarering cross-sections in a proton-prolen elastic scatlering experiment
are measured 1o be 2.3 X 10~ m?sr! and 2.6 x 10~ m2sr! at the scallering angles
307 and 60°, Find the corresponding quantities in the ¢.m. frame of reference.

b) Fig. 8.7 shows the variation of the differential cross-section (des) with the angle of
scaltering for the elastic scatiering of electrons by lithium atoms in the c.m. frame of
reference. What is the commesponding curve in the lab system?

So far we have defined scallering cross-seclions and eslablished she relations between the
scattering angles and cross-seclions in the laboratory and ¢.m. frames of reference. Let us
now delermine the cross-sections for a few scutlering processes. One of the methods
commenly used for this purpose is the method invelving impact paramiciers. which we shall
now study.

8.3 IMPACT PARAMETERS

Lel us suppose hat the projectile does nel make a head-on collision with the 1argel. Inslead,
it travels along a path, which if continued in a straight line, would pass the target at a
distance b (Fig. 8.8a). This, indeed, is the case most of the times. The distance b is known

P S b oy

AChr ol Jely

=127 ) 10




as the impact parameter, You can sce that 4 is the perpendicular distance between the

projectile’s initial path and the target.
detector @

('db = db,.,

Priy i
«

{a} (b}
Fig. 8.8: (a} Theimpacl parmmeler &; (b) the panicles having impact paramelers between b and b + db are
scaltered into anples between 8.,y and By, + d 850 (€] the scatiering angle decreases wilh
increasing impact parameter.

Lel us now express the differeniial scatlering cross-sections in terms of the impact parameter.
We will study the scattering process in the cm. frame of reference with 8., as the angle of
scattering (Fig. 8.8b). What is the number of particles incident on the target during time Ar
having impact paramelers between b and b + dh? Let us consider a circular ring having radii
beiween b and b + db. The area of the ring is 2rchdb for infinitesimal values of £b. If the
incident flux is F then,

The number of incident particles having an impact parameter between b and (6 + df)
=F(A) (2n b db). (8.14)

Let us suppose that Ihese particles are scatiered into angles between 8., and 0, +d8_,,. The
panicles with Targer b will be scatlered through smaller angles as shown in Fig. 8.8c. This
happens because larger b means lesser interaction, i.e. less scattering. For very large b.
scattering will be minimal and the particles will go almost undeflected in a straight line.
Now in the c.m. frame of reference the number of particles scattered in the solid angle 4Q in
lime Ar is given from Eq. 8.1z as

d
An= “ F (dS), ,, Af .
d§2 .

o

This is the same as the number of incident particies in time Af having impact parameters
beiween # and & + db, given by Eq. 8.14, ie,

F (Ar) 2rthdp = do Fd), .., Ar,
dQ -
dg .
of - 2rhdb=-[—1 2nsin@,,d0,,. (8.15a)
dQ cm !

dag
Here we have assumed 1hat (d&zl) is independent of 8. Taking inte account all values of & in

dl. we have d2 = 2nsin 8 d8. The negative sign exprescas the fact that as b increases, a..
decreases, i.e. db and 48, have opposite signs. From Eqg. 8.15a we get

( .‘fﬁ’_)m _b__

_ db_|
:te] Sin 9m

;‘a I . .(8' i30)

We have nol writlen the negative sign in Eq. 8.15b because (di_c;) has the dimension of
N ch

area and its magnitude has to be posilive. So, if we know b as a function of scattering angle
6, we can calculate the differential scattering cross-section nsine Fn & 18k
i
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How do we detennine 4 as a function of 0,,,7 We will not study any general method for
finding b (8,,). Instead, we will study 1wo specilic cases, namely, the hard sphere scallering
and Rutherford scaitering as applicalions of Eq. 8.15b,

8.3.1 Elastic Scattering of Two Hard Spheres

Let us consider the elastic scattering of a sphere of muss m and radivs £ by a tarpet sphere

of mass m;, and radius R, (Fig. 8.9a). Let the distance belween the centres of the 1wo spheres
at any instant be r,

{(a) (b}

Fig. 8.9: (2) Scauering of iwo hard spheres; (b) the incident hard sphere rehounds at the sume angle as the
incident angle after scaiering from the 1argert sphere.

The incident hard sphere will get scattered after rebounding from the target hard sphere. What
do we mean by the term ‘hard sphere'? This means that (he spheres cannot penetrate a
distance smaller than R + R_. So we can say that the force or potential is infinite for
r<(R +R). For a distance r > (R + R,), the spheres are tree to move both before and after
the collision, i.e. there is no force between them. Mathematically we can express such a
situation in terms of a potential ¥ () such that

VirRy=c for r<(R+R). (8.16)

=0 for r>(R+R).’

v . .
You know that F = - % . S0 you can see (hat the lorce on the spheres corresponding to
such a potential is infinite for r < (R + R ) and zero for 7 > (R + R ). This means that the

. . L
torque is zero for r > (R + R,). Since the torque = ==

W e izl angular momentim will
{

remain consuant before and afler the collision.

Let us now find out the relalion beiween & and 8,,,. Refer o Fig. 8.9b. For an elastic
collision, K.E. is consarved. You have already worked out in SAQ 2 that for elastic
scattering the larget and projectile velocities remain the same before and afier cellision. Let «
be the angle between he direction of the initial velocity vy;of 71; and the line joining the
centres of the two spheres al the time of impact as shown in Fig. 8.9b. Let r; be the
position vector of the centre of sphere of radius & with respecet to the cenire of sphere of
radivs R,. The magnitude of the angutar momentum of m; with respect to the centre of
just before the impact is

Ly=my ( ¥y, X 1) =my vy sin (R0 = v, ) stna
Just after the impact it is
L'[ =PH'! (v!;" Xxr, ) E SRR TR sin ZACH.

Since from SAQ 2. vy, = v, for claslic scattering we have that
Wy SID @ = v i SA0E e LACB =

Thus. the sphere nyy will Heunce ofT the sphere »1y at an angle to the normal, equal o the
incident angle o So (roin Fig. 8.9b you can see tha

Bm=n-20. (8.17)

Now, we can relate the impact parameter 5 10 ¢ using Fig. 8.9b as foltows:

it e
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b=r sino=(R+R)sina

Bem
=(R +R,) sin I 26*- using Eg. 8.17,
Om
or b=(R+R)cos 7
db R+ R: . arm
= sin ——-
© dBm 2 2
Then from Eq. 8.15b we get the differential scattering cross-section as
ds b R+R;: . Ocm
—1 = 35— sin —/—
aQ sin®., 2 2
™
b R + R,_)
Bem 2 )
2cos—2—

=R + R, from Eq. 8.18a, we get

dsy _ (R+R)’
(), "

The total scanering cross-section is

Using -
(2}

cos
2

F 4
= 2n f(fﬂ) $ind,,, d8,,
0 dQ om

n

R 2
—2n J’(—%@é)— sin@,,, 48,

(R + R)*

2 X 2=n (R+R).

or o=2n

(B.18a)

(8.18b)

(8.19)

(8.20)

If the projectile is a point particle instead of a sphere, then the total scailering cross-section |
is TR, 2 which is the cross-sectional area of the target sphere. You may like 1o work out an

-SAQ applying the ideas of this section,
SAQ S

A beam of point particies strikes a wall. Each alom in the wall behaves like a sphere of
radius 3 X 10-'3m. The mass of ¢ach particle is much less than that of an atom. What is the
des, tes and the impacy parameter of Lhe particles entering & detector placed at an angle of 60°

1o the direciion of the beam?

Let us now study another application of Eq. 8.15b, namely the Rutherford scattering.

8.3.2 Rutherfoid Scattering

The Rutherford scartering oxperinitnt was an imponiant milesione in undersianding il
structure of the atom. Uniil the early twentieth century Thomson's pluin pudding model of
the atom was believed to be valid. J.J. Thomson had proposed, in 1898, that atoms were

uniform spheres of positively charged matter in which electrons were embeddad (Fia,
It was almost 13 years later that a definilz experimental test of this model was made.

the most direct way to find out what is inside a plum pudding is fo plunge a finger into it! A

8.10a),
Now,

similar technique was used in the classic experiment performed in 1911, by Geiger and
Marsden who were working with Lord Rutherford. They bombarded thin foils of various
malerials with c-particles (helium nuclei) and recorded the angular distribution of the

scattered - particles (see Fig. 8.11).

Scatterlng

Fig. 8:10: {a) Thomson's plum
pudging model of the arom; (b)
Rutherford’s nuciear model.
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The thickness of the foils used by
Geiger and Marsden was of the order
of 10~"m, Compare this with the
human hair which is about 10%m in
diameter.

On sceing these results, Rutherford
remarked, “It was almost as incredible
as if you fired a 15-inch shell at a
piece of tissue paper and it came back
and hit you.”
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microscope
alpha panicles

\ zine sulfide screen
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\
1
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. 1
> 3 {2 forward scattering
I
g backward
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p \ scaliering thin /
of alpha particles metallic foil id
/
7
lead screen

Fig. 8.11 Ruherford scatiering experimenl. A source of a-particles is placed behind a lead sceeen with a small
hole, so that a namow beam is directed at a thin metallic foil, A movable zinc sulphide screen is
placed al the other side of the foil, When an a-panticle sirikes the screen it gives off a Nash of light,

It was found that most of the o-particles pass through the foil (i.e. scattering angle 8 < 90°).

However, about I in 6.17 x 105 alpha particles was scattered backward. i.e. deflected through
an angle greater than 50°. This result was unexpecied according to Thomson's medel. It was
anticipated that the alpha particles would go right through the foil with only slight
deflections. This follows from the Thomson model. If this model were correct, only weak
electric forces would be exerted on alpha panticles passing through a thin metal feil. In such
a case their initial momenta should be enough to make them go through with only slight
deflections, It would indeed need strong forces lo cause such considerable deflections in -
particles as were observed,

In order 1o explain these results Rutherford proposed a nuclear modet of the atom. Using this
model he calculated the des. In doing so, he reasoned that the backward scattering could not
be caused by electrons in the atom. The alpha particles are so much more massive than
electrons that they would hardly be scattered by them. He assumed that the positive charge in
the atom was concentrated in a very small volume, which he termed the nucieus, rather than
being spread out over the volume of the atom. So the scattering of alpha particles was due 1o
the atomic nucleus. As you know the force of interaction berween the o - particles and the

nuclevs is simply the repulsive inverse square electrostatic force. On the basis of this model,
Rutherford calculated the differential cross-sections.

There was a siriking agreement between the calculated and observed cross-sections. This
established the nuclear model of the atom, i.e. the positive charge of the atom is concentratec
in the nucleus, which is surrounded by electrons (Fig. 8.10b).

Let us consider the scattering of a particle carrying charge ¢ by the atomic nuclei having
charge ¢". For this scattering process Rutherford derjved the relation between the impact
parameter b and the angle of scattering 0,;, (o be

272 gy B | o
b—zcot 2 (8.21)
99 . . . i
where r, = ——~—— E_, is the igtal mechanical energy of the projectite and the target in
ane, F . ‘

the c.m. system.

& is known as the permittivity of free space. Its value is 8.8 x 10”2 C2 N~ m-2,

The differential scattering cross-section in the c.m, system for Rutherford scatiering is then
given from Eq. 8.15b as :
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dcaltering

do b
aQ | smem( 0, )

_ ratot —2—ro 1 comleﬂ
2sing, 2 2 2
BCJ'I‘I
ro° coL ==
= cosec? —
6 sin 27 o dem 2
[6 sin > cos 2
2 0, ’
or do = 0 cosect Tm,when: rp = —__ (8.22)
dQ | 16 = dngg £,

This is the Rulherford scaltering cross-section. For scattering of an a-particle by a nucleus of
atomic number Z, g4° = (2¢) (Ze) = 2Ze?, where e is the electronic charge. You can see that
the Rutherford scallering cross-section is strongly dependent on both the energy of the
incoming pamclc and the scattening angle. Also we expect the number of parlicles scatiered
10 increase as Z° with increasing atomic number, Let us now apply the ideas discussed in

this section to a concrele sittation.

Example 2

In one of their experiments on scaitering of o-particles, Geiger and Marsden bombarded 7.7
MeV a-particles on a gold target, for which Z =79, Its alomic weight is 197 amu. Find the
impact parameters and differential scaitering cross-sections of the o-particles which are '
scaltered elastically through angles equat 1o (i) 10°, (ii) 90° and (iii) 150°.

It is given here that the K.E. of the incident «e-particles in the laboratory system is 7.7 MeV, 1 MeV=108cv

je £2x 107 J The angles of scattering in the lab system are (i) 87 = 10°, (ii) 6; =90°
and (iii) 6z, = 150° . In order to apply Egs. 8.21 and 8.22 we must determine the scaltering
angle 0, and total mechanical energy E,, in the c.m. frame of reference. We have also to
find out rg,

The total mechanical energy £, in the lab syslem is simply the initial K.E. of the
@-particles, since the target is initiatly at rest and the two particles are free. This is given to
be 1.2 x 10772]. We have to determine £, in terms of £, . As you know the ol
mechanical energy in the c.m. frame before scattering is

1 2
m,u']l + 5 mpuy

S
Eem =3 2

Now from Eqs. 8.10a, 8.7¢ and 8.3b, « = ’i'iv uy=-V and

3
()
3
)
[}

miul

M+ Smy
7272 (my 4 my)2

m3y " (my +ma)?

2
_ 1 m mam m E,
Eon= = 2 1 1 2 = i .
or 3 M Ii(ml + m,)? ¥ (m, + m;)? E‘-m +m, 1™ (8.23)
('

2)

For a—particle scattering by pold atoms, we have m =4 amu and m; = 197 amu, lamu = 1,67 x 10-27kg

1.2 x 10y
Eem= = L2x10i2]

("'T;_?')

’ - 2
From Eq. 8.22, r, =— 2 - 2Z¢
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2 % 79 x (1.6 x 10-1°C)%
(4m) x (B.8 x 1012 CIN-Tm-2) x (1.2 % 10-12 ])

or r, =3.0x 10~ m.

di
Let us now use Eqs. 8.9, 8.21 and 8.22 to calcuiate 8, b and ( ﬁ )for (i)e, =10°
(ii) 8, =90°, (i1i) B, = 150°, respectively.

m
Since 'm—; =:02 « 1, we can neglect it, so that 8., =8, In fact, you can verify this

yourself by calculating the exact value of 8, using Eq. 8.9.

(3.0x10-¥ m)x 11.4
2

it For8,=10°,b=2 cou5° = =1.7x 103 m.

(3.0x 10 1% m)?
16

x (11.5

3.0 14 2
(gig) =—-—-——( x 1077 m) cosec? (5%) =
cm

40 16

=98 % 10725 mZ sr!

d
(i) For'S,, =90°, b=15xI0"m, (d—gq) =22 % 10-% m? g1~
cm

Fel
(i) For®_, =150°, b=4x 10 m, (;‘%J =65 10 m2sr-!
om

f I T =1 O 2T P

Let us again understand the physical significance of the Rutherford scattering cross-section in
the light of what we have studied so far, The distance of closest approach between the alpha
N 2 2
particle and the nucleus is given by r_; = ri'l%—ti » Where
94’
r,= :
ine, E_,

So to investigate the structure of the atom a1 small distances, £ should be large because
only for those values of £, . r, . would be sufficiently small. Thus we should bombard the
target with high energy particles and examine large angle scattering for which & is small.

You can see from Example 2 thal the cross-section is large for small values of scattering
angles. But physically we are interested in [arge angle scattering, This is because of the facl
that only very strong forces acting at very short distances can give rise to scatiering at such
large angles. On whal basis can we say this? Let us find out.

If the positive nuclear charge were spread out over i larger volume as proposed by Thomson,
the force would be inverse-square law force only down to a dislance equal to the radius of the
charge distribution. Beyond this point it would decrease as we go 10 even smaller distances.
(Recall the Example 2 in Sec. 5.4 of Unit 5, Block 1. A force law with a similar
r-dependence would hold for a charge placed inside a spherical charge distribution. The
constants would, of course, change). As a result, charged particles which penctrate inside the
charge distribution would experience a weaker force than the inverse square force. Thus,
panticles with smaller & and smaller r,; would be scattered through smaller angles. But this
does net tum oul to be true, experimentally,

This was why Rutherford assumed the nuctear charge to be concentrated in 2 very small
volume, Only in such a case the strong inverse square farce would act a1 very smal! distances
of the order of r_, . giving rise 10 large deflections. The agreement of theory and experiment
vindicated Rutherford’s nuclear model. Thus, Rutherford is credited with the “discovery’ of
atomic nucleus, In fact, if we neglect electrons cempletely in Thomson's modet. the electric
field intensity at the atom’s surface is calculated 10 be about 103V m~', On the other hand
using Rutherford’s model, the electric field intensity at the surface of the nucleus cxceeds
10°'V m~', This is greater by a factor of 10%, enough to reverse the direction of alpha
pariicles.

An interesting aspect of this scatiering experiment is that it determines an upper limit to the
dimensions of atomic nuclei. This is none else than the parameter r,, since for =0,




Foun= o FO the typical a-particle scaltering discussed in Example 2, r, = 3.0 x 10-¥m, Scattering
The radius of gold nucleus is, thercefore, less than 3.0 x 10-m. In recent years, however,
a-particles of higher energies have been used to determine nuclear dimensions. It has been

found that the Rutherford scattering formula does fail to agree with experiment. From these
experiments the radius of gold nucleus comes out to be 1/6 of the values of r, found in

Exzample 2.

Another interesting feature of the dcs of Eq. 8.22 is that the corresponding tojal cross-section
is infinite. This is because of the infinite range of the Coulomb force. Even if a particle is
very far away from the nucleus, it experiences some force and is scattered through a non-zero
{though small) angle. So the total number of particles scattered is indeed infinite.

From these applications you must have realised that scattering is an important tool for
investigating the microscopic structure of marter. Let us now summarise what we have
studied in this onit.

8.4 SUMMARY

®  When a beam of particles strikes a target, the angular distribution of scattered particles
for different values of (8, ¢) may be found from the differential scanering cross-section

do . '
5 * The total scaltering cross-section is obtained by integrating the des over all values

of 0 and ¢.

#  The dcs are measured in the laboratory frame of reference but calculated in the c.m. frame
of reference. For elastic scattering the relations between the scattering angle and the des
in the tab and c.m. frames are

5in B m
tan 9, = ] m,
cos@__ + —
cm mz
2
m m )
(l + —5+2 —Lcosﬂm )’
m2 iy

HIE ()
0 (l + ’ﬁcosem ) A Jem
iy

® If we know the impact parameter ¥ as a function of 8, we can caiculate the des for any
given scattering process using the relation

) __b_ | 4
(dn)cm Sil‘le\'.'il'l. - ﬁi.'l|1
e For the clastic scattering of two hard spheres
2
b=R+R )cosgzﬂ, (5{91 =-(&"—8’—)—andc=n(R+R,)2
x 40 m 4
o  For the scatiering of a poirt charge g from another point charge ¢,

6, d I ’
p="2 cotﬂ.(—c) —‘Lcosac“—eﬂ.whererf —.4
cm

2 2 “lan) 16 2 4ne, £

This is known as the Rutherford scauering cross-section. The tes is infinite due to the
infinite range of Coulomb forces,

8.5 TERMINAL QUESTIONS

1. Show that for Rutherford scattering the total craes section for PRTCIES SCAMETEG ivough
any angle 9 greater than a lower limit 0, 1s

. nn. .8

0>6) = — cot2 - -

c(O>6) 7 o5

2. Atlow energies neutrons and protons behave roughly like hard spheres of radius about
1.3 % 1012 cm. A parallel beam of neutrons with a flux of 3 x 108 neutrons cm—2 5! 55
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strikes a target containing 4 % 10°? protons. A circular detector of radius 2 cm is placed
70 cm away from the target. Calculate the rate of detection. i.c. An /At of neutrons for a
scaltering angle 8, =30°.

3. Find the dcs of 7 MeV a-particles scatiered from a lead targel (Z = 82, atomic weight
= 207 amu) for 8, = 30°. given that 1 amu = 1.67 x 1027 kg,

8.6 ANSWERS

?.A?i? Here we will use Eq. 8.1b. We have 1o calculate An fAf given F = 5 % 100m2y-1.
:Q*E =1.5x10%m?sr'and 4 Q =10
From Eq. 8.1b
% =[ j_; :| (FY D)

={1.5x 10-26 m2sr-1) (5 % 10'° m~s71) (10-%sr)
=7.5% 1019 5!
(ii} For N = 10%2, we have

An da
o= o |NFMEQ =5 X107 s x 102 =75 x 104 s .
A"I:dQ:I( )y =(75x 107" 7Y 75x10%s
2. For elastic collisions, the 1olal kinctic ‘energy of the sysiem remains constant. Its vatue
for the entire system is the same before and afier collision. Thus, we have that
1 LS | 11
5 mu” + E "y ufz =%mI T+ i ’"z"il-
Substituting for «," and v, in terms of &, “ and v, * from Eq. 8.4b we have
lm . +|— nt ﬂl: 2t ] m -.':2+Lm ’—”—':' o
2Ty T m31 T M T m3 '
k) a
12 mili_1 2 mil,
or 2 h‘l J’?Il + ml: = 9 V1 .f.?ll + n}]
or u=v.
Similarly you can show il n," = v,
1. Herey = 17,0, .= 70°. E_ for pion = 490 keV. From Eq. 8.9
sin 70°
und, =—————- =19o0r8 =627°
L7 cos T0° + 117 L
The pion K.E s in laboratory and c.m. frames of reference are E, = é nty et and
l .
E_ = 7 ::;2, respectively.
From Eqgs. 8.10a and 8.3b we hi ve
Wi N 2 2
Em=%mlﬂ% 7 r:'fzé m.uf""i"l;"—: = b gy
= T Lmy tm, - Oy 4 my)° H

5

| — |

kl
l]-
FITIN

.

Thus £, = {1+ 1 x 490 keV = 640 keV.

4. (1) Herc we have to apply Egs. 8.9 and §.13. For elastic scatlering. y= n/n. wad in

this case my = m, . Soy= L.

Let us first detenmine the angles of scatiering in c.m. frame aof reference {or
(116, = 30° and (i) B, = 60°.
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5 9_:_ 9‘_‘“ Scalr:ring
For y=1ane, = Sm8m TN o,
orr="= L T cos @+ 1 seog? 2 5
£0s 2

or 8, =28,.
Sofor 8, = 30°,8,, =60°and for 8, = 60°,0_ = 120°
We can now use Eq. 8.13 1o obtain dcs in c.m. frame

4 - do =23x 107 m?sr! for 8, =30
daQ ),

( ) 4009 30° % (2.3 x 10-7m? sr') = 6.60 X 10-2 m? sr-!
(i} (::;) =2.6 x 10-22m? st ! for 8, = 60°.
la

( ) 4cos o0° ® RExI0EmisrH=13x108 m2gr-!

b. In this case m, « m,, since m, = mass of the electron = 9.31 x 10~ kg and
m, = mass of the Li atom =1.5 x 10-2 kg,

m m
Soy=-' =809 x 105, ie. L «I.
iz mz

Thus from Eq. 89tan 6, ~1an 0, , or 9,=6_
Again from Eq. 8.12, we have

do _[(1+72+27c050m)”2] do do
(dQ)!ab ) “ + ¥ cos etm) (m)rm (dﬂ)cm

since y« 1 and ycos 8,,, « 1 for all 8.,

Therefore, the dcs vs. 8 curve in the lab system will be the same as in Fig. 8.7.
5. Since m «m, wehave8, =@

Agiun since the incident particie is a point mass, we put R =0 in Eqs. .19, 8.20 and

8.18a and gel

do\ R} (3x10%m

— ) %1 _% J 3ty g
( )m 4 1 =22x 10" ST

=RRI=AX 3x10-5m)2 =28 x 10-2 m?.
For 8_, =60°

b=R‘cos§-;£= (3x10-¥m)x087=26%10%m

Terminal Questions
1. The des for Rutherford scauering is gtven by

(do) 2 18m a4
= —= cosec! “.r where rp="— -
2 16 2 ane. E

woem

We can use £q. 8.2c to determing &, since the dcs does nol depend on é . Now instead of

zero, the tower timit for integration over 8 is any angle 8°greater than 8, in this
guestion. Thus we have

T

c=2n j (gfg_) sin@__ 40,
. dQ ' ‘
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2.

=2n f cos&c“[ T’“] sin 0, d0,_,

Bim
Now cosec 1 (—): L = ! 3' {7 cos 20 = 1-25in%0).

S_nz afm > I - L0OS ch
2 2

n

8 (1 - cos By )2
8-

g=

Putting cos 6, =t we get

cosf” o
COS

oo [dr__wil 1
T2 (12" 2 -1

From Eq. 8.1c, the rate of detection of the scattered neutrons is

An _(do _ (4o dA
& -(dn)NFdQ - (m)NFLZ

where dA is the cross-sectional area of the delector placed at a distance L from the targeL.

We have been given the (ollowing data :

Incident flox F =3 % 108 cor? 571 = 3 x 10025

Number of Larget scaltering centres N = 4 x 1022,

Cross-sectional area of the detector, d4 = 2 = 1 (0.02m)?
=12 % 10 m?

Distance between the detector and the target, L = 70 cm = 0.7m Let us calculate the dcs
using Eq. 8.19 for the elastic scattering of two hard spheres. In the c.m. frame it is

do R+R ) :
(E) =(—4')— =i(1.3 x 10-4m + 1.3 x 10-14 m)Zsr -!
m
= 1.7 x 10-2 m2 5r -1

do
We have to find out (“*L for which we will use Eq. 8.13, wherein we also need 6__,
m (4]
From Fq. 8.9, f = p, = Jom.
rom Eq. 8.9, for m, =m; we have 8, = 2
For 9, =30° 8, = 60°, so that
d —
CAL) 4 cos 30° L
dS) gab dQ
=2V3 x 1.7 x 10-BrA2 5!

= 5.9 % FO-8m2s!

FPi= =121 171} N CR T e

T

to




Therefore. the rate of detection of neutrens is Svallering

1.2 x 10-'m*
@i—{ﬁ.‘)x [0 P¥msr! ) x (@ x 100 x (3% 10%m 251y x [E—*jin-l ; :I
(0.7 m}-

At
=1.7x% 0% !

Here we have 1o essentially follow the method used in Example 2. It is given that

E,=7MeV =7x 16% 10-Y
=1.1x 10"
Putsing /1, = 4a.m.u. and m, = 207 am.u. in Eq. 8.23. we get

£, Lix10'4

, = = =Lix 012
LR ﬂll R 4
| + — Ll + ——-)
iy 207
17 o? 2 % 82 x (1.6 x 10-1%C)?
From Eq. 8.22, r, = —25— = = —— ;
4ne E,,, (4m) x (8.8 x 107'2 C*N-'m=?) x (1.1 x 107'2J)

=34 x10°P"m

Since L =0.019« 1,8, =8, .

k]

For9,=30°0,, = 30°and

da __’i .4%
(dﬂ)m BT Rl

3.4 x 10~ m)?
= ["—TE)—- sr! cosec! (15°)

= 1.6 % 10-%m? sr!
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'UNIT 9 RIGID BODY DYNAMICS

Structure

9.1  Intoduction
Objectives

9.2 A Rigid Body and its Motion
What i3 a Rigid Body?
Translational Mation of a Rigid Body

Rotational Motion of a Rigtd Body
Gentral Mation of a Rigid Body

9.3 Moment of Inertia
Detemmination of Moment of Inertia of a Rigid Body
9.4 Rotational Dynamics of a Rigid Body

Rotzational Analoguc of Nowion's Second Law

Work and Energy in Rotational Motion

Conssrvation of Angular Mownenium and its Applications
Precession

9.5 Summary
9.6 Teminal Questions

9.7 Answers

91 INTRODUCTION

In the previous unit you have siudied the phenomenan of scatlering, We had treated the
projectile there as a point mass. In Units 6 and 7 you have studied about the motion of
planeis around sun by reating them as poinl masses. As i matter of fact so far in this
course, we have been concerned primarily with the motion of point masses. In nature,
however, we hardly come across an ideal point mass. We have 10 deal with motion of bodies
which have finite dimensions. So we need 1o develop a technique for studying the mation of
such bodies.

A special class of such bodies is known as rigid bodies. In this upit you will first leam what
a rigid body is. You will see that the definition of a rigid body provides a model for studying
the motion of various kinds of physical bodigs. You will then stdy about the different kinds
of motion of a rigid body. A rigid body can execute both translationat and rotational motion.
We shall see that the general motion of a rigid body is a combination of both translation and
retation.

You will find thal the translational motion of a rigid body can be described in terms of the
motion of ils centre-of-mass. So. we shall be able to apply the dynamics of point masses for
description of (ransiational motion., Hence. our chiel concern will be the study of dynami:s
ul rotational motion of rigid bodies.

In Unit 4 of Block 1 you have studicd ilic dyzumies of rotational motion of : particle. You
aiready know the concepts of angular displacement, anguiar velocity. angular acceleration,
moment of inertia, kinelic energy. torque and anpular momentum fur a particle. In (his unit
we shall extend these concepts to the case of rigid boedics. This wilt caable us 10 study about
a variely of applications such a» the roiation of flywheels. despinning o saletiites, motion
of-rolling objects and so on.

Finally, in this unit we shall revisit the important principle of conservation angular
mementum. We shall see that the principle holds Yor rigid and other extended burdies. We
shall apply the principle to explain the acrnbatics performed by a diver vr a ballerina, Finally
we shall discuss very briefly about precessional motion.
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In this unit we shall very often refer to the contents of Unit 4 of Block 1. So it is suggested
that you go through that upit once again before you stant this unit.

In the next unit we shall aim to study the analysis of motion from the point of view of a
non-inertial observer.

Objectives

Alfter studying this unit you should be able 1o

e identify arigid body

s  distinguish between the features of translational and rolational motion of a rigid body
. outlinc-lhe features of the general motion of a rigid body

e  explain the significance of moment of inertia of a rigid body about a certain axis

#  solve problems based on the concept of rotativnal dynamics of rigid bodies.

9.2 A RIGID BODY AND ITS MOTION

Let us consider the motion of a Yo-Yo (Fig.9.1). It runs up and down as the spoo) winds and
unwinds. The Yo-Yo rotates about an axis passing (through its centre and perpendicular to the
plane of this paper. You can see that this axis does not remain fixed in space. [t moves
vertically downward or upward with the Yo-Yo. In principle we can use Newlon s'laws ot
motion to analyse such a motion as each particle of the Yo-Yo obeys them. But obtaining a
description on a panicle-by-particle basis will be an uphill task as the number of parlicles is
very large. So we would like to find a simple method for analysing the genera| motion of an
extended body like a Yo-Yo. We can find such a method by using the model of a rigid-body.
So let us first learn what a rigid body is,

9.2.1 What is a Rigid Body ?

You must have seen a wheel rotating about its axle. Let us consider any two poinls on the
wheel. We find that the relative separation between them does not chunge when the wheel is
in motion. But if we take the example of the diver of Fig. 7.12 we find that the relative
separation between Lwo different parts of her body does change. The former is an cxample of
a rigid body whereas the Tater is nol.

Technically speaking, a rigid budy is defined as an apgregate of point masses such that the
relative separation between any two of these always remains invariant, i.c. for any pasition
al he body 7, = a consiant (Fig. 9.2). So a rigid bedy is one which has a definite shape. In
does nof change even when a defonming foree is applied. In nature there is no perlectly rigid
hody as all real badies experience some deformation when forces are exeried. So a perfecily
rigid body can only be idealised. But we shail see thai 1his model is quile useful in cases
where such deformations can be ignored. For example. the deformation of a cricket bail as it
bounces ofl the ground can be ignored. You know 1hat if 3 heavy block is dragged along a
plane, frictionul force acts on it (see Sec. 2.2.2 of Bleck 1. Bui its deformation due to the
frichonat torce can be neglected. However. you cannet neglect the deformation of a railway
track due to the weight of the train, Likewise, the deformation of the fibre glass pole used by
a pole-vauler can alse not be neglected, Soin the tast 1wo cases we cannol apply the rigid
body model,

Y Ou L aow bire o dentily the obiecis Ll can be approximated by the rigid body model.

SAQ I
Which el the olowing can b considered as rgid bodies ¢

ayAtop b) Arubberband ¢) A bullet d) A bailoon e) The earth.

Let us now study the motien of a rigid body. A rigid body ¢an execute both translational and
rotitional motion. Let us discuss thelr basic Ieatures.

Rigid Body Dynamic
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Fig. 9.1: A Yo-Yo

Fig. 9.2: For any position of a
ngicl by, i = d consiant
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9.2.2 Translational Motion of a Rigid Body

Suppose you are travelling in a train. Then during a certain interval of time your
displacement will be exactly equal to that of your co-passenger provided both of you do not
move with respect 1o the train. This will also be true for any two objects attached 1o the
body of the train, say a bulb and a switch. This is the characteristic of translational motion.
A rigid body is said to execule pure translational motion if each particle in it undergoes the
same displacement as every other particle in any given interval of time. Translational motion
of a rigid body is shown schematically in Fig. 9.3.

Vg
z’ 7’
g
e
p—— t .L’
EAN

Fig. 9.3: Translational motion ol a rgid body

-

You must have noted that the path taken is not necessarily a straight line. Now let us
measure lhe magnitudes of the displacements of the points P, ¥, Q as the body moves from
the position A to B. Each is equal to 3.9 cm and Lhe lines joining these posilions are parallel
to each other. So they undergo the same displacement. You may verify the same for the
molion of the body between positions B and C.

SAQ 2
(@) Measure the magniludes of the displacements of P, 0' and ( belween positions B and €
and verify that they are equal.

(b) Give two examples of a pure translational motion.

Now that you have worked out SAQ 2, you can see that if we are able to describe the motion
of a single particte in the body, we can describe the motion of the body as a whole. We have
done this exercise a number of limes before. However, vou may like (o consolidate your
understanding by working oul the following SAQ).

SAQ 3 : :
A rigid body of mass M is executing a translational motion under the influence of an
cxternal force F, . Suggest a suitable differential equation of motion of the body.

What does the answer 10 SAQ 3 signify? We know that Lhe relative separanon between any
two poinis of a rigid body does not change, i.e.

dr;, _

o O.0

So all the points follow the same trajectory as the ¢.m. Hence, for studying translational
motion, the body may be treated as a particle of mass M located at its ¢.m. You may recall
that we had treated the sun and a planet as particles in Unit 6. They were treated as particles
ag their sizes are negligible compared to the distances between them and also because the
shapes of thesr bodies were insignificant. But here we are considering a rigid body as a
particie for another reason as explained above.

Thus we can represent the translational motion of a rigid body as a whole in terms of the
motion of its c.m. It becomes easicr to describe the translational motion in this way. In the
previous units we have dealt with cases like a body falling down an inclined plane, a ¢ricket
ball hit by a bat, etc. There we had applied the above idea. So before we go over Lo the next
sub-section it would be worthwhile to know about the position of c.m. of a rigid body.
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The problem of locating the c.m. of a rigid body is complicated when its shape i.
asymmetrical. However, we shall deal mostly with bodies having a symmetrical stape.
Positions of ¢.m.s (c) of several symmetrical bodigs have been shown in Fig. 9.4,

,.

Fig. 9.4; Centres-of-mass of symmetrical rigid bodiss

[x13
L
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Let us now discuss the rotational motion of a rigid body.

9.2.3 Rotational Motion of a Rigid Body

Let us consider the motion of the earth. Every point on it moves in a circle (the
corresponding latitude), the centres of which lie on the polar axis. Such a molion is an
example of a rotational motion, A rigid body is said to execute rotational motion if all the
pariicles in it move in circles, the centres of which lie on a straight line cailed the axis of
rotation. Fig. 9.5 shows the rotational motica of a rigid body about the z-axis. When a rigid
body rotates about an axis every particle in it remains ala fixed distance from the axis. So
each point in the body, such as P, describes a circle about this axis. You must have realised
that perpendiculars drawn from any point in the body (o the axis will sweep through the
same angle as any other such line in any given interval of time.

We shall now study about the general motion of a rigid body.

9.24 General Motion of a Rigid Body

The general motion of a rigid body is a combination of ranslation and rotation. This can be
understood by considering a simple example shown in Fig, 9.6.

A ; -

Fig. 9-6: Tobnngthe body from position A v ~ume new posiion 8, first translale il so thart the centre-ol-mass
coincides with the new centre-of-mass. and then rotate it around the appropriale axis through the cenire-
of-mass unuil the body is in the desined posinon,

You may now perform an activity for the sake of betler understanding of the general motion
ol 2 rigid bedy.

Activity
Take any book lying on your table and keep it in the bookshelf in its erect posture.

Here you first shift the c.m. of the book to a new position. Then you tumn the book about a
suitable axis through the c.m. 10 make it stand erect on the shelf. So you can see that the
above motion of the book is 2 combinalion of translation and rotation. Now, study the
following figure carefully,

Rigid. Body Dynamics

Fig. 9.5: An example of rmuationa

‘motior of a rigid body,
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Fig. 9.8 A rigid body rotating
aboul an axis AB.
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z/

Fig. 9.7: A rigid body moving in combined translational and rotational motien as seen from relerence frame
(x, y. =). Nolice that the reference frame fixed on the body (7, ¥*, =} changes its orienation with respect

10 (x, y. 2} as the motion proceeds.

Fig. 9.7 shows a case of combined translational and rotational motion of a rigid body. It can
be considered as a schematic extenston of Fig. 7.12. Study Fig. 9.7 and work out the
foliowing SAQ.

SAQ 4
Compare Figs. 9.3 and 9.7. Mention very briefly the distinclive fealures in respect of the
observer’s reference axes (x, y, z) and the body-fixed axes (x”, v, 2.

Now that you have worked out S4AQ 4 you can realise that determining the location O in
Fig. 9.7 is the good old problem of the motion of c.m. which we have studied in detail. As
stated earlier our chief concern in this unit is to suitably study the rotational aspect. For this
we have lo develop a formalism (o analyse rotational motion of a rigid body. Now, in Unit 4
of Block 1, you have already studied the dynamics of angular motion of a particle. We shall

‘only make an extension of that study here.

Recall from Sec. 4.3.3 of Block | thai a particle executling rotalional molion possesses a
moment of inertia (denoted by [}. For rotational motion f plays the same role as the mass of
the particle plays for translational motion. It is very important to understand the meaning of
moment of inertia of a rigid body for its rotational motion, So let us now learn about the
‘moment of inertia’ of a rigid body. We shall start by determining the angular momentum of
a rotating rigid body about the axis of rotation,

9.3 MOMENT OF INERTIA

We know that the earth rotates about the line joining the poles which passes through the
centre of earth. How can we calculate its angular momentum about the axis of rotation? We
know that when Lhe earth rotates about its axis, every point on it executes a uniform circular
motion about this axis. The radius of this circle decreases with the latitude of the point. The
circle along which New Delhi moves has a smaller radius than that along which Trivandrum
moves. So the linear velocity of each point is in general different In order to determine the
angular momenium of a body we shall first have to determine the angular momentum of .
each parlicle in it. And as angular momenium is a vector quantity we shall add vectorially
the individual angujar momenta to get the angular momentum of (he bady. Let us now
consider a general siluation.

Refer to Fig. 9.8. A rigid body is rolating about an axis AZ? fixed iran inertial frame with a
uniform angular speed . Three point masses m,, m;, m; at distances ry, ry, ry, respectively,
from AR have been shown. m; moves along a circle of radius | and let lts velocity be v,.
Using Eq. 4.23 of Unit 4, Block 1, we may say that the angular momensum L), of m, is
given by

Li=mr xv,
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Now the mass m, is rotating along a circle of radius ry whose plare is perpendicular (o A5, Rigid Body Dynamics

In fact every point mass is moving aiong a circle whose plane is perpendicular to AB. Using
Eq. 4.13a of Unilt 4, Block 1, we get

As slaled in Sec. 9.2.3 the general
mation of a rigid body can be i
A considered as a transtational motion
where T, is the unit vector along r, and 8, is perpendicular to T, in the sense of increasing ofils c.m. and a rotational motion |
A A about its c.m. Hence, the

angle 8, . You may recall that the directions of riand @, change with time. Again consideralions of Inis unil apply also
. 10 rolations about an axis that is not
8, = w, which is same for all the point masses. So we ger, fixed in an inerial frame, provided
the axis passes through the c.m. and
the moving axis always has the same
direction in space.

v, = E,PI+r| 9161--

TR

TOITRITIT

L, =myry £ x(FF +16) 6:)

A
Now, 1—, X i"\, ={and 1'1 x 8 =1, where 1 is the unit vector along BA (See SAQ 3¢
of Unit 4 of Block 1).

(Rt=ir ol e

2

A
Li=mrion= mriem.

Similarly L, = m; r5® ©, Ly =mi; 732 @ and so on,

So the angular momentum of the body is given by

CITATTT

L=Li+LsLyy

e} -
=(myri + r% ey +.) @ i

= I, (9.2) i
In siluations involving asymmetric -
where 1=3m,r? (9.3) objects.Land & may be in different
i ' directions, In that case I cannot be ]
is called the moment of inertia of the body about the given axis of rotation. Here the expressed a5 asingle number but ina
summation extends over all the poimt masses that constitute the body. The SI unit of 3:1':!'::15':]:“'“ mathematical form
moment of inertia is kpm?2, ' I
i the mass of fhe body be M then we can express [ oas f= ME2, {(9.4)
where k15 a quantity having the dimension of length. This quantity is called the radius of
gyration. If we compare Eq, 9.4 with Eq. 4.215 of Unit 4, we find that & is equivalent io the
distance from the axis ol rolalion of the paint where the emtire mass of the body can be ’
considered 10 be concentrated. In other words il is the distance beiween the axis of rolation
and the c.m. of the body.
Did you natice the similarity between the expression (9.2) and the samie for linear
momenium (i.e. Mv). Since ® is analogous Lo v (see Table 4.1), f must be analogous (o
M. In other words, ! is the rotational analogue of mass about which you have read in
Sec. 4.3.3. This analogy alse becomes evident from the expression of K.E. of roiation X .
which you may work out in the following SAQ. ;
;
SAQ 5
Show thal for the body in Fig. 9.8 the K.E. of rotatjon is given by 0 :
K= L fo? (9.5)
=3 . :

Compare the expression for K with hat of K.E. of linear imeting and 3ind the ratarinnnl
analogue of mass.

So far in 1his section we have considered o case wlere the axis of rolation lics within the
body. The above analysis alse holds il the axis les outside the body; ¢.g. the bob of »

: , Tig. 9.9: 8 is the hoh of a conal
conicii pendulum (Fig. 9.9). pendulum and OA. the axis of
. . .. rolation.

Now that you have undersiood the meaning of the term ‘momeni of inertia” we may proceed

|
|
to study the method for its determination. 65 I
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letemination of moment of inertin of
he dumb-bell int (8) aboul an axis
wsaing through the c.m. of m; and
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9.3.1 Determination of Moment of Inertia of a Rigid Body

We shall now put Eq. 9.3 to use. To start with let us try to determine the moment of inertia
of a dumb-bell (Fig. 9.10a). We shall assume that the thin rod joining the masses rm, and 1,
is of negligible mass. We shall also consider m, and m, as point masses. These assumptions
may appear oversimplifying. But this model finds many applications in molecular
spectroscopy as this can represent & diatomic molecule. Let us first work out the following
example related to the determination of moment of inertia of the dumb-bell. Then we shall
study an application of this model,

Example 1 .

Refer to Fig.9.10b. AB is perpendicular to the line joining the masses m, and m; and it
passes through C, the c.m. Using the assumptions slated above show that the momeni of
inertia of the system described in Fig. 9.10bis ptr2 , where p is the reduced mass of the
system and r is the distance between the masses.

For the given system the summation of Eq. 9.3 will have two terms. i.e.
f=m|r|2 +m2r§.
Since C is the c.m. we have mty m = myry

T r. ry +r
or -+ =22 -t 7T "2 (by addendo)
. My my ity + m,

fe M e
' m, m o+ mo

m - m m, m,
I=m|[—22_ +m, r|= r
my+m; ny +my m|+m2

Hence, using Eg. 7.6 we ge,
I =p

You'may now like to study an application of Example 2 by working out the following
SAQ.

SAQ o

The atoms in the oxygen molecule (G.) may he considered (o be point masses separated by a
distance of 1.2°A. The molecular speed of an oxygen molecule al 5.1.0. is 460m 571 It is
known that the rotational K.E. of the molecule is 2}3 of its translational K.E. Calculate its
angular velocity at s.1.p. assuming th:t molecular rotalion takes place about an uxis through
tie c.m. of, and perpéndicular 1o the line joining the atoms.

Cor=r +r)

We have just now applied Eq. 9.3 to determine the moment of inertia of a system made up
of discrele particles. In each of the systems (dumb-bell and diatomic malecule) the total mass
is distributed among particies which are not attached to one another, i.e. the panticles that
comprise the system can be enumerated. We shall now take up the case of systems where
there is a continuous distribution of mater. Here the particles cannol be enumerated. For
example, we have bodies like a uniform rod, a sphere, a cylinder and so on. For that we shall
modify Eq. 9.3 in the following manner

Let r be the perpendicular distance of an infinitesimal mass Am of the body from the axis.
Then from Eqg. 9.3, we got

5=LH0U*M = ridm (3.6)

where Am gets replaced by drm, the differentizl of mass and the summation by integral. The
integral is a definite one extending over the entire body. Using Eq. 9.6 the moments of
inertia of symmetrical bodies about certain axes can be determined.

The moments of inertia about certain axes of a few common symmetrical bodies have been
Biven in Table 9.1 ( In all cases M represents the mass of the body in the diagram). We
have derived these results in Appendix B.
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Table 9.1

Axis _ Axis
Thin rod about Thin rod aboul
axis through axis through one
! centre perpendicular i end perpendicular

to length to length

Mr 1

12 (a) 3 {b)

Axis

Rectanguiar plate
about axis through
centre and
perpendicular to
its plane
= ‘1—'- S b‘]!
12 ' e

Ring about axis
passing through
centre and
perpendicular to
its plane

id)

Ring about
any diameter

(€)

Ring about
any tangent line

(0

Annular cylinder
about cylinder
axis

Solid cylinder
about cylinder

ahout any
diameter

()

=

axis
MR2
2 (h)
Thin spherical shell
about any
diameter

2ZMR?
3

ey

-

30 you have understood the meaning of the tem: “momeny of inertia’. You have also come
(o know the valuc of moments of inertia of several bodies about cerlain axes. So we may
proceed to siudy the dynamice of rotational mation.

9.4 ROTATIONAL DYNAMICS OF A RIGID BODY

You know that dynamics is the siudy of accelerated motion and its causes. For manslational
metion il is governed by Newlon's second law, i.c.

_ dp
F=""

The rotational analogue of Newron's second law of maolien, as you know (see Eq. 4,24 of

Unit 4, Block 1)is given by

_dL
Tt

Ahere T 1y ie torque acting on the particle and L jis angular momentum and / the moment

of inertia uboul the axis of rotation. You iy recall that you have studicd the dynamics of
angular motion of a particle in Sec, 4.3 of Block 1. We shall now apply the concepts you
have studied in Unit 4 of Block | mosily to a rigid body. You have studied the necessary

principles and taws there. We shall now Iist them in the Table 9.2, Here we have shown the

Rigid Body Dynamics
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Systems of Particles

equivalent aspects of translational and rotztional motion. A few spaces have been left blank

which you may fill in.

Table 9.2
S.N_b. Translational Maiion Rotational Motion

] Position, r Angular position, @
i . dr . 9

Velocity, v = Ty Angular velocity @ = ar
i) . dv. _d'r . do _ 49

= = I ==

Acceleration, a F T Angular acceleration, B . ZT .
iv) Mass, m Moment of inentia, {
v} Linear momentum, p = mv Angular momenwm, L = /o
viy Force, F Torque, ©
vii) Newton's second law Analogue of second law

F = @€ _ ma T = a.

== =4 R
vili) Work done = F.dr Work done = [ .8
ix) KE = lml'! KE =
2

X Principle of conservation of linear | Lo i e

momentumn:

‘When the nel extemal force acting on
a body is zero the linear momehlum
of ils £.m. remains constant.

xi) Impulse
Iz

= IF(r)dr = plry) = ple))
h

SAQ 7
Filt in the blank spaces of Table 9,2,

Now (hat you have studied Table 9.2 and worked out SAQ 7, we can discuss some
applications of the principles of rotational dynamics. We shall start with the rotational

analogue of Newton's second law.

9.4.1 Rotational Analogue of Newton’s Second Law

We have used the equation F = ‘ff to describe the dynamics of linear mation of a body. For a

system having constant mass this equation becomes F = ma. To study the rotational
dynamics of a body we (irst need to know its moment of inertia / about the axis of rotalion.
Then we shall use the rotational analogue of the above equation, i.e.

1%

T dr

Now, we know from Eq. 9.2 1hat, L = /.

For a system having constant /, we get

- o _
T =17 =

d
T = o {Joo).

.7

T in Eq. 9.7 is the net torque acting on the body. So we must take care to determine all
torques that act on the body and take their vector sum to obtain the net lorque.

T




We have studied about the linear motion of a many-particle system in Sec. 7.3. There we
found that only extemal forces matter. The internal forces cancel in pairs according to
Newton's third law. Now, let us see what happens in the case of internal torques. Refer to
Fig. 9.11. It shows two particles 1 and 2 of a rigid body. The intemal force on 1 due to 2 is
F., and that on 2 due to 1 is F}3. Let us find out the torat internal torque about a point O
due to these forces.You may recall from Eq. 1.16 of Block 1 that this tolal internal torque is
given by,

Tin =T XF2 + 13 %XF)»
Now,.r X Fy = r/ F, sin(n-8)) n = Fay rysin B,ﬁ\.

where 1l is the unit vector perpendicular to the plane of this page and pointing towards you.
And,

[} X-Flz = r3F|2 sin (R—ez) - ﬁ\) =—F13T2 sin Bz I?
Tims = (Fay 1y 5in 8, — Fyy ry5in 6) 0. (9.8)

We know from Newton's third law that Fy, and F,, are equal and opposite. So F;;= Fa.
Again, we can see from Fig. 9.11 that,

ri8in B; = ro5in 8; = ON,

where ON is the length of the perpendicular drawn from @ on the line joining the points 1
and 2. Hence, from Eq. 9.8, we gel

Tine= 0
So we see thul intemal torques cancel in pairs. Thus, the torque in Eq. 9.7 is the net external

torque.

Letus now work out an example to illusirate Eq. 9.7. You will find that the situation is
analogous to the case of acceleraled linear motion as the applied torque and the angular
velocity of the rotating body are in the same direction.

Example 2

A solid cylinder of mass M is mounted on a horizontal axle over a well (Fig. 9.12a). A rope
is wrapped around the cylinder and a bucke! of mass m is suspended from the rope. Find in
terms of m, M and g an expression for the acceleration of the buckel as it falls down.
Neglect the mass of the rope and any (riction between the axle and the cylinder. Assume that
the rope does nol stip over the cylinder as it unwinds.

T the bucket were not comiected to the cylinder it would have accelerated downward at the
rate g. But now there is an upward tension T on the bucket due to the rope. It reduces the
nel downward force on the bucket. It also exerts a torque on the cylinder. The magnitude of
the downward force on the buckel (Fig, 9.12h) is given by

F =mg -T.
But ¥ = ma. where g is the linear acceleration of the bucket.
coma =mg - T (9.9)

If we 1ake the end view of the cylinder (Fig 9.12¢), we see that the rope exerts a lorque of
magnitude ©{ = RT) on the cylinder. This gives rise 1o an angular acceleration @ given by
Eq. 9.7 as

(9.1G)
where /15 the moment of inertia of the cylinder about the axis.

Since the rope unwinds without slipping, a is related o a. Using Eq. 4.1 1a of Block | we
gel [rom Eg. 9.10 hat.

a = ok = RT {9.11)

Rigid Body Dynamics

Fig. 9.11: Intemal forces on wo
panticles of a rigid body.

(b}

(c)
Fig. 9.12: Diagram for Example 2
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n,

;.

Fig. 9.13: The falling mass m;
can provide horizontal acceleration to

™).
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Hence, from Egs. 9.9 and 9.11 we get

ma = mg- Ia
- R?
m+ e a= mg
R
or a mg! (9.12a)
m+ — ‘

R

We know from result (h) of Table 9.1 that for the cylinder f = % MR, So, we can rewrite
Eq.9.12a as

_ __mg (9.12b)
=M
m+ E‘
Eq. 9.12b indicates that if M << m, then a= g. In other words if the mass of the cylinder
is very small compared to that of the bucket then the rotation of the cylinder does not mater.,
The acceleration of the bucket is stmply equal to g.

However, in general we can say that the gravitational force on the bucker does not only
provide its linear acceleration, it also gives rise to the angular acceleration of the cylinder, As
a result, the linear acceleration of the bucket decreases. A falling mass can provide horizontal
acceleration to another mass (Fig. 9.13). From Example 2, we have just now seen that a
falling mass can also generate angular acceleration in another body.

So we have learnt to apply the rotational analogue of Newton's second law of motion. This
study throws some light on the concept of equilibrium of a body. You may recal] that we
have studied about equilibrium of forces in Sec 2.2.2. of Block 1. A body had been said 10 be
in equilibrium if the vector sum of all the forces acting on it is zero. This is equivalent to
saying that the linear acceleration of the c.m. of the boedy is zerc. But we know that the
general motion of a rigid body is a combination of the translational motion of the c.m. and a
rolational motion about an axis passing through the c.m. So we can say that our study in
Scc. 2.2.2 of Block I was resiricted to the case of translational equilibdum only. The general
condition of equilibrium of a body must include the rotational aspect too. We shall study
bricfly about this now.

Equilibrium of a Rigid Body

A rigid body is said to be in mechanical equilibrivm if with respect to an inertial frame

(i) the linear acceleration a_; of its c.m. is zero and (ii) its angular acceleration O abour any
axis fixed in this frame is zero.

The above conditions do not imply that the body must be at rest with respect 1o the frame, It
should only be unaccelerated. Its c.m., for example, may be moving with a constant velocity
Y. and the body may be rotating about a lixed axis with a constant angular velocity.

The translational motion of the body, as you know is governed by the equation.
F, = Ma,,,

where F, is the net external force acting on the body of mass M. So condition (i) may be
expressed as follows : The vector sum of all the external forces acting on the
body is zero. In other words, if a ngid body is in {ransiational equilibrium under the
action of several external forces Fy, F,, Fy and so on, we may write the above condition as

Fl+F+Fy+4 - = 0 (9.13a)

The other condiliopn is given by &= 0 for any axis. We know that the angular acceleration
of arigid body is related (o the net external torque 1 as

=10
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where { is the moment of inertia of the body about the axis of rotation. So condition (ii) Rigid Bady Dynamics
inay be_expressed as follows : The vector sum of all the external torques acting

on thiz~body Is zero. In other words-if a rigid body is in rotaticnal equilibrium vnder the

action of several lorques T,, T;, Ty and so on we may express this condition as

Ty + Ty + Tyt = N (9.130)

Hence, a rigid body is said to be in mechanical equilibrium if both the conditions 9.13 a and

b hold.
Let us take the example of a man standing on a lidder (Fig. 9.14). Suppose (hat the entire F
- syslem is in equilibrium when the man is at the poit M of the ldder AB. We shall firu 4!

find out what are the lorces acting on the system. The weight of the man acting vertically
downwards through M is w. The weight W of the lidder acts verticaliy downward throuph
its mid point G . N, and N, are the normal reactions at the poinis of contact A and B of the
ladder with the veriical and horizonlal surfaces, respectively. Since the point A bas a
tendency to slip 1owards O, the force of friction F; at A acts along OA. Again 8 has a
tendency to slip along @8. So the force of friction Fat 8 is along BO. So condition (9.13a)
demands that

w+rW+ N +N,+F, +F, =0, Fig. 9.14: A ladder 1n equilibrivm

Now let us define the Cartesian x and y-axes along OB and A, respectively. Then the
above condition may be writlen as

—wi -wl e tenmi+n] oRf =0
f o
of (N ~Fa) 1 +(My+F -w-W)j =10,
Hence, we get
N'[ - F2=0, Nz'l'Fl - W —W =0
e Ny=FyandN, +F =w + W, {9.14u)

Now, we shall take care of the condition (9.13b). For this we have Lo determine the total
torque acting on the system aboul any point. The choice of this peint is quite important, A
proper choice'helps us in geuing the final condition in a simple form. Lel us see how. If we
select the point A, the torques of Fy and N vanish, Similarly for the point B, the torques
of F; and Nj vanish. So if we select any on2 of ihese two points, we may get rid of the
expressions of torques of a pair of forces wiiile writing the condition (9.13b). This
considerably simplifies the final condition. Howcever, the meaning of the condition is
independent of the choice of the point abowt which the torques are being detenmined.

So. let us now write (9.13h) with reference o 1he point B. We have,
ABX F, + AB x N+ MB xw + GB x W =0
Now, let AB = 2{, BM =ua and Z0OBA =0 (Fig. 9.14). So we get
i A A A
2 F)| sin(90° + 0) k + 2N, sin® K - aw sin(90°— @Yk — W sin9ne - )k = 0,
A
wherce k is the unit vector perpendicular 1o 1he xy - plane and pointing lowards you.

or 2iF, cos @ + 2{N sin ® —awcos B — Weos U0 =0,

8 2UN,
oreotl = e < Iw — 21F (9.14b)
So for the equilibrium of the sysiem {ladder and man) both the equarions (3. 142 and 9.14b)
should hold good.

So far we have studied how to apply the rotational analogue of Newton’s second law of
motion. In Unit 3 of Block 1 you have read about ‘Work and Energy’, as applied to linear
motion. We shall now study about these quantities with reference to rotational motion of a
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9.4.2 Work and Energy in Rotational Motion

In general work done by a force F during linear motion is given by

W:J.F.dr

where dr is an infinitesimal displacement. T is the rotational analogue of F. The angular
displacement @ is the analogue of r. So work done in rotational motion by a torque can be

obtained by replacing F with t and r with 8 in the above expression of W. It is'given by

W, =f T.4d0 ' (9.15a)

For a<onstant torque acting in the direction of the angular displacement, we get
W = TAD +3.15b)
where A9 is the overall angular displacement.

Let us now apply Eq. 9.15b to a simple example.

Example 3

An automobile engine develops 72kW of po'wer when rotating at a rate of 1800 r.p.m. What
lorque does it deliver?

Power is the rate of doing work. Now if the work W, (= TA8) is done in a time Ar, then
the power will be given by

TAD
Ar

P =
A8
where E = @ = the angular speed,

or T =

g I

For this example, P = 72x 10°W = 72 x 103kg m2s-3

and W =2m x %Omrads-' = 60mrad 5~

N

‘= 72 x 103 kgm? 53
B 60 rad st

= 382 Nm.

You may recall that here Nm is nol equivalent 1o Joule.

Let us now discuss the K.E. of rotation. We have derived the expression for the K.E. of a
rotating body in Sec. 9.3. It is given by

Kror =% for?, {9.16)

where / is the moment of inertia of the body about the axis of rotation and ® is its angular
speed. We shall now apply Eq. 9.16 to discuss briefly about the motion of reiling objects,

Rolling Objects

A rolling object exhibits both rotational and translational motion, As the chject moves
forward, it rotates about a point that is itself moving along a straight line. How do we
express the total K.E. of such-a rolling object? The eXpression must conlain both the
translational and roiaiional K.E. Su the i K.E. is given by

K= Kfmn.; +K,.

Koo =3 MVB . Ko = 31,02
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where M 3s the mass ol the abject. v, is the speed of the c.m.. {,,,,. is the moment of inertia Rigid Hody Dynamicv
of the object about an axis passing through the ¢.m. and  the angular speed.

a2

Thus. K '=;l; M'n".:':” ‘i‘l ’””(.IJ'.

2

Now, if the object has a radius R-and it is rolling without slipping, then ® =v,,/R.
Hence for an object which is rolling without slipping.
K ._.l M !.'.‘_'!1 V2 917
25 (M + TH)vd, 9.17)

Let us apply Eq."). 17 to work out the following example.

Example 4
A solid cylinder and a solid sphere, each of the same mass M and radius R, siart from rest

and roll without slipping down an inclined plane (Fig. 9.15). Which one reaches the bottom
of the incline first?

Let the finishing line be at a vertical distance y below the starting line. The object whose Fig. 9.15: Diagram for Example 4
c.m. finishes with greater speed reaches first. Using Eq. 9.17 and applying the principle of . '
_conservation of energy, we get

I II‘ m . :
Mgy = 2 [M’ + R3:| Vo
» 2y '
or v = (9.18)
I MR
- : L 2 2 4
For the solid cylinder. f,,, = 5 MR- or v, = P
1{}

and for the solid sphere /,,, =~ MR™ or v3, = = &Y

A kg

Since (10/7) > (4/3), we find that the sphere reaches {irst. You may like 10 work out an SAQ
based on the above concepl.

SAQ 8
A spherical ball rolis without slipping down a slope of vertical height 35 ¢m. and reaches
the bottom moving at 2ms !, Is the ball hollew or solid?

So {ar you have studicd some applications ol the principles of rotational dynamics. You may
recall from Sec. 4.4.2 of Block | that the principle of conservation ol angular momentum is
used widely in physics. We have already studied some applicalions of this principle in Urit 4
of Block |, The law of equal areas which you have read in Unit 6 is also an application of
this principle. We shall now revicw the principle of conservation of angular momentum and
study some other of its applications,

9.4.3 Conservation of Angular Momentum and its Applications

Now, you are quite familiar with the relation

dL
dt

You may recall that we have proved this result for a single particle right at the beginning of
Sec. 4.4 of Block |. For a many-particle systemt = 31, and L= Y L, .where T,and L,
) i

are ihe torque expenenced and the angular momentum. respeclively, ol the fth parlicle. Now,
we know that,

L. L
o dt
. dl. d dL. . -
A —- o= )= i P LN ry O 1 L
gain dt " dr (,Z L) Z'_: i ‘,L_—,‘I:, the sum ef torques acting on the

particles. _ . 73

ER F I Fa e b e

L= = s P




Systems of Parlicles

Fig. 9.k6: Motion of a figure
skater. {a) The / of the skater is large
and w15 small ¢b} f is small and w is
large

5 >C..

But we have seen in Sec. 9.4.1 that internal torques cancel in pairs. So the sum of the
lorques is equal to the net extemal torque. -

e. (2.19)

where T is the net external torque.

When there is no exiernal torque on a sysiem, Eq. 9.19 tells us that % =0. or the angular

momentum is constant. This is the principle of conservation of anguwlar momentum. It
implies that the angular momentum of an isolated sysfem cannol change. We shall now
study some applications of this principle.

Did you notice that while deriving Eq. 9.19, we did not require that the sysiem in question
be a rigid body? So conservation of angular momentum also applies to systems that undergo
changes in configuration, and hence in moment of inertia. A common example is that of a
figure skaler, who stans spinning relatively slowly with her arms exiended (Fig. 9.16a) and
ihen pulls her arms in 10 spin much more rapidly (Fig. 9.16b). Let us find out why this
happens, As her arms move in. her mass gets concentrated more towards the axis of rolation.
In other words in the expression S of /, s become smail. So { decreases. But the angular
momentum ft is conserved. Hence w increases. The principle also applies to the case of the
diver in Fig. 7.12. A schemaric representation of Fig. 7.12 is shown in Fig. 9.17. Atthe
positions A, £ and F the value of [ is high and so w is low, whereas at the positions B,
and D./is low and w is high. So the diver utilises the principle of conservation of angular
momentum e do somersaults in mid-air and enier the peol wilh head and hands down.

You may now like 10 work out an SAQ on the above concept.

"5AQ 9

The earth is suddenly condensed -0 that its radius becomes half of its usual value without its
nress being changed. How will the period of daily rolation change ?

# We have studied the application of the principle of conservation of angular momentum. We

know (hat the angular momentum vecior changes when an external torque is applied to the

system. The change in the angular momentum vector when the applied torque is
%

Fig. 9.17: Diflfcrent stages of the
muotion of a diver

Fig. 9.18: A bicycle wheel
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perpendicular 1o the direction of the angular momentum presents an interesting situation.
The resulting motion is called *precession® about which we shall study now.

9.4.4 Precession

Al some time you must have played with a top. You must have seen that the axis of
rotation of a spinning top slowly rotates about the vertical. This means that the direction of
L of the top (which lies along its axis of rotation) changes. This must be due o a torque
acting on the top. You can also observe this effect if you ¢arry out the following activity.

‘s
Aclivily

Turn a bicycle upside down and make it stand on its seat and handle. Rotate its front wheel,
When Lhe wheel is rotating reasonably fast, Lift it upwards by applying force ai ihe it of the
axle (Fig. 9.18). What happens if you do this?

In doing this activily you must have seen that wher ou applied the force, the wheel tumed,
L.e. ils axis of rotation changed. Why does this happen? To undersiand this, study Fig. 9.19,

- = B




Rigid Body Dynamlcs

(a) (b) : {c)

Fig. .19 : a} Axlc of the whee! is supported at both cmls: b) A rapidly spinning wheel does not fall an
removing 1he suppon at P, but exhibils precession; c) top view of the precessing wheel.

Fig. 9.19 shows a {ree wheel with an axle. Ini‘tially the axle is supported at both end poinls
¢ and P (Fig. 9.19a). If the support at P is removed. the torque due 1o force of gravity mg
causes the wheel to fall. Now suppose you rolate this wheel anticlockwise and remove the
support at P. What happens in this case? This time the whee! does nol fall, Instead the axle
remains almost horizontal and begins to revolve about the z-axis (Fig. 9.19b).Why does this

happen?

This happens because the torque due to gravity acts on the wheel and changes its angular
momentum (-.- T = dL/dt). Since L is along (he axis of totation, the axis of rotation also
turns, We can calculate the angular velocity £ at which the axis of rotation moves using the
relation € = dL./dt. Let the axis of rotation tumn by an angle d¢ during time interval dr, then

g

'de'

Let the angular speed of the wheel (e ) be constant. Then since L = /o, the magniwdeiof L
is constant and only its direction changes. From Fig. 9.19¢ we have

L dé 1dL 1
d¢=£L"Q = E?:ZE:E (9.207

The direction in which the axis of rotalion turns will be along dL., i.c. along the torque’s
direction. Now if r be the distance of the point of support to 1he cenire of the wheel then

{h A Q - o
T=rX F=(ri)x (-Mg k) =rMg(kx 1 )=rMg}j .
Subslituting L =/ and T=rMg in Eq. 9.20 we get

Q = ?ﬂ&_ {9.21)
o

Eq. 9.21 indicates that £ increascs as w decreases. As retational energy is lost due to
friction, @ will decrease and the wheel's axis of rotation will change fasler.

Such a motion in which the ixis of rotation changes is called precession. €1 is termed as
the angular velocity of precession, i.e, the velocity at which the axis of rotation
Preceanes.

SAQ 10
Perfotm the activity suggested in this section once again. In the light of what we have
discussed in this section aitempt the following question giving reasons for your answers,

a) In which directien will the wheel wrn when you apply an upward force at P, if as seen
from P, il were rolating (i} clockwise and (ii) anticlockwise?

b) If you applied upward forces at both P and Q. would the wheel's axis of rotation change?

Let us now summarise what we have studied in this unit.
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6 .

9.5 SUMMARY

A rigid body’is one in which the relative separation between any two of its constituent
particles always remains constant,

A rigid body is said to execule pure translational motion if each particle in it undergoes
the same displacement as every other particle in any given interval of time.

A rigid body is said 10 execute rotational motion if each particle in it moves in a circle,
the centres of which lie on a straight line called the axis of rotation.

The general motion of a rigid body is a combined effect of the translation of its c.m. and
a rotation about an axis passing through the c.m.

The rotational analogue of mass is moment of inertia. It measures the resistance of a
body to changes in rotational motion. It depends on the mass of a body and on the
distribution of mass about the axis of rotation. It is given by

!=Em,—r,-3
r

for a body consisting of discrete masses, and by

I = J.rldm

for a continuous distribution of mater.

Torque is the rotational analogue of force. Torque. moment of inertia and angular
acceleration are refated by the rotational analogue of Newion's second law

T=/a
A rigid bedy is said to be in mechanical equilibrium if
2F = 0.3t =0

" The work done during a rotational motion by a torque is given by

Wi =IT - d8

The expression for K.E. of rotation is similar to that of K.E. for linear motion with
mass replaced by / and linear speed by angular speed, 1t is given by

1
Kml' = 5 "m :

The total K.E. of a rolling object may be written as the sum of the translational K.E. of
its c.m._ and its rotationa! K.E. about an axisthrough its c.m.

The expression for angular momentum of a rigid rotating object is given By
L:=la

The rolationai analogue of Newton's second law may be writen in terms of angular
momenium as - ’ ’
dL

1.'=E

In the absence of external torques, the angular momentunt of 2 system is conserved.

When a torque is applied perpendicular to the angular momentum vector, then the axis
of rotation exhibirs a precessional moticn.

9.6 TERMINAL QUESTIONS

a) Explain with reasons whether the mass of a body cen be considered as concentrated
atils c.m. for the purpose of computing its moment of inertia ?

b) Two circular discs of the same mass and thickness are made from metals having

different densities. Which disc will have the larger moment of incrtia about its
central axis ?

iy g b i
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¢) Comment on the {ollowing stalement : “The melting of polar icecaps is a possible
cause of the variation i the time period of rotation of eanth.”

Refer to Fig. 9.20. I shows a satellite of mass 960 kg. Assume that it is in the form of
a solid cylinder of 1.6m diameter and 1hat the total mass is uniformly distributed
throughout its volume. Now, suppose that the satellite is spinning at 10 r.p.m. about
its axis and il has to be stopped so that a space shultle crew can make necessary repairs.
Two small gas jets are mounted diametrically opposite on the satellite as shown in Fig.
9.20. The jets aim tangentially 10 the surface of the satellite and each of them produces a
thrust of 20N. How long must the jets be fired in order to stop the rotation of the
satellite?

The rotational energy of the earth is decreasing steadily because of tidal friction,
Estimate the change in the rotational energy of the eanh in 2 day. It is given that the
rotational period of the earth decreases by about 10 microseconds in a year. Assume the
earth to be 1 solid sphere,

9.7 ANSWERS

SAQs

L.
2.

(a), (c). (e).
a) Each has a magnitude of 4.2 cm.
b) i1 A stone falling freclv under pravity.
tiy The motion of a block on a table when it is given a push.

The required differential equation (see Eq. 7.22) would be MR = Fe. where R is the
position vector of the c.m. of the body and R is its acceleration.

In Fig. 9.3 the &7, ¥".z" - axes are always parallel to the AWy.S - axes, whereas in Fig.
9.7 the former continually changes its orientation with respect Lo the latter. In case of
Fig 9.3 the location of the body can be obiained only by localing O, the c.m. of the
body while in Fig, 9.7 one has to know in addition the orientation of Xyl o’ axes
with respect of the a, v, = - axes,

From Sec. 4.3.4 of Block | we may say that the K.E. of rotation K of the point mass
my is given by

KI=I

bl e
7yoryar
27

- |
Similarly the K.E.s of m, and m are K> = S mazar,

K= %m;r; . So the K.E. of rotatien of ihe bedy is given by

K—"-‘KI+K1+K}+ .....

k] b ] I
(rnry +m0rs +mys + ..)w° = 2 Jor.

ot | —

The expression for the K.E. of lincar motion is ;Mr2 and since «w s analogous to v, /
musl be the rotational analogue of A,

Let the mass in kg of each alom be . Then from Eq. 7.5 we get y = m/2. Here
ro=12x10 " m, If 1he required angular speed be . then from Eq. 9.2 and Example 1.
1he rolational K E. is given by

E = r!iklz-](l”xl[)‘mm}zml
2 ,I_ 5 »J 2 )

The translational K.E. is given by

Ey=2x2 m?=my?, where v = 460 ms-'.

B —

Rigid Body Dynamica

Fig. 9.20 : A spinning sarellite
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Systems of Parlicles

()

Fig. 931: (s} If a rolating bicycle
. wheel is lified vertically, & swerves
to the side: (b) the change in sagular
movnentum vector for (i); (c) the
wmmhmw
for (i)

78"

Itis given that £y, =< Ey.

LFAR] 5]

3%

r {036 x 10 kgm?) o = S m (460) kgm?s®

-

orm=6.3%102rad 5!

-=fa

vil) 'I:=%

ix} KE.= *]2‘1012

x)  Principle of conservalion of angular momentum : When the net torque acling on a
body is zero. ils angular momenlum remains conserved.

)
xi) Angular impulse = J-‘r.(r Ydt =L (1) - L (1))
fH

For (a) a hollow balil, /, . = 2 MR2,

[ =]
L=

and (b} a solid ball, /., = 3 MR,

Now, from Eq. 9.18, we gel for (a), (v.2}, =g gy

and for {b) (v2, =-’72 &Y.

For our problem y = 0.35m and we put g = 9.8ms-?

So (v2),=4.1m?s2, (vZ), = 4.9 m? 52 The observed value of v 2, = 4m2s-2 which
agrees more closely with (a). Hence the ball is hollow,

From the principle of conservation of angular momentum, we get,

fioy =5y,
Here f,=ZMR 1= MR and Ry = 2
175 i 5 2rand oy = 2
2 02 = 24 R12
5MR| 0)|—5M 4
or =4
Zn 21!
But oy = T and wp = — whcre T, and T, are the usual and changed ime periods of
dailymiauonofeanh
L _24,
= 2" 4 h = 6h.

So the time period of daily rotation will become 6h.

10. @} (i) Referio Fig. 9.21a. The direction of L is along Lhe posilive direction of

y-zms A ve-mca!ly upward (i.c. a.long the positive direction of z-axis} force F
is applicd ai 7. Tue resulling ivque (7 K F) about & is along the megalive
direction of x-axis. So the change AL in the anguiar momentum vector is
zlong that direction (Fig. 9.21b). Accordingly the new direction will be glong
L + AL. So the wireel will swerve so thal iiie axie nioves in e xy-piane in
the sense + x to +y axis.

(it) Following similar argument as in (i), we can draw the angular momentum
vector L, its change AL, and the resulting vector L + AL as shown in Fig.
9.21c. So the wheel will again swerve in the xy-plane in the sense +x o -y
axis.
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b} If upward forces are applied at both points £ and (. then the torques due to them
about O will be equal and opposile. So the resulting torque is zero. Hence there
would be no change in L. So the axis of rotation of the wheel will not turmn.

Terminal Questions
I. a) {=Emyr?andr;isnot same for all /. So the mass of a body cannot be considered as
concentrated at its ¢.m. for the purpose of computing its moment of inertia.

b} A disc of thickness 1, radius R and mass M is essentially a right circular cylinder of
the same radius and of length ¢.

l

I=2'MR2.

But M = Rt p, where p = the density of the metai of which the disc is made.

[ PR xpr [ALT_ M
I

2 72 | 2npr

So we see that for same mass and thickness, / is inversely proportional to p. Hence
the disc made of the metal having lower density will have larger moment of inertia.

¢) When the polar icecap melis the wailer MNows towards the equator. This leadsto a
redistribution of matter over the globe as a result of whuch / for the earth changes.
Bur as the angular momentum of the earth remains constant its angular speed
changes. But, @ = 2r/T, where T is the time period of rotation. So T also changes.

L

The satellite’s angular speed has 1o change by Aw = 10r.p.m. If the angular acceleration
gt is constant then Lhe time taken for the change is given by
sw . Awf
a

{""fa=1)

Since, the satellite is cylindrical, f = %MRZ. where M is the mass of the satellite and R

its radius. The torque is exerted by 1wo jels. each at a distance R from the rotational axis
and directed perpendicular to the radius (Fig: 9.22). [f F is the thrust of each jer we get,
T =2RF.

(o~ MR?
2 _ AwMR

IRF T 4F

Af =

(960 kg) x (0.8m)
4 x 20N

At =|:Ex 2n rads*‘] x = 10s.

60

3. The moment of inertia of the earth about its axis of rotation is given by

I= % MR, where M = 5.97 x 102k g, R=6.37 x | (¥m.

1=97x107 kgm?,

The daily relationai peried of carth is T =24h = 864005, Now lhe roiational K.E. is
given by

Il _ 2n

Now the relative changes in £ and T are small in comparison to £ and T themselves. So
we can (reat lhe chunges as differentials d£ and 4T. We have,

dE = Y (27D = -~

Rigid Body Dymamies

Fig. 9.22
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The change in T in one year (= 365 days}is 10 X 1085, j.e. 10-5s.

3
<. The change in a day is df:% =27 x 1085,

Hence, the change in rotational! K.E. will be

dE = - 4n? x (9.7 x 1037kgm?) x (2.7 x 10-85)

(864005)°
=-1.6% 10'7kg m25-2

So the rolational energy decreases by 1.6 x 1017 ] per day.
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UNIT 10 MOTION IN NON-INERTIAL
FRAMES OF REFERENCE

Structure
10.1 Introduction
Objectives
10.2 Non-Inertial Frame of Relerence

Motion Observed from a Non-Tnerial Frame
Newton's Secordd Law and Incnial Forces

Weightlessncss
10.3 Rotating Frame of Reference

Time Derivatives in Inerial ang Rotating Frames
Centrifugal Foree

Conolis Foree
10.4 The Earth us 2 Roting Frame ol Reference

The Vonation of 2 wab Tatitwde
Motion on the Rotatine Larth

Fouzauh's Fendubum
10,5 Summary
10.6  Terminad Questions

10.7  Answers

10.1 INTRODUCTION

Tn the previous unit you have read aboul rigid body dynamics. The present unit wiil be the
final one of our Elementary Mechanics course. We had introduced the concept of lrame of
reference in the very first unit of Block 1. In Unit 2 of Block 1 we introduced the idea of
inertial and non-inerlial observers. So far we have explained motion from the point of view
of inertia) observers. Bul as a matter of fact we iive on a frame of reference (the earth) which
is non-incrtial. Morcover, we shall see that certain problems can be answered quite elegantly
if we take the point of view of a non-inertial observer. Soin this unit we shall sludy the
description of motion relalive 10 a non-inertial [rame of reference. First we shalt study what
is meant by a non-inertial frame of refcrence.

You must have had the foltowing experiences while travelling in a bus. You fall backward
when the bus suddenly accelerates and forward when it decelerates. When the bus takes a lum
you have sensation of an outward force. We shall explain these features by introducing the
concept of tnertial forces. Thereby we shall see how Newton's second law of molion gets
imodified in a non- inertial frame. This will be used Lo develop the concept of weightlessness.

Frames attached with rotating bedies like a merry-go-round, the carth and so on form the
most interesting examples of non- inertial frames of reference. We shaii denve tire eyution o7
motion of a body in such a [rame of reference. Thereby we shall come across two inerial
forces. namely, the centrifuga! force and the Cortolis force. The former can be used o
explain the aclion ol a centrifuge. We will study a veriety of applications of these forces in
connection with the carth as a non-inertial frame of reference. Centrifugal force finds
application in studying the variation of g wilh the latitude of a place.

Several natural phenomena like erosion of the banks of rivers, cyclones etc. can be explained
using the concept of Cariolis force. Finally we shall study about Foucauit's Pendulum
experiment with a view to establishing the fact that the earth rotales about an axis passing
through the poles.
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Objectives

After studying this unit you should be able 1o

-e  distinguish between an inertjal and a non-inenial frame of reference

e wrile down the equation of motion of a bouly in a non-inential frame of reference
e identify l.l'l_e inertial forces appearing in any non-inertial frame of reference

e solve problems on motion from the point of view of a non-inertial frame of reference.

10.2 NON-INERTIAL FRAME OF REFERENCE

In Sec. 2.2.1 of Block 1 we have discussed abourt ineriial and naoa-ineriial observers. You

.may recail that a car moving with a constant velocity and a man standing on the road are

inertial with respect 1o each other. Let us now specify inertial and non-inertiual fremies of
reference, Refer to Fig, 10,1,

Fig. 10.1: § and 54 arc inential with respeet 1o cach other. S and Sg are nonsimertial wiibi respecd o et other

M is a person standing on the road. We take some point on the porson of M as origin and
define a three-dimensional Cartesian coordinate system §. Let Car A move with i uniform
velocity and Car 8 accelerate with respect 10 8. Let us now choose a point en each of Cur A
and 8 as origin and define the coardinate systems 5, and 5g.

The person will locale any objecl with reference 1o the coordinate system S. The drivers in
the cars will locale objects with respect to §, and Sg. They may choose  commen zere on
the lime scale. Then you may recall from Sec. 1.2 of Block 1 thar 5. 5, and Sg are frame:
of reference. § and 5, are two inential frames of reference with respect 1o each other, And §
and S are two non-inertial frames of reference with respect (o each other. In other words. rhe
frames of reference maoving with uniform velpciry with respect ro each other are inertial and
those accelerating with respect 10 each other are called non-inertial. For the sake of
convenience, from now onward we shall mostly use the word "frame” in place of the phrase
“frame of reference”. Let us now discuss some examples of inertial and non-inertial frames ol
reference.

Consider a child sitting on a revolving mery-go-round in a park, A Trame attached 1o 2 fixed
structure § in the park and the child are non-inential with respect to cach other beeawse the
merry-go-rournd has an acceleration due (0 roiation. Likewise the frame atached w a bal
thrown up in the air by a child and § are non-irertial with respect to each viher us the ball
has an acceleration equal 10 g. The frame attached to some bench in the park and § are
inertial with respect 1o cach other ax the hench i al restwuh respret to the Toed atricien
Similarly. the frame anached with a child walking leisurels (e with a low unitanm specis
and § are inenial with respect 1o cach other.

Yau may now like to work out 2 simple SAQ to determine the nature of & frome. ©
whether & frame is inertial or non-inertial with respect 10 any given frame.
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SAQ 1 ) Motion iz Mou-Inertial
State giving reasons the -:ture of the frame attached Frames of Refercnce

1)  toacar moving along a curved path with a uniform speed with respect to a frame
attached to a man standing on the road,

i1} to afalling rain-drop during a drizzle (when it has attained a_terminal velocity) with
respect to a frame attached to the ground,

i) to an elecron moving in a uniform magnetic fiéld produced by an elecromagnet, with
respeci to a frame artached with a pole piece of the magnetL.

So you have leamt how to identify inertial and non-inertial frames. Recall from what you
have studied in Se¢. 2.2.1 of Block | that for many purposes a frame fixed on the surface of
earth can be considered as inertial, In all our previous units we had been analysing motion
from the pownt of view of an inertial frame.,

We shail see that certain problems of rotational dynamics become simpler wien analysed
from the point of view of a non-inertial frame. You may recall from Sec. 2.2.1 that
Newton's first law of motion holds only in an inertial frame. You also know that the first
law can be obtained from the second law. So we can that the second law also holds qaly
in an inerial frame. Let us now see how the second law will be modified for a non-inertial
obserner.

10.2.1 Motion Ohserved from a Non-Inertial Frame

Let us 1ake a simple examplé. Suppose you are standing on a road and observe a car about to
start. We know that in order 1o start, a car has to accelerate. You would see that a person
sining inside the car gets presscd back against the seat by the acceleration. How would you
explain this? Since you are an inertial observer with respect to another inertial observer, you
will explain this as follows: This happens due 1o inettia of rest. The hips and the waist form
part ol the body of the man that is in direct contact with the seat of the car. The head and the
tors0 are not in direct contact. This portion has a tendency to remain at rest. So as long as
the car accelerates, the torso and the head tend to remain behind the waist and the hips. Thus,
the person in the car gels pressed back against the seat.

Now, let us try to visualise the situation in a frame §’ atiached to the car. Due (o the
acceleratior. of the car, §”is non-inertial with respect Lo the person al rest. With respect to §’
the poriion of the person’s body that is in direct contact with the seat of the car is at rest.
The other portion falts back. How can this behaviour be explained from $?7 We can say that
in 3’ some {orce acls on the person in a direction apposite 1o the aceeleration of the car. This

force neutralises the accelerating force on the waist and hips and causes the other part to fall
back. ’

But where docs this force arise from? We have seen in Sec. 5.5 of Block 1 that forces occur
either by way of contact (e.g. push, pull, friction) or due to some action.at a distance {e.g.
urzvitational or electromagnetic field), But the force here does not have either of these as its
ongin. Moreover. such a force does not exist from the point of view of an inertial observer.
However, this force is very much real from the point of view of §*. This is called the _
inertial force. From the cxample we have just now considered you can understand that the
magnitude of this force is equai to the accelerating force and it is directed opposite to it
However, we shall quantify this force very. soon in this section.

Conunuing with the example, we find that in §* the man is keld a1 rest by a force exerted on

him by the back of the sear. If you were 10 remain a1 rest or in uniform rnotion with respect

Lo an inertial frame of reference, no force would be needed. But in order to be at rest in 2 non-

inertial Irame of reference like that of the accelerating car, some force is required. This

implies that the second law of motion will take a different form in a non-inertial frame. We

shall now study that. In the process, we-shail be able to quantify ‘inertial force’. 83
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Fig. 10.2: The frames of reference
of Pand Q

The process of obtaining
accelerations from the position
vectors involvas differentiation with
respeet Lo time, Incidentally, the time
intervals are, sirictly speaking, not
the same in the two frames of P and
0. However the mathemalical
treatment corresponding 10 unequal
time intervals will be very
complicated. This issue will be
resolved for itwa inenial and non-
inertial frames by stucying.
respectively. the special end general
theories of relativity. For'the sake of
simplicity here we shall agsume Lthe
Lime intervals (o be equal.,

10.2.2 Newton’s Second Law and Inertial Forces

Suppose that two scientisls P and Q decide 10 observe a series of events such as the position
of a body of mass m as a function of time. Each has his own set of measuring devices and
each works,in his own laboratory. Let us suppose that P has confirmed by performing some
experiments in his laboratory that the second law of motion holds there precisely. His frame
of reference is, therefore, inertial. How can P find out whether (s frame is inertial or not?

As per convention let the franies be defined by two Cartesian coordinate systems (Fig. 10.2)
with identical scale units. In general, the coordinate systems do not coincide. We shalt
assume that none of the frames is executing a rotation and that they are executing relative
molion with their corresponding axes always parallel to each other. Let the position vectors
of m be rp, and r, with respect to P and Q, respectively. If the origins of Ihe two frames are
ihsplaced by a vector R, then we have from Fig. 10.2

r,=t-R. (10.1)

If P sces m accelerating at a rate a, =T, he concludes from the second law that there is 4 force
on m given by

Fp =ma,,

Q observes m to be accelérating at a rate a, =T, as if it were experiencing a force

Fq| =ma,

Let us now find out how Fq is related to the force Fp. We know from Sec. 1.5 of Block 1

that if 2 be moving with a uniform velocily relative (o P, i.e. if ( is also inertial, then
a,= a, and

Fq=maq =ma, = Fp.

So we find that the force is same in both the frames. In other words, the equations of motion

have the same form in both the frames. So all inertial frames are equivalent. There is no
dynamical experiment that leads us to prefer one inertial frame from another.

Let us now sce what happens if Q were accelerating with respect to P. How about working
gut the r=ation between Fp and Fq in this case? )

SAQ 2
Find the relation between F and F, when the acceleralion of (2 with respect to P is a?

Now that you have solved SAQ 2, we can express the relation between F,and F, as

F,=F,+F=ma, (10.22)

where F’ = oma. {10.2b)

" So we are abile 1o preserve the relationship between the net force on the object and ils

gcceleration. But the net force in the Q-frame is now made up of two pants: a force F_ and
another force ¥ equal to —ma. The latter originates from the fact that the frame Q has an
acceleration a with respect to P. This force F is called the inertial force. Its cxpression is
given by Elq. 10.3b, Its magnitude is equal to the product of the mass of the body and the
acceleration of the non-inertial frame. It is directed opposite to the acceleration of the frames.
An important special case of Eq.10.2a is that in which the force FP is zero. In such a case
the body as observed in (2, moves under the action of the inertial force alone. The situation
of the torso and the head of the man in the car is-very much like that. Let us now work out -
an example to undersiand the meaning of inertial force better.

Ee =3 11 | -
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Example 1
A small bal) of mass m hangs ITomn a siring in a car (Fig. t0.3a) which accelerates a1 a rale
a, What angle does the string make with the vertical and what is the value of tension in?

T
v 9
|
: m
m » 4
]
w w
(b) (©)

Fig. 16.3: () A caraccelerating ai the ritc a; (b} Force diagram with respect te on inemtial frame: {c) force
diagram wilh respect to a frame accelerating with the Car,

We shall analyse the problem both with respect 10 an inertial frame and in a frame

accelerating with the car. Let the tension in the string be T and let it make an angle 8 with
the vertical.

Motion in inertia! frame

Refer to Fig. 10.2b. With respect to an inertial frame the mass moaves in the direction of
motion of the car with an accelerationa (a= a ?), This is caused by the tension 7 and the
weight mg(g=-p T). There is no motion in the y-direction.

Tcos & ':f + mg (- ﬁ‘) =0 or TcosB = nig. ([0.3a)
Equatinn of motion in1he a-direction is given by
TsinB?:ma?orTsinB:ma. (10.3b)

From Eqs. 10.3a and b, we get

[/
an@=% or G=lan"(—) . {103y
g g .

and T = ‘\J(T cos0)2 + (T sind)?
o T=mVg?+a?. (1.3d)

Motion in (he frame accelerating with the car

Refer to Fig 10.3c. In this frame apart from the forces T und mg uwere ts an inertial foree |
arising out of the acceleration of the frame. Wilh respect to this frame the mass is at rest,
Le. iLis in equilibrium under the influence of T, mg and F*;

~ Temg+F =0
s
or TcosB‘? +TsinBi\+mg(—j}+F'(~f\}=0
A . A
or (TcosB-mg) 5+ (Tsin@—Fi=0
Teos@-mg=0, iLe. Tcos0=myg (10.3a")
and Tsin@-F =0 or TsinB=F,
F"is the magnitude of F* and it is equal 10 ma. So we get
T sinB = maqa. (10.307)

From Eqs. 1u.3a and 10.38' we get as in the previous case
(a L}
8 = tan! k-] (10.3c")
& _

and T=mNgt+a? . (10.3d")

Motion in Non-Inerfial
Frames of Rcference
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Systemn of Particles

Sometimes the incrial foree is called
"fictitlous force” or ‘pseudo-force'
(pstudo means false) as it does not
arise from any basic interaction. Bul
these names are misleading as the
force actually exists for a non-inental
observer,

which are identical with the values of  and T obtained in Eqgs. 10.3¢ and 10.3d. In fact Eq,
10.38" is identical with Eq. 10.3a and 10.3b’ is same as 10.3b. But there.is an element of
difference. Egs. 10.3a and 10.3a’ both occur as conditions of equilibrium. Buz 10.3b occlrs
as an equation of motion whereas 10.3b’ arises out of a condition of equilibrium.

Moreover, you must remember that the inertial force does not exist for the inertial observer.,

This is because inertial forces experienced in an accelerating frame of reference do not arise
from physical interactions. They originate in the acceleration of the frame of reference. So
for a non-inertial observer such forces are present. For example, suppose we wish to keep an
object at rest in a-non-inertial frame by tying it down with springs. Then these springs
would be observed to elongate or contract in such a way as Lo provide an opposing force to
balance the inertial force.

You may now like 1o work out an SAQ on the above concept.

5AQ 3

@) A glass half filled with water is kept on a horizontal table in a train. Will the free
surface of water remain horizonzal as the train starts?

b) A man of mass m is standing in a lift which is acceleraling upwards at a rate f. Write
down the expression for the inertial force acting on the man. Hence prove that he feels
heavier than ysual.

Now that you have worked out SAQ 3(b), you will be able to appreciate the concept of
weightlessness.

10.2.3 Weightlessness

Suppose that the lift was accelerating downwards at the rate f (Fig. 10.42). Then the net
force acting on the man in the frame attached with the lift is given by

F=mg-mf

=m{g-f) _’i\ where f is the unit vector in the vertically downward
direction.

Now if the lift were falling freely, i.e. f = g, then F = 0. Thus, the force acting on the man
is zero. You know that the weight of an object is defined as the force needed o keepitat
rest. 8o in the lift's frame, the reaction of F is the weight of the man, since it is the force
required tg keep the man at rest. Since F is zero in a freely falling lift, the man feels
weightless. Likewise, every freely falling object is weightless in a frame attached with itself.

T ———
- ———
- —

- e
* -
-

E

(a) {b)

Flg, 10.4: Objects feel weightless in a frecly falling frame of reference ks they experience the samee accelerarion
& the freme: 2} A freely falling clovator near the earth's surfacs: b)usptmnmﬁmg:;m_:um E.
Thpam.hutmdﬁeﬂmmmﬁip;ﬂhveﬂnmmlﬂiﬁon towards Lhe earth.

You may have scea Squadion Leader Rakesh Sharma floating in the spaceship. In fact, he

could lift hig fellow astronaut on the tip of his finger. How could this happen?

This is because weightlessness occurs in any orbiting spaceship (Fig. 10.4b), as it is always

in a siate of free fail. You must rermember that weight depends on the frame of reference. The
astronaut is weightless only in the freely falling frame of the spaceship. So weight'sssness

does not imply absence of gravitational force.

Let us now consider the same situation 'in a frame at rest with respect 1o the earth. In this
frame the net force acting on the asmonaut is myg. Therefore, both the spaceship and the
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astronaut have weight with respect to this frame. The astronaul can float because he is Motion in Non-Inertlal
falling towards the earth at the same rate as that of the spaceship. Frames of Reference

So far we have not considered the rotation of frames with respect to one another. We know
thal a rotating body has an acceleration. So a frame attached with such a body rotates and is
non-inertial. Our interest in rotating frames of references arises mainly because we live on
one such frame, the earth, Another example of # rotating frame is the one anached to a
merry-go-round. We shall be able to explain several natural phenomena by considering
rotating frames. For example, the occurrence of weather disturbances, the variation of g with
latitude and many other phenomena can be explained if we regard the earth as a rotating
frame. So let us now analyse motion from the point of view of a rotating frame of reference.

10.3 ROTATING FRAME OF REFERENCE

In Sec. 10-2.2 we have seen how the second law of motion transforms from an inertial frame
lo a translating non-inertial frame, We shall now see how the second law transforms when
one goes from an inertial frame 1o a rotating frame of reference. As in the previous case the
transformed version of the second law will contain the inertial force, We shall see that in a
rotating frame more 1han one inential force will occur, Our aim will be 10 determine these
inenial forces.

Let us consider a particle of mass m which is accelerating at a rate a. with respect to an
inertial frame. Then its equation of motion in that frame is

F=ma,,.
Again let its acceleration with respect to a rotating frame be a, .

Then its equation of motion in that frame would be

F . =ma,.
Let the relative acceleration of the inertial frame with respect to the rotating frame be a .
Then we have

s :
a_ =a,+a w

in

oo F_=m{a_-a)=F+F, (10.4)

where F” is the inertial force given by F’ = —m a’. Our task now is to determine a’ for a . e Yy
rotating frame. We know that acceleration is the time-derivative of velocity which again is l"':-:;———-.i‘
ihe time-derivative of displacement. So we shall first relate the infinitesimal displaccments 4 '
of a particle as measured from an inenial and a rotating frame of reference. We shall take the _/

time-derivative of this relation to obtain the relation between the velocities of the particle x / (a)

measured in thesc frames. Then the lime derivative of the relation between the velocities will
give the desired expression of the accelerations. So effectively, we shall now study the -
relations between the (ime-derivatives of different kinematical variables in inertial and
rotating frames of reference. ' £12

10.3.1 Time Derivatives in Inertial and Rotating Frames T rl_- ™
Le1 1he motion of a particle of mass m be observed by an incrtial and a rotating observer. Let

the inertial observer O have a Carlesian coordinaie sysiem ( . 7. & ) asiws frame of reference r(t) ¥
(Fig. 10.32). The frame of relerence of another observer 0. who is rotating, is given by —————
another Cartesian coordinate system { x%. 3, z*). In practlice we will be dealing with ¥
siluations where a frame rotates uniform!ly about an inertial frame, So here we shall assume X {b)

that the set of axes (x", 3 ,"z") rotates aboui { x. ¥. 2) wiih a unilorm anguiar velocity, We ;
are interested in pure rotation, i.e. 0" has no wanslational motion with respect to 0. So we Fig. 10.5: () The inertial frame
have taken the origin of the coordinate systems to be coincident. Also let us suppose. that the E;‘{t;;la::s:;zml?r :::;r:: (;:L
(x% ¥ z7) system is so ratating that the z and z™-axes always coirgcide'. Thus, the constant Ea,-,d 22') plane.

angular velocity @ of the rotating system, lies along the z-axis. Further, let the x and x™-axes )

coincide at an instanl of time r.
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»
Systems of Particles Imagine row that the particle has a position vector r (¢ ) in the x7 -plane (and x* z’-plane) at

time r (Fig.10.5b). Attime 1+ A, the position vectorisr{r+ Ar) and from Fig. 10.6a
the displacement of the particle of the particle in the inertial frame is given by

ar=r(f+m)—r(r}.‘ : C19).50)

ar

rt+ AL
(1)

(8)

Fig- 10.6: t3) The change Ar inthe position veoer mthe menia) trames £05 e clunge A7 m e position.
vector in the rolating frame; (¢} illustrating that Ar and Ar are not dhe same; wly dayrsm tor

oblaining the relation hetween { r'(4) - iy | and o,

The situation is differem for the rotaling observer. He ulso notes the same (inal position
vector r ( 1+ Ar ) but in obtaining the displacement he ensures that (ke initiab position
vector r'(s) in his coordinate sysiem (Fig. 10.6b) was in the x"=*-plune. So he measures the
displacement as

Ar=r" (t+AnN- 1 (r). (10.5m

it can be seen (rom Fig. 10.6¢ that the x’ 2’ - plane is now rotated away from its previous
position. So Ar and Ar’ are not the same. From Eqs. 10.5a and b we get

Ar=Ar"+¢ () -r (D). (10.6-

We shail now express {r” (¢ ) —r (t }] in terms of @ and As. For this let us refer 1o
Fig. 10.6d. It can be seen that

I () —r ()] ={rsin 8) (0 AN
=wrsinBAr=lo x rlAr

where ~and r stand for rfr) and v {1 ), respectively. Apain from the right hand rute for
determining the direction of vector product, we see that fr™ (D —-r{r) }isalong (@ X r .
S0 Lhe vector quanlity { @ X ¢ ) Ar represents |r° (N —r (¢} } in magnitude as well as
direction. Thus )

rFiy-ri{N=(m X r)Arf
Hence, from Eq. 10.6, we get
ar _Ar

= +@ X r.
Ar

Mow 1aking limits on both sides of above as Ar — 0 we zet

é—é-: + @ X
& & T.

Now — = v, = velocity of particle in the inertial frame.

and — = v, = velocity of the particle in the rotating frame. Thus

¥ip= ¥yt WX . (10.7)

You must have noted that in the above proof we did not use the special arrangement of axes
RY . of our choice. So the result given by Eq. 10.7 is a general one.
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An alternative way of expressing Eq. 10.7 is as follows.

(f) =(£) +(@ X r), (10.8)
dt fin dt ror

For obtaining Eq. 10.8 we have only used the geometric properties of r. So it can be
generalised for any vector A Thus we have the general result

(i"_) =(ﬂl +(0 X A) (10.9)
dr n dt for

We shall now use Eq. 10.8 1o determine a’ ( = a;, — a,,, ).

dy .
We know that a;, = (_dﬂ). * i.e. the time derivative of v,, in the inertial Frame.
f n

av -
and a,, =( d'"l , i.e. the time derivative of v,,, in the rotating frame.
! o1

On applying Eq. 10.9 for A = v;,, we gel

dv dv .
a,={—"] =[—"] +0 x v,
dt n dr rog

On using Eq. 10.7 we get

d
g = Vg +@ X £+ @ X Vg +0 X (0 X ).

Since w is constant, we get

dr
A, =3, +0 X ;— +0 X v, +0 X {0 Xr)
{ ot -

or ain=aruf+2m X Vo +0 X .(m x r)
A'=200 X v,,+0 X (0 X r) (10.10,

Thus the inertial lorce is given by

F=-ma'=2mo X v-mo® X (0 % r. (10.11)

In Ey. 10.11 we have wrilten © " in place of v,,, for the sake of convenience.

Hence, from Eq. 10.4 we can write

Foo =F-2n (00 X¥')-mo X (0 % r-}. {10.12)

Eq. 10.12 shows that the dyramics of motion as observed from a uniformly rotating (rame
of reference may be analysed in terms of the following three categories of forces:

iy F: This is the sum of all forces on the particle, arising out of physical interactions or
due 1o contact. They may be tensions in sirings and forces due to fundamental -
interactions. Only these forces are present in an inertiat frame.

) -2m (@ X v') Thisis called the Coriolis force. It acts at rigat angles to the
plane containing @ and v and putiis W ihe direction of sdvancement of the serewhead
when the screw 1s rotated trem v towards @ . This foree is absent when the pariicle has
no velocity with respeet to the rotating frame.

Ui} - X (@ X rj: This is called the Centrifugal force. I always acts radially
outward. The 1we vbservers in the ‘nertial and rotating frame do agree on the posilion
vectlor of 2 particle ai a given instant. Hence r may be replaced by r”, provided their
origins coincide.

Molion in Non-Iaertial
Frames of Reference

Conolis laree is nanied ulies the
French engineer and mathenudician
Gustave Gaspard Corialiy 11792+
18430, e was the fizst man (o
provide 4 description of the jorce. The
term centrifugal comes from 'centre”
and 'Tugal™. The faler means o fly
oli.
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Sy<tems of Farlicle

wxTr

Flg. 10.7: The cenrifugal force.
Mathemalically @ X {0 % r) acls at
O. But physically -nm (mXr)isa
force acting on the body. Thus F
acls a1 A and is a vector antiparallel
lIoOX (0 X r)

We shall now study some examples of these forces. Let us begin with the centrifupal force.

10.3.2 Centrifugal Force

Let us first determine the magnitude and direction of the centrifugal force

Fooy=—m® X (@ X ). See Fig. 10.7. @ X r is perpendicular to the plane of ©

and r. Let the angle between @ and r be §. Then the magnitude of @ X ris @r

sind = wp, where p = r sin ¢ is the perpendiculer distance from the axis of rotation (o the
head of r. Hence @ X (@ X r) is a veclor with magnitude @? p, since the angle between
wand ® X ris 90°. From the right-hand rule this vector is directed radially inward towards
the axis of rotation. Therefore, —m X (@ X r)is a veclor of magnitude me® . It
points radially outward from the axis of rotation to the head of r. So we can also write

F,pp =-m@ X (0 X r)=mo?p p =ma’rsingp. (10.13a)
where f is the unit vector along the direction from the axis of rotation to the head of r. If the
body's position vector r were measured from the centre of the circle in which it i rotating,
then & = 90 and

F_ =mw 1"\ (10.13b)

cens
The centrifugal force is familiar 10 us in our duily life. If we tie an object 1o a string and
whirl it around it seems to pull on us This effect can be explained in terms ol the
centrifugal force. Let’s see how.

Tcoso
A
™ ol
B: ]
[pp—— Tsin @
- — 9

mg
TcosBh
M
[
[
T g!
! Tsinb
- < 9— >
Ff‘tnf Fffﬂf
v
og mg

Fig. 10.8; Inthc frame S the forves actling are the tension in the string and the weighl of the ubject. Teos @
balances mg and Tsin O provides the necessary ceatripetal force, In the frame 5 apant [rom the
tension and weight we have the centrilugal (orce. These fonces are in cquilibrium.

. Suppose 1het a ball is being whirled around in horizom.al circular motion (Fig. 10.8) with

constant angular speed . Let us analyse the motion of the bali from two frames of refe-ence.

A stationary (inertial) frame S, and a rotating (non-inertial) frame §' that rotates witii the

-
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sume angular speed as the ball. So the anguiar speed of $° with respect to § is also'w. Look
at the force diagrams in the S frame and S frame.

In the S frame the ball has a centripetal acceleration (—? r T ). The force responsible for this
acceleration is provided by the tension in the cord. On resolving the force T into its
components we gel

T cos 8 =myg,
Tsin 0 =mw»

In the §” frame, the ball is at rest. This is because in this frame alongwith T and mg a

centrifugal force F_, also acts on it. Resolution of forces gives

! cas @ =mg,
r
! genr = T SiN 8 =ma?r,

We have taken this example also to caution you against the misuse of the lerm centrifugal
force. Sometime: you may come across stalements like “The Moon does not fall down as it
moves around the arth because the centrifupal force balances the force of gravitation and
hence there is no net force to make it fafl.”

Any such statemenl goes against Newilon's first law. Why? Because if no net force were
acting on a body, it would move in a‘srrafgm line. Any body moving on a curved path must
have an unbalanced force on it. Now in the inertial frame the moon (or the ball) is seen (o
mave in a circular parh. Thus, an unbatanced centripetal force given by the force of
gravitation (or the lension in the siring) aces on the moon or the ball.

However, in the rotaiing frame of reference moving at the same angular specd. these objects
would be seen 10 be at rest. Only in such frames would the centrifugal force balance the
gravitational force on the moon {or the horizonlal component of the tension in the siring).
So remember centrifugal forces arise only in rotating frames of reference. 1f we analyse a
rotaling object’s motion from a non-rotaling frame there is no such thing as centrifugal
force. Of course, gither frame is valid for analysing the problems. But never use inertial
forces in inertial frames. They arise only in non-inertial frames.

Let us round off this section with an example of centrifugal force.

Example 2: Centrifuge

An interesting application of the centrifugal force is a device called a centrifuge. [t has uses,
such as for separating heavy particles suspended in a liguid. for separating chemicals eic. You
may like 1o know how il works.

Suppose we have a test lube comaining small particles suspended ip a liquid. 1f the particles
are heavier than the liquid, they will seltle (o0 the bottom. but if the particles are extremely
ssall, this will lake a long time. To speed up the process. we attach the Lest tube o a
centrifuge. I is a mechmmical device whose operation depends on centrifugal force.

For a rigarous analysis of the siwuation we need Lo account for the buoyant forces on the
suspended particles and the viscous force acting on the mobile particles. Since these forces
are small compared 10 1he force of gravity and the centrifugal force, we shall ignore them.

Initially 1he 1wbe hangs vertically, as in Fig. 10.9a. The centrifuge is carefully batunced with
other tubes (not shown in the figure). When the centrifuge is spun about its central vertical
axis, the wbes feet a centrifugal force (in the frame rotating with the cenirifuge pointing in
ihe horizomal direclion. The resullamt ol-the force of gravity and centrifugal force acts like an
effective foree of graviry. Auhigh values of angular speed F_ is much greater than mg. So
this effective force is much stronger and peints almest horizontally (Fig. 10.9bY. The tube
tises uil il is ofienied ajong the direction of the mel force F . on it. The surface of the
liguid orients ilsell normal 1o the nel force it feels. A parlicke suspended in the liquid maves
in the direction of the nel [orce il leels. This 1s essennally towards Lhe bottom of the tube.
Since F_ is much greater than mg for high valucs ol w, the suspended particles settle Lo the
bottom of 1he tube much more rapidly than they would otherwise.

You may now like lo work aut an SAQ to consolidate your understanding of centrifugal
lorces.

Motion in 1INun-lm-rlgiul
Frames of Reference

(b)

Fip. 14.9: (a) A 1est-lube in a
centrituge. Fhe dulted Yine is the axis
of the ceninfuge: (b) when the
centrifuge miates, the centrifugal
force makes the froe ondd af the tosi
tube swing out.
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Syslems of Particles

(a)

(b

Fig. I0.10: Motion af a
friclipnless ball pasing over the
roation axis al C. a seen from
above in  {aYan ineaial frame
tsolid linc) and (b the mialing
[rame (dashed line) .

Y2

S5AQ 4
@) When we drive a car too sl cround a curve, it skids cutward. To us il seems as if it is

pushed by a centrifuga! force, If you were stunding by the roadside witlching thi< haypypen.

how would you explain the car’s motion?

(b} A liny virus particle of mass 6 % 1179 kg is in a waler suspension in an ultracentrifuge
which is essentially a centrifuge where extremely high angular speed can be generated. |
18 4 cm from the vertical axis of ratation. The angular speed of rotation is
2ex [0 rads-!, .

{i)  What is the effective value of ¢’ relative 1o the frame rotating with the
ultracentrifuge?

(i) What is the net centrifugal force acting on the particle?

10.3.3 Coriolis Force

Let us consider a panticle which moves with a velocity v, , with respect (o a rotating frame.
The effect of Coriolis force is relatively easy to visualize at the axis of rotation, where the
centrifugal force is negligible. So let us begin with that case.

A rotaning horizontal disc is shown in Fig. 10.10a. The axis of rotation is perpendicular 10
the planc of this paper at point C which is the cenire of the disc. Lel us now consider a ball
passing through C. 1f friction can be ignored. the ball is free of horizontal lorces, Therelore.
it moves in & straight line (the solid fine of Fig. 10.10a) with conslanl velocity ¥ relative 1o
the ineniat frime. As seen from 1his frame, 1he rotating disc wrms, say. counterclockwise
with angular speed ©. Bul as scen from a frame fixed in the disc, it is the inertial frame th
rolates, with the same angular speed in the opposite sense, clockwise. So in the rolating
frame the bull’s trujectory also turns clock wise. (ollowing the curved path indicated by the
dashed linc in Fig. 10,10b, Thus. there must be an inertial force in the rolating frame to
provide the curvature that wus not present in the inertial frame, It is indeed the Coriolis
force.

The magnilude of the Coriolis force can be appreciable or a turntable or merry-go-round. For
example, if @ is | rad s~ and r, , is 5 ms~! the Coriolis acceleration 2@ v is 10 ms 2.
equal to the acceleralion duc to gravity.

ral

The Coriolis force associated with the earth's rolition is much weaker than the etlect
considered above because the eurth rolales only once per day. corresponding 10 an angular
speed @ = 21 % 107 rad s-'. Even al projeclile velocities of 10" ms ', the Corivlis
acceleration 2a v, is only of the order of 10 > my 7 which is Far less than g, That is why
the Coriolis force is not intwitively familiar, However, when the Curialis loree assecialed
with the eariht’s rotalion acts over a sufficient period of time, sity lor several days, it can have
striking effects. The centrifugal and Coriolis forces associated with the earth’s rotation are
responsible for many a natural phenomena. For example, the varialion in ¢ with falitude. the
deflection of & moving body. wind patierns in the iwe hemispheres can be eaplained using
the concepts of centrifugat or Coriolis force arising on a rotating earth. Sv let us now sudy
the earth as a rolating frame.

104 THE EARTH AS A ROTATING FRAME OF
REFERENCE

A number of imporiant phenomena are driven by the inertial forces acting in a rotating lrame
of reference attached to the eanth’s surface. 1et us study some of these phenomen:.

10.4.1 The Variation of £ with Latitude )

You nky know lhal o person weiphs more al e pefes than ol the equator. This eflTect wises
due to the rotation of the earth. In fact we huve atready stated this result giving the variation
ol ¢ with latitude (recall Eg. 5.44 of Unil &, Block 1), Lol s now prove the result,

Let a paiticle £ be at rest with respect.to the carth at latitude A near the eanli™s sarface. Then
in the earth’s [rwme it is subfecied 1o he foree of grwily Fg (= g1 and the centritogal loree

[
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Fﬂ_," shown in Fig. 10.11a. The Coriolis force is zero for this particle, since i1 is al rest in. Molion in Non-Inertial

the rotaling frame. The magnitude of F, , is given from Eq. 10.13 as Frames of Reference .

Fopn=m@R sin 0 =mw?R cos A, [ A=

orne

A

-0

where & is the eanth’s radius. Let the resultant ofF and F__ be F . Let us resolve these

iy
three forces aleng the radial and transverse dlrr-cuons Note that on 'hc carth. the radial

direction correspunds 1o the vertical {oppasite to F,) and the transverse to the horizomal. Let
2y and g} represent the vertical and horizontal components of g°, respectively (Fig. 10.11b).
So we have

mg,=F —F_ cosA=mg—m R cos® A

or g, =g - R cost A (10.14a)
and mg, =F,, sinA=mwR cos A sinA

or g, =@’R cos A sin A (10.14b)

Now. the maximum magnitude of the centrifugal acceleration, (F. ., /m), is u:r-R Let us
calculale its value.

21 rad
2 (——m (6.37 x 10"m) = 3.4 x 10-2 ms-2.

wR =
24 x 60 x 60s J

Thus @R « gand g’ = g. ie. the angle between g, {ine apparent ventical) and g (the real

vertical) is very smali. Let us compute its value. From Fig, 10.11b

2 W'k coshsink R sin2k

ana=o= % = = 5
& 8 <8

It has 2 maximum vatue a1 A = 45° which is Fig. 10.11 Variation of g with }.
{a) Resuliant Dfl"'g and F. . The
dotled linc £ represents the equalor.

(34 x 102 ms ) PV i the ventical direction at

. ., P(byg*. g, mdg,
o, = 5 =00017rad =0 6"
2% 9.8 ms-*

So effectively g, =0and g =g".
From Eq. 1014, we gel
¢ =g - wR cos?h, {10.15})
Althe poles = 90" and g =g. i.c. Lptr = 8-
Althe equalor & =0, so that
. g}l =0 pl=g-wR
8. =& - WR, where g_in the value of g at equator.
Now using Eq. 10.15. we may wrile,
=g -PR (1 -5tk ) =1(g— R+ @R sin?h
or g'=g, + R sin’A,
Weliichi 1n salne as By. 544 of Block i,

Sa the vahre of acceleration due to gravity al the poles will be greater by 3.4 x 1{F* ms-2,

than its value at the cquumr if we take earth’s rotation inte accour... However, the measured

diflerencc is 5.2 x 10 2 ms 2, This discrepancy arises because the earth is not a perfect

sphere. It is Naitened at the poles and bulging at 1he equator. Due 1o the centrifugal force
“arising from earth’s rotation a plumb line does not point exactly towards the centre of the

cirth. [nstead it swings threugh a small angle. You may now like to work out an SAQ on

the ithove concepl. 93
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SAQ 5
#) ~ What must be the anpular speed of the earth so that the centrilugal force makes objerrs
fly off its surface? (Take ¢ = (O ms 2.

by If the angutar specd is ipsl cnough 1o mzke s happen, from which pars of the carth
would the objects {1y of[?

In the above discussion we have considered the bady 10 be ul rest with respect to tne earth,
What can you say about a body moving with respect to the ~arth’s surlace? We will now
have to 1ake into account Ihe Coriolis force also. Let us analyse this muion.

10.4.2 Motion on the Rotating Earth

Let us consider a particle of mass m moving with veiocity v at latitude A on the surface of
the spherical earth. So v is tangential to the sphe.c. Let the éurth’s angular velocity be @,
Then in the earth’s frame of reference, the lorce on m1 is given from Eq. 10,12 as

F=mg-2m@ X v-mo X (® X r)

Let us analyse the additional term due to Coriolis force. Refer to Fig, 10.12a. Let us
decompose @ irto a vertical pan &, and horizonial part ®,,. Then the Coriolis force is given
by

F . =-2m(m X v)

rar

=-Imi@. X vi-2m(@, x v)

v Av
.1h -
Nias
< / Fy
N V4
)(/
7
Fd
Av Fy
(a) (b} (c)

Fig.10.12:  Deflection of g moving particle duc (o Coriolis fuice. (o3 Breaking @ inlo componenis @y, and
oy - {h) directions of Fyy in & and S-hendisphere; {c) elockwsse lemmg of v in M-hermispher:

Now @,, and v are horizontal. so @, X v is verlical. And @, X v alonc gives rise to the
horizontal component I, of the Coriolis lorce. o, is perpendicutar ro ¥. So ®, ® v has

. . A , , LA
magnitude @y, v, Now lel 1 be a vector pzrpendicular to the sourfuce at latitude AL ie. ¥ is
along ;. Then we have that

t.'o.--r:u‘.r—u:u:cm(2 l)?:msinl'\r
and Fj, =2 (©, X v)=-2masinL{ FXv)

The magnitude of Fy; is 2nurw sin A, F,. is » force perpendicular to v (Fig. 10.12b1. So its
gitect is {0 prdtucs circular motion. Lat us seo iow.

‘The eftect of F,; will be 10 produce a deflect.on 1o+ ards the right in the northern hemisphere.
F,, oroduces u change in the direction ot v, Let the change in ¥'be Av in an infinitesimal
inlerval of time Ar. From Fig. 13.12¢ you can see that the resultunt velocity vector maves
towitrds the right. F,, is now perpendicular 1o v + Av, 5o in the next such lime interval Af.
the velocity vector will further tun towards rigat, So th- effect of ¥, in the rorthern -
hemisphere is 10 produu. a clockwise :mauun ot the vcluuty vector, 1n the souhern
hemisphere ihis will b anticlockwise.”
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So you cun see that this elfect of Coriaiis force is that it turns straight line motion into Motion in Nan.Inertial
circular motion. This result has a number ol imeresting consequences. For exdmple, rivers’ Erames of Reference
ffowing in the northern hemisphere wash out their right banks. und those in the southern

hemisphere their left banks, Again in the northern hemisphere the right hand rails of the ra.l

tracks are worn out faster if il is a doubic-1rack railway, This is because on each track the

train abways poes in one dicection. Due o F,, its motion has a component o the right from

the direction of motion. Similarly, the left hand ra:' is worn oul faster in the souther:

hemisphere.

Air flow patt. ms in the atmosphere can also be explained by Lhis result. Imapine that
temperature difference in the various layers of air has given rise 10 a low pressure region in
the atmosphere (Fig. 10.13a). The closed curves in the figure rep.esent lines of constant
pressure, called isobars. The pressure gradient gives rise 1o a force on each element of air. In
the absence of nther forces winds wonld blow inward and the prehaun. in the region would
become uniferm. .

- /’—'-__ ™~
\"’" i o L N

! "I-o';v_, { ¥ 2N \/(F“”
SIS ¢ low ™ \I\'\?‘\
j \ \ “""--..__/ 7 /
=-—- *'_"“--._.__.-/
/‘C"' —_ ///
F.
ocar
(a) (b)

Fig. 10 13: Air-Now patierns: (@) Doned Taes =epresen, the isebars, () right deflection of the air particles.

However, the pressure of Coriolis force considerably changes the air Mow paitern. Let us
consider Lhis event in the northern hemisphere. As the air flows inward towards the low
piessure region it is deflecled loward the right as shown in Fig. 10.13b. The result is that
wind rotates anticlockwise about the regions of low | ssure. This effect causes most -

* cyclones 1o be anticlockwise in the northern hemispliere and clockwise n the southemn
hemisphere. This effect can be seen quite elearly in the INSAT picturss of clouds taken

during a ¢yclonic storm, _ AN
A)
So ar we have discossed some matural phenomena which arise due o rotation of the carth. N
We can also demanstrate rotation of the carth in a laboratory using the Foucuwlt's pendubum.
i0.4.3 Foucault’s P ndulum SN
Lt 1851, 1LB.1. Foucaul Tor the rsi lime demonstrat J the rotation of the earth. e S
suspended 2 heavy nuetal sphere of 28k g una wire almost 70m long. The suspension point (a)
of the penduium was free 1o rotale in any direction, The motion of the pendulum was
obyerved fiom a poim above. Wilh successive swings ol the pendulum il scemed that the
plane ol its mation rotated. In Th the ptanv of the swing changed b 117, A [ull circuit was
comnleled in abour 32h.
Why does 11,2 plane of motion of the pendulum rotate?
To understand this, we shaif visualise this experiment at the North Pole (Fig. 10.14a). 1n un (b}
inertiad frame the only forces acting ur the penduduny are the faree al eravily and the lension Fie 1018 1 g et aendatus
of the wure. Hoth these farces act *a 1he plane of oscitltion. So they cannat rotate it £a1 T punddulten o tlee V Pole, The
Therelore. with respest 1o an ineriial frame the plane of the oscilialion of the pendutun armow bndlicaies the direaion of

wiuld rematn ixed. The earth would, af course. rotate Tramy west 1o cast under Jhe Fendulumy  wkaian ol e earth, by wraton ol
onee in overy 230, The rotativn ol the catth s anticiockwise us seen from the Norih Pole. el o ciibain

So 1o an observer standing at the North Pole, the plune of the oscillation would seem to

rotate clockwise (east to west) (Fig. 10,140, I can alse be explained for other latitudes but

w2 ire nol going into those delails here.

[elus row summarise whal we have studied in this unil. a5

el wrn = e
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a2
e

37°

Fig. 10.15: Diagram for TQ 1

10m

/

s/

Fig. 10.16: Diagram for
TQ2a.

10.5 SUMMARY

The frames of reterence accelerating wilh respect to each other are catled non-inertial
frames.

The net force acling on any object in the non-inertial frame S* having an acceleration a
with respect to an inertial frame S is made up of two parts: the force F, acting on the
object in the § frame and an inertial force equal to —m a. Incriial forces arise only in
nomn-inential frames.

The equation of motion of an object in a rotating frame of reference is given as
F,=F-2m(@ Xv )-mo X (0 X r)

where F is the sum of all forces acting on the object as seen from the incrial frame.
The second and the third terms are the Coriolis and the centrifugal forces, respectively.

Any frame of reference attached to 1he earth is a non-inertial rame of réference. Rotation
of the carth is responsible for many a natural phenomena, such as variation of g with
latitude, deflection of moving bodies, etc. The eanth's rotation can be demonstrated with
the help of Foucault's pendulum.

10.6 TERMINAL QUESTIONS

An inclined plane (Fig. 10.15) is accelerated horizontally to Ihe lefi. The magnitude of
the acceleration is giadually increased until a block of mass m, originally al rest with

respect to the plane, just siarts to slip up the plane. The coefficient of static friction
between the plane and 1he block is 0.8. (It is given that sin 37° = 3/5. g = 10 ms-2).

a) Draw diagrams showing the forces acting on the block, just before it slips (i) in an
inertial frame fixed 1o 1he floor and (ii) in the non-inedial frame moving aleng with
Lthe block.

b) Find the acceleration at which the block begins to slip using both the force
diagrams (i) and (ii) of part (a).

a) A space station of radius 10m spins so that a person inside it {Fig. 10.16) has a
sensation of *artificiai gravity” when afleat in space. The rate of spin is chosen 1o
attain ¢ = 10 ms~2. Find the length of 1he *day’ as seen in Ihe spacecrafl through a
window W,

b) A ".0x 10° kg train runs south a1 a speed of 30 ms~! at a latitude of 60° N.
What is the horizontal force on the act * Mhal is the direclion of this force?

Your weight is measpred to be equal 1o W w,.en yea are at rest with respect to the carth.
Will your weight be different from W when you are in motion wilh respect to the
earth 7

10.7 ANSWERS

§AQs

i} Simce the car is moving along a curved path its velocity. veclor is continually
changing its direction. So it has a pon-zero acceleralion with respect (o the man
standing on the road, So the frame wiached 1o il is non-inertial with respect {o-the
man.

i) Since the raindrop has attained a terminal velocity it is falling with a constant
velocity with respect to the ground. So the frame attached to it is inertial with
respect 1o the ground.

iii) An eleciron moving in a uniform magnetic field experiences a force, So it will be
accelerating with respect to a pole piece. Hence, the frame attached to the electron is
non-inertial with respect te the pole piece. :




tn

Differentiating Eq. 10.1 twice with respect to lime. we get

or

or

a)

b)

3

iiq =r,-R

a, =a -a
Fq=maq=map~ma
Fq=Fp—ma.

In order to start, the train has to accelerate. Let this acceleration be a, and
directed along the x-axis. Now, following Egs. 10.2a and 10.2b, we can write the
total force acting on the water in the frame of reference of the train as (see Fig.
10.17)

FQ =mg+(—ma),
whefe m is the total mass of the water and the glass.
g=—g£ and a=a? .

The surface of water takes up a position normal to the force FQ as shown in Fig.
10.17.

Let the lift be accelerating in the z-direction (Fig. 10.18). The inertial force acting
on the man is given by

F* =—mf,
where m is the mass of the man. So the total force on the man is given by

F=mg+F'=mg —mf.

But g:—gﬁ, I'=fﬁ.
Hence, F=—m (g +f) R

So the magnitude of the force on the man is greater than mg. Hence, he feels
heavier than usual.

The observer on the roadside will analyse the situation as follows: A centripetal
force ( = mv? /r ) whete m is the mass of the car, v ils speed and r the radius of
curvature of the bend, is required by the car to mave along the curve. You may
recall from Sec. 4.3.1 of Block [ tha this is normally provided by way of the
banking on the road and the friction between the tyres and the road. Let the
contribution due 10 barking and friction be £, . Fy. respectively. Then the equation
of motion of the car will be

F + Fy = mvifr or Ltz _ 2
e : m r

Now, the left hand side is a fixed quantity depending on . So if v is farge, r should
be large in order to make the above equation hold. In other words, the car has o
Mmove more outward to have a large r, when it is maoving very fast.

i) For his problem
W r=(2rx10%s! 3 x (0.04m )= 1.6 x 106 ms-2.

Since this is much larger than the usual value of "g" the effective value of g
can be considered to be equal 10 1.6 X 10° ms-2.

1) The net centrifugal force = maw? r, where 1 = 6 x 10-19 kg. So its vaiue is
(6% 1019kg )X (16X 10°ms 1) =9.6 x [0- I N.

The required angular speed will correspond 10 ¢° = 0, We know from Eq. 10.15 that
£ =g —wR cos?A. So the required condition is

0= {__&T
Rcos) -

So the minimum value of @ corresponds to the maximum value of cos2 A, i.e. 1 for
A =0 . This happens at the equator. And the required angular speed of earth is given

Molion in Non-Inertial

Frames -of Kefecence

A W
—ma'i

FQ/ Ve

Fig. [0.17

Fig. 10.18
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@, =\ 5
LI R

where R is 1he equatorial radius of the earth = 6,37 x 10¢ m,

, -2
O, = __IOL_'_ = 1.3 x 13- rads-\.
6.37x 10°m

b) Atequator as explained in the answer to par (a).

Terminal Questions )
1. @ RefertoFigs. 10.19 ( a and b ) for parts (i) and (i), respectively.

~
P

ME g« \;ﬂsinﬁ
A’, l
- acos@

{a) b}

Fig. 10.19: F_isthe force of (riction. N is the normal reaclion and mg is the weighl af Lhe block. 1) The
resultant of three forces F . N and mg 15 equal to nra. Componems of a along  farkl ?havc also
been shown: (b In addition 1o F, Nand ng, we have F'. (he incrtial force (= —ma ). The
forces F . N.mg and F” are in equilibeium.

b) Using the force diagram for pan (i), i.e. Fig. 10.19a, we have the equation of
molion

mg+N +F_ =ma. (10.16)
Now, let the unit veciors along F, and N be f and 3 respectively. So we have
nig cosh (-B )+ mgsin @ (?) + N (ﬁ) +F, (f) = ma cosb (i\} + ma sin@ {B).
Thus,

(F,+mgsin®—iacos8) f+{N—mg cos B -masin9) 3 =0

o~ F,+mgsin® -macosB8=0
(10,17

and N —mp cos 8 -masint =0

Now if a be the magnitude of acceleration at which 1he block just begins (o slip up
we have F_ = uN where i1 = 0.8,

So from Egs. 10.17 we get
WN=m(agcos @ -g sinB)
or pm(gcosB4+a sin®)=m{g cos8-gsind)

S R(HcosB+5in0)=a,co50-usinB)

ord= ([.l_c_use+sin B)
- cos @ — usin @

Since, sin 8 =0.6,cos 8 =08
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a

b)

Using the force diagram for part (ii), i.e. Fig. 10.19b, we have,
mg+N+F, +F =0
Since F’ = —ma, we get
mg+N+F =ma,
This is same as Eq. 10.16. So the succce.ding analysis will follow as in the
previous case and we shall get Q=39 ms™, You must have noted that we come
across an equation of motion in the inertial frame, but a condition of equilibrium in

the non- inertial frame,

Let the requiréd rate of spin be @. Then the corresponding length of day is given by

T=—,
W

Since the person inside has a sensation of artificial gravity, we have

@¥r = g, where r = 10m.

4n?
S 8

or T- =2n '\f r
g
10m
=2n ‘\’ 10ms2 = 6.3s,

Refer to Fig. 10.20. NPM and QPR are, respectively, the longitude and latitude
through P, the position of the train. AB is the equator. The horizontal force is due
to the Coriolis force given by

F,=-2m{o X v).
Since the angle belween @ and v is ( 180° — A ) (see figure caption}, the magnitude
of the horizontal force is 2 mvw sinA.

2n

——————nmds!and A = 60".
24 x 60 x 60

where m=4.0x [0°kg, v =30 ms-, w=
So the magnitude of the horizontal force on the racks is

2x
2Xx(4x10%kg )= (30ms 1) x (

) |x 5in60" = |.5x 102N,
24 x 60 x 60

The direction is opposite to (@ X v) . Now, (@ X v-) poinis tangentially to the
latitude QPR in the sense Q lo P, So F,,, will be tangential 1w OPR in the sense P

to {J, i.e. towards west,

The weight of your body is given by

.
cemt f car

F=mg-F

where m is your mass. If you are at rest with respect to the earth F_,=0. Butif you are
moving F_,. = 0. So your weight will be different from W when you are in motion with
respecl 1o the earth.

Motion jn Non-Inertlgl

Frames of Reference |

A
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Fig 10.20 : Diagram for 1erminal

question 2b. You must note that

INOP =907 - A lLis eyual Lo e
corresponding sngle (£ WPH). And
ZVPC = 90°. Sa /WPC = 90° —

A+ 900 = 180T — A
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APPENDIX A
CONIC SECTIONS

The curves obtained by slicing a cone with a plang not passing through its vertex are called
conic sections ot simply conics. If the cuiting plane is paratlel to the side of the cone, a5 in
Fig. A.1a, the conic is a parabola. Otherwise the intersection is called an ellipsc or a
hyperbola, according as the plane cuts Just one or both nappes (portion of the cone) as
sitown in Figs. A.1b and A.lc. Cirele is the special case of ellipse when the intersecting
plane is parallel 10 tne base of the cone (Fig. A_14d).

,‘”--,‘_’\‘ ’fﬂ—'\\

" S

(c)
Fig.A.1: Conic seciions: P - Parabola, £ - Ellpse, #7 - Hyperbolz, € - Circle

We shall now present a unified treatment for alj conics. For this we shall defina a term called

‘eccentricity”,

A.l  Eccentricily and Polar Equation of a Conic

Refer 1o Fig. A.2. A conic section may be defined as a curve traced out by a point moving in
a plane such that the ratio of its distance from a fixed point F (a focus) and a fixed line 48 (a
directrix) is constant. This constant ratio is called the eccentricity. Itis denoted by e.

If0 < £ < L. the conic is an ellipse. If'e = 1 it is a parabola and if e > 1, it is a hyperbola.

In the Fig. A.2, let P be any potnt on the conic. PQ is perpendicular on AB from P. Then
according (o the definition,

FP
{.—PQ. (A1

Usiag Eq. A.1 we shall obtan the polar equation of a conic, when the pole (i.e. the vrigin of
the plane polar coordinales) is inside the curve. Let the pole be at F. The polar axis Fx is so
chosen that it is perpendicular to the directrix, L js 4 point on the conic such that #£ is
perpendicular to Fux. FL is called the semi-latus rectum of the conic. Let FL=p. LM is
again the perpendicutar from L on A8, Let LM = D.

Now, we have
FP=r and QP=D--rcos@.
So from Eq. A.1, we pet

r=¢(D-reos )

or F=m———— (A.2)
| + ¢ cosB

But from the definitiun of ¢, we find that

FL Y
Ipoe Le. v =¢ or p=ch.

So, we get [rom Eq. A2 that

r=—-

- (Al
l + ¢ cosh )

Eq. A3 is the polar equation of a conic with pele inside.

The 1hree types of conics have been shown in Fig. A.3. Because cos (-8) = cos 8, all the
three conics are symmetrical about the polar avie

A
L, M
PI ,Q
rll |
F' D |
!
!
'B

Fig. A.2: Poler equation of a conic
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Fig. A.3: (a) Ellipse; (b) Parabola:
(c) Hyperbola

102

The ellipse (0 < e < 1) is shown in Fig. A.3a. Here FP is always less than PQ. The curve
crosses the polar axis at two points corresponding to 8 = 0, and 8 = n. Because of
symmelry, the curve is closed.

The parabola (e = 1) is shown in Fig. A.3b. Here FP is always equal to PQ. When 8 =0,

z _. .
r=3- Buias 68 = 1, 1 + cos  — 0 and r — oo. So, the curve crosses the axis only once

and spreads ot to arbitrarily large distances from the axis as © goes towards n.

The hyperbola (e > 1} is shown in Fig. A.3c. Here FP is always greater than PQ. When
9=O,r=IL+e. There exists a value o of 8 in the rangeg< 8 < x, such that cos ax =— i-
Using this we may write Eq. A3 as

P
r= .
e { cosO - cosm)

As 8 — o, r — oo and-so the curve is open-ended but it spreads out in a manner different
from that of the parabola. As r increases  also increases but it never reaches the value o

Circle is a special case of ellipse. It can be obtained by lettinge 3 0and D — o in

Eq. A.2 so that eD, i.e. p tends lo a finite quantity, say a.The limiting form of Eq. A.2 is
then r = a. The parabola may be considered as the intermediate stage between the ellipse and
the hyperbola. In other words it marks the transition from a closed to an open curve.

Among the three conics we have mostly dealt with the ellipse. So we shall study the
properties of an ellipse in a liltle detailed manner.

A.2 Properties of the Ellipse
Refer to Fig. A.4. An ellipse has two foci F and Ff and two directrices MN and M'N’. Both
the points F and F' lie inside the curve.

M

=

N

P and A are fixed points on Lhe eilipse that are, respectively, nearest and farthest [rom F. Let
FP =r_and FA = r_. The axis of symunetry (shown dotted) is called the major axis of the
ellipse. The sum (r, +r, ) is the length of the segment of the major axis intercepted by the
ellipse. We write )

I
i
I
}
I
I
I
|
i
|
1
|

z

Fig. A.4: Properuics of the ¢llipse

r,+r,=2a, (A4d)

where a is called the semi-major axis of the ellipse. We shall now express r, and r_in terms
ofaand e,

Here. r, and r, ar¢, respeciively, ihe mifiiuim 40 frisxirium values of r. W can see from
£q. A.3 thar when cos @ is maximum (=1), i.e. 9=0, thea 7 is minimum dnd when cos @ is
minimum (= —1), i.e. 8 = ®, then r is maximum.

N ZE
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From Eq. A4, we get

1 _1-y_
? (lﬂ * l—e_) =

i At ety

prla=—=rl - ot
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orp = a(l-¢%) (A.5) ~ Appendix A

rp=a(l—e): ry=a(l+e). ' . (A. 6) |

Using Eqs. A.3 and A.5, we may write the polar equation of the ellipse as

~ gl

_a(l~e?) ) (A.7) . .

1+ ecosd . ' N | i

. 20

Eq. A. 7 tells us that the shape of 1he ellipse is governed by the value of e. In Fig. A. 5

several ellipses have been shown with the same focus F and the same-value of g, but with P VLR

different eccentricities. From Eq. A. 7 we see thatr — gas e — 0, which tells us that the - 4
smaller the eccentricity the rounder is the shape of the ellipse.

Refer to Fig. A. 6. The douted line represents a directrix of the ellipse.

Har=1 4

- i?lg.A.S: Ellipses of different.
shapes

Fig. A.6: Relation berween o, b end ¢

Let C be the midpoint of the major axis, It is called the ¢entre of the ellipse. The chord of :
the ellipse throngh C and perpendicular to the major axis is called the minor axis. Let B be
the point of the minor axis directly above C. Then BC is the semi-minor axis of the ellipse. N
Let BC = b. We shall now express b in terms of g and e.

Wehave CP=a and FP = a(l-¢),

CF =CP -FP = qe.

S mEETErTT R

~ Now the point B is al a distance (g + 4”) from the directrix. From the definition of
eccentricity, we have '
i =e 0:"|:i'=!‘2 =% -e)
e e

il id
d

. a
a+d =a+; ~g=

[~

Since B is a point on the ellipse, we have

FB

— =

atd”

0] @=e. o FB=g.

aje
So in the right anglad rianala BCF, we have
£ CF=ageand FB=¢ - z
= @R+ :
or #=a’(1-¢%. (A.8) .

We saw thal the ellipse has iwo foci each lying inside Lhe conic. Like an ellipse a hyperbola
has two foci and two directrices.We shall see that since hyperbole is open-ended it would
have iwo open segments. For each open segment one focus is inside and another outstde.

With e > 1, Eq. A.3 represents the equation of the segment of a hyperbola with focus (i.e. ] |'
. _pole} inside. The polar equation of the other segment will also be of some interest. So let us . 103 ’
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lake up the discussion on hiyperbola with a view to §ludying the polar equation of a conic
with pole outside.

A.3 Polar Equation of a Conlc with Pole Outside
As we have seen just now the hyperbola is the only possible conic with focus outside.

L’ A" A L

d
(r.9)

/

Nl B; B N
Fig. A.7: Polar equation of a conic with pole oulside

Fig. A. 7 shows a hyperbola. F and F are two foci. AB and A'B" are the directrices. With
¢ > 1, Eq. A. 3 represents the eguation of the segment L'M N with origin at F'. We shall
now determine the equation of the segment LMN with respect to 7~ as origin.

As we had seen while deriving Eq. A. 3, we have,

£ _£ _P
e=2 =5 orD =
ApainD=rcos@—-d
E=rcosB—£
€ e
or p=r (ecos9-1)
or r= —Fb— (A9)

~I + e cosB
3o Eq. A. 9 is the equation of a conic with pole outside.

Studying Eqgs. A.3 and A.9 it can be said that the polar equation of a conic with pole inside

"or outside is given by

= —2 (A. 10)

E + ¢ cosB

according as £ is equal 1o +1 or -1,

T T

o ={ o fo e
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. APPENDIX B
METHODS OF DETERMINATION OF MOMENT OF INERTIA

In Sec. 9.3 of Unit 9 we have discussed about the determination of moment of inertia of
bodies made up of continuous matter. The moment of inertia can be expressed by Eq. 96 as

I =J.r2dm

where the integral is a defintte one and it extends over the entire body.

We shall see that it will be possibie to expres's dm in terms of position and angular variables
that describe the body. Then the limits of integration will correspond to these position and
angular variables. They have to be chosen in a manner so that the integration extends over
the whole body. Let us see how we do that. Since density ( p ) is mass per unit volume,

p= %— » where dV is the infinitesimal volume occupied by dm, we get from Eq. 9.6 that

I= frz p d'V. which for a body having uniform density reduces (o

l=pfr2dV. (B.1)

For a two-dimensional body like a circular lamina,we define a quamily o called (he mass per
unit area, i.e. ¢ = gﬁl » where d4 is the infinitesimal area occupied by dnr. So we get from

Eqg. 9.6 for a body having uniform o, that

I =c',rJ‘r7f dA. ('B._2)

Similarly, for a one-dimensional body like 2 thin uniform rod, we define a quantity ) called
the mass per unit length, ie. A = ‘:,—T. where 4l is the infinitesimal fength of the mass dm.

So, we get from Eq. 9.6 for 2 body having uniform ), that

!=?o.f r? di, B.3)

We shall now put these methods o use. In the process we shall derive all the results of
Table 9.1. First we shall verify the results (a), (b) and (g) of Table 9.1.

Verifying (a) and (b)

Since the rod is thin we consider il to be equivalent © a straight line A8 lying along the
x-axis (Fig. B.1a). The y-axis is then the axis about which the moment of inertia has to be
determined. We take an infinitesimal element dr included between the poinis P and Q. The
rod is an aggregate of such elements and x ranges from — L2 to + L/2. On applying Eq. B.3,

where we put A = Lﬂ . we get

+L72 L
M _2M _ML?
I—L J'.t‘zdx = j.rzd._r ="
=-L{2 0
y y
A PQ B PQ
— 0 bt
(~L72,0) O x x+dx (Li2,0) v I rtdx 7L, 0)

{a) R (b)

Fig. B.1: Moment of jhenia of a thin uniform rod aboul an axis pcmenv_jicular lo its tength and passing through
{a) its centre and (b) one end.

For (b), we shall adop? the same method. The only difference here is that the limits of
integration are 0 and L (Fig. B.1b). ’
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Fig. B.3: Annular cylinder

Fig. BA: Diagram for verifying (i)
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ES

L
dx =ML
Jrae =4
o
Yerifying (g)

For this we shall first obiain the moment of inentia of an annular circular lamina about an
axis perpendicular to its plane and passing through its centre. Its innc: 1 ouler radii are R,
and &, respectively. It is shown in Fig. B.2a,

&
oy R

(a) ) ()

Fig. H2: Momcnt of incrtia of an annular circular lamina aboul its axis

Let the mass of this lamina be m. The area of the annular circular lamina is 1t (RS - R). So,
Y |
T mMRI-R)
Now we shall apply Eq. B.2. For that we have taken an element of a circular sirip included
between the radii  and r+dr (Fig. B.2b). The area of this element d4 = 2rrdr. The annular

circular lamina is an aggregalc of such sirips with r ranging from R, to R;. So from Eq. B.2,
we get

R
; ﬁ 2 2rrdr. where I, is the moment of inertia of the
MR; - RY)
lamina.
m(R] —R})

_m . 2
= (Rl-Rz) Jr dr = 2(R2-R2) =5 R} +RY).

" Now, suppose we stack such cxactly. similar laminas, one above the other, what do we get?

We get an anmular cylinder of same inner and outer radii (Fig. B.3) as that of the lamina. If
the height of the stack is much smaller than R; then we get an annular disc. Let the moment
of inertia of the annular cylinder (or disc) be /. As the axis remains unchanged we have:

I=Xf, _Since Ry, R, are constants, we have

_ (R + RD)
1=(m) S

But Tm = M = the mass of the annular cylinder (or disc).
M
=5 RI+R)

Now the resull (h) of Table 9.1 can be treated as a special case of (g) by putting 8 =0 and
R, = R. S0 we gel '

=Lym2
I=5MR?.

We shall now use (h) to obtain (i),

Verilying (1)

Refer w Fig. B.4. Moment of inertia of the sphere has to be deiermined abour a diameter.
Let the y-axis be along the diameter. We now consider an infinilesimal portion of the sphere
included between 1wo planes perpendicular to the y-axis. These are at distances y and y + dy,
respectively, from the centre of sphere. This portion is a circular disc of infinitesimal _°

thickness dy with A as centre and radivs YR2- v2 where OA = . So its mass is equal to

IR IR TR T 1 T by T 3 en

TR




=p (R — ¥%) dy, where g is the density of the material of the sphere. H_ence-. using the result Appendix B

(h). we get that the moment of inertia of the disc is given by
l b 7 . k] 7 2
df =3mp (R? - ¥%) dy (\I'R- —y? )

and the moment of inertia / of the sphere can be obtained by integrating the expression for 47
over the entire range of y.

-

+R R '
l=£22 J.(R‘?—yl)2 dy ==p J(R‘—2R1y2+y“) dy =8T’;ER5.
-R 0
or l:S—E M RS =gMR2.
15 4 .3
3rrR

We shall next verily the results (d), (e} and (f).

Verifying (d) -
A ring may be considered as a circle, i.e. its thickness may be neglected. We consider an
clement of arc ds of the ring. Every point of this element is at a perpendicular distance R dm
from the axis AQ8 (Fip. B.5). So. on using Eq. 9.6. we get

! =R3j dm= MR ¥ ( '_'J-dm = M).

We shall now derive (¢) und (1. For these you wiil find that it would be more convementlo  Fig. B.5: Moment of inertia of 2
use the plane polar coordinates. g

Verifving (e)

Refer to Fig. B.6. We have identificd the y-axis with the axis about which moment of jnertia
has to be determined. The v-axis is taken perpendicuiar to it through the centre of the ring. .
We consider an element PQ of the ring included berween the angles 8 and 8 + 40. Its
distance [rom the axis is R cos 8. We shall now use Eq. B.3. Here df = the lengih of the
clement of PQ = Rd8 and » = R cos 6. Note Lhat the integration has to be performed over the

enire Ting, and the variable is 8. So 8 ranges from 0 to 2. Thus, we gel

n In
.f:-ji‘-'"; fﬂl cos? B RdO = ‘1':—@'- J—cnslﬁ 0.
Ink . =Tt
0 ¥

L . . . | ,
The definite integral is a stundard one and its value is . So, / = 5 MR°. Now we shall

verify ().
Y
P\ﬂ=Rda
Reosd Y
dn R
of I

Fip. B.6: Diagrom far verifying (e) . 107
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2 -
= J cos™ 648 , then

JR"__'JH
/2
d 3
cos' B-rﬂ:J"‘=z.;'3
1, 1 x =
7273737 77
774
dggg = 3.5 3
Jcoﬁ 848 =377
A JA

/o N\

B g
Fig. B.S: Parellel-axes theorem
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Fig. B.T: Diagram’ for verifying (f}

Verifylng (f)

Refer te Fig. B.7. We identify the y-axis with the axis aboul which moment of inertia

has to be determined. The x-axis is taken perpendicular to it through the point of contact of
y-axis with the ring. Thus x-axis is along a diameter, We consider an element £Q of the
ring included between the angles 8 and 8 + d8. As the angle sublended at the centre

of a circle by an arc is twice of that which it subtends at the circumference we have

£ZPCQ =2P0Q =248, . PQ = R(2d6) = 2Rd0. Since LOPL = 90°, OP = 2R cos 8,
hence, the perpendiculdrdistance of the element of PQ from the y-axis =

PM = OP cos 8 = 2R cos? 6. We shall now use Eq. B.3 where A = % -r = 2Rcos? O and

O ranges from —%/2 {lower semicircle) to +7/2 (upper semicircle).

+xf2 n?
l=ﬂ— J. (2R cos? 8)° 2Rd0 - BMR® J. cos® 90
2nR T
-2f2 ]
8MR2 3m 3,
I= . 16 —2. MR-,

We had 10 use quite a bit of geometry and trigonometry for verifying (¢} and (f). In fact this
can be done much more eleganily by applying the theorems of paralle! and perpendicular
axes. We shall now leam these theorems,

Parallel Axes Theorem
Refer to Fig. B.8. C is \he c.m. of the body of mass M and A8 is an axis passing (hrough

iL A’B” is an axis parallel to AB. Now, we want lo delermine the moment of inertia of the
body about AB* {/) if the same about AB (f_,) is known. Let the perpendicular distance

between the axes be L. We consider a point mass m; at . Let the position vectors of the
points O and P with respect to € as origin be h and R, respeciively, and let OP =, We
know that, OP = OC + CP =CP - CO,

or r, =R, -h

Now i =Y ms? =3 m,r,.r, where the summation is over all the points that comprise
f i

the body.

nI=Ym; R,-h).(R,-h)=Xm, (R} - 2R}h + h?) .
: i i

gt el Py e e

P11 74 71 174 [ iy magde




Now. the relative position of AR and A'B’ is independent of the position of P. In other
words, h is independent of f. .

F=3m R -2(ZmR,).h+( Sm )kt
i i i
The first term is the moment of inertia of the body about the ¢.m., i.e. f_. Again

2mR,
;

= the position vector of the c.m. = 0, as it is at the origin. So the second term is

'Z’"i . -

2ero. And 3, =M. So the third lerm is MA2. Hence, we get
i
=1, +Mh2 (B.4)

Eq. B.4 is the mathematical form of the parailel axes theorem. Accordin g to it, the moment
of inertia of a body about an axis is equal to the sum of the inertia of the body aboul the axis
paraliel to the given axis and passing through its c.m. and the product of the mass of the
body and the square of the distance between the axes.

Theorem of Perpendicular Axes (For a Laminar Bedy)

Refer to Fig. B.9. Suppose we know the moments of inertia of the body about two muually

perpendicular axes lying on the plane of the lamina. Then we shall see that with the help of

this theorem we shall be able to know the monent of inertia of the body about a third axis

which is perpendicular (o the above pair of axes at their point of intersection.

Let us consider a point mass m; within the bedy. On the plane of the lamina, we take two

axes Ox, Oy with respect to which the coordinates of m; are (x;, y;). Oz is perpendicular to

Ox and Oy. The perpendicular distance of m, from the z-axis is r;and is given by
ri=x2+y2

Let the momen s of incrtia of the body about the three mutually perpendicular axes Ox, Oy

and Oz be/,! and/,, respeclively. Let us now express /, in terms of / and 1,

Now,

Lo=2mp}=%m (x?+3y7)

[ 1
or/, =Empr,.1 + rmy?
E T

IR (B.5)

Eq. B.5 is the mathematical form of the theorem of perpendicular axes for' a laminar body,
according Lo which the sum of the moments of inertia of a laminar body about two mutually
perpendicular axes on its plane is equal to the moment of inertia of the body aboul a third
axis perpendicular 1o the above pair of axes, passing through their point of intersection.

We shall now upply these theorems to verify (e) and (f).

Refer to Fig, B.10a.

{(a) {b) {c)

Fig. B.10: Delerminaiion of moment of inertia of a ring.

Appendin #

Fig B.9: Theorem of
perpendicular axes for a two-
dimensional body
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b—L/2—

-
™

Fig. B.11:

Kig. B.h2: Diagram for verilying
1k

o

We have to determine the moment of inertia of the body about a diameter. xx’ and yy' are
two perpendicular axes along its diameters. Let the moments of inertia about these axes be /
and /. If the ring is now tumned through 90" aboul an axis perpendicular to its plane and
passmg through O, the x-axis takes the posilion of y-axis and vice-versa. But the ring looks
the same and it coincides exactly with ils previous position. This means that 7, =1. Let us
now consider Fig. B.10b where the x and y-axes have been shown along with the z-axis. By
applymg the theorem of perpendicular axes (Eq. B.5} we get

=0+ =2,

1
orfy = El"

But from the result (d) of Table 9.1 we know that, /_= MR2.

Thus, /, = % MR?. and hence (¢) is verified.
We shall now verify (f). The axis A8 about which moment of inertia is required is parallel to
¥y, which passes through the c.m. (Fig. B.10c). Now on applying the theorem of parallel
axes (Eq- B.4), we get
Lig=I_+MR2.
I

Butl =I = EMR_ from the result (e).

lg= % MR? + MR? = %MRZ. and hence (f) is verified.

So, we see Lhat these two theorems provide us with an elegant method for determining
moments of inertia. The methods adopted earlier were more complicated. Moreover, if the
moment of inertia of a body aboul an axis passing through its c.m. is known then we can
obtain the moment of inertia of Lthe body aboul any parallel axis by using (he parallel-axes
theorem. The theorem of perpendicular axes can be found handy in determining 7, for a
laminar body if [, and /, are known. For symmetric bodies [, and /, can be determined if /. is
known. We may now verify the result (b) of Table 9.1 using parallel-axes theorem. The
distance between the given axis AA” and the axis BB’ parallel to it and passing through the

¢.m. is é‘- (Fig. B.11). So on applying the result (a) and Eq. B.1, we get

_ ML L L1Y ML
I'="13 +M(2)2 ML [12 4)‘ 3

We shall now verify (c) using the perpendicular - axes theorem.

Refer to Fig. B.12

Let us consider an infinitesimal strip of width dx at 2 distance x from the y-axis. The area of
the strip is &dx and every point on it is at a distance x from the y-axis. So its moment of

inertia aboul the y-axis is given by Eq. 9.6¢c { 6 =M/ab ) as

+af2
I =M J.xzbdx
¥ ahb
-af2
af2
M M P M
T a J“‘z‘i"a 24 T 12
1]

Similarly, the moment of ineftia abour r-axis can be determined. I is given by

M

2 g
I_zb

trom Eq. BSwegetl _". +l —ﬁ(a- ).

b K




Let us now consider three mutually perpendicular axes (v, y and z) through the centre of'a” Appendix B
solid sphere of mass M and radius R. As these axes are along the diameters we can say from
2
resull (i) of Table 9.1 that/, =/ =/ = 5MR*.So . #1 +1,. Does this violate the
theorem of perpendicular axes? It does not because a sphere is a three-dimensional -body and
Eq. B.5 is valid for a iwo-dimensional body only. However, there is a theorem of '
perpendicular axes (or a three-dimensional body also. We shalt study that now.

Theorem of Perpendicular Axes for a Three-dimensional . Body 2
Refer 10 Fig. B.13. Tt shows a three-dimensional body. P is the position of a point mass m;
within the body and r, is its distance from the origin-O of a three-dimensional rectangular
coordinate syslem. The coordinates of the point P are (¥, ¥, 2, ). So, the perpendicular

distances of Lhe point P from the x, y and z-axes are \Iy,.l +237 . v 52+ 07 and
v + y,2. respectively. Hence. the moment of inertia of m; about the y-axis is given by

= 1,22
Li=m (v7+z2).

Now the moment of ineria of the whole body about the x-axis will be the sum of [ ; taken
over all mass points thal make up the body. It is given by

L =Z[ri =Zm,' (y,v: + :*.3)_
! i

Fig. B.13: Theorem of
perpendicular axes for a three-
dimensional body

Similarly,

= S2 42
Io=2m (27 +x72).
I

and I =3m (x2+y2).
i

Lo+l 1, =23 m (x2+y2+:2),
. i
But r2=x2+y2+72,

Io+1, +1. =22m:.r;2 . {B.6)

I

Eq. B.6 is the mathematical form of the theorem of perpendicular axes for a three-
dimensional body. We shall now verily the result () of Table 9.1 using this theorem.

Refer to Fig. B.14. Ox, Oy and Oz are the three reclangular coordinate axes, where @ is the
centre of the spherical shell. So O)x, Ov, O- are along three diameters of the shell. Since the
shell is symmetrical, /| =/, =/ =/, where I is the moment of incrtia of the shell about any
dizmeter. So the left hand side of Eq. B.6 is 3/. P is any point of the shell. Let its mass be
1 and its dissance from O, r,. Now, for al points of the skell r,is equal 10 the radius of the

shell. 8. So from Eq. B.3, we gel X
Fig. B.14: Diagram for verilying
MH=2YmR? : i
i

or 3M=2RT(2m )= 2MRY (- Xm, =the mass of the sheil = M ).

. f i

2 R

or = 3 MR-.

This result could have been obtained without using Gy, B.3. But the process would have
heen lengihy,

£ | =y voa et 2
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A list of commonly occurring quantities in the block alonp with their unit: symbolé. speciul
names (if any) and dimensions is given below. Dimensions are given in lerms of length {1.|,

mass [M], time [T], temperature [K], and charge [Q].

Dimensions

Quantity §1 UNIT

Special Symbol

names {il any)
Displacement m L]
Yelocily ms! [LTY
Accelerstion m 52 (LTY
Angular displacement radian rad —
Angular velocity rad s} (T
Angular scoeleration rads™ (T
Angular momentum kgm’s~! MLAT]
Force: newion N [MLT
Work, Energy joule ) [MLPT )
Power wall W (MLAT]
Gravilational potential Fiyg! iLir-y
Gravilational Intensity Nkg™! (LT
Momentuen, fmpulse kgms-! [MLT ]
Period s T)
Moment of inenia kg m? ML
A m? (L
Volume m’ iLh
Density kg m™ {ML-3)
Tomue Nm [ML*T 3
Tunp-cramr; kelvin K [Kj
Electric charge coulomb C Q)
Electric current FRTS A T Q)

2 ey e
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Table of Constants
Physical Constants
Symbol Quanlity Value
e speed of light in vacuum 2998 x 10°m 57!
W, permeabilily of free space 1.257 % 10~ "N A2
€, permittivity of free space 8.854 x 107 2C:NT'm?
114 me, 8988 x 10"N m’C ~?
e charge of the proton 1.602 % 1071%C
- ¢charge of the electron -1.602 x [07'°C
A Planck’s constant 6.626% 107 s
h h2n 1.055% 1073 5
m, electron resi mass 2109 107'xg
~efm, electron charge to mass ratio —1.759 x 10"'C kg™
m, prolon rest mass 1673 % 1072 kg
m, neutron rest mass L.675 x 107 kg
R Rydberg constant 1,097 % 10°'m™
a, Bohr radius 5292107 'm
N, Avogadro constant 6.022 % 10%mo1™!
R Universal gas constant 8.314 1 K 'mol™
i Boltzmann constant 1381 x (07T K™!
G Universal gravitational
conslanl 6.673 % 107N mkg 2
Astrophysical Data
Celestial Mass (kg) Mean Radius(m)  Mean disiance
Body from the centre
of Earth (m}
Sun 1.99 » i 6.96 % 10 1.50 x 10
Moon 7.35x 107 1.74 % 1 385 x 108
Earth 597 x10™ 6.37 % 1® 0

Appendix B
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MECHANICS

In our everyday life we come across a wide variety of objects in motion. The branch of
physics dealing with the motion of bodies and bodies at rest in equilibrium is cailed
mechanics. You use the laws of mechanics when you ride a bicycle, lift heavy loads, play
footbalt or build a house. Many fascinating developments of the space age, such as launching
of space probes and artificial satellites are direct applications of laws of mechanics.

Today, mechanics is regarded as the most fundamental area of physics. In order to study
other areas of physics, such as clectromagnetism, thermal physics, vibrations and waves
you need.to have a sound knowledge of mechanics. Quantum mechanics and relativity are
the two galeways to modern physics. A profound concept of Newtonian Mechanics is
required to understand these subjects.

The development of mechanics started when attempts were made to understand the motion
of bodies in everyday life on one hand and heavenly bodies, such as planets on the other.
As you know, the three laws of motion discovered by Newton form the basis of
mechanics. These laws appear simple to us, the way they are taught at the school. But it
took more than (wo thousand years, from the Aristotelian views of fourth century BC 1o
the seventeenth century AD when the Newtonian laws were put forward, to arrve at the
right conclusions. Aristotle’s description of motion was based on the idea of a “natural
place™. Recall from Unit 3 of FST 1 that in his times it was believed that all matier was
made up of one or more of the four elements —- earth, fire, water and air. In his view earth
had the lowest place. So if you dropped a heavy object made of earth, ji feil. Heavy bodjes,
containing more earth, fell faster than light ones, Similarly, smoke rose because it was
made up of fire and the natura] place of fire is in the air. Heavenly bodies, such as the Sun,
the Moon and the planets moved around the Earth in circles because a circle was regarded as
the most perfect shape.

These Aristolelian ideas about motion held sway for about 2,000 years till the emergence of
modern science. Observation, experiment and careful measurement are the hallmarks of
modern science. It was in ail these respects that Galileo broke away from the ancient
tradilion. Whereas others before Galileo speculated on properties of matter in motion, he
based his arguments on detailed observations. His experiments with bails rolling down
smooth inclined planes led to the law of falling bodies and law of inenia. Galileo's work set
the tone and the seventeenth century saw a rapid development in mechanics. Tycho Brahe's
detailed observations of planetary motion enabled Johannes Kepler 10 arrive at his laws of
planetary motion. Many a brilliant mind of the times, especially Roberi Hooke, tried to
bring about a synthesis of the laws governing the motion of heavenly bodies and bodies on
the earth. Eventually, it was Isaac Newton who presented mechanics as a scientific theory.
Newton's laws of motion alongwith his law of universal gravitation provide a complete
description of motion of all material bodies in the universe. The only systems known to us
today to which Newtonian Mechanics does not apply are the subatomic particles and the
bodies moving at velocities close to the velocity of light. -

In this course, we shall first develop the basic concepts of mechanics and apply them 1o
simple physical situations in Block ). We shall also study three important conservation laws
of linear momentum, angular momentum and energy. In Block 2, we shall extend these
concepls to the stydy of more complex situations, such as planetary motion, many-particle
Systems and rigid body dynamics.
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‘BLOCK 1 CONCEPTS IN
MECHANICS

In this block you will study the basic concepts of mechanics. You are already familiar with
these concepts. So essentially it will be a recapitulation of what you have studied in your
school science courses, The only difference is that we shall use three-dimensional vectors
extensively as we develop these concepls. In Unit 1 you will learn the language for
describing how things move, which is known technically as kinematics. We will discuss the
important kinematical concepts of displacement, velocity and acceleration. Using them we
will describe uniform circular motion.

In Unit 2 we go on to the causes of motion, technically known as dynamics. We shall
discuss the concepts of force and linear momentum which are bound together in Newton's
laws of motion. You will study the equilibrium of forces, which finds many applications in
mechanical devices. You will also study the principle of conservation of linear momentum.
This principle makes it easier to study complex mechanical phenomena where direct
application of Newton's laws is difficult. In Unit 3 we shall take up other dynamical
concepts, such as work and energy. Interestingly, the notion of energy is onc of the few
elements of mechanics not handed down to us by Sir Isaac Newton. This idea was clearly
grasped only by the middle of nineteenth century. The concept of energy is useful in studying
diverse phenomena, such as the evolution of the universe, properties of elementary particles,
biochemical reactions in living systems, design of machines etc. The law of conservation of
energy is particularly imponant. This law along with the law of conservation of linear
momentum will be used to study collisions.

In Unit 4, you will study the kinematics and dynamics of angular motion. We shali discuss
the concepts of angular displacement, angular velocity and acceleration, torque and angular
momentum and apply them to the angular motion of a particle. The law of conservation of
angular momentum and its applications will also be discussed. Finally, in Unit 5 we shall
undertake the study of Newton's law of universal gravitation which leads o an understanding
of the motion of all bodies in this universe, be they planets, satellites or objects on the
earth. In this context we shall also discuss the force of gravity which plays such an
important role in our everyday lives.

As far as possible, we have tried to illustrate all these concepts by application to problems of
rea! physical interest. We have also provided numerous solved examples throughout the text,
Our emphasis all along is not only on understanding these concepts but also on applying
them 1o 2 wide variety of physical phenomena.

We have supplemented this block with two audio-vision productions. fou will get access to
these programmes at your Study Centres. Through these programmes we have tried to
develop problem solving ability in mechanics.

The units are not of equal length. On an average, we can suggest the following estimalte
for the study time required for each unit: 33h for Unit 1, 4 h for Unit 2, 4 h for Unit 3,5 h
for Unit 4, 3]; h for Unit 5 giving a total of 20 h for working through the text and solving
the SAQs and Terminal Questions. Your actual study time will, of course, depend on your
background. For example, if you have done your +2 or twellth standard recently, the
mathematics. especially catculus, used in these units will be ¢asy 1o follow. Since you
have done +2, we are, in fact, assuming that you know the calculus used here. However, if
vau have done your twelflh a few years ago, you may like to brush up your knowledge of
calcutus. For this you could either study the IGNOU course MTE-0l on calculus or the
rwalfth standard NCERT book on mathematics. I wili be available at your study centre

We will use the SI units throughout. A tabte of the units and their symbols is given in the
block. A table of the physical constants is also provided on the same page. You will have
10 refer o this table for solving a aumber of problems. You will also Gind 3 lisr of
supgested books for further reading at the end of the block, .

Some of the abbreviations used in the lext are Sec. for Section, Fig. for Figure and Eg. for
Equation. Fig. X.Y refers to the Yth Figure of Unit X, i.e., Fig. 1.10 is the tenth figure in
Unit 1. Similarly, Sec. 2.4 is the fourth section in Unit 2 and Eq. 3.9 is the ninth equation
in Unit 3.
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Study Guide

Physics, as you know, cannot be leamt passively. This is equally true for this course. You
will have to work through the derivations and the solved examples given in the text yourself.
So, always keep a pen or a pencil and paper with you while studying. You will also need a
ruler znd a protractor. For performing calculations in course of working numerical problems
you will have to use either a calculator or the standard booklet containing logarithmic and
trigonometrical tables. So, keep either of these aids handy. The idza is nor to memorise, but

+ 10 understand concepts. You will be able to acquire a better understanding of the conacepts of
mechanics only if you apply them to problems. We have tried tn select a representative set of
problems. Some are straightforward and intended for practice, but many of them require some
effort. There are a few challenging problems as well, in the form of Terminal Questions. We
advise you 10 make an honest attempt at solving the Self Assessment Questions (SAQs) and
the Terminal Questions. Do not immediately tumn 10 the answers given at the end of each
unit if you cannol solve 2 problem in the first instance. In many problems values of
fundamental constants like the Universal Gravitational constant G or the charge of electron «
may be required. You will not find these values in the text of the problem as they are given
in the table of physical constants, The same also holds for certain estrophysical dats like the
radius of earth, the mean distance between the moon and the easth and so on.

You must also Lake sufficient care to see that the answers to numerical problems are
"expressed in proper units. For this we advise vou to write the DECESSAry units at every step
while performing the calculations 2s we have done in the worked examples. While arriving at
the answers 1o the nurierical problems we have adopted the conventional method of rounding
off 10 the desired number of significant digits. By the way, you will have to work out these
questions on separate papers, as no space has been provided in the text for this purpose.

We hope you will enjoy studying the material and wish you success,
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1.1 INTRODUCTION

Nothing characterises our daily lives more than motion itself. A game of cricket or football,
the graceful movements of a dancer. falling leaves. rising and setting sun are all examples of
matter in motion. You have siudied about motion in your school science courses. However.,
your study was limited o motion along a straight line and in a two-dimensional planc.
Among the prominent examples of two-dimensional motion that you have studied are
circular motion and projectile motion.

But you know that our world is three-dimensional in space. Therefore, we shall begin by
studying molion in three dimensions. We shall first understand what we mean when we say
that an object is moving. Since vectors will be used extensively, we shall quickly po
through relevant vector algebra. Using vectors, we shall develop a language for describing
how things move. For this we shall recall the basic concepis of displacement, velocity and
acceleration. Finally, we shall use these concepts 10 study uniform circular motion and
relative motion.

The cnoncept of acceleration is related to the causes of motion, which we shall study in
Unit 2. There we shall also study equilibrium of forces and conservation of linear
momentum principle,

Objectives
Afier siudying this unit you should be able to;

® specify an appropriate frame of reference for a given physical situation

® express one-dimensional, 1wo-dimensionai and three-dimensional vectors using unit
veclors

® compuic the sum. difference, scalar and vector products of two vectors

®  determine the displacerment. velocity and acceleration of a particle in a given frame of
reference

®  distinguish between average and instantaneous velocity, and average and instantaneous
acceleration

® derermine relative velocity and acceleration of one particle with respect to another

&  solve problems concerning relutive motion and uniforn circular motion.

1.2 WHAT IS M(_)TION?"

Can you imagine what your life would be like if you were confined to some place. unable to
move froni one pasition to another as time passed? Read this senience again and you wili see
thaat il suggesls an answer 1o the question: What is motion? We say that an object is moving
il it occupies different positions al different instants of time. The study of motion thus deals

wilh the questions: where? and when?

Frame of reference
The actual motion of an object can be delermined by mcasuring the changes of position
during méeasured intervals of time. And to determine the position of an object at a piven
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" Concepts n Mechanics

instant of time, or the changes in its position with time, we need a frame of reference.
To understand this, let us take the example of a moving train. The change in the train's
position in a given time interval has one value if measured by an observer standing on the

- ground. It has a different value if measured by an observer moving in a car. It will have the

value zero if measured by an observer sitting in the train itself. And each of these values is
equally correct from the point of view of the observer making' the measurement.

In general, the measured value of any physical quantity depends on the reference frame of the
observer who is making the measurement. To specify a physical quantity, each observer may
choose a zero of the time scale, an origin in space and an appropriate coordinate system. We
shall refer 10 these collectively as a frame of reference. Since the space of our experience has
three dimensions. we must in general specify three coordinates to fix uniquely the position of
an object. The Cartesian coordinates x, y, z are commenly used in mechanics, Thus, the
position and time of any event may be specified with respect to the frame of reference by
three Cartesian coordinates x, y, z and the time t. We may suppose, for example, that the
observer is located on a solid body, such as the earth. He or she chooses some point of this
body as the origin and takes the axes 1o be rigidly fixed to it. Now, wouldn't you like to
select a frame of reference yourself ? See Fig. 1.1 and answer SAQ 1.

B3 % FZe:

TR

Fig. L.l: A familiar athletic evenl. the 200m race in which the athlete A is aboul to
overlake &,

SAQ 1
(@) Setect the frames of reference 10 describe the motion of A, from the poinis of view of

the observers B, A and § in Fig. 1.1
(b) Which one of these observers 8. A and § measures the velocity of A correctly?

Having specified the concepts of motion and the frame of reference, we would next like to
describe how objects move in a given frame of relerence. The language for describing motion
is known, technically, as Kinematics. The easiest 1o describe is the motion of a particle or
a point. You may ask what a particle is. If in the study of a given phenomenon, the
dimensions, shape and intemnal structures of an object are of no consequence, we can represent
it by a point or call it a particle. For example, with respect o the distance between the earth
and the sun, both these objects can usually be considered as particles. Let us now learn how
to describe the motion of a particle.

1.3 THE LANGUAGE FOR DESCRIBING MOTION

The most important concents nsed for describing motion areidisplacement, velocity and-
acceleration. In order to develop ihe language for describing motion. we need to explain and
express these concepls. As you know, this is best done with the help of mathematics.
Therefore! we will first develop some necessary mathematical tools, such as veciors by
considering the cxample of displacement. We will then use these (ools lo undersiand otier

kinematical concepts, such as velocity and acceleration.

1.3.1 Vectors _
We are all familiar with the meaning of the word *vector'. Qur basic motivation for using
vectors is that it enables us to express physicz! concepts in compact and simple forms. We
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shall first learn the use of vectors in one and two dimensions and then extend the ideas to
three dimensions.

But first, a word about the notation that we will adopt in our discussion of vectors. This
will be as follows: In print, vectors will be distinguished from scalars through the use of
boldface type; e.g. A is a vector. In written work we denote a vector A by pulting a wavy
line under the letter A (A) or an arrow over it (A). The magnitude of A is printed as 4 or
as |Al . In diagrams, vectors are shown by putting arrows on the lines representing them,
as in Figs. 1.2a and 1.2b., .

Vectors in one and two dimensions

Suppose you start cycling from a point O and travel upto a point P along a straight path
(Fig. 1.2 a). What is your displacement relative to O? As'you know, it is OP in the
direction from O to P. Note that we have specified both the magnitude and direction of the
displacement, i.e. it is a vector quantity. @ is the tail and P the head of the vector OP.

Now, how do we get the length of the segment OP, i.e. the magnitude of OP? We can fix 0
as the origin, so that the coordinate of P gives the magnitude of OP. And if we want to
express OP in terms of its magnitude we can use the concept of a unit vector, First let us
give a name, say A, to the vector OP, We select a length OL of unit magnitude (Fig..1.2b)
so that OP is A times the length OL. Let OL denote a vector in the same direction as OF
We can then write

A(OL)=0P = A, (1.1)

OL is called a unil vector. By definition, a unit vector has length equal to one unit, The
vector of unit length parallel 1o A is denoted by A (pronounced A cap). By convention, it is
chosen to be dimensionless. Thus, from Eq. 1.1 we have

OL=A=A /A (1.2a)

~
and A =A A.

-~
Note that A and A have the same dimension, as A is dimensionless.

We may also choose OP to be in the same direction as the x-axis. By convention, the unit
vector along x-axis is represented by i. Then we can rewrile Eq. 1.2 b as

Eat

v
A=Al =iA. “.25}
Now suppose the path you are travelling along lies in a playground and you do not move in.
a straight line (Fig. |.3a).

Can you specifly your displacement PQ by one number along any one axis as for Fig. 1.2b7
Yoau could still choose that axis along PQ. But then using one ceordinale, how weuld you
specify a displacement OP in a different dircction? Clearly, one axis along PQ alone will noy
be sufficient to specify displacements in other directions.

In such a case, we would need 10 know 1wo lengihs measured along the two axes x —y,
perpendicular to cach other and drawn from Lhe origin O (Fig. 1.3 b). As you know, lengths
Xy and yy are equal to the coordinates of the point P. These coordinates completely specify
lhe disptacement OP, Now. how do we specify PQ or a veclor in any other direction?

For this. let us consider a vector A in the vy-planc. The prajections of A along the
caourdinale axes x and y are cailed the + and y-components of A (Fig. 1.3¢c). We may denote
them by A _and A,. respectively. By convention, the unit vectors along x and y-axes are
denvicd by §and j. respectively. Then from tne law of vector addition, A will be the sum of
vectors A i and A, j.

~

A=A +A] (1.3a)

Using Pythagoras’ theorem. the magnitude of A is given by

A=|A|=1/(A§+Ai)

(1.3b)

Motion

Vectors are quantities that

(1) have hoth magnitude and
direction independent of the
choice of a coondinate

system and

(2) combine according to the
following law of addition:
A+B=B+A (Commutative
law)

oy

{a)

h 4
¥

0 L P
{b)

Fig. 1.2: (a) Displacement
OP; (b} unit veclor OL.

Q

(2 ©

y? (a)

Plxy)

Lch

Fig. 1.3: (&) Molinn in
two dimensions; (b)) QN =
X VP =5 AE) the v and -
componenis of A, which
is & sum of vectors A_‘_i

and 4 i
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Concepts in Mechasrics

We can choose a pet of axes
inclined at any angle (o each
other, However, it s
convediient to choose a set of
axes perpendicular o cach other
because the mathematics is
simplified.

"iff" stands for the phrase “if and
only if".

10

and its direction, represented by the angle @ which A makes with the x-axis, is given by

tan 0 el
= A (1.3¢)

In a given coordinate system A is uniquely expressed in terms of A, and A, Soif A is

_given, then A, and A, have unique values given by

Ay =Acos®, A =Asin8. (1.3 dy)

Notice that when any displacement is referred to the origin, c.g. OP in Fig. 1.3 b, the
coordinates of the point P are also the components of OP, ie.

OP=x, i+y, j. (1.4 3)
n -
tan 6 = (14 b)

Let us now recall briefly certain concepts related to vectors, which you already know from
your school courses.

Equality of vectors
Two vectors A and B are equal iff their corresponding componems are equal i.e. given

~ ~ - ~
A=A,i+A,}] and B=BII+Byj, (1.5)
A=B iff A,=B,andA =B, (1.6)

Multiplication of a veclor by a scalar
If we multiply A by a positive scalar m, the result i a new vector C = mA. C is parallel to

A and its length is m times greater (Fig. 1.4 a).

C=mA
A
A -B
// A+(-B)=A-B
@) (b} {e) i)

Fig. 1.4: (2} Mulilplication of a vector by a scalar; {b) addilion of vectors: {c) and {d) sublraction
of "vector B-from A.

The result of multiplying a vector by -1 is a new vector equal in magnitude but opposite in

direction or antiparalle! to the original vector.

Addition and suabtraction of vectors

The sum of two vectors can be obtained by the triangle law of addition (Fig. 1.4 b). Thus, to
add B to A, place the tail of B at the head of A. The sum is a veclor from the tail of A 10

the head of B.
Since A - B = A + {(—B), in order lo subiraci B from A, we can simply muliiply it by -1
and then add as shown in Figs. 1.4 cand 1.4 d.

" Associative and distributive laws
Vectors obey the associative laws of addition, and multiplication by scalars:

A+(B+C) =(A+B)+C, (1.7 a).
m(nA)=n(mA) =mrA. (1.7 b}
They also obey ihe distributive law with respect to multiplication by scalar: ‘
m(A + B) =mA + mB, (1.7¢)

Let us express some of the above relations in terms of the vector components. These
will be useful in solving problems. Given Eq. 1.5, we may write
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C=mA =mAI?+ mA, i. . (1.8 2) Motion
C=A+B=(AI+BI)f+(Ay+By)f (1.8 b)

We will now solve an example using the above concepts. ¥ D,-_Qfl c

Example 1 o4 P

A ship travels 2 distance of 8 km from a point O along a direction 30° East of North upto A R, '

and then moves along the East for 4 km upto B. Let OA =P, AB = Q. Draw the resuitant /

displacerment vector d of the ship and find /; Q

) - the components of vectors P and Q. Express P and Q in terms of unit vectors. ¥ B

ii) the components, magnitude and direction of d. 2 ’

, o d

iii) R in terms of the unit veclors where R = 2P—-;- Q and draw R. 9

Let us draw x- and y-axes to represent the direction of East and North, ri-.spectively (Fig. Y/ <

1.5). Then P is a vector of magnitude & km at an angle 8 = 30° from the y-axis. Q is a 0 -

vector of magnilude 4 km paralle] to the x-axis. OB is the resultant displacement d.

i) The components of P: Fig- 1.5

Along x-axis = OA cos 60° =8 km x =4.km, and.

along y-axis = OA sin 60° = Bkmx\;—3_=4'\!§km
Thus, P = OA = (4 + 4 V3 ) km
Components of Q:
Along r-axis=4 km xcos 0°=4kmx | =4 km, and
along y-axis=4km xsin0° =4 km x0=0km
Thus Q = AB =41 km.
i) d=P+Q
=47 ¢ 4V3] + 4l km = [(4 + 4)F + 443) km
= (81 + 4 V3 km
~d=vV64 +48 km=¥112km=47km
(]
iii) R=2P - }Q
= {2 (4 + 4V3)) - % (41)} km.
Using the distributive and associative properties of vectors
R=3T+8V3-2Nkm
=61+8V3 D km'
For drawing R, we extend 04 10 twice its length up 1o C, which gives the vector 2P.

Then we draw the vector — % Q at the head of 2P. Theé resultant R can then be drawn from
Ot D.

You may now like to work out an SAQ based on what you have studied so far.

SAQ 2
The trajectory of a ball is shown in Fig. 1.6.
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Concepts in Mechanics &) Sketch the displacement p with respect to O and q with respect to A, given that
, yp,=4mp,=49m,ii)g,=-3m,q,=07m.

b) Express QA (=r, say) in terms of the nomerical values of components r.and ry-

¢) Find(q,++,), (g, + ry) and compare their values with p, and Py respectively, and
.give a comment,

d) Measure the length OB with a ruler and the angle 8, made by it with the positive
direction of x-axis with a protracior.

. L:ll OB = 5. Now find s, and 5, graphically and also using Eq. 1.3d. Compare these
z : values, .

So far we have quickly recalled the concepts of vectors in one and two dimensions with-
which you are familiar. The only iew idea introduced here was to express veclors in terms of
components and unit vectors. Let us now extend these concepts to three dimensions. :

Yectors in three dimensions
+y Suppose we were travelling uphill along a path as shown in Fig. 1.7 a. Then we would need

1o know a third number 1o specify our displacement. In other words, we will need to use

(b} vectors in three dimensions. For this, we need a three-dimensional coordinate system. You

" x are familiar with the three-dimensional Cartesian coordinate system shown in Fig. 1.7 b. It
has three axes perpendicular to each other, passing through the point of reference 0. The
point O divides each line into halves, one of which is taken to be positive. Three unit
vectors 1, J, k point along the positive x-, y- and z-axes, respectively.

Fig. 1.7: (a) A pathuphill;
{b) cthree-dimensional
Cartesian  coordinate

system. Once the positive x- and y- axes have been chosen, a restriction is imposed on the choice ot

positive z-axis. Clearly there are two ways of choosing the positive z-direction as shown in
/ y

Figs. 1.8aand 1.8 b, By convention, the choice of +z-axis is made in the following manner:
+z
T+
X {n}
+
+x
S
(b

in Figs. 1.9 aand 1.9 b. Read the captions carefully and try the following SAQ.

a 90° - rowation of +.x-axis towards +y-axis appears anticlockwise when seen from any point
’'e |

on the positive z-axis. A coordinate system defined in this way is called a right-handed
system, as shown in Fig. 1.8 a. Two alternative definitions of positive z-direction are shown
Fig. 1.8: The twao ways
(a) and (D) o1 choosing

+o-axis.

(z) 1)}

Flg. 1.9: (r) The right hand is extended so thai the middie finger, first finger and thumb are
ploced perpendicular to each other, and the other two fingers closed. If the thumb and the first
finger represeni the +r and +y-axes, respectively , then the middle finger represents the +z-axis:
{b) curl the fingers of your right hand around the line perpendicular lo the xy-plape. Let the
orientation of the knuckles be such ihal Lhe fingertips polnt in the direction of 90° rotation of r-
axis towards y-axis. Then the thumb glves the direction ol positive z-axis. It is also the direction
in which the screwhead advances when a right-handed screw is rotated from +r-axis to +y-axis.
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SAQ 3 Motion
Determine which of the following sels of perpendicular axes define right-handed systems?

A 4
+y +y +Y +x
+z. ' +z
+.
r *e :; +yr
+z . .
6y X (i) (iif) (iv)

Let us now use this system to specify the displacement OP with respect to the origin

O {Fig. 1.10). To reach the point P we can walk a distance x atong the x-axis, turn 10 our
left, walk a distance y parailel to the y-axis and then travel a distance z parallel to the z-axis.
If we know the dislances .y and z, we can always specify the position of the point P with
respect to O by the three Cartesian coordinates (x, y, z). For example, the point (2,3,4) is
shown in Fig. 1.10 a. Thus, the displacement QP which we can denote by r can be
expressed as a sum of three vectors xi, yj and zk;

r=d+v) vk : (1.9)

The displacement vector drawn from the origin O to the position of point P is known as its
position vecter. You can sec thal the components of the position vector of point P are the
same as ils coordinales.

- z! :A
i
! o3
4= -
. - |
3 T P234) A i . ; A
! .. . : . y J”.
3 . SUEIN TR (A.x.20) \ el
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ljl // ‘ ~ A : A
YRR 34 : N ol
! 12 (1 ' —_— s s
// .. : P ..’ : p
. o
7 g Av}f““"““*n L pd
- - -~ - - 13 .’I '/
~ (230 A i Y
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ia) £ (b:d) te)

Fig. 1.10: (a1 The puositien vector of s particle af P: tbr Carlesian cumponents of a veclor

A4, = xy - x,, A =y, =¥ A=y~ 10 e angles a. By

£ r -

We can now extend the above concept Lo any w:ci_or A (see Fig. 1.10b). IT A A}._ A.are
the proiections of A or the.x, ¥ and =-axes, respectively. then A can be expressed as

A=Afi+rAj+ak (1.103)

The magnitude of A is given Ly

A:«\’f1;+r\;.+ .‘\:- (.10 b) 3
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Concepts In Mecharics

Note that position vectoris a
physical quanlity and an
inte unit of length
d be attached to it
However, since we do not
always wrile units with the

- coordinaies of a point, we have

omined the same for position
veclors. :

The direction of A can be specified in terms of the angles between A and the three coordinate
axes. These angles arelabelledias o, 'S, ¥. See Fig. 1.10 ¢. The dotted lines through the tail of
A are parallel to the x, y and z-axes. In aciual practice we use the cosines of these angles and

they are called direction cosines.

A .
I=cosd=f,m=cosﬂ=—:1,n=cosy=é5 (1.10¢)
You can see that 4 e
F+m2+n1_—. 1. ) . (l.lOd)

Example 2 . .~ n A
Calculate the magnitude and direction cosines of A = 2i + j — 2k..

Here, A, =2,A = 1,A,= -2
A=A\/Ai+ _Aj, + 'Azz =\J21+ 124 (-2 =¥4+1+4 =3

l=cosa=A,/JA=23,m=A/A=cos B=1/3,n=cosy=4,/A=-2/3

[—

-8AQ 4

a) Draw the position vector r of a point 2 (2,4,4) in Fig. 1.10a, Express it in terms ot~
unit vectors and calculate its magnitude and direction cosines.

b) ryandr;arethe position vectors of the points R and S, given by r = 2+ f+ 2I:'\,
rp =1+ 2] + 2k
Indicate the points R and S on Fig. 1.10 a. Draw the vector d (=RS). Write down its
components.

So far you have learnt to express vectors in terms of their components in one, two and
three dimensions. Though we have taken anly the example of displacement to explain
these concepts, they can be extended to any other kind of vector, such as velocity,
acceleration, force etc. We have also learnt how to add vectors and multiply them by
scalars. The next question is how do we muitiply two vectors? Is the product a vector, a

" scalar or some other quantity. The choice is up to us, and we shall define two types of

14

(b}

Fig 1-11; The cealar product
of A and B.

Suny

products which are useful in applications to physics.

1.3.2 Products of Vectors

Let us apply a force F at an angle 8 to the direction in which the displacement d takes
place (Fig. 1.11 a). You may already know that the work done by force F on an object is
the magnitude of the displacement d of the object multiplied by the component of F along
the direction of d, i.e.

W =(F cos 8)d. - (t41a)
As you know, work is a scalar quantity. We also express work as a product of the two
vectors F and d as:

W =F. d. ) (1.11b)

This type of product of two vectors A and B which yiclds a scalar gquantity is called the scalar
product. It is denoted by A . B (pronounced A dot B} and is also called the dot product. The
scalar product is defined as

A.B=ABcos O, (1.12)

where 8 is the angle between A and B when they are drawn tail to tail (Fig. 1.11 b). Itis
convenlional to take O as the angle smaller than or equal Lo .

Example. 3
Find the scalar product of & unit coordinate vector with itself.

-~

nf non ~
ji.i=I0Icost =1
a9

e

Similarly I.j = L.

andk . k= I. (1.13 a)
SAQ 5
a} Inihe given douted spaces, write the scatar produce of 1wo different unit coordinate
YECIOTS:
G T

TEN CRESTPRS | i ) b = mpryppe—

T=TRL I




i) KT= oot P (1.13 b)
b) Fill in the dotted spaces given a vecior A = Axi + A)J +A k )

iy A. T .. e e

(11) A j e

(ul) A. K o e (1.13¢)

In your calculation of SAQ 5(b), did you notice that the x, y, z cornponents of a vector can
be expressed as its scalar products with the respective unit coordinate vectors?

We can ajso express the scalar product in terms of the components of the vectors.
LetA = AJJ +A, i + A, k
B=28, 1+ B j + 8. k
Using the distributive property of scaiar product of vectors, given as
P.(Q + R)=P.Q +P.R, _ (1.14)
we get n R n . R
AB=(Ad+AJ+AK.B,i+B)j+8BK
=4811+4815+48 5k
+ABJ.1+AB j.]J+AB j.k
+ABkT+aB kjraBk k.
Using Eqs. 1.13 a and b we get,
AB=AB +AB, +AB. (1.152)

Thus, the scalar product of two veclors is the sum of the praduct of their components
along each of the coordinate axes. Since, the components are scalars, we get

AB = BA (1.15b)
You can quickly iry another simple SAQ on scalar product.
SAQ 6
Show that A.A = 47 {1.15¢)

A.part from the scalar preduct, there is another product of iwo vectors which is defined to
be a vector, whose direction is perpendicular o the (wo given vectors. For example, if a
force F is applied at a point A (Fig. 1.12 a), the couple T exerted by the force about O has
a magnitude (F sin 8)r and acts about an axis perpendicular to the plane containing ¥ and
r. As you know, torque is a vector quantity. We also express lorque as the product of r and
F:

T=rxF. (1.16)

Such a product of two vectors A and B which yields a vector is called the vector
. product or the cross product. It is denoted by A X B (pronounced A cross B). Itis -
defined to be the vector

C = A x B = AB sin 8C, (1.17)

where 8 is the angle between A and B when they are drawn tail to tail (Fig. 1,12 b). By
cony ention, § is always aken as the angle smalier ihan or equal to 1. The magnitude of C
is | glven by AB sin 8 and its direction is defined by C whuwh i~ a unit vector whose
TdCiion i3 peipendicilar iv A and B. Tie sense uf T is deermined as a mater of
convention by the righi-hand-ruie: First, place together the tails of vectors A and B: this
defines a plane. Rolale A imo B lhrough the lcsscr of the two angles and curl lhe fmgers

dlrc-cllon of C=Ax B
Thus, B X A is a vector opposite to A x B (Fig. 1.12 d), ie.

BxA=-AXB, (1.18)
We aiso see that if A =B, then

C=AXA=lAlsin (00 C = 0.

Motion

(b)

AXB

e —

A

)

B
L
I A
1
1
| BxA
L
(@

Fig. LI12: (a) Couplie
excrled by the force
aboul Lhe origin ¢ ig

T = rFsing :fb) C=AxBR;
{c) the direction of A xB
is determined by (he
right-hand-rule; (d} B X A
is 8 veclor equal and
apposite (o A x B.
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E\/j

Fig. 1.13 : If we go around
the circle clockwise, the
cross products are posllive;
If we move anticlockwlise
the cross products are

negatlve.
o
B
il
0 A P
(2)
L iiaiil #
R / C /'77
/ ".r
// J:F
¢ '
»
¢ 4 r

Fig. 1.14: Paraltelogram
law of veclor addition:
The resultant of two
vectors A and B ha\rmg a
common lail is given by
the dingonal through (he
common tall O of the
parallelogram having a

Amed B o o ETo s IR
s as e SWJALCIL 3LUKY,

Thus, the vector product of any vector with itself is a zero vector, i.c. a vector having
zero magnitude.

Example 4
Find the vector product of (wo different unit coordinate vectors.

i xJI=1.15in90" =1
The direction is given by the right-hand rule, so that
a3

£ j.

Slmllarly, j xk =
kxi=]. (1.19 )

SAQ 7
Using the right-hand rule and the definition of a cross product, fill in the blank spaces
below:

D X E
i) kxl=o oo
i Txk=uiiiie. e
V) X ettt SUUDE (1.19b)
v} fx f L
Vi) KXK=eo o R,

You can see that there is a cyclic pattern in the producls? X j\ I ¥ k and k X i, which is
shown in Fig,. 1.13. For example, if we go around the circle clockwise, the cross products

arepositive: L1X =K, jxk=i,kXIl=).

If we go in an anticlockwise direction, the cross products are negative. ] x 1=k,
Txk =-fkxf=-1
Like the scalar product the vector product is distributive over vector addition, i.e.
PXQ+R)=PxQ +PxR. (1.20)
Therefore, for any 'ﬁvo vectors
A=Al+AJ+AKmdB=BI+B]+Bk
we can write
AXB=(A l+A}J +AK)x (B |+B,,J+BE)
=AB (AxD+a_B (lx_|)+(A B)(:xk)
+A B, (j)(l)+A (jx])+AB[_|xk}
+A.8, (k><1)+A B (kx_;)+.d 8. (.cxl.}
Using Eq. .19, we get
AxB=AB8k-ABJ-AB k+aB1+4,8i-48]
AxXB=1AB -AB)+](A,B -AB)+ k(A4,B,-A,B).  (121a)

An altenative way of expressing A X B is in the form of a determinant. Since you already

know about determinants you can verify that
~
" k |

i3
AxB= \A‘ A
1 B

m;:‘:u

l! (1.2t b)

This is equivalent to Eq. 1.21 a and it is easier to remember.

We can use the scalar and vector products of two vectors A and B 1o determine the
magnitude and direction of their resultant A + B, Let A and B have a commen 1ail as
shown in Fig. |.14a. Can we use the triangle law of addition? Yes, we can iranslate the
vector B from the position OQ 10 PR as shown in Fig. 1.14b. Then OR = C is the
resullant, Incidentally, OR is the diagonal of the paralielogram OPRQ through the point
O. This is the parallelogram law of vector addition.

Tt
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The magnitude of C is obtained from the scalar product of C with itself as follows:
C'=C.C=(A+B)..(A+B)
=AA+AB+BA+BB
=A?+2A'B+B? (- A-B=B-A)
or C?=A?+ B?+ 2A8 cos 8, where 8 is’the angle between A and B.
or C=VA?+ B2+ 24B cos 6. © (1.228)
The vector and scalar products of A with C give the angle ¢ which C makes with A, i.e.
the direction of C. .

AXC=AX{(A+B)=AXB, ("' AxA =0)

orlAxCl=1A X BI,

or ACsinp=AB sin @

ie.Csinp=B sinB. (" A20Q) (1.22 1)
AC=A(A +B)=A'A +AB, '

or AC cos ¢ = A2+ AB cos 6,

~Ccosp=A+8cos. (1.22¢)
From Ei:[s. 1.22 b and 1.22 ¢, we gel
_Bsin® (1.22d)

lan¢=A + B cos B

Let us now consider a numerical example on scalar and vector producls.

Example § W A A A
Given two vectors A = 4i + 4j — 7k and B = 2i + 6 + 3k, find A.B, A X B and the

angle between A and B.
Here A, =4,A, = 4,A,=~7:B,=2.B,=6.8,=3.
b  A.B =AB +AB+AB.
=42+46+(-7)3
=8 +24=-21=1l."
iy AxB =HA B -AB)+ JA B -AB)+ KAB -AB)
LT3 64=TI ¢ J1=72-43) + K36 -4.2)
=547 - 26] + lak.
Wi We know thut AB=ABcos @

r"l:\,‘r\l' +."1\"+,-'l.‘1 =9, H:\IIH,_“FH.: F—H" =7

A.B Lt 11
cos 0= = - —
Al 9x7 63

11
- - —
or B =cos 63

You can now Iry a little tengthy SAQ. Panis a) and (b) are on scalar and vector products.
Part (c) is based on Eqgs. 1.22a and 1.22d.

SAQ 8

{a) tb
Fig. 1.15

3) A-constant force F =i+ 2j + 3K acts on a particle (Fig. .13 a) resulting in ils

Motion
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Concepts In Mechanjcs

{a)

(b)

Fig.

18

LI&

displacement from point (8, 0, 6) to po'im (20, 0, 6). Find the work done. Consider the
force to be in newton and the displacement in metres:

b) A force F =21 + 3] is applied at the point P (1, 1, 1) (Fig. 1.15 b). Find tfe torque
T about the origin. The force is in newton and the displacement is in metres.

) A man wishes to cross a river along the shortest possible path in a speed boal. In still

. waler, the boat's speed is u. The s of the river is v (<u) (Fig. 1.15c). Show that

the boat's resultant speed will be V4?2 and find the direction in which the boat
should be steered. Assume that the banks are parallel.

So far we have gone through the fundamentals of vector operations. We shall now use
vectors to discuss kinematical quantities like displacement, velocity and acceleration.

1.3.3 Displacement, Velocity and Acceleration

Let us consider a particle’s motion in space (Fig. 1.16a). Let it be at the position A at the
instant of time r and at B at the instant of time r + Ar. As discussed in Sec. 1.3.1, the

- position of a particle in a particular frame of reference is given by a position vector drawn

from the origin of the coordinate system in that frame to the position of the particle. Let
the position vectors of A and B with respect to O be r and r + Ar, respectively. The
displacement of the particle in the time Ar is equal to Ar in the direction AB.

The average velocity of the particle during the time At is given by
= Ar 1.23
VYar = At (1.23)
Since At is a scalar quantity the direction of v, is the same as that of Ar. v, is the
velocity at which the particle would have travelled the distance AB in uniform and
rectilinear motion during the interval of time Ar.

SAQ 9
The displacernent vs. Lime equation of a particle falling freely from rest is given by

x ={4.9ms~2)r2
where x is in metres,  is in seconds. Calculate the average velocity of the particle between:
Iy=1sand# =2sand also between fy=3sand 1, = 4s.

On solving SAQ 9, you have found that the values of average velocities during the two
lime intervals are not the same. Such a motion is catled non-uniform motion. When a
bus leaves a bus-stop and travels up to the next one, it executes a non-uniform motion. In
such a case. we may also like 1o know the velocity of the particle at any given instant of
time.

The veloeny of a panicle may vary by way of change in magnitude, change in direction. or
both. In Fig. I.16b, the average velocity during the interval At is directed along the chord

- AB bul the motion has taken place along the arc, The average velocities during the intervals

Ar'(A to B)and Ar” (A B”) are different both in magnitude and direction. The 1ime
interval Ar” is smaller than Af, which is smaller than Ar. As we decrease the interval of
time, the point B approaches poinl A. i.e, the chord approximaies the actual motion of the
particle beuter. These points finally merge and the direction of Ar coincides with the tangent
to the curve al the point of merger.

As Al decreases, lhe ratio 2—: approaches a limit, The veclor v, having the magnitude equat
to the limit of the ratio % as Ar — 0, is called the instantaneous velocity of the
particle ai time 1, It is in the direction of the tangent 1o the curve at the given moment of

molion. Thus,

T Wwith 1espect Lu iime;

dr
dt

(1.24 a)
It follows from Eq. 1.24a that if r has components x, y, z, then
_d_r_% (x?,+yﬁ'+ z k )

- 1"_ an

B i
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w A dx dA A ﬂkﬂ ~ dz
ST R I L
dt dt dt dt dt dt

= f’_? + £3+£?{. since 1, J, k are independent of time.
dr dt dr -
= v:f+ vy i+ v, k. where
dx dy dz
v, =, v, =—, v, =~ (1.24 b)
dr dr dt

If we were using coordinates only to write the equations for velocity, we would have to
write three equations, as in Eq. 1.24b. The use of vectors enables us to write a single
equation 1.24 a.

Let us now represant the instantaneous velocities of the particle in passing through the
points A and B of its path (Fig. 1.17). We can see that the velocity at B is different from
that at A, i.e. velocity is changing in magnitude and direction. Thus, the particle
experiences an acceleration. Just as we defined average and instantanecus velocity, we will
now define average and instantaneous acceleration,

If the velocity of the particle changes from v 1o ¥ + Av  within the time interval from
{ lo r + Af, then the average acceleration a_, during this inverval of time is given by

8, = ¥ (1.25)
Once again as As is a scalar quantity the direction of B, 15 along Av. When the interval
of lime Ar decreases, the ralio%‘: approaches a limit. We define instantaneous
acceleration of a particle at a given instant of motion as,

. AY dv
a=]lim —=— - 1.26a
At —+0A! dr ( )

So. acceleration is the derivative of v with respect to time, i.e.

_dv_dr

=4 =dr_2 , and
dv dv dv (1.26 b)
_z b - —Z
=", ap= "2 a= &
Example 6

A wire helix of radius R is oriented vertically along the z-axis. A frictionless bead slides
down along the wire (Fig.1.18). Its posilion vector varies with time as

() = (R cos br2) 1 + (R sin b12) ] ~ :I!— ct? k, where b and ¢ are constants.

Find v () and a (¢}, where v (1) and a {r} are the velocity and acceleration eéxpressed as
funections of r.

. 1
Here x=R cos b1, y =R sin b2, z=—‘2-cr2

We know that
de_dys dyy dzn
vio= y=x 'ttt

= (= 2R sin bi?) T + (2R cos b)) ] — (cnk

and 8 ()= %:(—mlbfﬁ‘cosbr-’—mbsinbﬁ) i + (=4 12 RB? sin bt7 + 2 Rb cos biF) ] — ck -

54Q 10
A particle moves along the curve v = Ax? such that x = Bi, A and B are constants.

a) Express the position veclor of the particle in the form r (f) =d + yf:
dr
b} Calculate the speed |v =1 dr ) of the particle along this path at any instant 1.

Let us apply the concepts that we have developed so far to the case of uniform circular

mation which plays an important role in physics. Unifonm circular motion provides a

good approximation to many diverse phenomena, such as artificial satellites in circular
orbits,designing of roads, motion of electrons in a magnetic field, etc.

Motion

Asl ] k are constant in
magnitude and direction, their
time derivatives are zero.

¥a

A —>

Fig. 1.17
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Concepts in Mechanics

1.4 UNIFORM CIRCULAR MOTION

Let us consider a particle which moves so that it always maintains a constant distance r
from"a certain point-QJ and turns through a constant angle in a fixed time. A portion of its
trajectory is shown dotted in Fig. 1.19. A on x-axis is the position of the particle at time
¢+ = 0. t seconds later it is at P after describing an angle 8 (= ZAQP ). Through O we draw
y-axis perpendicular to x-axis. Let the coordinates of P with respect to the mutually
perpendicular x and y-axes be (x, y). From trigonometry, we know that:

X =rcos 8,

y =rsin@. (1.27 a)

If the angle described per second by the particle be a constant equal to w radians, then
6 = o and Eq. 1.27 a can be written as

X =r cos f,
; (1.27 b)
y =Fr.sin .
 is also known as the angular speed of the particle.
The position vector of the patticle at P is given by r=xi+y ], (1.28)
Of I =rcos cot?+ r sin mri
mdv:;:—rmsinmf:+rmcosmr], (1.292a)
. Iad ~
=vei+vy ],
where v, = — r @ sin wi, vy =0 cos Wi, (1.29 b)
The magniluede of velocily is, therefore,
vo= v vitop?
=r @2 ( sinwf + costwr) =Vrt 0 = ro. (1.29 ¢c)

Now, whalt about its direction? For that, lel us caiculate v. r.
"~ ~ Fal . ~
V.r =(-rosin@ri+rocos ). (rcos @i+ rsin wr §)
= — r2 @sin 0 COS O + Fiwcos oM sin of =0

Since v.r = 0, v is always perpendicular to r. Hence, v is always along the tangent to the
circular path. From Eq. 1.29c we understand that ¥ has a constant magnitude. But it
constantly changes direction as it is along the tangent ai any point, So (he velocity vector
is not constant, i.c. the particle has an acceleration, which we denote by ap. Since,

acceleration = % , we have from Eq. 1.29 b,
apc=—ro coswr § — r o7 sin (nrf
~ . ” (1.30 a)
=— @ (r cos @i+ rsin wij),
So8p=— 7T,
(1.30 b)
" Since v = or from Eq. 1.29¢, we get
TP A
ap =@ =_r = {1.30¢)

yik
N FPxy)
Y
\
\
r \
\
\
o 1
I >
o A x
Fig. 1.19: Uniform
¢lreular malion.
20

Note that the negative sign on the right hand side of Eq. 1.30b indicates that the
acceleration is opposiic to T, i.e. towards the centre. So a panticle moving with uniform
anguiar speed in a circle, experiences an acceleration directed towards the centre, It is
known as the centripetal acceleration.

Example 7 : Satellite in 2 circular cquatorial orbit

Let us calculate the peried of revolution of a satellite moving around (he earth in 2 circular
equatorial orbit (Fig. 1.20). Lex the velocity of the satellite in the orbit be v, and the
radius of the orbit be r. Like any (ree object near the earth’s surface the satellite has an
acceleration towar is the centre of earth (= g”, say), which is the centripetal acceleration. [t

is this acceleration that causes it to follow the circular path. Hence from Eq. 1.30c¢, we
have

sma-

LL= 11 L) M =l

T
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Motion

. _ v
g = __l
r (1.31)
orvi=pg'r,
If the angular speed of the satellite is ¢, we get from Eq. 1.29¢,
w?r=g'r
& . ,
or @="" (1.32)
. T2 r - =
Again the time period T=—= 21 [— i
[ PY
R+h
or T=2n . (133)
8

where R = the radius of the earth, and
h=the height of the satellite above the surface of the earth,

The orbit of the first artificial earth satellite Sputik, was almost circular at a mean height of

1.7 x 10° m above the surface of the earth, where the value of acceleration due (o gravity is
9.26 ms™7, Thus, the time the satellite took to complete one orbit around the eanth was,
1(6.37x 10° + 0.17 x 10%)m

\ 5.26 ) = 528X 10*s=1h 28 min
; 26)ms 2

T=2n

SAQ 11

A Mat horizontal road is being designed for a 60 km h™! speed limit. If the maximum
acceleration of a car travelling on this road is to be 1.5 m s~ at the above speed limit,
what must be the minimum radius of curvature for curves in the road?

You are now familiar with the language for describing motion. You have learnt about
displacement, velocity and acceleration using vectors.

We have already pointed out that the position, velocity and acceleration of a particle can
only be defined with respect to some reference frame, When we are travelling in the same
bus. both of us are at rest with respect to each other. But with respecl to someone standing
on the road both of us are in motion. Again, our velocity measured by the person on the
road and the one measured by a cyclist on the road will be different. Similarly, when we
say that a car is moving at 60 km h™" usually it means 60 km h™! relative to the earth.
But the earth is moving at 30 km s~' relative to the sun. Thus, the car’s speed relative tc
the sun is much greater than 60 km h™'. These examples show that all motion is relative.
Therefore, often we have 1o determine the relative position, velocity and acceleration of a
particle with respect 1o another particle. Let us see how to find out these quantities.

1.5 RELATIVE MOTION __ -

Let rp and T be the position vectors of pa.n'icles I and (), respectively, at any instant of
time, with respect lo a fixed origin O (Fig. 1.21). Fop is the position of P with respect to
{2. We know from the law of addition of vectors, that

ar fop =Tp— Ty (1.34)

The relative velocity vop of £ with respect to @ is obtained by differeutiating Fop with
respect to time, Thus,

or Yor =Yp— vy (1.35)
Similarly, relative acceleration Sop OF P with respei 1o @ is given by.

d [y
Bop== ——£2_“Yo
it d(vgp)_ 4,-.: - 4’: '

or aopza},—ae (1.26)

If vy is conslant then a;, = 0 and 8op = Ap.

Fig.

121 :

r = -
er T~ Fp
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This means that the relative acceleration of P with respect to Q is the same as the
acceleration of P with respect to O, provided O has a constant velocity with respect to 0.

Example 8
Let us consider the practical problem of navigation and avoiding collisions at sea. Imagine
that tfvo ships S| and S, moving with constant velocities are at the positions A and B
shown in Fig. 1.22a at some instant of time. The vectors v, and v, represent their
velocities with respect to the sea. The paths of the ships extended along their directions of
motion from the initial points A and B intersect at point P. Will the ships collide, or will
they pass one another at a distance?

N/

(@ (b)

Fig. 1.22: (a) Path of two ships movilng at constant velocity along courses “that
Interseet; (b} path of S, relatlve 1o S, showing that they do not collide even though
thelr paths cross, ’

The relative velocity of ship S, with respect to ship S, is given from Eq. 1.35 as
Y =V,=V,

v,, is shown in Fig 1.22b. With respect to ship §,, ship 5, follows the straight line along
v,,. It will miss §, by the distance AN. If you have travelled in a ship and experienced an
event of this sort on an open sea with no landmarks in sight, you will know that it is a
curious experience. The observed motion of the other ship seems to be unrelated to the
direction in which it is pointing,.

We will now state the results of Egs. 1.35 and ..36 more generally. Let an object move at
velocity v relative to a frame of reference S”. Il ancther frame of reference §'moves with
velocity V relative 1o S (Fig. 1.23), then the velocity v'of the object with respect 10 the frame
5 is .

vVi=v-V. (1.37

If V is constant, then

a’=a (1.38)

Thus, the acceleration of an objedt is the same in all frames of reference moving at
constant velocity with respect to one another.
From the foregoing discussion we have realised that absolute motion is trivial. One has to

always study the motion of one object with respect 1o another. Let us now summarise
what we have leamt in this unit.

1.6 SUMMARY

@ A body is said to be in mation if its position changes with time. A frame of reference
is required to determine any.kind of variation of position with time.
& Ahy veiior A can e capressed as
A=AA,
where A. is the unit vector in the direction of A. The magnitude of unit vector is
always unity.
@ A one-dimensional vector A along x-axis can be expressed as
-
A=Al
whei_ i is the unit vector along the positive direction of x-axis and A is the
x-component of A.
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® A two-dimensional vector B can be expressed with reference to mutually perpendicnlar

x and y-axes as
Fad -
B=8.i+8,}
where B, and B, are the x and y-components of B.
- Ey o . .
1 and }J are unit vectors along positive x and y-directions. If the angle between B and
x-axis is B then 5
B, =Bcos 9, By:.-Bsi.nB. B= \fo’+ B)_2 , lan@= F‘
X
A three-dimensional vector C can be expressed in terms of components as
c=ci+c,j+C,k,

where C=-"Cf + C§ +Ct.

The direction of C can be specified in terms of Lhe angles a, B, ¥ between C and the
x-, y- and z-axes as,
C,=Ccoso.Cy=CcosB.C,=Ccosy.
The scalar product of Iwo vectors A and B is defined as A.B = AB cos 8,
where 8 is angle between A and B.
The vector product of two vectors A and B is defined to be a vector C such that
C=AxXB=ABsin8C.
The direction of C is oblained from the right-hand rule.
The position vector of a particle having coordinates (x, y, 2) in a given frame of
reference is
r=x+ yf+ zk. X
The instantancous velocily v and instantaneous acceleration a of the particle are

oar ~ -~ ~
v=E=\-J|+vyj+v:k,
dt _dy  _dr
where =2 =t —d,.and
dy dr o ~ a
Aty Ttk 2
dv, d°x dv, d°y dv. d°2
where a.l:'_' = ralt av=—=—2_ -=_=_2
dr dr- ’ dr dt dt dr

® For a panicle executing uniform circular motion, the instantaneous velocily is always

directed along the tangent and has magnitude
v =ri,
where r is the radius of the circle and © is the angular speed of the particle. The

instantaneous acceleralion is directed towards the centre, and has the magnitude
2
L., )
GR = r = r.

Motion is relative. The relative position and velocity of a particle P with respect 10 a
particle { are given as
I‘QP = I'P - rQ.
-VQP = \'P - \"Q.
where rp and r, are the position vectors of £ and { in a given frame of reference. vp
ang vp are the velocities of P and Q in this frame.

1.7 TERMINAL QUESTIONS

Why is the statement *'! am moving™ meaningless_?

A ladder AB of length L rests against a vertica) wall OA (Fig. 1.24). The foot B of
the ladder is pulled away with constant speed v,,. (a) Obtain the position vector of
the midpoint M of the ladder. Show that it describes an arc of a circle of radius £/2
with centre at O. (b) Find the velocity and speed of this point at the instant when B
is at a distance & (< L) from the wall.

Refer ta Fig. 1.25. A uniform magnetic field B exists in a region. Two electrons i
and 2 moving with uniform velocities v, and v, enter into this region: 1 parallel
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and 2 perpendicular to this field. Write down their position vectors r and r, at any
time 1, measured from the instant of their entering the field. Hence, determine the
relative velocity and acceleration of 2 with respect to 1. (Hint: The velocity of the
electron moving parallel to the field remains unaffected. The electron moving

perpendicular to the field executes uniform circular motion in a plane perpendicular
to the field.)

1.8 ANSWERS

SAQs

1. a) The frames of reference can be selected as three-dimensional rectangular Cartesian
coordinate systems with origins at B, A and § together with a zero on the time
scale in each case. The zeros on the time scale could correspond to the instants at
which they hear the repon of the starter’s gun.

b) All of them are correct in their respective frames of reference.
2. a) See Fig. 1.26.

G A R I
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b) r=(7.0i+ 4.2?) m. You musl have noted thal we have taken 4.15m - 4.2m
¢ g tr =(-30+700m=40m. g4, +r, = (0.7 +4.2)m=49m
Thus, p_= Gt e Py =gt Iy

Comment . p =q + r from Eq. '1.8b (i.c. OA = OP + PA, expressed
geometrically). This agrees with the law of vector addition.

d 5s=92m,0=11.5°, 5. =9m, 5y = 1.8m. From Eq. 1.3d, s,=5c0s 8 =9.0m,
s, =5 sin 8 = 1.8m.

Hence, they are in agreemenl.
{i). (iv).
a) See Fig, 1.27a,
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“6-3'MT"=677

b) SecFig. 1.276. RS =d. 4, =-1.d, = 1.4, =0

5. a1 j-llcosgo°—0 Sumla.rly.j‘i k.T=0

b A=4,T+4,5+4,Kk
or Af=A,1.T44,5.7+4,K1
=A, (. ||_1.'_'|‘.T=i.?=0)
Similarly, AJ=4,, AK=4,
6. A.A = AA cos0° = A2
7. I_| x il = 1.1 sin 90° = 1. The direction ofj xhsalongmedsmuonof

advancement of Screw-head when a right-handed screw rotates fmmj towards
i.e.—k. Hence,'j x T=-k. Similarly,

kxj=TFIxk=- TxT=fxj=kxk=0.
8. a) W=Fd d={201T+6k)-@8T+6k)m=127m
W ={G+ 2]+ 3K). 12§ Nm = 12 Nm = 12 joules
b)Torque‘I:--er r-(?—j+'|;)m
—(i—j+k)x(2|+3,|)Nm
—(3k+2k+zj 3l)Nm
—(—3l+23'+5k)Nm
Note that the unit newton metre (Nm) for torque should be left as such and not
wrilten as joules.

¢) Refer to Fig. 1.28. OA represents the velocity of the river. The shortest possible
path is perpendicular to the bank. In order (hat the beat moves along that path the
resultant velocity should be along OC. So the direction of u will be such that the’
resultant of u and v is along OC. Therefore, OC maost be the diagonal of the
parallelogram with v and v as adjacent sides. Now, we have to calculate w and o
in terms of u and v.
Let ZAOB =B . Then from Eq.1.22 d, we get

i 51N
tan ZAOC = v + u cosp
Since ZAOC = %0° , the denominator of above is zero. Orcos f§ =

Bur o+ p = i80C".
- cos & = cos(180° —P) ;—cosﬂ:f.ora =cos~! (%)
Again, from Eq. 1.22 a,

w=Yu? + v? + 2uv cosp

=Ju2 + v +2uv(—i)
u
=Vuz - 2

An alternative way of working out the problem will be to apply Pythagoras’
theorem in the right-angled wiangle OBC, i.e.

w=0C= VOB - BC? = Nu? -v*

_BC _ ¥ —cos-! (Y
andcos o= g = - Of 0=COSs () -
9. Average velocily beiween f; = lsand g =2 sns—rzﬁ

_(49x 4-49x Dm =14.7 m s~! and that between

('? - T‘. [
f3=3sand 1y = 4s P i I

10.3) r (9 =Br‘l\+AB2rzf

b) v= ﬁ-‘ {r®)} = Bt + 2482 ],

Motion
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We have learnt from Sec. 1.5 that the terms *rest’ and ‘motion’ are relative, So,
whenever I say that ‘1 am moving' or ‘I am at rest’, | am supposed (10 mention about
the observer with respect to whom 1 am talking about my state. That is why the
statement “I am moving™ is meaningless.

Refer to Fig. 1.29. This is a modified form of Fig. 1.24 where Lhe Cartesian x and
y-axes are along OB and OA, respectively. (a) Let r be the position vector of the
midpoint M of AB. Let the coordinates of B and A be (x, 0) and (0, y), respectively,
at any time {.

OB =1, OA = yj. Now,OA + AB=0OB,orAB=0B-OA =xi—y]
andr=OM =0A + AM=0A + L AB =)]+ L (d - D = LA + 4.

The positicn vector of M isr = ]5 {x1 + y]), where x2 + y2 = L? = a constant equal
to the square of the length of the ladder.

Now, using Eq. 1.3b, we get r=L/2 ("." x* + y2 = L?). This means that the point M
is always at a distance L/2 from Q. In other words, it describes a circle of radius L/2
with O as centre.

_d_"__ dr & dy
(b) The velocity of M = A dlj).

Now & _ . constant = v (given). Again as x2 + y2 = L2, we have

dt
dy _ dy__ZX
X dr+ydr Qor i yv"'
When B is at a distance b from O, we getx=0B=bandy= QA =VLZ = b .
bv,

. dy
Correspondingly, & =~ —2—
4 rp
So. the velocity of M at this instant is given by
by, ~ v, rn h -
L 1 o \*_VYa? >
V=3V -3 _)J:-—-[[— J]
SR \fL— 2 N
[ iy Ly,
]'"-_:
VL

~
1

And the speed = vy, =

Refer to Fig. 1.30. We first select a three-dimensional Carjesian coordinate system,
Its origin is at the centre of the circle along which electron 2 executes uniform
circular motion. Its z-axis is 1aken along the direction of the magnetic field, such
that electron | moves along it. Let the position vectors of 1 and 2 at any lime ¢ be
r, and r,. respectively. Let the uniform angular speed of 2 be « and the radius of the
circle a. Then,

~ a ~
F,o=V tk, r1=a[cosmr|+smmu )

The relative velocity of 2 with rcspect to 1 is given by

] d

= = acusmn +:~.lllu.ujj—\:n;

a (ra=F)= d fat

or v, =—utd {sin w/ | —cos W ! _| )—v k and the acceleration of 2
dv ..

with respectic | is given by a,, = ar
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UNIT 2 FORCE AND MOMENTUM

Structure

2.1 Introduction
Objectives

2.2 Causes of Motion
Newton’s Laws of Motion
Applications of Mewion's Laws
Equilibrium of Forces

2.3 Linear Momentum
Conservation of Lincar Momentum
Impulse
Motion with Variable Mass

24 Summary

2.5 Terminal Questions

2.6 Answers

2.1 INTRODUCTION

In Unit 1, we leamt how to describe the motion of a particle in terms of displacement,
velocity and acceleration. We did not ask what caused the motion, In this unit we shall study
the factors arfecting motion. For this we shall recall Newion’s laws of motion and apply
them to a varicty of situations. Using Newton's laws we shail also establish the condition for
a panticle’s equilibrium, when it is acted on by several coplanar forces.

We will use the familiar concepl of linear momentum to study the motion of systanls having
more than one particle. In this process we shall establish the principle of conservation of
linear momentum and apply it to solve problems in which a knowledge of the forces acting
on the system is not needed. Finally, we shall recall the concept of impulse and use it to
study the motion of variable mass systems. Any change of motion of an object is
accompanied by performance of work and expenditure of energy. Therefore, in the next unit
we shall study the concepts of work and energy.

Objectives

After studying this unit you should be able to-:

® apply Newton's laws of motion .

® solve problems using conditions for equilibrivm of forces

© apply the law of conservation of linear momentum )
® solve problems concering impulse and variable mass systents.

2.2 CAUSES OF MOTION

What makes things move? An answer (o this question was suggested by Aristotle, way back
in the fourth century B.C. For nearly 2,000 years following the work of Aristotle, most
people believed in his answer, that a force— a push or a pull — was necded 1o keep
something moving. And the motion ceased when the force was removed. This idea made a
lot of common sense, When an ox stopped pulling an ox-cart, the cart quickly came to a stop.,

But these ideas were first critically examined by Galileo who carried out a series of
experimants tc show ihat no cause or force is needed to maintain the motion of an object.
Study Fig. 2.1 carefully to understand this.

What do you think actually happens in the case of (¢)?
Fig. 2.1: (a) The bal rolling down

The ball does stop on the flat surface after some time. But it is seen that the smoother the & frictionless incline wil] rlae
surface, the longer it wmkes for the bail 1o cone to rest. Ivioreover, if the surface is reasonably  8pproximately to its starting
smooth and flat, the ball moves more or less in a straight line. So if the element of friction helght on & second frictionless

can be completely removed, the ball weuld move indefinitely with a constant velocity as it Incline; (b) making the second

. . . L inclloe more grad
would never be able to reach the starting height. Galileo concluded that any object in In the ball’s ,_,g.,u;ﬁ:]:r::i:zl .

motion, if not obstructed will continue to maove with a constant speed along a horizontal line,  the herizontal direction to attalp
So, there would be no change in the motion of an object, unless an external agentacted on it the same belght; (c) what bappens
to cause the change, : In this case? _ - 27
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Fig. 2.2: (8) The observer O and
the object P are 81 rest with
respect to each other; (5) 0’ ls
accelerating with respect i0 0.

That was Galileo’s version of inertia. Inertia resists changes, not only from the state of rest,
but also from motion with a constant speed along a straight line. So the interest shifted from
the causes of motion to the causes for changes in motion.

Galileo's work set the stage for centuries of progress in mechanics, beginning with the
achievements of Isaac Newton. Newton's laws of motion are the basis of mechanics. We
will now briefly discuss these laws.

2.2.1 Newton’s Laws of Motion

Galileo's version of inertia was formalised by Newton in a form that has come to be known
as Newton's first law of motion.

Newton’s first law of motion '
Stated in Newton's words, the first law of motion is:

“Every body continues in its state of rest or of uniform motion in a straight line
unless it is compelled to change that state by forces impressed upon it. !

Newton’s first law is also known as law of inertia and the motion of a body not subject to
the action of other forces is said to be inertial motion. With the help of this law we can
define force as an external cause which changes or tends to change the state of rest or of
uniform motion of a body.

Have you noted that the first law does not tell you anything about the observer? But we
know from Sec. 1.5 that the description of motion depends very much on the observer. So it
would be worthwhile to know: For what kind of observer does Newton's first law of motion
hold?

Suppose that an object P is at rest with respect to an observer O who is also at rest

(Fig. 2.2a). Let another observer O’ be accelerating with respeci to 0. P will appear to O’ 1o
be accelerating in a direction opposite to the acceleration of ¢ (Fig. 2.2b). According to
Newton's first law the cause of the acccleration is some force. So O will infer that £ is
being acted upon by a force. But O knows that no force is acting on P. It only appears to be
accelerated to (. Hence, the first law does not hold good for 0. It holds good for O.

An observer like © who is at rest or is moving with a constant velocity is called an inertial
observer and the one like ¢, 2 non-inertial observer.

. But how do we know whether dn observer is inertial or not. For this, we need 1o measure the

observer’s velocity with respect to some standard. It is a common practice o consider the
earth as a standard. Now the place where one is performing one's experiment has an
acceleration (as discussed in Sec. 1.5) towards the polar axis due to the daily rotation of the
earth. Again the centre of 1he earth has an acceleration towards the sun owing to its yearly
motion around the sun. The sun also has an acceleration towards the centre of the Galaxy,
and so on, Hence, the search for an absolute inertial frame is unending,.

So we modify the definition of an inertial observer. We say fwo observers are inertial with
respect to one another when they are either at rest or in uniform motion with respect (o one
another. If an observer has an acceleration with respect to another then they are non-
inertial with respect 1o one another, Thus, a car moving with a constant velocity and a man

- standing on a road are inertial with respect to one another while a car in the process of

gathering speed, and the man. are non-inertial with respect to each other.

The first law tells you how to detect the presence or absence of force on a body. In a sense,
it tells you what a force does — it produces acceleration (cither positive or negative) in a
body. But the first iaw does not give a quantitative, measurable definition of force. This is
what the second law does.

Newton's second law of motion
If you are struck by a very fast moving cricket ball you get injured but if you are hit by a
flower moving with the same velecity as that of the ball you do not at alt feel perturbed.
However, if you are struck by a slower ball the injucy is less senous. This indicales that any
kind of impact made by an object depends on two things — its mass and velocity. Hence,
Newton felt the necessity of defining the product of mass and velocity which later came 10
be known as linear momentum. Mathematically speaking, linear momentum

p=mv. .1
Thus, p is a vector quantity in the direction of velocity. The introduction of the above

e -
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quantity paved the way for stating the second law, which in the words of Newton is a5
follows: '
‘The change of motion of an object is proportional to the force impressed; and is
made in the direction of the straight line in which the force is impressed.”’

By “change of motion”, Newton meant the rate of change of momentum with time. So
mathematically we have

d
FGE(P).

d . .
orF= k;(p). . 2.2)
where F is the impressed-force and k is a constant of proportionality. The differential
operator % indicates the rate of change with time. Now, if the mass of the body remains

constant (i.e. neither the body is gaining in mass like a conveyer belt nor is it disintegrating
like a rocket), then )

dp_d ._ dv_
dt  di (mv) = m ar

where a = %1 = the acceleration of the body. Thus, from Eq. 2,2, we get
!

F=kma,and (2.3a)

F=kma, ’ (2.3b)
We had seen carlier that the need for a second law was felt in order to provide a quantitative
definition of force. So something must be done with the constant . We have realised that
the task of a force F acting on a body of mass m is to produce in it an acceleration a. Hence,
anything appearing in the expression for force other than m and a must be a pure number,
1.e. k is 2 pure number. So we can afford to make a choice for its numerica value,

We define unit force as one which produces unit acceleration in its direction when it acts on
a unit mass. So, we obtain from Eq. 2.3b that 1 = k. 1.} or k= |. Thus, Egs. 2.2 and 2.3 take
the form :

= Q and (2.4a)
dt '
F = ma, for constant mass, (2.4b)

Now we know from Sec. 1.3 that if the position vector of a particle.is r at a time r then its
velocity v and acceleration a are given by Eqs, !.24a and 1.26a. Substituting for a and v in
Eq. 2.4, we get ’

dv d fdr d'r - .
) F = m?f = m; (Z) or F= m —=, (25)

Eq. 2.5 is a second order differential equation in r. If we know the force F acting on a body
of mass m, we can integrate Eq. 2.5 to determine r as a function of r. The function r 3]
would give us the path of the particle. Since Eq. 2.5 is of second order we shall come across
two constants of integration. So we reguire two initial conditions to work out a solution of
this equation. Conversely, if we know the path or trajectory of an accelerating particle, we
can use Eq. 2.5 1o determine the force acting on the body. Eq. 2.5 also enabies us to
determine unknown masses from measured forces and accelerations.

So far, we have considered only one force acting on the body. But often several forces act on
the samie body. For example, the force of gravity, the force of air on the wings and body of
the plane and the force associated with engine thrust act on a flying jet (Fig. 2.3).

#E__.‘Ll\ <

- jp—F,

f

Fy

Fig- 2.3: Forves on a jet: F_, the thrust of the engine, F,. the force of the air provides both lift and drag, F'
the force of gravity.
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In such cases, we add the individual forces vectorially, to find the net force acting on the
object. The object’s mass and acceleration are related to this net force by Newton's second
law. You may now like to apply Newton.’s second law 1o a simple situation.

SAQ1

Astronauts on the Skylab mission of the 19703 found their masses by using a chair on which
a known force was exerted by a spring. With an astronaut strapped in the chair, the 15 kg

chair underwent-an acceleration of 2.04 x 1072 nt s~2

What was the astronaut’s mass?

Newton's third law of motion

when the spring force was 2.07 N.

So far we have been trying to understand how and why a smgle body moves. We have
identified force as the cause of change in the motion of a body. But how does one exert a
force on this body? Inevitably, there is an agent that makes this possible. Very often, your
hands or feet are the agents. In football, your feet bring the ball into motion. Thus, forces
arise from interactions between systems. This fact is made clear in Newton’s third law of

motion. To put it in his own words:

“To every aclion there is an.equal and opposite reaction.”

Here the words ‘action’ and’ ‘reaction’ mean forces as defined by the first and second laws.
If a body A exerts a force F,, on a body B, then the body B in tumn exerts a force F,, on A,

such that
F_=-F

AR [

So,wehave F,, +F, =0,

(2.6)

Notice that Newton’s third law deals with rwo forces, each acling on a different body. You

may now like to workK out an SAQ based on the third law,

SAQ2

a) When a footballer kicks the ball, the ball and the man experience forces of the same
magnitude but in opposite directions according (o the third law. The ball moves but the

man does not move. Why?

b} The earth attracts an apple with a force of nagnitude F. What is the magnitude of the
force with which the apple attracts the earth? The apple moves lowards the earth, Why

does not the reverse happen?

Newton's laws of motion give us the means o understand most aspects of moticn. Let us
now apply them to a variety of physical situations involving objects in motion.

2.2.2 Applications of Newton’s Laws

To apply Newton's laws, we must identify the body whose motion interests us. Then we
should identify all the forces acting oz the body, draw them on a vecter diagram and find
the net force acting on the body. Newten's second law can then be used to determine the
body's acceleration. We will now use this basic method to solve a few examples.,

Example 1: Projectile Motion

The motion of a shot fired by a gun and that of a ball thrown by a fieldsman to another are
all examples of projectiles. Lzt us consider such a projectile of mass m (Fig. 2.4). Itis

thrown from a point O with a velocity v, along OA making an angle 8 with the horizontal.
Letthe particle be at a point P (OP =r) at time ¢. If we neglect air resistance, then the only
force acting on the particle is a constant force, F = mg, due (o gravily. Let us determine the

paniclt_e's path. Eq. 2.5 gives

dir -
HIF:HIE .
dr _
or % =g,

i g
mLmJ i

On integrating with respect 1o ¢ we get

dr
—=gr+ A,
dt &

2.0

(2.88)
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where A is a constant of integration. As the other twio factors in Eq. 2.8a are vectors having Force and Momentum
dimensions of vclocity. A must also be a vector liaving the dimension of velocity. To

dr
) detemuneA,weusemeuumlconmumtlmnloclty =—=vowhenr 0.
So A =v, Hence,

%wﬂo. (2.8b)

On integrating with respect to £ again, we get
T=vgl + -;- gl‘z +B, (2.9)
where B, like A in Eg. Z.Ba.'isaconslnntvecwrofintcyatim,butithasmedimsion of

length. To determine B, we need another initial condition. Leétting r =0 at ¢ =0, we get B =0,
Hence,

r=vpt+1grt (2.10)
We have essentially used two initial conditions: % =vogandr=0att=0, Since v, is

along OA and ¢ 1s scalar. we undcrsmnd that v/ is along OA. Again g is directed vertically
downwards and tisa scalar, so 1 gf is directed vertically downwards, i.e, along AP
(Fig. 2.4).

We use the law of vector addition to get _

OP = 0A + AP. 2.1
Thus, we get the location of the particle. As time advances OA is lengthened and so is AP,
and we get the Jocation of the particle by adding QA and AP.

Example 2: Friction
A heavy-block is kept on a rough floor. You apply a force by pulling on a rope atiached to it,
but it still does not move. Isita contradlcuon of Newion's laws? Discuss the motion of the

block. )

Refer to Fig. 2.5a. Let us first find out ail the forces that act on the heavy block. There is a N

force of gravity mg acting downwards. The block exerts this force on the floor. Therefore, F{|'F, F ____l:f_
the floor exerts an equal and opposite normal force of reaction N on the block. N is normal A A@

to the surface of the floor. The third force results from your pull on the rope. Let F be the mgl

force that you exert on the rope. The rope cxerts a force of reaction F/ on you and a force of
action, say F, on the block. Let F; be the force that the block exerts on the rope. Then

according to Newlon's third law of motion (@)
F.=-F: F, = -F,. 2.12) .

Let us asstme that the rope is massless. Then, from Newton's second law, the net force 4"

acting on the rope is zero and we have, “dee ‘;FI
F +F, =9,
or F = —F, e’
orF2=F|. frem Eq. 2.12. (b}

So a massless rope transmits the force you exert on it to the block without any change. The Fig. 25

three forces mg, N and F, acting on the block do not add up 1o zero. N and mg cancel each
other, leaving a net force F shown in Fig. 2.5b. Since the block remains at rest. the net force
acting &a it musi be zero ac‘.ordmg 10 the finsd law. There musi, therefore, be another force
whrch acts on the block. This force must also be honzontal directed opposite to F and
cqual in-magniivds. Actully, Uicre is such a fuiee wivich is ihe comuact force oenvcen e
floor and the block, known as (he force of friciion, It is shown in Fig. 2.5b by a dotted linc.

Friction is a force that acts between two surfaces to oppose their relative motion {see Fig.
2.6}. The force of static friction f, acts between surfaces at rest with respect to each other.
The maximum force of static friction f_,is the same as the smallest force necessary to start
motion. Once motion has started, the fnn:e of friction usually decreases, so that a smaller
force is required to maintain a uniform motion.

The force acting between surfaces in relative motion is called the force of kinetic friction
f,. f,is less than f_, The ratic of the magnitude of maximum force of static friction f_ to the 3

ErE=i=13 0 hi~ ptan
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Fig. 2.6: Friction acts belween two
surfaces Lo oppose thelir relative
mation. Even the smoolhest
surface is actually rough on 2
microscopic scale. {a) When two
surfaces are in contact, then
irregularities adhere becausce of
electrical farces between Lhe
molecules. This glvesrisc to g
force that opposes thelir relative
motlon; (b) when the normal force
between the surfaces increases,
the Irregularities are crushed
together and the conlact area
between Lhe surfaces increases.
This Inervases the force of
friction.
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magnitude of normal force of reaction N between the two surfaces is called the coefficient of
‘static friction p , i.e.

L=
Similarly,
A=RN,

where p, is the coefficient of kinetic friction.

. The discussion on friction brings us to an important class of problems in which an object

undergoes motion against resistive forces. Another example of resistive force is air
resistance to projectile motion. The motion of raindrops, or cars is also affected by air
resistance. So let us discuss an example on motion where resistive forces are present.

Example 3: Motion against resistive forces
Suppose an object moves under the influence of a constant force F,. with a resistive force R
opposing its motion. Let R always act in a direction opposite to the object’s instantaneous
velocity. In general the resistive force is a function of speed, so that Newton’s second law
becomes: dv

Fo_R(")z’"E (2.13)
The resistive force of dry friction (Fig. 2.7a) if almost independent of v, so that

R(v) =FJ= constant.

In this case Eq. 2.13 reduces to the simple case of acceleration under a constant net force.

3 F 4 bog
R{v)
Foo v e __
F / Fym
: ’
F :
1 £
1
1
. | . .
O v O m © O T
(a) (b} (c)

Fig. 2.7: (o) Reslstive force for an object resisted by dry frictlon and (b) by Muld fricilan; (¢) terminal speed v,
of an object in a Auld resistive medlum. F /= is the slope of the curve at Q.

In the case of air resisiance or fluid resistance, R{v) increases with v (Fig. 2.7b). It is usually
described by the relation

R(¥)=Av+ BV (2.14)

For the sake of simplicity, let us consider only one-dimensional motion under the resistive
force of Eq. 2.14. So we can use the scalar form of Eq. 2.13, which is

m=—=F, - Av— Bv*. : . (2.15)

Eqg. 2.15 is not very easy to solve and we do not inlend to go into its formal mathematical
solution. Let us, howeéver, consider some gualitative features of the possible solution.

Lkt the object starl moving under a constant force £ 115 initial acceleration will have almast

a constant value - | since v is.very small, Thus, v will be a linear function of 1 (Fig. 2.7 ¢},

As v increases, Rﬂ'} will increase and the net driving force is reduced to a value below F,

giving'a steadily decreasing slope in the graph of v(r). When R(v) approaches £, the net

force acting on the body tends to be zero. Then the object’s velocity acquires a limiting
_constant magnitude v_. The value of v_is the positive solution of the quadratic equation
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BV +Av—F =0.
In such a situation, the body moves with zero acceleration under zero net force. [t is not the
unaccelerated motion of objects moving under no force at ail. So every time we see a car
moving along a straight road al a steady speed, a jet plane flying through the air at a constant
speed, or raindrops falling with a uniform terminal velocity, we see bodies moving under
zero net force. Their motion at'a constant speed does nof mean that no force is acting on
them. Now you may like to work out an SAQ based on this concept.

"SAQ 3
A box of mass m is being pulled across a rough floor by means of a massless rope that
makes an angle 8 with the horizontal (Fig, 2.8). The coefficient of kinetic friction between
the box and the floor is p,. What is the tensiob in the rope when the box moves at a constant.
velocity?

One simple but important application of Newlon's laws is the study of bodies in equilibrum,
A large number of situations may be reduced to problems conceming the equilibrium of
forces on a parlicle. For example, the construction of buildings and suspension bridges,
design of aircrafts and ships, loading or unloading aperations, involve forces in equilibrium.
So let us now study equilibrium of forces acting on a particle.

2.2.3 Equilibrium of Forces

We say that @ particle is in equilibriunt, when the resultant of all e forces acting on it is
zero. It then follows from Newton's first law of motion that a particle in equilibrium is either
At rest or is moving in a straight line with constant speed, It is found that for a large number
of problems, we have to deal with equilibrium of forces lying in a plane. Therefore, we shall
restrict our discussion to the case when a particle is in equilibrium under the influence of a
number of coplanar forces, F, F, F, . ..... . The required condition is given by

F.+F,+F +...=0. (2.16a)

Since the forces are coplanar, we can resolve them along two mutually perpendicular
directions of x and y-axes (Fig. 2.9), O being the particle. So Eq. 2.16a can be rewritten as

(FI+ AN+ RI+ R += 0

or (F, +F, +o0t 4 (F, + F:; +)] =0,

or F +F, +..=0,

and F, +F, +...=0. (2.16b)
Eqgs. 2.16b can be expressed in a cencise form as

IF =0, ZF =0 {2.16¢)

where E denotes summation of the v- or v-components of the forces. We shall now apply Eq.
2.16¢ to work out an example.

Example 4

A paricle of mass s is hung by two light strings as shown in Fig. 2.10a. The ends A and B
are held by hands. The strings OA and OB muke angles 8 with the vertical. Find the values
of Tand T’ in terms of n1 and 8,

Through O, we consider two mutually perpendicular directions of x and y-axes. the latter
being along the vertical.

From Eq. 2.16c¢, we have

~Tcos(90°-8)+ T "cos (90°-9)=0, 217
and TeosB 4T 'coxA—mg=0 (2.18)

Hence, from Eq. 2.17, we get
T '=T.(:820.
Thus, from Eq. 2,18, we have

2T cos 8 =mg,
or T=T'=_"T8_ ' (2.19)
2cos@

If 8 is increased, cos O will decrease, thereby increasing the tension. This may lead to the

Force and Momentum
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breaking of the string. It is for this reason that the main cable supporting the suspension of a
bridge must be hung with a substantial curvature as shown in Fig. 2.10b. If the cable were
stretched straight across, the tension would be so large that it may break.

Now that you have studied equilibrium of forces. you can work out the following SAQ.

SAQ4

A connection used for joining different parts of a machine is maintained in equilibrium by
applying two forces P and Q of magnitude P = 3000 N and @ = 4000 N as shown in Fig,.
2.11. Determine the tension in rods A and B.

/e have applied Newton’s laws to a single particle or a single body which could be

1s a parlicle. We will now exlend our study to the motion of a system of particles.
imple of such a system is the sun and the planets. These bodies are so far apart

2d to their diameters that logether they can be trealed as a system of particles. We

t linear momentum (recall Eq- 2.1) plays a vital role in describing the motion of such
. Itis also significant because of the principle of conservation of linear momentum.

s now study linear momentum in some detail,

2.3 LINEAR MOMENTUM

Let us first study a system of two inleracting particles ‘1’ and ‘2" having masses 2, and m,
(Fig. 2.12). Let p, and p, be their linear momenta. The tolal linear momentum p of this
system is simply the vector sum of the linear momenta of these two particles.

P=p, +P {2.20)
From Newton's second law, the rate of change of p, is the vecior sum of all the forces acling
on I, i.e. the total extemal force Fn on it and the intemal lorce le due 1o 2:

dp
F, +f, =—1L.
a Ty & (2.21a)
Similarly, for particle 2:
Fovfy =22 221b)
dt

From Newton’s third law, we know that f,, =—f, . Therefore, on adding Eqs. 2.21a and
2.21b, we gel

F, +F, = 4P, 4P.  which may be written as
i " dr dr

F, = -{?—{pl + P, ), where Ft is the net extemal force on the system. Therefore, from Eq. 2.20,
t

E, dp (2.22)
dt
Thus, in a system of inleracting particles, it is the net external force which produces
acceleration and not the internal forces. Now, we shall see how Eq. 2.22 leads to the
principle of conservation of linear momentumn.

2.3.1 Conservation of Linear Momentum
In the special case when the net extemnal force F, is zero, Eq. 2.22 gives

2 _y, (2.23)
dt

s0 that p = p, + p, = a constant vector.

THils 1a Gig prindipie of Culdsivallon of lki€ar momeniunt f0F & iworpaiicle sysien, 1ids
equaliy valid for a system of any number of panicles. Its formal proof for a many-particle
system will be given in Unit 7 of Block 2. [t states that:

“If the net external force acting on a system is zero, then iis roral linear momentum
is conserved.”

Let us now apply this principle.

Example 5 )
A vessel at rest explodes, breaking into three pieces. Two pieces having equal mass fly off
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perpendicular to one another with the same speed of 30 ms™. Show that immediately after
the explosion the third piece moves in the plane of the other two pieces. If the third piece has
three times the mass of either of the other piece, what is the magnitude of its velocity
immediately after the explosion? '

The process is explained in the schematic diagram (Fig. 2.13). The vessel was at rest prior to
the explosion. So its linear momentum was zero. Since no net external force acts on the
system, its total linear momentum is conserved. Therefore, the final linear momentum is also
zero, i.e. : '

p] + Pz + p; = 0- (2243)
orp, +p,= - P;- (2.24b)

(p, + p;)} lies in the plane contained by p, and p,. So in accordance with Eq. 2.24b, —p, must
also lie in that plane. Hence, p, lies in the same plane as P, and p,. Now, from Eqg. 2,24b,

®,+p) - (P, +p) =Py . -p),
or pf + pl +2p;-p,=p3
Butp, - p, =0 (.. p, is perpendiculier to B,
So, pi=pf +p3. (2.24¢)
or (3m v)2 = (mu)® + (mu)?,
or 9m%y? = 2mi?, orv = Tzu.
According to the problem & =30 ms™, .. v= 102 ms™

There is another method of finding the magnitude of the velocity, We can express Eq. 2.24b
in tlerms of the components of p,, p, and p, in two mutually perpendicular directions of x
and y-axes. Let p, be along x-axis, p,along y-axis and let p, make an angle 8 with x-axis.
Then Eq. 2.24b gives

Pl?"' pzjz—(pj cos@i + Py 5in6j). (2.25a)
This equation is satisfied iff (see Eq, 1.6)
. =Pyc0s8=p, -p sinB=p, {2.25b)

or pi = pi + p?, which is the same as Eq. 2.24c.

SAQS
Find the direction of v in Examplc 5

From the above example and the way we obtained the principle of conservation of
momentum, it may appear that the principle is limited in its application. This is because we
have assumed that no net external lorce acts on the system of particles. However, the scope
of the principle is much broader.

There are many cases in which an exiemal force, such as gravily, is very weak compared to
the iniemal forces. The explosion of a rocket in mid air is an example. Since the explosion
lasts for a very brief lime, the external force can be neglected in this case. In examples of
this type, linear momentum is conserved to a very good approximation.

Again, if a force is applied {0 a sysiem by an external agen, then the system exerts an cqual
and opposite force on the agent. Now if we consider (he agent and the system to be a part of
anew, larger system, then the momentum of this new syslem is conse-ved. Since there is no
larger system conlaining the universe, its 101al linear momentum is conserved.

We have seen thai whenever we have a system of particles on which no net external force

acts, we can apply the law of conservation of lincar momentum 1o analyse their motion. In
1&<1, the advaiiage is tiwi this iaw cnabics us 1o describe their motion without knowing the
details of the forces involved. Let us now see what happens to cach individual particle in the
system. In such a case. the particle experiences a net force, and its linear momentum
changes. This change dapends en the magnitude of the foree and also ihe time for which it

- acts. Further, the force itself may vary with time. Let us now study the relationship of force,
its duration and the resulting change in momentum.

2.3.2 Impulse

In cricket, when a batsman strikes a ball with his bat, the bat is in contact with the ball for a
very short but finite time. At the 1wo instams, when the ball is just about to make contact

‘r 30ms-1

Flg. 2.13
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Fig. 2.14
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O 10ms!

with the bat and when it just leaves the bat, it experiences no force. In between, it
experiences a large varying force. The variation of the magnitude of such a force F(f) can be
as shown in Fig.2.14, We generally assume that the force has a constant direction. We can
find the change in the linear momentum of an object on which such a force acts by
integrating Eq. 2.4a over the time interval from ¢, to £,

!z fz dp

[ Feoar = | —-di = p(t) - (1) = AP (2.26)

t

1 H

The integral of force over time is called the impulse of the force and is given by

f2
= For. @27
L
Thus, according to Eq.2.26, impulse of a force is equal 10 the change in linear momentem. If
F acts during a time interval Ar but is variable, then to calculate impulse we would need to
know the function ¥(¢) explicitly. However, this is usually not known. A way out is to define
the average force F by the equation

f2
= 1
F= EJ F(r)de, where Ar =4, ~1,. (2.28)

From Eqs. 2.27 and 2.28, we get
J=FaAr=Ap. (2.29)

There are many examples which illustrate the relationship between the average force, its

duration and change of linear momentum. A tennis player hits the ball while serving with a
greal force to impart linear momentum to the ball. To impart maximum possible momentum,

the player ‘Follows through’ with the serve. This action prolongs the time of contact between
the ball and the racquet. Therefore. to bring about the maximum possible change in the
linear momentum, we should apply as large a force as possible over as long a time interval
as possible. You may now like 1o apply these idegs to solve a problem.

SAQ 6

a) A ball of mass 0.25 kg moving horizontally wur « velocity 20 m s ' is struck by a
bat. The duration of contact is 10 - 5. Afier leaving the bat. the speed of the hall is
40 m s~ in a direction epposile 1o 1ls original direction of motion. Calculate the average
force exerted by the bart,

b)Y Give an example in which & weak force acts for a long time o penerate a substantial

impulse.
So far we have deall with examples which do not involve variation of mass of objects in

motion. We shall now take up such cases and apply 1he concepts of impulse and momentum,

2.3.3 Motion with Variable Mass

If the mass of a system varies with time, we can express Newien's second law of motion as

podp _dlmvy _ dv o dm (2.30)
dr dt dr dr
Under the special case when v is constant, Eq. 2.30 becomes
F=vi (2.31)
dr

Let us study an example of this special type.

Example 6

Sand falls on to a conveyer belt B (Fig 2, 15)-at the constant rate of 0.2 kg s7'. Find the torce

required (o maintain a constanl velocity of 10 m 5™ of the belt.

Here. we shalt apply Eg. 2.31, a5 veloeity remains constant. Since the mass s increasing. dnt
i

is positive. The direction of F, therefore, is same as that of v, L.e. the direction of motion of

the conveyer belt.
Thus, using Eq. 2.31, we get
F=(10ms"x(@02kgs=2kgms =2N,

Another cxample of a varying mass system is the rocket. In a rocket (Fig. 2.16) a stream of

Eei= T e e
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gas produced at a very high temperature and pressure escapes at a very high velocity through
an exhaust nozzle. Thus, the rocket loses mass and ;ﬂ is negative. So the main body of the

t
rocket experiences a huge force in a direction opposite to that of the exhaust causing it to
move. This is a very simplified way of dealing with the motion of a rocket. We shall next
analyse the motion of a rocket with a little more rigour using the idea of impulse.

Motion of a rocket

Let us assume that the rocket has a toial mass M al a time ¢. It moves with a velocity v and
ejects a mass AM during a time interval Ar. The situation is explained schematically in
Figs. 2.17aand 2.17b.

At time ¢ the total initial momentum of the system = Mv (Fig. 2.17a).

Attime ¢+ Af the total final momentum of the systemn =(M — AM ) (v + AV + (AM) 1
{Fig. 2.17b).

Notice that we have used the positive sign for u because the total final momentum of the
system in Fig. 2.17b is a vector sum and not the difference of the momenta of M and
(M — AM). Let us now apply Eq. 2.29. If we take the vertically upward direction as positive,
the impulse is —Mg Ar and is cqual 1o the change in linear momentum.-
So, Mg Ar=(M —AM) (v + AV} + (AMu — Mv

=M(AV) + AM(u—v - Av)

We may use Eq. 1.35 to stmplify the above relation:

-g= E + E? U, Where u,; = u—(v+ Av)is the relative velocity of the

exhaust with respect to the rocket.
Now, in the limit Ar — 0, we have

“B= - —u 232
EE M A (2.32)
The negative sign on the right-hand side of Eq. 2.32 appears as
lim ﬂ = —iﬁi, because M decreases with ;.
a—0 Ay dt d .
So, when we apply Eq. 2.32 in mumncrical problems we just replace 22 by its magnitude.
' dr
On integrating Eq. 2.32 with respect 1o 7, we get
L v Mg
I —dr = —gt +u,, —_
I 1] dr M

A,
where M, is the initial mass of the rocket and M is its fmass at time £ Now, il v, is the
initial velocity, then we get
M
Y- v.rg = Uy In M" - g"- . (2.33)

]
We shail illustrate Eq. 2.33 with the help of an example.

Example 7

The stages of a two-stage rocket separalely have masses 100 kg and 10 kg and contain
800 kg and 90 kg of fuel, respectively. What is the final velocity that can be achieved with
an exhaust velocily of 1.5 km s~' relative (o the rocket? (Neglect any effect of gravity).

Since we are neglecting gravity Eq. 2.33 reduces to
M

[
i,

Y—v, =y, n. (2.34)

Now, let the unit vector along the verticaily upward direction be p . S0, Eq. 2.34 can be
written as

. . ) M )
PR == -, M in ;{‘" wherew , = —w,; R, ag the relative velocity of the
Fh
exhaust points vertically downward,
: M
of V=1y = —p . Iln— (2.34a)
{0 relf ,l‘”'“
For our problem, :

u,=15kms".
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The final result of Example 7 has 1o
be rounded off to two significant
digits. Here we have a spec:al case
as the digit o be discarded is 5. By
convention, we have rounded off to
the nearest even number.
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For Lhe first stage v, =0 _
= (800+90+ 100 + 10) kg = 1000 kg
M (90+ 10 + 100) kg = 200 kg, as the 800 kg fuel gets bumt in the first stage.
Hence, from Eq. 2.34a, we get

v.=—(L Skms")(ln—%oﬂ)

1000
=(-1.5kms") (In2 -1n 10)
=1.5x 1.6 kms"
=2.4kms.

Note that the above will be the initial velocity for the second stage. Also note that at the
beginning of the second stage there occurs another drop in mass to the extent of the mass of
the first stage (i.e. 100 kg).
For the second stage

v,=24kms"

M, =(90 + 10) kg = 100 kg, M = 10 kg.

10 -1
=|2.4—15 In—— (kms
y [ nm]

=(24+15x23)kms'=585kms' =58 kms™.

Let us now follow up this example with an SAQ.

SAQ7
Find the final veloclty of the rocket in Example 7 taking it to be single-stage, ie. its mass is
100kg and it carries 890 kg of fuel. Hence comment whether the two-stage rocket has an

.advantage over single stage or not.

Let us now sum up what we have leamt in this unit.

2.4 SUMMARY

& Newton's first law states that “Every body continues in its siate of rest or of uniform
motion in a straight line unless it is compelled to change that state by forces impressed
upon it.”

& Newton's second law gives a relationship between force and linear momenturm and can
be expressed as

_dp
- odr
Faor a system ol constant mass it becomes

F =ma.

& Newton's third law states thal ' To every action there is an equal and oppostte reaction.”

Forces of action and reaction act on different bodies.
® A particle is said to be in equilibrium if the net force acting on it is zero.
For coplanar forces, this implies that

F, =0, IF, =0.

® The iotal linear momentum of a system is conserved if no net external force acts on it.
#® The impulse of a ferce on an object equals the change in its lincar momentum and is
piven by
t2

Fo . . . . . .o
J =] Fudl, where the force acts during the time interval Af =y, —1 5.
n
@ For a variable mass sysien. Ncwwn s second faw of motion is expressed as

dv | dm

@ The increase in the velocity of a rocket within a time f of its take off is given by

M
v—v, =4, In v B

n
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2.5 TERMINAL QUESTIONS

1. A block of mass 100 kg is Placed on an inclined plane of height 6 m and base 8 m
(Fig.2.18). The coefficients of static and kinetic frictions are 0.3 ang 0.25, respectively.
{a) Would the block slide down the plane? (b) What force parallel to the plane must be
applied 1o just support the block on the ptane? (c) What force parallel to the inclined
Plane is required to keep the block moving up the plane at constant speed? (d) If an
upward force of 882 N parallel to the plane is applied to the block what will be its
acceleration? (e) Whar will happen if an upward force of 490 N paralie! 1o the plane is

applied? (f) What will happen if an upward force 0f 254.8 N parallel to the plane is
applied?

2. A boy of mass 20 kg is standing on a flat boat of mass 30 kg so that he is 3 m from the

shore (Fig. 2.19). He walks | m on the boat toward the shore and then halts. How far is
he from the shore at the end of this time?

3. Explain why it is less dangerous to fall on a mattress than on a hard floor.

4. A fire-fighter directs a stream of walter against the door of a building in flames. The
water is delivered by the hose at the rate of 45 kg s*!. Water moving horizontally at
32 ms™" hits the door. After hitting the door, the water drops vertically downward. What
is the horizontal force exerted on the door?

2.6 ANSWERS

SAQs

L. Let the mass of the astronaut in kg be m. Then from (he given conditions and Eq.240,
we get

[(15+m) kg] (2.04 x 10~ms=) = 2.07 N

2.07N
orm = . - — 15 1kg = 86.5kg
(2.04 x 107 )yms™

2. 2) The reaction force acts on the man. Due to the large mass (inertia) of the man the
force is not able to make him Move.

b} Apple also aftracts the earth with a force of magnitude F. The acceleration of the
apple and the earth are, respectively, F/m_and Fim_ , where m, and m, are the
masses of the apple and the eanh, respectively. Since m>>m, Fim, << Fim_,
Hence the earth does not move appreciably,

3. Referto Fig. 2.20. Let the tension be T. The forces are resolved along the directions of x
and y-axes. The former is along the floor and the latter is perpendicular to it. N is the
normal reaction and correspondingly the magnitude of the force of kinetic friction F, LIS
equal to p, N, It is in a direction oppostte to the tendency of motion, Since there is no
molion in the vertical direction, the resultant of the forces along the y-axis must be zero.
Moreover, as the body moves with a uniform velocity, the resultant force along the
X-axis is also zero. So we have

Tsin®+N-mg=0 (2.35)
HN-Tecos8=0. ¥ ' (2.36)

4 e
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To find T we have to eliminate N between Egs. 2.35 and 2.36. So, we have
’ T[sin0+ coseJ:mg.
. Hi

or T= ___M_S_-_
cosB+p, sin®

. RefertoFig. 2.21. We define a two-dimensional rectangular coordinate system with the
commeon point of action of P, Q, T,, T, as origin. We shall now apply Eq. 2.16c to

&0° obtain the condition of equilibrium.

Now, IF =T7,cos0°+T,cos 60°+ Q cos 150° + P cas 270°

270° T, _\3Q

=Tg+-2——"=and
¥ ' T2 2 . :
Fig2.21 ZF =T,sin 0°+T, sin 60° +  5in150°+ P sin 270°

V3 Q
=T, +2.p
2 47 g

Hence, from Eq. 2.16¢, we get

I, 3 0-0, (2.37a)
2 2

(2.37b)
. B2 sy
-pz 2 A 2
k FromEq. 2.37b, T 2( Q+PJ 2‘OOGN 1155N
rom Eq. 2. : = —| - — i N
L 2 V3

And from Eq.2.37a, T, = iflg - Izi = 1(6928 — 1155)N = 2886N

S

o

nu_] v
e

y T+

As p, = p,=mu and p, = 3mv, we get from Eq. 2.25b

cos B = sing=—-. (2.38)
v

~ 1an 8 = 1. Again from Eq. 2.38 we understand that cos 8 and sin 8 are both negative

Fig. 2.22 as ¥ is positive. So § must lie in the third quadrant. Hence, 8=225° (see Fig.2.22).
‘]

6. a) J=Ap=(0.25kg) X {40~ (-20)) ms = 15 kgms!

-~ [
Ar=1072g,F = < = 1500N
f
b} The gravitational force of attraction between sun and earth is very weak but il has

been acting since their formation and so it can generate a substantial impulse,
7. Had it beena single stage racket, then
v, =0
M, = (890+ 100) kg =990 kg. M= 100kg.
v = (~1.5kms™" )[inﬂ]
9%0
=(=15kms")(n 10-In9y

O

= 3.4 km s~ which is 41% less than the value of velocity (5.8 km s™'Y attained in n
double-stage rocket. Hence double-stage has an advanlage over the sitigie-stage.

Terminat Questions )
Looererto g, 223 BC =6m AB =8m. 40 — V5 2 9% ny o 10 0

i P Fa]
mLsad 00 conE=08

VA0l 20t Fuuhel nerpendicninr in 5, miaag v naee A = LSO DL whens

b N

= mass of ihe blcek. The magniiwie of the 1orce of stane fricrion
I2) Fo=p XN=: mgcos B
TR

FEON G0 kg) B8 ms? (0.8) =224 N, and

7t sin 8 = (100 k) (9.8 m ™) (0.6) = 388 N. So mygsin8 > F and hence the
block-will slide down the plane.
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b) The required magnitude of force parallel 1o the plane =mg sin @ —F,=352.8 N.
¢} When the block is urged to move up the plane, the force of kinetic friction F, of
magnitude p, N comes into play and it acts down the plane. So the magnitude of
total force down the plane will be (4, N + mg sin 9). Now, in order that the block
TOVES Up at a constant speed, the magnitude of the applied force parallel to the
plane must be equal to (W N+ mg sin 8) = mg (B, cos9+sin@) .
=(100kg) (9.8 m s2) (0.25 x 0.8 + 0.6) = 784 N.
d) Theacceleration = (382 = 784)N
' 100 kg
€) Since 490 < 784, we understand from {c) that the block will not move up. In this
case the magnitude of the resultant force down the plane = (588 — 490)N = 98 N,
which is less than the magnitude of the maximum force of siatic friction
F . (=2352 N). S0 the force of static friction will adjust itself equal to 98 N and the
block remains at rest. :

=0.98ms™>

f} Now, the resultant force down the plane has a magnitude (588 — 254.8)N=3332N.
This exceeds F, .'So the block will move down the plane. Its motion will be
opposed by the force of kinelic friction F.NowF, =y mg cos®

=(0.25)x (100 kg) x (9.8 m 5% x (0.8) = 196 N. So its acceleration-down the plane
= (3332-196)N
100 kg
2. Let the masses of the boy and boat be m and M, respectively (Fig.2.24). Let the velocity

of the boy relative to the boat be v and that of the boat with respect to the shore .S be u.
So the velocity of the boy with respect 1o the shoreis v+ u = v, say. Now, before the .
boy started walking on the boat, the total linear momentum of the system (boy and boat)
with respect to the shore was zero. The motion of the boat due to his walking arises out
of the mutual forces of action and reaction. We shall neglect the forces of friction
between the boy and boat as well as between the boat and the surface of water. So, no
external force acts on the system. Hence, from the principle of conservation of linear
momentum, we have

=l.dms™?

m(v+uw+Mu=0 (2.39)

It is evident that as the boy walks on the boat towards the shore the boat moves in the
opposite direction. Let the unit vector along the direction of motion of (he boy befi.

S0 v = vn, u = —un. Hence, from Eq. 2.39, we get

m(v —w)n ~ Mun = 0.
my

m+ M
. where 5 is ihe distance travelled by the boat and L is (he length

sy —wY~-Muy =0.0rn =

m i 5

m+M v L’
covered by the boy on the boat. In our problem, m =20 ke.M=30%kg, L=1m,

. & =0.4m. So after he halts, ihe boy is atu distance (3 - | + 0.4) m, i.e. 2.4 m from
the shore.

or

3. Ineither case the person comes o rest finally and has the same velocity at the point of
hitting the mattress or the floor. So the impulse, i.e. change of linear momentum is
same.But the mattress being soft, (he durztion of impact is greater than that in the case of
the hard flaor. So, from Eq. 2.29 the average force is smaller in the former case. Hence, it
is less dangerous to fall on a mattress than on a hard floor.

4. Water drops vertically downward after hitting the door. So the horizontal mioiion of
water stops abruptly at the door. Sirice water is moving af 32 m s, each kg of water
loses 32 kg m s~ nf linear momentury. Rut water strikes tha door a1 the rate of 45 &g s
So the rate of loss of lincar momentum is equal o (45 kg s ') X (32 kems kg )
= 1440 kg m 5™ % = 1440 N, which is the horizontal force un the door.

Force and Momentom

Fig. 2.24
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Fig. 3.1

UNIT 3 WORK AND ENERGY

Structure
3.1 Introduction
Objeciives
32 Work
Work Donc by a Constam Force
Work Done by a Variable Force
3.3 Energy

Kinelic Energy and Work-Energy Theorem
Conservative Force and Polential Energy
Principle of Conservation of Energy
Energy Disgrams

3.4 Elastic and Inelastic Collisions

3.5 Power

3.6 Summary

3.7 Terminal Questions

38 Answers

3.1 INTRODUCTION

In the previous unit we have studied the causes behind change of motion. We have also
studied the important law of conservation of linear momentum and its applications. In our
everyday experience we often feel that when we execule a motion some energy is expended.
Some times we say that work is done at the expense of some energy. However, the word
‘work” has a special meaning in physics. For instance, if a lecturer stands near a table and
delivers a lecture for one hour, then no work is done according 1o the principles of physics.
In this unit yqu will learn about the work done by various forces and also different kinds of
energies. We will go into the details of the very imponant principle of conservation of
energy. This principle has very wide applications and will be used very often in your physics
courses. In the next unit we will apply some of the concepts of motion developed in the first
three unils to the study of angular motion.

Objectives

After studying this unit you should be able io0:

compute work of constant and variable forces

apply work-energy theorem

distinguish between conservative and non-conservalive forces
solve probiems based on the principle of conservation of enerpy
interpret energy diagrams

solve problems based on elastic and inelastic collisions
compute power in mechanical systems.

3.2 WORK

You have studied in Unir 1 that the work done by a force F during a displacement d of its
point of application is given according 1o Eq.1.1tb as F.d. So if there is an angle € between
F and d as shown in Fig. 3.[ then work done is Fcos 84. The unit of work is newton-metre
which is named os joule. If 8 is acute {cos € is positive), then work is said 1o ke donc by the
force and il B is obluse (cos 8 is negative}, then work is said to-be done against the force. I
8 =90° (cos O =0), then it is a no-work force. For example, when a man walks on the
ground, the reaction force experienced by him is always normal to his displacement. Hence.
reaction is a no-work force.

SAQ1

Give an example (olher than the ahave) vfa no-wark Taee

Now, for a small displacement Al the work done by a force F is given by

W=F-Al (3.1}

=y | gy ey ety

H



3.2.1 Work Done by a Constant Force Work and Energy

Let a particle undergo a succession of displacements Al AL,. ..., Al under the action
of a constant force. Then the net displacement is Al = AL+ AL+ .+ Al (see
Fig. 3.2), and the work done is

W=F-Al=F (Al +AL+ ....+Al)
We can use the distributive law of scalar products (Eq. 1.14) and write

W=F-Al +F AL +..+F-Al_. (3.2)
Thus, the work done by a constant force for a succession of displacements is the sum of the
work done by that force for individual displacements.

However, in nature we come across many forces rthat vary with position. For example, let a
unit positive charge be taken from point A to point B in the electrostatic field of a charge + ¢
(Fig. 3.3). g is located al the origin of a t(wo-dimensional rectangular Cartesian coordinate

p . 2
system having x-and y-axes. The force experienced by a unit positive charge when placed at s
P is given by
F=4; 3.3)

r ok
where k is a conslant dependent on the nature of the intarvening mediuvm. OP = r and F is
the unit vector in the direction of r. As the unit positive charge moves, the magnitude as well
as the direction of r change. So F is a force which varies with position. How do we calculate
the work done for such forces?

3.2.2 Work Done by a Variable Force
A force of the type given by Eq. 3.3 can be expressed in general as
F=F(r). (34)

Let us now calculate the work done when a particle moves under the influence of this force
from point Ato B (Fig, 3.4).

+q-

Fig.33

The section of the path from A to B can be approximated by a zigzag polygon consisting of
successive displacements Al , Al ... Al , where the path AB is shown exaggerated. We can
lake each successive displacement Al to be very smail, Then r, comesponding to each Al
will be effectively constant, so that F(r } is also constant over that displacement. The work
done for this displacement is given from Eq. 3.1 as W =F(r). Al

Since work is a scalar quantity. the work done in going from A to B is the sum of the work
done for each successive displacement, i.e.

W =F(r])-A!| +F{r2)-‘£\l2 +---+F(r,) Al,
=Y F(r,) al,.
i=|

where the symbol 2, stands for the above summation.

3.5

We should expect to get a more significant value for zigzag paths if we fit the curve more
closely. Therefore, it is natural 10 define work in the general case as the limit of such
approximations as the lengths of the AL’s are made smaller and smalier, i.e.

"
W= Ji'_‘?o[z Fm)- m,-] (.6)
! =1
From the concept of definite integration, the above Timit is given by
R
W= Fir)-a, (3.7)
1

where A and f denote the initial and the final positions. This integral is called the line
integral of F from A to 8. So the integral of force with respect to the position variable over
a certain path is the work done by the force over that path, provided ihe force depends on the
position variable only.
For a two-dimensional system § = Fi+ f-:\j and dl = dxit ¥dy j Fig. 3.4

F.dl = (Fi+F))(dxi+dyj),
or F.di= Fdc+F dy (3.8) 43
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Concepts in Mechanics

Let us now evaluate the work done by a variable force.

Examplel’
Let us determine W along the path AB for the eleétrostatic force F given by Eq. 3.3.
F-= ri‘le _kqr (._.*._: "J

3 —_
r r r

kg =~ =
or F =—-%(xi +yi},
r

orF,t:“;;, I-f‘,:k%.
r r

Hence. from Eqg. 3.8, we get

F.d|=k—g(xdr+ydy)
r

-
_kq 2 2
-"2",_—3d(-¥ +y°)
kg oLk -
= —qld{r‘) = ﬁl—2rdr = A—‘!d}'.
2r 2r e
From Eq. 3.7, we get
L ;
w= | ‘—?dr=kq[—-l} (3.9)
; r- T4 a

“You can now try the following SAQ based on the ideas discussed so far.

-SAQ 2

Suppose the equilibrium position of an end of a spring is O, (Fig. 3.5) and.it is streiched
through a length x. Due 1o elasticity a restoring force comes into play, which is proportional
Lo the displacement x from the equilibrium position, i.e.

F=-k x.
k_is a constant and the negalive sign appears because the restoring force is directed opposite

Lo the displacement. How much work is done in streiching the spring from the position x = x
tor=x,?

We have thus discussed the meaning of the line integral of a force when it is a function of
the position variible. We shall seek a more general meaning of the line integral of a force in
the nexi section.

3.3 ENERGY

We have defined work. The capacity of a budy to do work is called its energy and is always
measured by the work the body is capable of doing. So the unit of energy is the same as that
of work, i.e. joule. In nature. energy manifests self in different forms — mechanical, heat,
elecrical, chemical, sound, light. elc. You have read about energy in gencral in FST-1,
Block4 (Sec. 17.3). In this unit we shall concentrate on mechanical energy. It can be of two
kinds — kinetic energy and potential energy.

3.3.1 Kinetic Energy and Work-Encrgy Theorem

Kinetic encrgy {K.E.} is possessed by a body by vimue of its motion, For example, a moving
car or a ball in motion has kinetic energy. We shall arrive at a quantitative measure of
kinetic energy by applying Newron's second law of motion to Eq. 3.7. In the next fow sieps
we shall be doing some algebra. It is necessary for obtaining the resuit which is physically
very significant.

From Newton's second law, for a particle of mass m having a velocity v at a time ¢ we have

d
F=‘-§"-(mv),

ST T
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dv
orF= m;— » for a system of constant mass.
t
Againv= a
dt

and 4l = ﬂdr = vdr
dr

F-dl=m%-vdr. 3.10)
4
We shall now apply some algebra to simplify Eq. 3.10.

Now, v-v=(v3 +\r‘),2 +v?)

d d, 2. 2. 12
E(v-v) =E(v1+vy+vz)
_d a2 d a2 .d 2
—E(VxHE(VyHE(VZ)
d 2 d Z-dv: dvx
— = Tl =2v
AU s
d dv dvy dv
Thus —(v-v)=2p — X $2p —Z 42y —2Z
us dr(v v)=2vy de Y e & dt
aa oA fdy rodvy gy, n i
=2(vxi+v}.j+v:k)'[7:l+d—:]+7ﬂik).fl‘0mEq. 1. 15a.
.'.i(v-v)=2v-£.
dt dr
Since dot product is commutative, we get
v.ﬂ‘i:f.‘l_,,:i(ﬂ} (.11)
dr dr dey 2

Thus, from Eqs. 3.10 and 3.1!. we get

F-dl= mi[ﬂ]dr = md(ﬂ] = d(ﬂv-v].
dr\ 2 2 2

? B (3.12)
{ F.dl=|zmvv|,

where A and 8 indicate the limits of position between which the definite integral has to be
worked out. Since v.v =7 from Eq. 3.12, we get

B

[ Fral=1mvy -2l (3.13)

A
We now want to interpret Eq.3.13. For the sake of simplicity let us consider v, =0. Then the
right-hand of Eq. 3.13 becomes '/mv,?, This in accordance with Eq. 3.7 represents the work
done on the particle in its attaining a velocity v, from rest. Thus, this work will be a measure
of the energy the particle has acquired by vinwe of its motion. So '/,m? is a measure of K.E.
of a particle of mass m moving with a velocity v. Now go back and look at the few steps
worked out before Eq. 3.10. You will understand that the above analysis has been done for a
system of constant mass. But/,zn? is taken 10 be the measure of K.E. also for systems
having variable mass. You have read about them in Sec. 2.3.3. Hence, the right-hand side of
Eq. 3.13 represents the change in K.E. of the particle between the positions 4 and B and is
expressed as

8
jF-dl=Ty T,
A

Thus, we have arrived at the general meaning of the line integral of a force which can be

siated as follows:

(3.13a)

The line integral of a force hetween two positions is equal to the change in K.E. of the
particle in coming from the initial to the final position. Moreover, if F is a function of
position, the line-integral of the {orce is equal to the work done by the force between these
points. So we can now stale the work-energy theorem.

The work done on a particle by the resultant force acting on it is always equal 10 the change
in K.E. of the particle.

Work and Energy
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Let us supplement the above statement with a very simple example.

Example 2
A body of mass | kg and initial velocity 10 m s is sliding on a horizontal surface. If the
coefficient of kinetic friction between the body and the surface is 0.5, then find the

a) work done by friction when the body has traversed a distance of 5Sm along the surface,
b) the initial and the final kinetic energies of the body.

(a) Refer to Fig. 3.6. Let the mass of the body be m. As we have seen in Sec. 2.2.2, the
magnitude of the normal reaction N = mg and that of the force of friction =p N = W, mg. Let
the displacement of the body be d in the direction OA. We shall assume that the force of
friction js constant over that displacement. So Eq. 3.7 reduces to

W=Fd
Here F, being the force of kinetic friction, is opposite tod.
W=-Fd= — ﬁtmgd
W= —(0.5) x (1kg) X (9.8m 57%) x (5m) = —24.5)
b) Initial K.E. = '/, mv? =/, x {1kg) x (10 ms™')* = 50J
We know from the work-energy theorem (hat
Work done = Final K.E. - Initial K.E.
~Final K.E. = Inittal K.E. + W = 50J + (—24.51) = 25.5]

Kig. 3.6
y
A D
Fa
P Fa
-~
s
L
l/
B C
Fig. 3.7
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SAQ3 ) _ _

A truck and a car having equal K.E:s are travelling along a straight road. Equal braking
forces are applied on them. Which one will travel farther belore stopping?

We should realise that the work-energy the orem is not a new law. It is simply a relation
between work and K.E. derived from Néwton's second law of motion, Tn Example 2 and

- SAQ 3 we have used work-energy theorem. But for evaluating the left-hand side of Eq. 3.13

in these problems we have not effectively performed any integration. In general cases. we

. shall need to work out that integral for which the path of the particle must be known. If the

path has a complicated geometry then it is not easy 1o determine W. However, there is a
special kind of force for which W can be determined without the knowledge of the path of

the particle. Only the initial and final positions need be known. Let us now discuss about
this special kind of force, known as the conservative force. Through this discussion we shall

also arrive at the concept of potential energy.

3.2.2 Conservative Force and Potential Energy

Refer to Fig. 3.7. Let us consider four points A. B, C, D which are the vertices of a square of

side L on a smooth vertical wall. A particle of mass m has to be taken from A to 8 in two
ways
a) directly along the siraight line AS.
b} along the path ADCS.
We shall calculate the work done by the force of gravity in these two cases. For this we shall
take a two-dimensional rectangular Cartesian coordinate sysiem with x and y-axes aléng BC
and BA. respectively. As we shall use Eq. 3.7 let us write down the expression for
F explicitiy :
F=-mg j (3.14)
For case (a), the waork done is given by
5 T -~ =
W, =W, = I Fedl={ —pgj. 1 i, = f medy
A \ \
orW,, = mg iy, -y )= ~mglL. (3.13a)
For case (b}, the work done is given by

Wy =Winca = Wep + Woe + Weg

c a
F-dl+j' F.dl+| F.a
D c

~ ~ C -~ -~ B ~ ~
—mgj-dii+ | - mgj- (-dyiy+ | —mg].(—ax)
o C

TR




C Work and Energy
=0+ | mgdy+0=mg(yc —yp)=~mgL. (3.15b)
D
So W_ = W,. In other words, the work done in taking the particle from A to 8 along two

different paths is the same, i.e. the work done is independent of the path followed. Such a
force is called a conservative force. It is defined as that fotce for which the work done is
independent of the path followed and depends only on the initial and final positions of the
particle. Like the force of gra‘\-'ily. electrostatic force is also conservative, You can nc

work out an SAQ.

SAQ4
a) VerfyforFig.3.7that W =W
b) Prove that for a conservative force the work done around a closed path is zero.

There are forces for which the work done depends on the path followed, called non- AN
conservative forces, Thus, for non-conservative forces, the work done around a closed path
is non-zero. For examptle, friction is a non-conservative force.

Refer 1o l-;-ig. 3.8. Lel us consider the motion of a particle over a fixed horizontal distance d, A B

from A'to B and back. This is a closed path. How much work is done by the frictional force o ';.'_d__:l__,i 5

acting over this path? The force of friction has magnitude [, N(=}1 21¢) and is opposed 1o the
direction of motion. Let us choose x-axis Lo be alorg the direclion of motion. Therefore.

] il ~ A
W, = I F-dl = j (=Hym )i -dri = —].Lkmgd. e
A A

4 Fip. 3.8: When the molion is

. " - frum A o 8. the force of Iriction
and u"""‘ B I (“km'[’,)! Hdvi) = -—]kagd. icalong £, i.c, opposile to i
B and when the motion Is from #
So, the total work done arnund the closed path ABA = — 211 mgd. It is not zero. to A. the force of friction ix
along i.

Let us now go back to the discussion of conservative forces. In fact, before coming to this
section, we have deall with three conservative forces. These were the force of gravity, the
€lectrostatic force between two charges (Example 1) and that of the spring-mass system
(SAQ 2). In the first case, the work done in taking a particle of mass m from A to B can be
given from Eq. 3.15a by

W=—(U,~U), where U = mgy. (3.16a)
Apgain from the results of Exampie | and SAQ 2, we get

W=~(Ug-Uy). whcch:—kf-. (3.16b)
and W=, -U). where U= ,}ko.rz (3.16c)

We can see the similarilies between the Eqs. 3.16a, 3.16b and 3.16c. In each case we are
able to associate a quantity U. the negative of whose change gives the work done. In the first
case L/ is depen-ent o the position v of the panticie and in the second, on the position r of
the unit positive charge. In the third case U depends on x. This is a variable which gives the
displacement df the free end of the spring from its unstreiched position. Thus, the value of x
is indicalive of the extent of stretching of the spring. So instead of saying that x is the
displacement of the free end of the spring from its normal position we say that x measures
the configuration of the system. Change in the value of x is a change in configuration of the
spring. Simifarly, if we have a systein of charges (4,,9,.4,,¢)) inanenclosure (Fig. 3.9a)
then a change in their relative positions (Fig. 3.9b) also amounts to changing the
configuration of the system. Thus, the work done by a force F in taking a system trom A to

B can be expressed as /\
5 -

W-:j F'd]=—[U,r;—U__-‘]. LAl g1
A 3

(a)

where U is a quantity depending on the configuration of the system. U is called the potential

energy (or P.E) of thc sysiem. [t is defined as the energy a body pussesses by virue of its
configuration. In order to measure P.E. we need to know the conservative force which gives 7 G2
rise to this P.E. We shall now see how P.E. is measured. From Eq. 3.16d, we get that if )
U, =0, then
8 4 3.16e) {b}
Up=-f Fa=] - ©-
A & Fig. 3.9 47
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Thus, the P.E. of a system in a certain configuration is measured by the work dene by the
concemed force in taking the system from thal configuration to some standard configuration.
Eq. 3.16e gives the P.E. at B wilh respect 10 the standard A. We have chosen 4 as the
standard by putting U, = 0. Let us now quickly go back to Eq. 3.15a. There we have

W, ,=-mgL. Or the work done in taking the particle from 8 10 A is mgL. So considering A as
standard, the P.E. of the particle at B is mgL. You may now work out an SAQ to clarify the

concepts about P.E.

SAQS
A peculiar spring is governed by a force law: F = — Cx*§ where C is a constant, What is the
P.E. at x with the standard ¢/ = 0 at x = (7

So, measurement of P.E. is never absolute, It is always determined with respect to some
standard. You have also learnt that the knowledge of the corresponding force is essential for
determining the P.E. Now let us iry and see whether we can determine the concerned force
or not if the P.E. is known,

An infinitesimal change in the value of P.E. is given in accordance with Eq.3.16d as
dl/ =-F.dl. 317

Hence, for a simple case of one-dimensional force like in the case of spring, we have
dU = - Fdx. Thus,

au
F=- (3.18)
dx
Eq. 3.18 indicates (hat the conservative force is the negative of the rate ef change of P.E.

with respect fo the position variable. Let us take up an interesting application of Eq. 3.18.

Eq.3.18 indicates the connection between P.E. and equilibrium. If the total force acting on a
body is zero, then it is in equilibrium. For a conservative force, this equilibrium means

au (3.19)

—=10.

dx
This can oceur in three-ways:

"i) Uisaminimum

ii} Uisamaximum

iii) U is a constant independent of x.

At this stage let us recall the very simple fact that a-ball falls if it is relcased. It does so due
to gravity. But have you observed that in the process of failing, the P.E. of the ball
decreases? Again if you stretch a spring and release it subsequently, it soon retums 1o its
normat length. Thus, its P.E. also decreases. In fact, in nature all processes proceed to that
configuration for which the P.E. of the concerned system gets minimised.

U

P

[
-k
(-
-

(

Fig. 3.10

Now, let us consider the siluation in case (1) above. If this kind of an equilibdum is
disturbed, the system tends to regain its equilibdum configuration. So it is called stable
equilibrium. A ball resting at the bottom of a bow! (Fig. 3.10 a) provides the example of
stable equilibrium. If an equilibrium of type (ii) is disturbed, the system does not return to its
equilibrium configuration as a process cannol take a system to a configuration for which its

IO
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P.E. increases. So it is called unstable equilibrivm. A ball resting at the top of a bowl (Fig.
3.10b) provides an example of unstable equilibrium. Case (iii) refers to a situation where the
system will continue to remain at equilibrium even if its equilibrium is disturbed. This is
called neutral equilibrium. A book resting on your table provides an example of neutral
equilibrium. If you move it by giving a slight push it occupies another position on your table
and remains in equilibrium there without bothering to come back to the previous position.
Thus, if the variation of P.E. of a system is plotted with position variable x (as in Fig. 3.10¢),
then the system is in stable and unstable equilibrium at x = x, and x = x,, respectively. It is in
neutral equilibrium over the range x, < x <x,.

SAQ6

What kind of equilibria are the following?

a) A simple pendulum bob at its mean position.

b) A stick held vertically on the fingertip by a juggler.

So, we have seen that if the P.E. of a conservative system is known as a function of position
then the corresponding force can be derived from it. We have also seen the role of P.E. in
determining the nature of equilibrium of a body.

~ We shall now combine Eq. 3.16¢ with the work-energy (heorem and arrive at the very
important principle of conservation of energy.
3.3.3 Principle of Conservation of Energy
From Egs. 3.13a and 3.16d, we get thai
W=—(U,-U)=T,-T,
o, +U =T, +U,. (3.20)
Since the points A and B are arbitrary, we conclude that for a system being acted upon by a

conservative force, the sum of the kinetic energy and the potential energy is always a
constant. We denote this constant as the total mechanical energy £ of the system, i.e.

T+ U =E =aconstant. (3.21)
Let us take up an example to illustrate Eq. 3.21.

Example 3
We had discussed projectile motion in Unit 2. Prove that in the absence of air-resistance, the
sum total of K.E. and P.E. remains constant.

o x
Fig- 3.1 Prajectile Motion

Refer to Fig. 3.11. Since the magnilude of the velccity of projection is u, the K_E. of the
projectile at O is '/ mu?. Lel us lake the horizontal level through O as he reference for

determining P.E. So. P.E. ul O is zero.

| ) (3.22)
Hence a1 J. K. E.=P.E.= 5 e

At the point P (x, y), the velocity vector makes an angle € with the horizontal direction.
There is no z2cceleration in the horizontal direction,
Hence, the hurizomal compoinent of velotily rémains unchanged and ihe vertical component
experiences an zcceleration g downwards. So
veos B=ucos o, (3.23a)
vsin? B = 12 sin? o — 2gy. _ (3.23b)
From Eq. 3.23a, we get
v cos? 8 =u’ cos’ a. (3.23¢)

Work and Energy r
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You mast have noted that Eq.
3.23d appears 1o be the same as
the equalion we getin studying
linear motion under gravity. But

. there is p diffecence, Tn lincar
motion, v and u ore along the
same direction, while in this case
they are not. So you should not
feel that proving this equation is
a fulile exercise.

Adding Eqs. 3.23b and 3.23c, we have

vi= u’ ~2gy. (3.23d)
Now,K.E.atP = -2-mv’ =~ mQ@r-2gy) = %mu’—mgy. (3.24)
And P E. at P =mgy. (3.24b)
Hence,K.E. +P.E. = % mue, at P. (3.25)

Thus, from Egs. 3.22 and 3.25, wve get that the surn-total of K E. and P.E. remains constant.

At this stage let us go back to Example 2. There we had seen thar the final K.E. is less than
the initial K.E.. whereas the initial and final P.E.s arc the same, as the body was moving on a
horizontal surface. So we cannot say that (K.E. + P.E.) is a constant. This means that Eq.
3.21 does not hold. Now let us try lo find out what has happened to the loss in K.E. You
musl have noted that there is a non-conservative force in the form of friction and the work
done by that force is —24.5 ]. The negative sign indicates that the work done against the
force of friction is 24.5 J which is exaclly equal to the loss in K.E. Now, is the work done
against the force of friction lost? Well, the answer is that it is not lost. It has been dissipated
in the form of heat energy. This energy which amounts to heating the body and the surface is
not useful at ail. But still the energy is nor fost in the true sense of the term. Through
Example 2 we may conclude thal

K.E. + P.E. + (work done against Friction} = a constant
or (Total mechanical energy) + (Energs - ~ipated) = a constant.
Thus, we arrive at the statement of the principle of conservation of energy:

Envrgy et be created nor can it be destroyed but it can be transformed from
one form o another, the total amount of energy in the universe remaining consnr.

Let us take up an application of this principle.

Potential cnergy

Flow plus

_________ I
thermal motion
{heat)
Kinetic energy (flow)
\
— .
Region of

falling water.

bl
fig. 3.12 th

The water at the lop of the waterfall (Fig. 3.12 a) hus gravilational P.E. which in falling is
converled inio K.E. So, P.E. decreases and at its cost the K_E. increases. maintaining (he
sum of K.E. and P.E. constant. Here we assume that the water particles do not expericnce
any friction with 1hie bed of the fall. However, on coming to the foot of the fall the P.E.
becomes zero. The energy is soltely kinetic. But what happens to this K.E. later? A pan of
K.E. remains with the waler as it continues to flow and the rest can be used (o drive the
meter of i lurbine and hydroelectricity can be generated. In any case some energy is always
dissipated. The variation of different forms of energy is depicted in the graph.in Fig. 3.12 b,

Whenever there is a conversion of encrgy from one form 10 anothwr this principie is
applicable. For example, in a lead acid ceii chemicat energy is converted to electrical energy
whereas in 2 solar cell light energy is convened 1o elecirical energy. The quantity of energy
in onc formi s always cquivalen! to the guantity in the convered form.

In nature we always come across non-conservaiive forces. For example, in the case of a
body fa..mp frecly under gravity there is some air resistance, When a body is sliding along
an inclined plane there is friction. But if these forces are negligible then the principle of
conservation of energy can be used in the form of Eq. 3.21 as a good approximation. We
shall now see such en application.
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3.3.4 Energy Diagrams

Fig. 3.13 shows the track of a car having negligible friction. How fast must the car be
moving at point P if it is to reach point R? What happens if it is going slower than this?

As the friction is negligible the principle of conservation of energy will provide answers to
our questions. Let us consider the lowest point on the track as our reference for determining
PE. The energyat Pis( 1. mvi + mghg), and this is the total mechanical energy
everywhere, as mechanical energy is conserved. To reach the point S, the car must clear the
highest peak at R. where P.E. is mghy. If it is just able to do so, its K.E. is extremely close to
zero on the peak, From the principle of conservation of energy we have

1
mghy = 3 mvi +mghp,
or -;— mv2 = mg (g = hp), (3.26)

In other words, the initial K E. must be at least equal to the difference in P.E. between the
highest and the initial point. Eq. 3.26 may be solved for v, to get the minimum speed
required at P to get to R. What happens if the car is moving a little slower? Then it would
not be able to reach the top of the second peak but will reverse direction before that from a
point T where its K.E. becomes zero. If it occurs at a height ki, then

mgh= 2# vy, + mighy, . (3.2n
It will head back clearing peak Q, then down and up past point P to a point O where its K.E
ts again zero. You can now quickly work out an SAQ.

SAQ7

What is the herght of the point O above the reference level in Fig. 3.13?

O and T are called the turning points set by the value of total energy. With still lower
speed, the car won't clear peak (2 and its motion will be confined to the first valley alone.

Fig. 3.14 is a drawing of the actual track followed by the car. Bul, because gravilational
potential energy near earth’s surface is'directly proportional to height, we can also regard it

as a plot of potential energy versus position: a potential energy curve. We can understand

the car's motion graphically by plotting the car’s total energy on the same graph as the
potential energy curve. Since tolal energy E is constant, the total energy curve is a straight,
horizontal line. Fig. 3.14 shows the potential energy curve and the total energy curve for
several values of the total energy. These graphs tell us immediately about the motion of the U

'Work and Energy

car. In Fig 3.14a. the total energy E "exceeds the potential energy at peak R, therefore, the Fa

car will reach R with kinetic energy to spare, and will make it all the way 10 §. In Fig 3.14t \
the total energy £, is less than the potential cnergy at R. The car must stop when its total \/\/\

energy is entirely potential. This happens when the total energy curve intersects the potenti .
energy curve; the points of intersection are the turing points that bound the car’s motion. In
Fig. 3.14c, the total energy £ is still lower, and the tuming points are closer together. We

ST e -

TETITAE

L s i B b el

say Lhat the car is trapped in the putential well belween its turning points. U
We know that for a conservative system K.E. + P.E. = E, the total energy. i.c. Enfs
Tt +U=E, \_/\_/ \_
2 ) d 0 s
rv=.—(E-U).
ory -\ m( (3.28) ih)
If U > E, then from Eq. 3.28, v is imaginary and motion is not possible. But if U < £ then v
Imation ts possible.
possi N N
In both Figs. 3.14b and 3. 14¢ e car's total energy £ exceeds the potential energy in the \/ , \_/ , \\___.
righumost region, so that mouon in this region is possible. But stanting at point P, the car is r G " 5
blocked from this region, becanse near peak R, U > E. In the case of Fig. 3.14c, paak Q alse o)
poses a situation (e, U> £1 it keeps the car out of the valtey between ) and R where ¢
motion is possible. Such a pesk which does not allow motion by having I/>EF is called a Fig.3.14

puientiai barrier. We shali use the terminologies “potentral wells” and *barriers’ widely in
our courses on Quantum, Aionic and Molecular Physics, Nuclear Physics and Solid State/
Materials Science.

We have thus studied a few applications of the principle of conservation of energy. We have
studied another conservation pringiple. thal of linear momentum, in Unit 2. We shail now
take up the study of collisions which“involve both these conservation principles. 51
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3.4 ELASTIC AND INELASTIC COLLISIONS

We know that centain metallic surfaces emit elecirons when ultra-violet light is made to fall
upon it. This process can be explained through the study of collisions. It can also throw light
upon several aspects of other processes like generation of X-rays and antificial radioactivity.
However, let us begin our study on collisions by thinking of a coin hit by another on the
surface of a table. You may try this yourself with the help of two coins. What do you
observe? A situation of the type is shown in Fig. 3.15. The striking coin C, and the struck
coin C, move on two sides of the original linc of motion of C|. Let the Imear momentum of
C, be p immediately before it hits C,. Let the momenta of C, and C,bep andp,,
resPecliver_aﬂer the collision. We shall assume Lhat the surr_ace of the table is reasonably
smooth so that the frictional forces can be neglected. Then during the collision no external
force aciS on the system of coins. So its linear momentum is conserved, ie.

P=P, P, (3.29)

The principle of tonservation of linear momentum holds for all sorts of collisions provided
no external force acts. The principle of conservation of energy also holds. Since the coins
are always on a table whose surface is horizontal, their P.E. is always zero with respect 1o
the Lable lop as standard. This means thai the K.E. of C, before collision is equal to the sum
total of the K.E.s of C, and C, after collision and any amount of energy in the form of hear
or sound, which might have dissipated due to collision. We must remember that we have
assumed.that the surface of the table is frictionless. Now if, the kinetic energy of the system
remains constant in a collision process, then it is said to be an elastic collision. In other
words, the condition of an elastic collision of the coins is given by

T=T,+7T, (3.30)

where T is the K.E. of C, before collision and 7. 7, are the K.E.s of C,, C..respectivetyafier
collision. If the kinetic energy of the system does not remain constant then the collision is

said to be inelastic. But the tofal energy is conserved in both the cases. Let us first discuss
elastic collisions.

Study of elastic collisions

We understand that in the case of an elastic coliision both the equations 3.29 and 3.30 will
hold. We shall now apply them to obtain the angular separation between the directions of
motion of the coins afier the collision. We shall primarily be applying some results of
trigonometry. This kind of an analysis will be required for solving any problem on collision
in two dimensions. For this we redraw Fig. 3.15 as shown in Fig, 3. 16, We take the r-axis
along the original direction of motion of C, and y-uxis perpendicular lo it. | is referred 10 as
the projectile and C, as the target. Let the masses of C, and C, be i, and m,, respectively.
Before collision, C, is moving with a velocity v, Let lhe velocities ofC and C, after
collision be v, and v,, respectively. v, is called the recail v clocity and 9,. ihc angle of recoil,
Eq. 3.29 can be wTitten as,

moy=myv, +my,
Using Eqgs. 1. 33 and 1.3d, we have

m,vl m (v, cos 9, i+ v, 5in6, j} + my (v, cos B, i- v, 5in 8, j).

~ ~ ~
of myvi=(mv cos8) + myv, cos8, )i 4 (myr sind, — mav, 8ind,)j,
From Eqgs. |.5 and 1.6, we get

my=my, o058t my,oos 8, {3.31ia)

and 0=myv sinB, ~my,sin 6, (331
Again from Eq. 3.30, we get

m.vz = mlvlz +m2v% {3.32)

First we shall eliminate 8, between Egs. 3.31a and 3.31b, i.e. we have

{m v = (m,y,sin 8, + (my —m,yv, cos 9,)

or  mivi =mgv; + mivi — 2mym,vv, cos,.

E 7] ==t ol et qun
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We shall now use Eq. 3.32 to get an expression of v, in terms of v and 8,. Using Eq. 3.32 we Work and Energy
get, ’ -

0= m%v% + m,mzv% ~ 2mymyvv, cos ;.

This is effectively a quadratic in v, of which v, =0 is a trivial solution. We disregard that

and write only the acceptable solution

_ 2Zmymyvcosf,  2avcos®, X (3.33)
m? + mym, l+a '

Vs

where o = ﬂ.
mz )
Again, from Egs. 3.31a and 3.31b, we get

mv,sin6, _ m,v,sind,

My, €08, v —nyv, cos®, |
Multiplying the numerator and denominator of the right-hand side by 2 cos 0,, we get,
myv; sin 20,
2myvcos8; — 2myv, cos’ @,
Using Eq. 3.33, we get

lan@, =

my v, 5in 28, _ sin28,

- . (3.34) .
(my +my)vy ~ 2myvy c05°0, @ —cos26,

lan9| =

Eq. 3.34 indicales that the relation between 8,and 0, is strongly dependent on o.. We shall
discuss the extreme case when o >>1, (i.e. m 3> m,).

Since sin 28, and cos 20, lie between —1 and +1, in this case we have tan®, — 0 or
8, — 0. Andas 8, — 0 we get from Eq.3.3Tbthat 8, — 0Qalso. So when the projeciile is

much heavier than the target then both move along the same straight line as that of the initjal .
direction of the projectlile.

5AQ8
Prove that a) 8+ 20, = |80° when ot << |
and b Br + 0_, =%° whena =1,

We shall now study an application of inelastic coilision;

Ballistic pendulum .

The ballistic pendulum is a device for measuring the velocity of a buliel. The pendulum is g
large wooden block of mass M hanging vertically by two cords. A bullet of mass m strikes
the pendulum with an initial velocity v, and gets embedded in it. The final velocity v, of the
system after collision is much Jess than that of the bullet before collision. This final velodity

can easily be determined. so that the initial velocity of the bullet can be computed by 3 \i
applying the law of conservation of linear momentum. Initial linear momentum of the bullet \\ '

. . 1
=m ¥ . Linear momentum of the system after collision = (m+ M) . \ '
So from conservation of linear momentum, ’ \ \\

= \ A
my = (m+ M) Y. (3.35) \ \

[ X1

The K.E. before collision is ¥4 #v; and the tatal K.E. after collision is
b

noy

T

[V

F(m+ M) 1-;', =1 from Egq. 3.35. Now, we have

"n T
.. .. _1,..2 m 1 mM
(K.E. before collision) — (K.E. after collision) = 3| 1 - miM) I V; > By
which is a posilive quantity. This means that there is a loss of K.E. Hence, the collision is Yi Fig. .17

inetastic. However, the K.E. after collision makes the wooden block SWing up to a maximum
feiglit, /o as shiown in Fig. 3.17. Qur task 1s (o delermine v_ in terms of the known parameters
a1, M and h. The K.E. of the buller and the block is used up in raising the block through a
height 4. So the block and bulblet acquire 2 P.E. equal to (M + ») ph. The K E. of the block
and buliet = -',-Uv.' + .oth'_:'r = (M + m)gh. from the principle of conservation of energy. So

vy = 2ghor v, =~/2gh . Hence from Eq. 335, we get

v = M +m 2gh. _ (3.36)
m ‘ .
You may like to make an estimate of v, in the form of 4 numerical example in the following

SAQ.
Q 53
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SAQY
In a ballistic pendulum, the masses of the bullet and the block are 5 g and 2 kg, respectively.

- After being struck by the bullet the block along with the bullet is raised through 0.5 em. Find

the velocity of the bullet. (g = 9.8 m %)

"How long has it taken you so far to go through Unit 3? May be something like 3 hours.

Some of your friends might have taken 4 hours to complete the same matter and some may
again have taken only 2 hours. So all of you have covered the study material to the same
extent, but your rates of working are different. This throws some light on the following
question! Why do you feel more exhausted when you run up the staircase at constant speed
than when you walk up the same at a constant speed? In each case you exert an average
force exactly equal to your weight and do so over a fixed distance. And as the product of
force and distance is the work done, the same amount of work is done in each case. But what
matters is the rate at which work is done. We shall discuss this aspect now.

3.5 POWER

Power is defined as the rate of doing work. If an amount of work AW is done in a time A,
then the average power P is

p-AW (337
v
If the rate varies with time, we define instantaneous power as the average power taken in

the limit of arbitrarily small time interval At .
AW  dW . - {3.38)

Eqgs. 3.37 and 3.38 show that the unit of power is joule s~', whose other name is watt. You
may now try a very simple SAQ.

SAQ 10

A man ascends to Badrinath Temple from Joshimath, a vertical rise of 1,500 m. His mass is
60 kg. He takes 5 h. A 1,500 kg car drives up the motorable road for the same vertical rise
in 1h. What is the average power exerted in each case if we neglect friction for the sake of
simplicity? Assume that the man and the car maintain constant speed.

We have not seen how P depends on the applied force F. For this we go back to Eq. 3.1.
Using Eqs. 3.1 and 3.38 we get

p=tim o _p . tim 2L (as the process of taking dot product with F is

PR Y ar-0 Ar - independent of Ar).
or P=F'£=F.v (339
dt

So we have obtained the expression of P in the form of a scalar product. You can apply your
knowledge of scalar product to work out the following SAQ.

SAQ 11

A man weighing 60 kg is riding his 15 kg bicycle. What power must he supply to maintain a
steady speed of 20 kmh ' (a) on a level ground and (b) while going up a 57 incline if the

" Irictional force is 30N in each case}

Let us now summarise whal we have leaml in this unit.

3.6 SUMMARY

& The work dong by a force over a path from A to 8 is given by

8
w=1{F. .
J
A
@ Work-Energy theorem: )
The work done on a particle by the resultant force acting on it is always equal to the
change in kinetic energy of the particle.
@ Ii the work done by a force on a particle in laking 1t from one point to another is
independent of the path followed and dependent only on the initial and final positions of
the path then the force is said to be conservative.

T . TR T

{ ] s pwrven aamr

T

eI |

FRRtr—airi o o | b

TTITE -




® The work done by a conservative force F in taking a particle from A to B is given by

B -
[Fa=-w,-u,

where U/, and U, are the potential energies of the particle af the positions A and B,
respectively.

In the absence of non-conservative forces the total mechanical energy of a system is
conserved.

Principle of conservation of energy: Energy cannot be created, nor can it be dt:‘.l.royed but

it can be transformed from one formyto another, the total amount of energy in the
universe remammg conslant.

In any collision process, the linear momentum and the total energy are conserved. In an
clastic collision Kinetlc energy is conserved, whereas in an inelastic collision it is not. °

Power P is defined as P = %

For a constant force F, poweris P=F .v,

3.7 TERMINAL QUESTIONS

Cite two examples in which you might think you are doing work but from the point of
view of physics you are not doing so,
An electron is projected with an initial speed of 3.24 x 10° m 5! directly towards a

proton which is al resl, The clectron is initially at a very large distance from the prolon.

At what distance from the proton does the electron’s speed become instantaneously
equal to twice its initial value? {Hint: Use Eq. 3.9 along with the work-cnergy theorem.
Take the value of & in Eq. 3.9 equal 10 9 x 10* Nm’C™~.]

In a nuclear collision, an alpha-particle A of mass 4 units is incident with speed von a
staiionary heliom nucleus B of mass 4 units (Fig. 3.18). After collision A moves in the
direction BC with a speed v/2 at an angle of 60° with the initial direction AB, and the
helium nucleus moves along BD. Calculate the speed of the He nucleus along 80 and
the angle 8.

Refer to Fig. 3.19. The variations of potential and total energy with position are shown
for a panicle executing simple harmenic oscillation. Indicate the tumning points. Also
indicale the point where the velocity of the oscillator is maximum.

3.8 ANSWERS

thandEuu"

Fig 3.18

Energy

SAQs

l.

Tension in the siring of a simple pendulum, See Fig. 3.20. It acis perpendicular to the
displacement of the bob, which is always along the tangent to the circular path.

2. F=-4, A dl=dii, F-dl =k xdx.

k, o2 2
——IA \dx~—?(.r2‘—.\| 1.

£y

From wofk—energy theorem we know that work done = change in K.E. Let the distances

travelled by the truck and car be x| and x,. respectively. Their initiat K.E.s are the same
and final K.E.s are zero. So change in K.E. is same lor both. Let the magnitude of the
equal braking tarce be F. Thus, wr have Fy = Fa,
arr, = v, Sothey rravel equal distances before stopping.

a) Refertwo Fip. 3.2L.

Now
D D ~
IF dl=‘[ -mgj-dxi=0
A A

And
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yJL
P |
~dy}
g
A ,’/ . —dxi
.’l
Bl C o5

C

Fig3.232

10.

a 8 ~ " B ]

J’F-dl:_[ — mgj - (~dai - dyj) = [ mgdy=mg [ dy =-mgL and we know
D D p ' L .

from Eq. 3.15a that W, = —mgL

So W, = L

b) Refer to Fig. 3.22. Let-us consider two points A and B in space. We now join A and

B by two paths ADB and ACB, so that we get a closed path ADBCA. We know that

for a conservative force, Wos= W

or Ww, =- Wy, Wma + Wm =0

orW .= 0‘. Hence, the work round a closed path is zero.

. We shall use Eq. 3.16 to determine the P.E. Here B corresponds to the point having

x-coordinate equal toxand Atox=0. F= —CxJE: dl=dii
' I -~ X
So the required P.E. is U/ = —I (~Cx°1) - (dxt) .—.I Cxldx = +Cx*
0 0

a) Stable b) Unstable -

7. Ttis again A as K.E. becomes zero when PE. = mgh,

a) If a«l, then from Eq. 3.34, we get tan 6, = —tan 28, = 1an (180°-26,)
or 6, =180°-20, ..8, +20, =180°
sin 20
1 -cos28,
=cot8; =tan (90°-9,)

b) Ifa =1, then from Eq. 3.34, we get 1an 8, =
2sin@, cosB,
2sin g,

5 8,=90°~0,, or 8, +6, = 90°,

ortan@, =

We shall use Eq. 3.36. There we put M =2 kg, m = 0.005 kg, g = 9.8 m s2 and
f=5x10"mand get v,= 125.5 m s~

p _(ﬂ) _ (60 kg) (9.8 ms2) (1500m)
TN A S (5 x 3600)s

P =[_1.'£V__) _. (1500 kg) (5.8 ms2) (1500 m)
A {1x3600)s

=40W.

=6125W.

20 kmp' = 20X 1000 ms' = —ms"
3600 9
Now P =F . v, where F = force applied.
a} Onlevel ground F is equal and opposite 1o force of friction F.
So, F=F.w=Fv=030N)(50/9 m s') = 166.7 W.

b) On the slope F has to oppose F, and the component of mg down the plane, (as
shown in Fig. 3.23). So F must act up the plane and is equal in magnitude to
(F_ + mg sin 8} )

P=(F +mgsin )

=[30N +(75kg) (9.8 m s (5in 5°))1 (50/9 m s7")

=[B0ON+4NI (SOOI ms Y =522 W

Terminal Questions

Fig. 323 1.

56.

Example . A boy reads a book continuously for a Iong tine silling on a chair,

Example 2. A cashier maintains the account of total transaction during the banking hours
of a day.

Let the initial speed of the electron be v. Its change in K.E.= §m, {(2v)? - v?} = $m,v?
where m, = mass of the electron. According to the work-energy theorem this change in
K.E. is equal to the work done in bringing it from a large distance (which we shail

assume to be infinite) fo a point whose distance is x metres from the proton. Our task is
to determine x. The above work dane is equal 1o the product of the magnitude of charge
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on an electron and the work done in bringing a unit positive charge from infinity to the Work and Energy
said point. Let the magnitude of charges on a proton and an electron be e. Using Eq. 3.9
and purting ry =<0, ry =xand g'=¢ we get that the work done is equal to

2
(—e)x ke(O - -l-] = kL
x x
From work-energy theorem,
3 2k 2k
2 me - x 35],"2 " . (3.40)

Forour problem, £ =9 < 10" N né¥ C* 1= 124 % 10 m 5L, Now., putting the values of
Aovom and ¢ iy Eq. 3.40, we gel = 1.6 x 107 m.

Refer to Fig. 3.24. This is similar to Fig. 3.16. We shall write Egs. 3.31aand 3.31b by
putting @ =60°. 6,= 0, v =v, v =v/2, v,=u. We have

my=m, % cos 60° +m,u cos O, (3:41a)

v o, .
0= m, 0 sin 60° -1, sin 6, (3:41b)
Our task is to determine # in terms of v, and the vadue of 8. For our problem
m = n1,= 4 unis. S0 we have, 4r = 1+ 4 cos @ or dncos 8 = e (341c)

and 0 =+/3v~4usin® ordusind =-~ﬁv.
Squaring and adding Eqgs. 3.41c and 3.41d, we get
2 3 (341d)
166" =12v" or u= -
Dividing Eq. 3.41d by Eq. 3.4 Ic, we get tan 8 = 1/4/3 or 8 = 3(P.

Since U = E at P and Q, the K.E. s of the particle at these points are zero. So P and Q are
the tuming points. For answering the second parnt we shall use Eq. 3.28. Since Eis a
constant, v is maximum when { is minimum, i.e. zero. So the velocity of the particle is
maximum at 0,
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UNIT4 ANGULAR MOTION
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45 Summary
4.6 * Terminal Questions
4.7 Answers

4.1 INTRODUCTION

n Units 1 10 3 you have studied some important concepts in mechanics. such as.
displacement, velocity, acceleration, force. lineur momentum, work and energy. You have
also studied two important conservalion principles: Conservation of linear momentum and
Conservation of energy. However, our development of the concepts of mechanics so f{ar has
been restricted in one important respect, We have not developed technigues to describe and
analyse the angular motion of particles, in particular their rotational motion.

You may say that we have studied the problems of uniform circular motion and projectile
motion using these conceplts. Bul the world is full of objects that undergo rotational motion:
From rotating galaxies to orbiting planets, from merry-go-rounds, bicycle wheels and
flywheels to rowating ballerinas (dancers) and acrobats. In principle, we can analyse all such
motions using Newton’s laws by applying them to each pariicle of the object undergoing
angular motion. But in practice it is a difficult task, especially for extended bodies, because
the particles number in thousands, Whin we need is a simple methed for treating the angular
motion of an object as a whale.

In mosl cases. we can study the angular molion of an object in terms of the angular molion
of a point on it. Therefore, in this unit we shall study the angular metion of a panticle and
develop telated concepts. such as angular displacement, angular velocity. angular
acceleration. torque and angufar momentum, Using these concepts, we shall study angular
motion of rigid bodies in Unit 9. in the next unit, we will umn our aitention to gravitation
and other forces in nature.

Objectives
After studying this unit you should be able to:

e compute angular displacerrient, angular velocity and angular acceleration of a particle
undergoing angular motion

& cxpress displacement, radial 2nd ransverse velocities, and radial and transverse

acceleration using plane polar coordinates
& reiaie the Kinematicai vanabies of anguiar motion and iinear motion in their vector forms
& solve problems related to the concepts of torque. rorational kinctic energy and angular
momentum of a particie
= apoly the law of conservation of angular momentun.

4.2 KINEMATICS OF ANGULAR MOTION

Let us begin our study of angular motion by considering a particle moving in a circle about a
fixed axis passing through the centre and perpendicular to the plane of the circle. (Fig, 4.1a).
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Fig. d.1:(a} A purticle P rotaling anliclock wise in a circle about a fixed axis, knewn as the axis of rotation;
th) the angular pasilion 8 of the parlicle at an insiant «: {c) the particle £ underpoes an angular
displacerncnt A (= 8,- 8 ] in time A=y~ ().

As you know from Sec. 1.4, we need only a iwo-dimensional frame of reference to describe
this motion (Fig. 4.1b). The angle 8 is the angular position of the particle at P with respect to
the reference axis, namely the x-axis. By convention, we take & to be positive for
anticlockwise rotation and negative for clockwise rotation. I is given, in radians, by the
relation

5
0=7

where s is the arc length shown in Fig. 4.1 b and r the magnitude of the position vector r of
the particle. If the particle rotates more than once, then 8 will take the increased value’
accordingly. For example, let the pariicle be at P at the instant 1 after completing two
rotations around the circle starting from A. Then its angular position at the instant 1 will be
given by the angle (2 x 2rt + 8) = (drn + 6). Now, [et Lhe panticle rotate anticlockwise. Let its
angular positions at time ¢, and at a later lime 7, be 8, and 8, respectively (see Fig. 4.1 c).
The angular displacement of the particle will be 8, - 8, = A8 during the time interval

1,— 1, = &t. Notice that we have used the term *angular displacement’. Is this a vector
quantity like linear displacement? Let us find out and discuss angular displacement in
somewhal greater detail.

4.1)

4.2.1 Angular Displacement

if we say that angular displacement is a vector, then, firstly, alongwith a magnitude it should
have a direction, Secondly, angular displacements should add like vectors. As you can sce,
the magnitude of the angular displacement is the angle through which the particle tums.
What is the direction of angular displacemem?

In a sense the idea of a direction is assoctated with angular motion. We have both clockwise
and anticlockwise rotations. Lel us represent an anticlockwise rotation of say, 8 rad by an
amow of a certain length pointing in a certain direction. Then a rotation of —8 rad will be an
arrow of the same length, but pointing in the opposite direction. But in what direction should
the first arrow point?

It obviously cunnot be the direction of the particle's pesition vector at its final angular
position. Why? See Fig. 4.1b again. For an anticlockwise rotation through an angle 9. the
direction of angular displacement would be OF. Bul for a clockwise rotation through the
same angle, ils direction will be 0@Q. So. two equal and oppostle rotations (elockwise and
anticlockwise) of any magnitude will nor in general be antiparallcl. Thus. with this choice of
direciions, angular displacements will not be veciors.

Then how can we define the direction of angular displacement? You nwust have handled a
screw-gauge al school. There the rotational motion of the serew is translaled into the
forward motion of the screw-head which takes place along a straight line. This straight line
can defline the direction of the rotational imotion ol the screw. This siraight line is essentially
the axis of rotation of the screw,

So we can define the directipn of angular displacement to be along the axis of rotation. But
how do we represent a clockwise or an anticlockwise rolation along Lhe axis of rotation?

You are perhaps more familiar
with the unit of degrees for
measuring angles, The uniji of
radians is refated 10 degrees by
the following formula:

3607 = 2 1t rad;
n=13.1415927 ..
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b)
Flg. 42

We follow the right-hand rule to make the choice. We curl the fingers of our right-hand
around the axis, in the direction of rotation of the particle. The extended thumb points

- along the direction of the angular displacement (see F 2. 1.9b). Thus, for the particle of

Fig. 4.1 (a), the direction of © will be along the positive z-axis. In Fig. 4.1 (b), the direction
of § will be perpendicular to the page and the point up out of the page.

SAQ1

What would be the magnitude and direction of the angular displacement in a clockwise
rotation of a hand of a clock from 5 to 97

Having specified the direction of the angle turned by a rotating particle, let us see whether it
satisfies the laws of vector addition. Let us consider the commutative law of vector addition:
A + B =B + A, What happens in the two-dimensional case when the particle remains in the
same plane while rotating about a fixed axis? You can find the answer with the help of a
clock as shown in Fig. 4.2. In Fig. 4.2a starting from 12. the clockhand is given a clockwise
rotation 8, = 2n /3 rad and then an anticlockwise rotation 8, = 7/2 rad to get the resultant

0, +98,. In Fig. 4.2b the order of rotation is reversed : starting from 12, the clockhand is first
rotated anticlockwise by /2 rad and then clockwise by 2n/3 rad, giving 8, + 6. The
resultant is the same. Now perform a similar exercise with different magnitudes of 8, and 8,

What do you conclude? Clearly, if the particle remains in the same plane and rotates aboul a
fixed axis, the angular displacement is a vector quantity. Does this law hold for rotations in
three dimensions? Study Fig. 4.3 and perform the rotations with the help of a book for an

2
Y
y 7 2‘] .
t ¥
81
g&\
ra - -
i =0 j+U 1
2= 8+ 8 B, =8 +8j 820070

vhi L] {d:

answer,

L4

Fig. 4.3; Rottion throuph finite angles: (a0 'The bouk is rotafed by an anple of 72 rad anticlockwise aronnd
the x=axis [p ) and then by #/2 anticlock wise around the v-axis ( 9,‘}1. Theresoliantiv g, = @ ‘i + n_\_j H
Ry

th) the rofations arc the same bul in reverse wrder, e, B, = B_‘,j +0i. Clearly, 8+ 8, Rulutivn through

infinitesimal angles: () the book is rotated by a small anple. say 36 rad anticleckwise nround x and y=axes:

td) the ratalions are the same bot in reverse order, In this case 8, = 8, In all these figures. the origin of the

coordinate axes reraains al the cenire of ihe hook. and the axes remain parallel n themselves,
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What is the answer? Finite angular displacements in three dimensions ure ror vector
quantities, but three-dimensional infinitesimal angular displacements are vectors.

Having defined the angular displacement and studied its vector nature, you are ready to leamn
abont angular velocity and angular acceleration.
4.2.2 Angular Velocity and Angular Acceleration

The average angular speed,of a particle undergoing angular displacement A9 in time Ar is

— _ AD

5= _ (4.2a)
If A® is infinitesimal, then © will be a vector. It will be in the same direction as A8 and we
will cali it average angular velocity. When the angular speed changes with lime, we define
instantaneous angular velocity as

. AQ 4B
(0=d|:lﬂ‘lo ar o ar 4.2b)

d8 is a vector as it is an infinitesimal angular displacement. We can write 40 = %d{.

Since 4 is a scalar, %—?- will be a vector. i.¢. the instantaneous angular velocity @is a

vector quantity. Its direction lies along the axis of rotation and its sense is given by the right-
hand rule. Study Fig. 4.4 to understand the vector nature of @ better.

If the angular speed of the particle in Fig. 4.1 c is not constant, then it has an angular
acceleration. If o, and @, are the instantaneous angular velocities of the particle at times £,
and 1,, respectively, then the average angular acceleration g of the particle P is defined as

Q- 4o ‘(432

E:—-——_
I, —h Ar

The instantaneous angular acceleration i

_ . A dw
a_al..‘lfvlﬂ "BT—F (4.3 b)

Whalt is the direction of the angutar acceleration? Study Fig. 4.5. If the angular velocity
changes only in magnitude hut not in direction, then @ simply increases or decreases,

“’;-Tam ar, l\?

[{V I § I'.I'I, F Y

) >

f

ta hi {c)
Fig. 4.5: () Anincrease In angular speed nlone leads to a change Am{= © - o)} in the angular velocity that
is parallel {0 . So o is also parallel (o @ Here o 2nd e, zre the iritial and flnal angulsr velocltics,
respectively; (b} a decrease In angular speed menns that A and hence @ 2re antlparalle] lo o; {c) when
angular velocily changes oniy in direction, the change Awand hence @ Is perpendicular to angolar velocity,

Therefore @ which has a direction along A lies parallel or antiparallel to the axis of rotation
{sce Figs. 4.5 a und b). When @ changes only in direction, the angular acceleration vector is
perpendicular 1o @ (see Fig. 4.5 ¢) Work out the following SAQ 1o prove this yoursetf.
5AQ2

Show that a is perpendicular to @, if @ is a constant. [Hint: For c to be perpendicular to

©, ¢ @= 0. Since w is a conslant, % () =% {(m-w)=0.]

In most general cases, both the direction and magnitude of the angular velocity may change,
in which case o is neither parallel nor perpendicular to a.

Angular Motion

;

AR

Fig. 4.4: The direction of the
angular velotity is given by the
right-hand rule,
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You must have observed by now that the rotation of z particle about a fixed axis has a
comespondence with the translation of a particle atong a fixed direction. The kinematical
variables 8, @ and « for angular motion are analogous to x, v and a for linear motion: 8
corresponds to x, o to v and o to a. You are already familiar with the relations between
kinematical variables x, v, @ and f for linear motion with constant acceleration. In the same
manner we can derive the four equations linking 8, @, o and / for constant angular
acceleration. We are stating these relations in Table 4.1 without giving their proof.

Table 4.1: Angular and linear position, speed snd acoeleration

Linesr Quantity Angular Curaniity
or Equation or Equation
Position x Angular postiion 8
Speed p=%':- Angular speed m:%?_
dv _ d*x dw _ d’

Acceleration g = s Angularacceleration ¢ = T = -&!_2..
df

Equations for Constant Accclerslion
F=liy+e

. |
RN R

r=vy+al W=, +or

vz r .y [Ty
v 'v,r-r,_a‘fl e W+, of
V=gt + 2ax o' =)+ 2a8

Notice that you get the secona set of equations merely by substituting 8 for x, @ for v, & for
« and the initial angular velocity ©, for v, the initial linear velocily. We have seen that a
comrespondence exists between linear and angular kinematical variables. Can we establish a
relationship between the two sets of variables for angular motion? The answer is yes. We
will find that these relations are easier to derive if we use plane polar coordinates.

4.2.3 Relating Linear and Angular Kinematical Variables

In your school mathematics courses, you may have studied plane polar coordinates r and 8
of the point P (x, y). shown in Fig. 4.6a. These are related 10 x and y by the equations:

X =rcrs0, y=rsind, (4.4a)

giving r=vx’+y.8=tan" % {4.4b)

You also know that

“ Fa)

r=xi+)). (4.3)

Plx.yl
r /

'a A 3 e c ¥

£ -
Fig. 4.6: 10} Plane-polar cosrdinites 7 and N: thi unit vectors Tund 8 in thi plans.seber conndinsie e

» A ] . r . . - * ar
<} amit veclom rard @ have differend dircctiony at points Poand P e they vary with dhe position of the

parlicle,

We 10w iniroduce two new unit Vectors T and 9, perpendicular to each other which point in
the direction of increasing r and in the sense of increasing angle 9, respectively (see Fig.
4.6b). There is an important difference between the two sets of unit vectors (‘i\.;) and (;.6):

i and J have fixed directions but the directions of 7 and @ vary with the position of the
particle as you can se¢ in Fig. 4.6¢. Since F is a unit vector along r, we can write

-~

r=rr. (4.6)

T T
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We can use Eqgs.4.4, 4.5 and 4.6 to find the relationship between T 9andf, 3 From Eqgs.
4.4,4.5 and 4.6, we get

A~ r 1 2 .
r=F=F'(rcosﬁn+r51n9_|).

or T'=cos@i +sin Bi 4.7a)

So a unit vector in the dlrectlon making an angle 0 with the positive x-axis is
cos87 +sin B_; Bis a unit vector maklng an angle (172 + ) with posilive x-axis

(see Fig. 4.6b). Su in order 1o obain B we replace 8 in the expression of T by (/2 + ).

S0.0 =cost O+ 1/ 2)i+xint B+ 1/ 2)‘j\.
or 8 = —sin@7 + cos 85, 4.7p;
Notice that although r and @ vary with position, they depend only on 8, and noion r.

Before proceeding further, we suggest that you try the following SAQ to become used to the
polar coordinates:

SAQ32
a) Show that the rcsults |r|—] I |—I and T - 8=0 are consistent with Eqgs. 4.7.

b) If A=A, r +A30 and B= B r+BBB then prove that A-B=A B, +A B where r’
and 0's of A and B refer to the same point in the space.

-

¢ Showthal Fx8=k.

Now that you are familiar with the plane polar coordinates let us first derive the expressions
of velocity and acceleration for circular motion in terms of these coordinates. In Sec. 1 .4,
you have studied these relations for uniform circular motion. You know that for conslant

1 2 . . . . .

w, v=wr and “e=  =ar Let us now consider circular motion with variable angular
,

speed.

Velocitly and acceleration for circular meticn in polar coordinates

Recall thar v = i':; Now. we have from Eq. 4.6,
ot

_dfrJ_:Hr?}_dr" _ﬁ_ dr ﬁ Si 'sacoﬁsl‘am dr -0
T ot ot * dr =0+r o (Since ri T )

-~

. dr .
Notice that —r Isnon-zero. Let us now evaluate 1t,

Differentiating Eq. 4.7a with respect (o time we gel

~

% = i(cos 9)i+ad—(sin B)F. since?and Jjare consiant unit veclors,
« de de
= —smB—1+cosBE—
=0 (- sin@ +c0591)
where we have writlen %—?- as §. Using Eq. 4.7h, we get
dr_ .~
= 4.8
7= 08 (4.8)
Thus, for circular motion
v=rj 6:
arv=rwe. (4.9)

since @ = r% “Thus. the velocity of a pariicle moving in a circle has the magnitude wr. [tis
-~ e .
direcled along @ . which is along the tangent to the circle. You can see that Eq. 4.9 holds for

uniform circular metion also.

Again differentiating Eq. 4.9 with respect to time, we get the acceleration for circular motion
in plane polar coordinates:
dv  drce o dB A dﬂ

= — = == ke
a ol ot 08+ dt 9 dt

Angular Motlgn

In the text, whenever we use
the terms "velocity’ and
‘acceleration’, we meun ‘linear
velocity” and *linear
acceleralion’.
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dar dt drt

ora = ;'69+r9£

~

a0

To evaluate o we differentiate Eq. 4.7b with respect to time:
'

9 A d 2
48 _ —-‘-i-(sin 9)i+ —.(cosﬂ)]
dr

a8 > dB A
= —cos0 X [—sing
cos = sin ~ J

= —é(cos @ f+ sin GT).
Using Eq. 4.7a, we get
dt ' 4.10)

So, the acceleration of a particle moving in a circle is
a = r80 - r(8)27

Since ® = éanda=(;—c;)=ﬁ. we gel

a= —olr+wd. @.112)
I 4.11 b)
agr+ay @110

or a= ag+a;.
Thus, for circular motion a has a radial component a, opposite Lo Fig direction, which
gives the negative sign. It also has a transverse.component a, along @. You can see that the
ransverse component a, vanishes for uniform circular motion. You may now like 1o work
out an SAQ to concretise these ideas,

SAQ4
A grindstone of radius (1.5 m is rotating anticlock wise at a constant angular acceleration o
of 3.0 rad s7* (Fig. 4.7). Start from a reference horizontal line OX at time ¢ = 0, when the

grindstone is at rest and find the following for a particle P situated at the rim of the
Fig- 4.7: A grindstone rotaung grindswne.
aboul 8 fixed axis A0B. The

particle £ on its rim execules a) Its angular displacement and angular velocity 2.0 s later.
circular motion.

e

b)  Iis linear velocity, radial and transverse acceleration af the end of 2.0 s.

In Eqs'. 4.6 to 4.1 1 we have expressed vectors r, v and & in terms of scalars 8, o and «. What

is the relation between the vectors T, v, a and 0, @, &? Let a particle rotate in a circle about

the z-axis. The veciors v, v, aond 03, 0 will be as shown in Fig. 4.8, et the witgle between ©

and 1 be 0, Then, stnce ZPC0 = 907 the radios CP of the circle will he r win o, and
¥=0¥sing

If we now sweep @ into r through the smaller angle between them and use the right-hang
rule. we find thal the extended thumb poinis towards v. This gives the relation

M or o
vorar Yy=mXr. (4.12a)
— Now, a=ﬂ=i(mxr)
C dr dr
" . £ dA /B
~— | Since — (AxB)*L XB+Ax| - | weget
_ uw ar
df Xr+mXE—ﬂXrJﬁn’r
(7]

We can once again prove that
Fig. 48 Yeciorsrovia, 0. @

and cr.l'urnpurlu.le redating in B =@Xxr, (4.12b)
a circle about the zanis,

8, =@Xv,giving (4.12¢c)
a=a +a, : 4.12d)

) pr—rd

it i




Eq. 4.12b follows from the same reasoning as we used for v. a, = o sin ¢, and its direction Angular Motlon
is obtained from the right-hand rule #pplied to @ and r. Now

a, = @ r sin § = @ (0 sin ¢) = aw,

The direction of &, i8 along PC. It is the same direction in which the right-hand thumb points
if @is swept into ¥ through the smaller angle. '

Let us now express r, v and a in terms of plane polar coordinates for any general angular
motion of a particle about a fixed axis of rotation. .

Eq. 4.6 for r hoids good for any kind of angular motion, For velocity we have

gy _dra dF
vEIF Tt I .

Using Eq. 4.8, we get

V== v by, (4.138)
where v, = 7r.v, =60 (4.13b)
Similarly, acceleration a js given as :

=4y _ p, 48 aa 526
a= o rr+r ” + réﬁ+ r96+ ’9}}'

FErr00+ ro8+ r88_ L20
where we have used Egs. 4.8 and 4.10. Thus,

a=(F-r)F+ 8+ 278)0. ] (4.14)

Eq. 4.14 means that the acceleration for general angular motion has two components. One js
along T and is called the radial component. The other is perpendicularto T and is calied
the transverse component. :

Egs. 4.6 to 4.14 enable us 1o describe the motion of a particle undergoing angular motion
either in angular variables or in linear variables. You may wonder why we need angular
variables for describing angular motion, when they appear more complicated. The answer is
that the angular description is rore useful than the linear description when we discuss
angular motion. For example, it is much more convenient to use these equations to find out
the orbits of planets. You will see this in Unit 6. Similarly, for describing the motion of a
rotating body we will have to consider the motion of various points on it. It is clear from
Egs. 4.6 10 4.14 that different points on the body will not have the same linear displacement,
velocity or acceleration. But alf points on a body rotating about a fixed axis (which does not
pass through the body) have the same angular displacement, velocity or acceleration at any
instant. Therefore, we can describe the motion of the whole body in a simple way if we use
angular variables 8, ® and a. You will appreciate this point better when you study Unit 9,
We end this section on the hinennties of angular motion with an example angt iin SAQ,

Example 1: Acceleration of a bead on a spoke of a wheel . . ¥

A bead moves outward with a constant speed 1 along the spoke of a rotating wheel. It starts

from the centre at time s = 0. The angular position of the spoke is given byB=cw1, where o /
is constant. Find the velocity and acceleration of the bead, “/,
Let us choose the reference frame as shown in Fig. 4.9. Here f =uand &= w. The radial “
position r can be obtained by integrating with respect to ¢ the relation 7 = . \<
[dr ={udr
e
Or 7 =ut + ¢, where ¢ = constant of integration. Fig. 4.3: Acceleration of 2 bead

on a wheel's spoke

Att=0,r=0 Thus.c=0.
From Eq. 4.13

-
v = T+ 80
~ ~
ur + ur wo
Vet v,
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We find that the magnitude of radial velocity is constant, whereas that of the transverse
velocity increases linearly with time. :
The acceleration is given by Eq, 4.14: ‘
C a=(F -8 4 (B 24)0
=~ + 25000,
The magnitude of transverse acceleration is also constant.

SAQS
A particle moves outward along a spiral. [ts trajectory is given by r =C8. where Cisa

arl .
constant equal to (1/n) m rad™!. @ increases in time according io @ = —5— , whereax is a

constant.
8) Find the velocity and acceleration of the particle. |
b) Show that the radial acceleration of the particle is zero when 0 = TZF rad.
[Hint: Use Eqs. 4.7, 4.13 and 4.14.].
- S0 far we have described angular motion. We will now study the causes of angular motion.

4.3 DYNAMICS OF ANGULAR MOTION

As we have seen earlier circular motion is the simplest kind of angular motion. There are
numerous examples of circular motion in nature. Many satellites are in circular orbits, the
orbits of planets are nearly circular. The earth’s daily rotation carries you around in circular
motion, Pieces of rotating machinery, cars rounding curves etc., describe circular motion,
Let us see what forces cause a particle to execute circular motion.

4.3.1 Circular Motion

We will first consider the case of uniform circular motion about which you have read in

- Sec. 1.4 of Unit 1. Recall that in this case, the particle moves in a circle with a constant

angular xpeed. Thus. both r and @ are constant. The force F iy given by Newion's second
law us F = ma.
)
We use the expression of @ from Eq. 4,11, In this case o is 2610 a8 @ s constant. Sa we ot
2

r 2~ my A
F=—magr=-mrad'r = - F. 4.15

r
ve

You can recognise the term - as the centripetal acceleration of Eq. 1.30¢. The force
defined by Eq. 4.15 has a magnitude mv¥/r and is directed toward the centre of the circle,
The negative sign in Eq. 4.15 appears because F is opposite to r in direction. This is called
the centripetal force. What does Eq. 4.15 mzea.n? It means that for an object of mass m 1o be
my a
T must act on the ob’ect. Whenever we see an
object in uniform circular motion, we know that a net force of this magnitude must be
acling. Some physical mechanism like gravity, tension iri a string, an electric or magnetic
force, friction etc. must provide this force. For example, the piant planet Jupiter circles the
Sun at a speed of 13 kms™'. The gravitational force-keeps it in its approximately circular
pisih. Similiniy. when it liny sports car rounds i izl curve the ceniripetal force-peeded 10
keep it in a circular path is provided by the frictional force between-its tyres and the
raaduci, anid also by the Danking of e road. Provons circle around an acceleralor ring
because a magretic force provides the centripetal force.

in uniform circular motion, a net force —

Example 2

A geostationary satellite is held in its orbit by the force of gravitation. What is its height
above the surface of the earth?

You may have studied about geostationary satellites in Unit 29 of the Foundation Course
FST 1. You may know that its time period of rotation is 24 h which is the same as the period
of rotation of the Earth about its axis. Now, the centripetal force needed to keep the satellite
in i1z path is provided by the force of gravitation between the Earth and the satellite. So, if
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m_and mt are the masses of the salellite and the Eanth, respectively, and r the radius of the Angiilar Motlon
satellite's orbit, then .

myv:  Gmm,

r r
2n
where v is orbital velocity of the satellite givenas y = —r,

and T = Time period of rotation =24 h =24 x 60 % 60 s
4n2 Gnt 1_ GmeT?
So, we gel. _Tr;-z 0]’]-——4E5—.
- ’-— n"
Putting r = R, + h, where R, = the radius of earth and k = height of the satellite above the
surface of earth, we get

23143
Gm.T
4n? :
Substituting the values of G, m, and R, and putting T = 24 x 60 x 60 s, we get
h=3.59 X 10# m= 35900 km.
SAQ 6 o
Suppose the moon were held in orbit not by gravitation of the Earth but by the tension in a
massless cable. Estimate the magnitude of the tension in the cable.

- R;. (4.16)

What is the force for circular motion in which the angular speed of the particle changes? For
example, the rotary motion of a particle on a record turntable spinning up from rest to full
speed, or a ball swung in a vertical circle. In this case, we again use Eq. 4.11 for a and

obtain
F=ma=FR+FT (4.17a)
2
where Fp= —mrotr = -2 r,and (4.17b)
- r
F, = mra 8. (4.17¢)

Thus, for non-uniform circular motion the force has a finite transverse component'in
-addition to the radial or centripetal component. You have studied in Sec. 1.4 of Unit 1 that
the centripetal acceleration and, therefore, the centripetal force changes only the direction of
velocity. and not its magnitude. What effect does the transverse force have on the particle?

Role of transverse force )

The transverse force gives the particle a finite angular acceleration: the greater the force, the
greater is @, and greater the rate at which angular speed increases. In other words, this force
makes the particle tumn faster and faster, if it continues to act. What do you think will happen
to the rotating object if this force stopped acting?

If F, is zero and F, continues to act, the panticle will continue 10 rotate in a circle but with
zero angular acceleration. i.c. at constamt angular speed. Thus. 1o keep u particle moving in a
circle at a consiant angular speed. only a centripetal force is needed. Only if you want Lo
increase or decrease the rate at which the particle is rotating, you have to apply a transverse
force in a direction perpendicular 1o the radius. Suppose you wani 1o start rotaling a2 wheel,
(potter’s wheel or bicycle wheel), or a grindstone or a merry-go-round. which is inttially at
resl (see Fig 4.10). You will have to apply a transverse force because you want to change its
angular speed from zero to some positive value. You also need a ceatripetal force to-make it
move in a circle. Hence, you apply a force which is not exactly perpendicular 1o the radius
but along the direction of the resuliant F of the radial and transverse forces, i.e. 1ilted a little
towards the cenire of the abject.

)] il
Fig. &1 ta} A transverse force alung £ is needed alungsith the radial force alung A to set the merry-go-
round mosing; (b)Y sow apply a retarding transs erae force l*".[-, while braking a bicycle wheel. 67
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Activity
Try to rotate a mermy-go-round, a grindstone or a bicycle wheel yourself, What is the
direction in which you apply the force? Draw the direction on Fig. 4.10a.

~We have seen that a transverse force is needed to increase the angular speed of a rotating
object. The same force but in opposite direction would be required to reduce the angular
speed of the object. This is.what happens when you apply brakes while riding a bicycle. The
surface of the brake B comes in contact with the rim of the wheel which rotates in an
anticlockwise direction (see Fig. 4.10 b). It produces a transverse frictional force F.in the
opposite direction, decreasing the angular speed of the wheel..

Actually, friction is always present between a rotating wheel and the shaft or axle about
which it rotates. Therefore, left to itself it will stop rotating, sooner or later due to friction.
This is the same as in straight line motion where a force of friction slows down a moving
object dll it stops.

‘Example 3 _ ) :

A roller coaster has a Loop-the-Loop section of radiys r (Fig.4.11(a)). What should the
speed of a train be if it is not to leave the track even at the top of the loop?

) thy

Fig. 4.11: (2} Loop-the-Loop roller coaster is a winding train track In amusement parks. Forces on the tralg
include gravity and the normal force of reaction between the train and the track. The resultant of {hese
fmpmvﬂuthecmﬂipeu]fomlokeeplbtu-ajnmovhrgonadrcularpnl.h;(b)lllhelopol‘theloop
the net force on the passengers polnts dowawards.

What are the forces acting on the train and the track? These are gravity and the normal force
of reaction, between the train and track. The train will stay on the track only.as long as the
normal force of reaction between thé train and the track remains non-zero. The forces are
shown in the Fig. 4.11(b) at two points on the loop. The net force at any point is related 1o
acceleration by Newton's second law:

F +N=ma.
R

Let us, for convenience, choose a coordinate system with the positive direction downward.
Al the top of the loop, the verntical component of the force equation becomes

2
mv
mg+N=ma= .

50 that r
v = gr+ —N—r
Now,ifNisto remammnon-z:ero at the top of the loop, then
v -gry>0,
ie. vt >gn
orv > fer .

Therefore. for the trairi to be in contact with the track even at the top of the [oop, its speed
should always be greater than \/gr. So for & ¥, vical roller coaster for which r = 6m, say,

Jer =J(9.8ms2)(6m) = 7. 7ms~! . The main's snasd, therefore, should shwavs be greater
g T r 7 g-:

L] PE L)

i1an 7.7 ms~! in this case.
SAQ7 :
A level road has a tum of 95 m radius of curvature, What is the maximum speed with which -

a car can negotiate this tum (a)} when the road is dry and the coefficient of static friction is
0.88 and (b) when the road is snow-covered and the coefficient of static friction is 0.217

[Hint: The frictional force between tyres and road provides the car's acceleration, ]

[t 3 (1 v rareran

(A= ) EL L e e

SeeTERITTTS Y s




4.3.2 Angular Motion in General Angular Motion
Let us now determine the force acting on a paniicle executing accelerated angular motion.

From Newton's second law, using Eq. 4.14 we have
F=na = ml# — H*Jr + m[rd + 27010

= F, +FT' (4.13&)
where F_ is the radial force which acts along T and has a magnitude
Fy = m(¥ - r0%). (4.18b)
and F,_ is a transverse force which acts perpendicular to F and has a magnitude
(4.18¢)

F, = m[r8 + 2/8].
Equations 4.18 are very general. They can be used to solve any problem of motion in two
dimensions, such as planetary motion. These expressions may look a little complicated to
you. Don’t let this put you off. All that we need 1o understand is this: We can use plane polar
coordinates 10 describe any two-dimensional motion.Then, such 2 motion may be seen as &
combination of straight line motion along the radius vector and a rotation abeut the origin of
the frame of reference. The straight line motion is accelerated due to a radial force, The
rotation, which is also an accelerated motion is the result of transverse force. For most
sitwations Eqgs. 4. 18 are reduced to 4 simple form.

So far we have applied Newton's second law to study the angular motion of a particle.
However, if (he rotating object were a rigid body, then applying Newton's laws to determine
the motion of every particle in it would be too cumbersome. Can we, instead, formulate an
analogous law that deals directly with rotational quantities? For doing this, we need the
analogues of force, linear momentum and acceleration for angular motion. We have seen
that the angular acceleration is the rotational analogue of linear acceleration. What is the
rotational analogue of force? The answer is torque; which we will now study.

433 Torque

Perform the following activity to understand what torque is.

Activity

Open a door by applying a force near its edge along the door's plane. Then try to open it by
pushing it at the same point in a direction perpendicular to or at an angle with the door’s
plane. Next push it at a point near the hinges, with roughily the same force. In which case
does the door open more quickly?

You can repeat this activity to open a book or to open a rusty nut with a spanner.

You would have noticed that in all cases, the job was easier if you applied the force at the
point farthest away from the axis of rolation and also in a direction perpendicular to the
plane of the door. or the book, or the arm of the spanner. So, how easily an object rotates
depends not only on the force but also on the point and on the angle at which the force is
applied, i.e. it depends on the torque. We define the torque for a single particle observed
from an inertial frame of reference as follows:

If u force F ucls on a particle at a point P which has a.position vector 1. the torque T acting
on the particle with reference 1o the origin @ is delined as :
(4.193) 7

T=rXF.
P
Torque is a vector quantity (Fig. 4.12). I1s magnitude is given by
Fig.4.12: A force F is applied
T=rF sin B, (4.19b)  1oaparilcle P, displaced r
relative to the origin. F makes

where f3 15 the angie belween r and F. Its direction is normal to the plane formed by r and F. an anete B with r. The

Thus Tand F are always perpendicular to each other. The unit of torgue is newton-metres. dlrection of torque is
Now, if we substitute F from Eq 4,18 (a), we get perpendicular to the plane
. cantaining r and F with the
T=rX l'rr FE X F.-' {4.18¢) sense givan by right-hand rule.

Since F, is parallel to r. their cross product will be zero.
st=rXFo (4.194d)

It is important to realise that torque and force are entirely different quantities. The concept
of torque provides a relation between the applied force and the tendency of a body to rotate. 69

fTTTTT T T

by e m— TTrTTT T

[EP= 111 7 1 ket H e

TS




Concepts in Mechanicy

v

(m)

v

th)

(<)

Fig 4.13:(a} The torque Is
greatest with F and r at cight
angles: (b) zero when they are
collinear; {c) there can be a
torque cn 2 system with zero

- net force.

A
r A0
B

Fig. 4.14
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For one thing, torque depends on the origin but force does not. You produce greater torque
for the same force, if you apply the force at greater distances from the pivot point or the
origin. Again, for a given force and distance r, the torque is greatest when r and F are at
right angles (see Fig. 4.13a).

The torque becomes zero when r and F are along the same line (Fig. 4.13b). Thus, even if
torque is zero, the external force need not be zero. The torque is also zero if the force acts on
the point or along the axis, about which the particle is rotating. This is because in such a
case, the vector r will be zero. Torque is obviously zero if the extemnal force itself is zero.
There can also be a torque on a system with zero net force (Fig. 4.13¢). In general there will
be both torque and force.

Let us now find oul the torque acting on a particle in circular motion in the xy-plane. Using
Eq. 4.17 ¢, and Eq. 4.19 d we get

T =rX mra6
~ o -~
= mro{r X 8),sincer = rr
= mrlcll?.:iinuc Tx8 =T{. Irom SAQ 3{u).
= mria,
since ok is simply the angular acceleration vector @. (4.2(00
Let us compare Eq. 4.20 with Newton's second law.F = ma. The torque is the product of the
angular acceleration @ and a quantity m+%. On comparison we can say that this quantity mr?
is the rotational analogue of the mass. We call the quantity mr? the rotational inertia or
moment of inertia and represent it by the symbol /. Rotational inertia has the units kg m?
and accounts both for mass of the particle and for the location of the particle relative to the
axis of rotation. You know that the inenial mass is a measure of the body’s resistance to
change in its state of motion. In the same way, rotational inertia is a measure of the body's
resistance to change in its rolational motion. Note that / would change if we change the axis
of rotation. In contrast m is a constant. Substituting / for mr? in Eq. 4.20, we can write for
circular motion of a particle of mass rr about a fixed axis of rotation

=/ (4.21a)
where [ = mr>. (4.21b)

This equation is similar to Newton’s second law. We can deduce the same kinds of things
from it as we did from equation F = ma. For instance. for constant /, the angular
acceleration is directly proportional to the applied torque. In the absence of lorque, an object
continues Lo move at a constant ‘angular speed. And, the same tlorque will produce grealer
angular acceleration for an object of smaller moment of inertia. You can now apply the Egs.
4.21a and 4.21b to solve a problem in which the torque acts to change the particle’s angular
velocity.

SAQS

You may have studied in Block 3 of Foandation Course FST 1 that a neutron star is an
extremely dense, rapidly spinning object that results from the collapse of a star at the end of
its life. A neutron star of mass 15 x 10 kg has a rotational inertia of 45 x 1% kg m* abowt
an axis of rotation passing through its centre, The neutron star's rotation rate slowly
decreases as a result of torque associated with magnetic forces. If the rate of change in its
Angular speed is 5 x 10-° rad 577, what is the magnitude of magnetic torque?

“Another question conceming angular motion is whether we can express the kinetic energy of

& rotating particle in terms of the angular vaniables? Yes, we can. Let us see how to.do it.

4.3.4 Kinetic Energy of Rotation

Let us consider a particle of mass m moving in a circle of radius r about a fixed-axis of
rowation AGH (see Fig. 4.14). Let its angular speed about the axis be . His kinetic energy is

2

K.E. = v = %m(rm}z.

3

mriot

(Y SRR

Thus, using Eq. 4.21b, we get

Ky, = % la?. (4.22)
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This is atso termed as the kinetic energy of rotation of the body,

So far, we have studied some concepts of angular motion. We haveé seen that an analogy
exists between the kinematics and dynamics of linear and angular motion. This analogy
would be complete if we could define a physical quantity corresponding to linear
momentum. Indeed, there is such a quantity called angular momenturn. We will discuss
angular momentum especially so as to arrive at another very important conservation law.

4.4 ANGULAR MOMENTUM

We know that the torque on a particle due to a force F is given asT = r X F.Since F = @
from Newton's second law, we get di
T=rx 2‘2
d a dr
Now.d—{(rxp) d x(mv)+rx;ﬂ (- p =mv)
=0+rx£’i (- vxmv=20).
dt
So, we can wrile,
dp 4
=ErXX—= == X .
e dr dr rxp
We define the angular momentum L of the particle with respeci to the origin O to be
L=rxp {4.23a)
Thus, angular momentum is a vector with magnitude
L=rpsiny, (4.23b)

where v is the angle between r and p. The direction of L is perpendicular to the plane
formed by r and p. It is determined by the right-hand rule (see Fig. 4.15). Although L has
been drawn through the origin, this location has no special significance. Only the direction
and magnitude of L are important. The unit of angular momentum is kg m* s, Thus, the
expression for torque becomes

=2 (4.24)
dr
You can see that this relation is analogous 10 Newton's second law. We can also relate
angular momentum te angular velocity. Let a particle of mass m move anticlockwise in the
xy-plane about a fixed axis of rotation perpendicular to the plane with a linear momentum p.
Then you know that its angular momentum is

L=rXp=rXmv=mrxXv,

Using Eq. 4.6 for r and Eq. 4.13 for v we get

L =mrx (it +l99]
=0 +mr *9(F x @), sincer X T = 0. (4.25a)
L = mr? Ok
Now mr” i the moment of inettia 7 of the particle and - 6k is the angular velocity sector @.

Therefore, we can write
l.=tw {4.25b)

Mptice that this eguation is ana)

Let us now work out an example on angular momentum.

Etnmple 4: Angular momentum of 2 p.:rl:c!.. in ..n.!'ﬂr'r. mction

A block of miss s and neghigible dimtensions maves i constant speed v ina straight line
(see Fig. 4.16). What is ils angular momentum L, about the origin A and its dngu]ar
momentum L about the origin B?

Let the particle move along the x-axis, i.e.¥y=v 7. As shown in Fig. 4,16(a}, the position
vector of the particle with respect 1o 4 is
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P
Fig. 4.15
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Ty = J-.l :

Since r, is parallel to v, their cross product is zero and
L =r, Xxmv=mr,xv=0.

_ The particle’s angular momentum with respect to 8 is

L =mr, xv.

We can write
r; = A - bj

where x is the component of r, parall'cl to v and b its component perpendicular to v.

-~
Sinceix v =0.o0nly hj'l:umrihulc-i to L. Thus,
~ Ll

L,=m \1—bj)x\1 00— minixi

L,= mhrk
Thus, L, lies in the positive z-direction a.nd has a magnitude mbv. This example shows how
L dcpends on the choice of the origin. Further, for the particle moving in a straight line. b is

constant. Therefore, the angular momentum of a particle moving at a constant speed in a
straight line remains constant.

So, the torque acting on such a particle is zero.

Another idea brought aut by the above example is this: Do not think that the quantities @, L,
& and 7 can be defined, or have meaning only for angular motion. Any moving object can
posséss an angular velocity, angular accelerstion, angular momentum and torque about an
origin. What is more, the same object can have different values for these quantities about
different origins.

SAQ 9
A particle of mass m falis from rest in the earth’s gravitational field according to Galneo’s

lawz=1z — - L g?. Its horizontal coordinates are x =x_, y =0.
a) Determine the position vector r and velocity v of the particle at time .
b) Find the angular momentum L as a function of lime about the origin.

dL
¢) Determine the torque acting on the particle about the origin, (Hint: T = o )

4.4.1 Conservation of Angular Mementum and its Applications
What happens when the net external torque on the particle is zero? Eq. 4.24 becomes

1.e. L = constant.

Thus, we get the principte of conservation of angular momentum. The angular momenium of
a particle remains constant both in magnitude and direction if no net external torque acts on
it.

Constant angular momenturn implies that the particle’s motion is confined to a fixed plane
normal to L. This is because by definition L = r x p and L is norma 1o the plane containing
r and 9. Since L is constant in direction, r and v will lie in a fixed plane normal to the
consiant vector L. 5o we meed to use only a .wo-dimensionai coordinate system to siudy (he
particle’s moiion. The principle of conservation of angujar momentum applies to systems
ranging from subatomic particles to huge rosting galaxies. Let us study some applications
of the law of conservation of angular momentum 1o ungorsiand it better,

Pointing a Satellite

Angular momentum conservation is used to steer a satellite, i.e. to point it in any desired
direction. For this puspose wheels are fixed inside the sateltite. Each wheel has a motor and
brakes to start and stop its rotation. When a wheel starts rotating, the satellite rotates in the
opposite direction to conserve the angular momentum. After the satellite has rotated through
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the desird angle, the wheel is stopped and the satellite also stops rotating. Three wheels are . Angular Motion
normally used so that the satellite can be pointed in any direction. The motors and brakes
Tun on electricity generated through solar energy, so there is no fuel 1o run ou.

It is also because of the conservation of angular momentum that a satellite's axis of rotation
remains fixed in space. Sateilites are usually rotationally isolated bodies. So the net rorque
acting on them is zero. Thus, the direction of L and hence the direction of the axis of
rotation remains fixed. Therefore, spinning the satellite gives it a stability in orbit

(Fig. 4.17).

A
{a} it

Flg. 4.17: (a) For & rotationally Isolated satellite, L remains constant in magnitade and its directlon remains
Mxed in space. Thus, the axls of rotation remains Axed os [t is aleng L; (L) the fact that the axls of rotation
remains fixed in space for constant L is used for stabilisation of a satellite by spinning it. AB shows a section
of the earth's surface.

Angular acceleration accompanying contraction of a string

An object of mass m is attached to a string and is rotated in a horizontal plane (the plane of | .
the dashed line in Fig. 4.18). . !

\"\-
The object rolates with velocity v, when the radius of the circle is r, It is seen that as he et

string is shartened by;pulling it in, the object speeds up even as it rotates. Why does the
object speed up?

The force on the object due to Lhe string is radial. Here we are neglecting the force of

gravity. Thus, the net extemal torque un the object is zero and its angular momentum is P i
conserved. Therefore, as the string is shortened, the angular momentum should remain Fig. 4.18: Mass » describes
constant, The magnitude of the initial'angular momentum of the object when the radius of circular metiun of radius r,
the circle is 7, is Imr X vyl = mryv, sin 90° = mry,. and velocily v, It is connected

to o string § which passes
throuph a tube 7. The radius
ol the circle can be shortened
by pulling «n the string at £,

The magnitude of the object s angular momentum when the radius of the circle is shortened
o ris lor X v | = sy sin 90° = iy,

Since angular momentum is conslant, TR A
This pives

= e
,

As ris smaller than r,» v will be greater than Vo that is the object will speed up

Let us now summarise the unit,

4.5 SUMMARY

¢ Infinitesimatl angular displacements are vectors. The angular velocity and angtilar

acceleration vectors are defined as )
efe 440
= [+

dr’ dt

The directions of angular displacement and angular velocity vectors are faken along the
axis of rotation, and their sense js determined by the right-hand rule.

Plane polar coordinates can be used to describe angular motion in two dimensions and
10 express the relationship between kinematical variables of lincar and angular molion, 75
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(“uncepts In Mechanics

®  For uniforn circular motion, - and @ are constant.

T

A a oA
r=T.v=ro@a, =-—F
,

For circular motion r is constant, @ varies giving a finite o and

-

~ - " A -~
r= Ty =0 a=——r+a
r

®  For general angular motion. r is « variable
- P
r =ty =/T+r00
.~ " oA

a=(F-M i r+ud+2/00=a, +a,.
®  The veetor forms of these relationships are

\'—m)(r a, =mXY. & =axXr,
® Torque und moment of inertiz are the analoguces of force and inertial mass for angular

motion. The torque acting on i particle displiced by r under the inluence of force F
around the origin is given by

T=rxF.
®  There exists o relationship analogous 10 Newton™s second law between torque and
angular momentum:
ol
T=-.|'— where L = T X p.
¢it

®  For a particle of nrass »r moving in a eirche of raciius » around @ fixed axis of rolation
1= fo. where / = mr is its moment of inertia,

®  The kinelic energy of a particle of mass a rotating with an angular speed o is

.

k 1wy

td | -

L =
® i the nel eaternal lorgue acling on a system is 7. vo. the angular momentum URTIN

system is constant both in magnitude and direction. This is the principle of conseryation
of angular momentum and it has many applicutions.

1oy

Fig. 4.19

4.6 TERMINAL QUESTIONS

1. Take a reciangular coordinate system. A particle moves parallel (0 x-axis with a
constant speed v. Show that the magnitude of its angular velocity varies inversely as the
square of its distance from the origin. Also obiain an expression for the magnitude of its

angular acceleration.

2 A particle of mass S moves ina plane with constant radial specd = =4 m e
angular velocity is constant and has magnitude 8 = 2 rad 5!, When the particle is 3m
from 1he origio. find the (a) velocity, (b) acceleration and (c) kinetic energy of the
particle,

3. A particle of mass m moves along a space curve defined by r = 6t | - j + (41" - S)k.
Find its (a) anguiar momentum, (b) terque and (c) kinelic energy of rotation about the
origin.

4. Two objects of mass 20g and 30g are connected by a light rod of Icngth 1m and move in

a horizomal circle as shown in Fig. 4.19. The speed.of eachis 2 m s~ !_(a) What is the
lotal anguiar momenium of the objects about the centre? (b) tf the red contracts
uniformly to half of its original tength, will the speed of the objects change? If so, by
now nci?

4.7 ANSWERS

SAQs
1. The magnilude of the rotation will be 25t/3 rad. Its direction will be perpendicutar o the
face of the clock puinting away from you if you are holding it face up.

* 2. Since @ is constant, EE:O, or (;33) =i(m‘m)=0.

dr
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Angular Motion

Since 4-(A- B)=22 pia. 48,
—(m m)——-e-m+m-d—m= do m,(-A-B=B-A)
dr dt dr

..E(to-m)=2a-m, orZa-m={
This implies that & is perpendicular to .
. a) i) |?|=-Jﬁ=-J(cosei‘+sin63}-(cosef+sinéj)
=Jcos? 0 +sin@ =1

if) |e] V8.8 = -J(—sm&l+cosﬁj) - (~sin6f + cos8)) = /sin2 @ + cos? 6 = |

iii) - 0 (cosBl+sm0j) (—smel+cosej) —c0s0 sinf +5in6 cosO =0
b) A-B=(A, r+A90) (Br+836)
=A,B,(r- l'J"‘ArBa(l‘ 0)+AB(9rJ+A.,Be(00) o _
= AB.(F- 1)+ ABy(8- e) (~F-8=8.F=0)
. From,a.n)andu)r-r:landﬁ-9=l
Therefore, A -B=A B, + A8,

c) Fx8 = (cosi + sinB}) X (~5in Bi + cosej)

=coszﬁ(i>_<j)—sirfe£jxi) ('-'E"E=:>‘i=?>
=(cos® 0 + sin? Ok=k Crixj=dxi=k)

- We shall use the equations for constant angular acceleration given in Table 4.1 along
with Egs.4.6t04.11. Hence r = 0.5m, 0. = 3.0 rad s2.

a) The magnitude of the angular displacement is given by
0= +70” =1ot’, " @, =0 in this case
or 8= 2(3rads?)x (2%s*) = 6 rad
‘The direction of @ will point along the axis of rotation from O to A (Fig. 4.7). The
angular speed
=0 +=r=3rads?x2s
or ®=6 rad s~
and the direction of angular velocity is along OA.
b) The linear velocity v is given by
v=rr+r08=rob sinceris constant,

orv=_0(5m X6 rad s"a since =6 rad s atfr=2s,
So the linear velocity of the particle has a magnitude 3m s~ and is directed along the
tangent at that point.
Radial acceleration ag = —0*T= (6 rads')? x 0.5 mr
=-18ms’r,
Transverse acceleration a; = cus
= (3.0 ndsH) x (0.5mB = 1.5 ms2@

You must note that radian is the unit of angle which is dimensionless and hence its
multiplication with any other unit leaves it unchanged.

The irajectory of the particle is given by
e ] Vea . N 2
r=Co= L— m rad"JLEr‘ radJ =
s 2 n
a) The velocity v =/f ++00 from Eq.4.13 a.
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Comcepty In Mechanics

Fig- 4.20: N {s the normal
‘reaction which balances the

welght I-"‘Jr (=ng), F , the force
of friciion, provides the
necessary ceniripetal force.

X
0o
r
z
Fig. 421
76

z . _
=E[F+w—0]m 5!
72
Acceleration a = (7 — r02)F + (rut 270)0

Since i = & = Ems?. 6= curads™
& =

a a? S5\~ o 20 A
ax|—-—.0 14| —-a+— w |
n 2n 2n n
3
) LI R
n 2n 2n
b) a, =0 means that
o
& _Z o0, oredrt =20
n 2n

2 2
Since a = 0, wcgctuzt4=20r[w7] 2=

1
j.e. 82 =Lrad? giving @ = —rad.
2T BV U=

. The tension in the massless cable holding the moon will provide the centripetal force

2
Y Now, if the moon were held by the force of gravitation between he earth and the

,
moon then,

mv? _ Gmmg

- 2
r r
where m and m_ are the masses of the moon and the earth, respectively, and r is the mean

distance between the moon and the earth.

2
. . my Gmm
So, the tension T in the cable = —=— £

r r
(6.673 x 107" NmZkg 2) x (7.35 x 102 kg) % (5.97 x 10™ kg)
(3.85 x 10°m)*

orT=

= 1.98 by ](E” N.

Compare this with the tensions in cables required to lift cars or trucks which are of the
order of 20,000 N.

. The centripetal force is provided by the forcé of friction between the car's tyres and the

road (Fig. 4.20).
The magnitude of lhq force of friction F_ =p N = L mg, where m = the mass of the car,

2
Soy . mg= an_' where v = the maximum possible speed of the car.
r

av=qflyrg.
a) For the dry road, v = /(0.88)(95m)(9.8ms™) =29ms™",

b) For the snow covered road v=~\!(0.21)(95m)(9.8m5'2 =14ms”’,

If this speed is exceeded, the car must move in a path of greater radius which means

it will go.off the road,

. The torque of an objecl is related to its angular acceleration by © = fa. Here

J=45x 10P%kg m*anda=5x 104 ad s .

Therefore, the magnitude of the magnetic torque = (45 X 10% kg m?) x (5x107 rad 57%)
= 2.2 x 10°* newton-metres.

. a) Referto Fig. 4.21. The position vector r of the particle with respect to origin at time

ris . A 1.\~
r =x0i+()j+(z°---2—'gr )k.
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~ 1 »~
= xpl +(zn ——-gerk.
2
Its velocity at time r is
dr A
‘¥ =——=—grtk,
ar ¢
b) The angular momentum
L=r><p=rxmv=m(rxv)

- o2l 2
or L= m[on(zo —o 8 ]k]x[-grk]

P (v1,k)

~ (0. k)
= mxyet].

¢) The torque acting on the particle about the origin is
= dL i "
ar 08l

Terminal Questions o

L. Refer to Fig, 4.22. Let the particle be at P at the time ¢. Tts distance from the y-axis is
then equat to 17. $0 0 = tan - ' (k/ v1). The magnitude of its angular velocity is given by

oo [ __g_]_ kv
dr | 1+42 70372 ve? IR

& +vor

or =2 c;r:;anl .80, w is inversely proportional to OP2,

The magnitude of angular acceleration is given by
q=90__ 207
dr (k40
2. a) The line..r velority of the particle is
v =T+ 00, _
Heref=dm ' §=2 rads'andr= Im. So,
v=(4ms?)T+(3mx2rad se

= (4F+6§)m Nz 4y
R T

The magnitude of the velocity v= m a
=V4*+ 62 ms'= 213 ms™!
Its direciion is given from Fig.4.23 by
tan ¢, :-Ei =§=- .5 where
$, is the angle which v makes with r.
b) From Eq. 4.14 acceleration a = (¥ = rd°)F + (r + 2/6)¢
Since 7 and 8 are constant, ¥ =0, @ = Q,
Soa = (%) + 2760
= (3mx 4rad’s )+ (2 x dm s x Trag’s "B

=~12ms F+16ms 0.

lis mnaniiud

Mude v < V’(!Ex P2)+(i6 X 16) ms ‘s 20me? and its direction is
) ., 16 . : :
gtven by tan ¢, = - =] — T —1.3, where ¢, is the angle which a makes wirh
[¥)
R -

T (see Fig. 4.23).

%2

Fig. 4.2

Fig.4.23

*
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Concepts In Mechanlce

30p

=] [-—-— kg] «3m)y*2rads”y
1

3. Sincer = 6r'1-3:2)+ (47 - 5)k
ve® 2’ -6d+120%
dr
Angular momentum L =rXp=mrXxXv
or L= m{6t* — 3]+ (4% — SKIx [24r° — 6] +120°K)
m[=366K ~ 72655 + 726K — 36¢' + (9615 — 120,°)] + (24¢* - 300)1]
ml-012¢* + 3001 + (24r° ~ 120*)} + 36:°k]

b) Torque T= %LF = mj~(48¢ + 3001 + (144 - 3601%)) + 180r°K)
¢) Kinetic energy of rotation = %mv v

= % m[576:% +36¢% + 14411

= 18mr*(16¢* + 42 +1].

4. a) Referto Fig. 4.24. The total angular momentum of the system
={0.02 kg) Zm s (0.5 m) + (.03 k) (2m 57} (0.5m)
=0.05kgm s,

b) Since no external torque acts on the system, the angular momentum remains
conserved. As the rod is light, we shall assume it to be massless. As the particles
remain connected by the rod the magnitudes of their velocities must be same
(=v.say). When the rod gets conlracted to half its original length the radius of the
circular path (shown dotted) becomes 0.25 m (Fig. 4.24). So, the total angular

momentum

= (0.02 kg) (v )(0.25m)+ (0.03 kg (1)({1.25m)
=005x0.25vkem

From the principle of gonservation of angular momentum. we get
0.05 kg m? 57’ =0.05 x0.25 vkg m.
or v =4m s, So, speed of each particle becomes 41 s
value.

i.e. double the original
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UNIT5 GRAVITATION

5.1 Introduction
Objectives
3.2 Law of Gravitation
Arriving at the Law
Muoon’s Rotation about the Earth
5.3 Principle of Superposition
54 Gravitational Field and Potential
Gravitational P.E. duc to a Spherical Shell

Gravitational P.E. duc 1o a Solid Sphere
Gravity and ils Vanation

Velocity of Escape
5.5 Fundamental Forces in Nature
3.6 Summary
5.7 Terminal Questions
5.8 Answers

5.1 INTRODUCTION

In the previous four units you have studied lincar as well as angular motion of a variety of
objects. However, by and large we restricted our study to motion of objects on we earth. We
did discuss some examples of motion of heavenly bodies but they lacked in derails for want
of the knowledge of gravitation. Therefore, we shall study gravitation in this unit.

We shall start from the familiar Kepler's laws of planetary motion to arrive at the law of
universal gravitation. We shall then develop the concept of gravitational ficld and potential
and use them 1o revisit the ideas of earth’s gravity, and escape velocity. Finally, we shall
visualise the gravitational force as a fundamental force in nature. Alongwith that we shall
discuss, in brief, the electroweak and strong forces which are the other basic forces in
nature,

In Block 2, we shall apply the concepls of mechanics developed in this block to motion
under central conservative forces, systems of many particles and rigid bodies, We shall also
study motion in acceleraling frames of reference.

Objectives

After studying this unit you should be able (o

e apply the law of gravilation

o inferthat the law of gravitation is universally Lrue

= compute gravitational intensity and potenlial

¢ solve problems related o the variation of acceleration due to gravity with the height,
depth and latitude of a place

derive expression for velocity of escape

distinguish between the fundamental forces in nature.

e T ey
fone H

5.2 LAW OF GRAVITATION

You must be aware that the *Law of Gravitation™ was formulated by Sir Isaac Newton. The
nopular storv goes like thic:

Necwion was sitting under a tree from which an apple fell and struck him on his head.

This gave him the necessary impetus to discover the law. There could have been another

pari in ihe siory: Newlon was staring at the moon when the apple hit him (Fig. 5.1)!

Newton's stroke of genius was that he realised that the force which causes apples to fall Fig. 5.1: Newton realised that all

to the grotnd is of the same kind as the force which causes the moon to orbit the earth. In abjects in the untverse whether on
L N . . . earth or in heavens move under

fact, the law of gravitation did not strike Newton in his first effort. He was ladking for the the influence of the same forc, of

answers to many questions related (o wide-ranging topics from the ‘Law of Falling gravity.

Bodies' due to Galileo to Kepler's ‘Laws of Planetary Motion’. Let us first arrive af the

law of gravitation using Kepler’s laws (Fig. 5.2). We shall then examine its universality
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Fig. 5.3: Planet of mass m moving
around the sun of mass M. -

Zh
N

"Flg. 5.4: A circle is g special case of
an ellipse,

through the discussion of the motion of the falling apple and that of the moon around the
carth.

a) th) ic}

Fig. 5.2: Kepler's laws: (a) All planets move around the-sun in elliptic orbits with the sun at one focus;
(b) the equal area law: 1he line joining a planet and the sun sweeps out equal areas In equal Intervals of
time; (c) the square of the time period of revolution of a planet pround the sun is directly proporiicnal to
the cube of the seml-major axis of the elllptic orbit. Here OA = semi-major axis, 08 = gemi-minor axis,

§5.2.1 Arriving at the Law

Let us make an approximation and consider the orbit of a planet to be circular rather than
elliptic. Let a planet of mass m revolve round the sun of mass M in a circular orbit of radius
r with a linear speed v (Fig. 5.3). Let us further assume that m and A are point masses as
Lheir sizes are much smaller compared io the distance between their centres. The planet for
being in the orbitzdemands a centripetal force (as discussed in Unit 4) whose magnitude is

given by F = L, Sirice, the time-period of revolution of the planetis T = 2—”*- we get
r ¥

(5.1)

Now, a circle is a special case of an ellipse (Fig. 5.4) whose semi-major axis is equal to its
radius, ‘According to Kepler’s third law T2 = Cr*, where C is a constant. So from
n'm  km 2

Eg. 5.1 we get F = 4C 5 =—5, Where k =i:‘— = a conslant. (5.2)
r r

Eq. 5.2 gives an expression of F, the centripetal force necessary for the planet for being in
the circular orbit. F is a force experienced by the planet towards the centre of circular orbit,
i’e. towards the sun. With these ideas in mind you may like 1o try an SAQ.

SAQ1

Define the radius vectorr as originating from the sun and ending at the planet and write
down the expression for the vector F.

We have not yet arrived at the law of gravitation. We may rewrite Eq. 5.2 as

k,_.m
FM = rz (5.23)

This indicates thai the force is on the planet due to sun. At this stage let us recall the good
old third law of motion. We know that the sun experiences the same force due to the planet
as the planet due 1o the sun. So following Eq. 5 2a we have

k M
F =F = —’im"—m = _planet (5.2b)

plerhes il 2 . 3 *
. N r

L) —_" | I B =
Or K . = "pfﬂmf'"' i.c. —/—-

So we get the nature of dependence of k on U mass of the respective celestial object. kis
directly proportional 10 its mass and the constinl of proportionality is called the “Universal
Gravitational Constant’ and is denoted by G. We have not yet explained why we call the
constant ‘universal’. We shall take that up soon. Going back to Eq. 5.3 we ger,

k=G and hence from Eq. 5.2b we have

: GMm
F, planet = Fsuﬂ = r2 ' {5.4)

So the force between a planet and the sun is one of mutual attraction and is proportional to
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the product of their masses and inversely proportional to the square of the distance betwee:
them. :

If you go back and read the paragraph before Eq. 5.1 you will remember that m and M were
considered as point masses. Keeping this in view we consider earth and apple A to be point
masses, having masses M_and M_, respectively. Let the distance between them be r,
i.e.r=R, + k, (see Fig. 5.5), where

R, = Radius of earth
h = Height of the point above the earth’s surface from which the apple falls.
Here, the apple experiences a force of attraction due to the earth. Its magnitude (according to
Eq. 5.4) is given by

GM .M,

F= (5.5)

r? Fig.55: Anapple (A)ata

Graviistion

CM M distance (R, + h} from the cenire

Now r® = (R, + h)* = R!, as  is much smaller in comparison to R, _ So F = — of the earth (C).

Thus, the acceleration of the apple tewards the eanth is ¢

a=——=22e, | o 56
Study Eq. 5.6 carefully. Everything on its right-hand side is a constant on the earth and the
left-hand side stands for the acceleration of an object falling near the surface of the earth.
Now, as you are very well aware of the ‘Law of Falling Bodies’ due to Galileo try the
following SAQ.

SAQ2
Show that Eq. 5.6 aprees with the *Law of Falling Bodies'. {Hinr; The acceleration of a
falling body near the surface of earth is a constant irrespective of the body.]

Let us now apply Eq. 5.6 1o analyse the fact that the moon falls towards the earth very much
as the apple does.

5.2.2 Moon’s Rotation about the Earth
Let the moon be at any position P in its orbit (Fig. 5.6a).

H no force were acting on the moon, it would have travelled along a straight line PX tangent
to the orbit at £. Instead it follows the circular path of radius r,_ about the centre of the earth.

S X

o

Tt
b ihl

Fig. 3.0 uey in absence of gravity the moon Wouid Nave followed Lhe straighl path £X. However, in its

clrewiur orbit if cun be regarded as falling away from the straight path (shown by dashed lines). Inner circle

represents carth nnd the outer circle represents the orbit of ihe moon around the earth; (b} AQ = ¢ Ar.

2K
= - =the angnlar setocits o mop s cotatien chout the carih  ivee 2 ia e Livibe-paeiaeii of Toiation,

Now let the moan trave) from £ w K inavery sho time A Letins linear veloeny be v, 1u the
absence of any force it would have traveled a distince A7 (= P8, say ) along PX. [ts motion
along the circular are PR can, therefare, be considlered as i fall towards the sitrth through o
distance SR - ST and RQ are drawn perpendiculn 10 PX and OF, respectively. Since PR is
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o

" Fip. 5.6b repeated for
ready reference

Newton's theory of gravitalion was
the culmination of two centuries of

scientific revolution that began in
1543 through Cepemicus. After lhat
the works of Tyche Brahe. Kepler
and in particular Galileo provided
the necessary launching pad for
Newton's law.

Fig- 5.7:r .=, -1,

82

infinitesimal, S}-I = TR = PQ) = d, say. So, effectively the fall in the time interval Aris d.
Now, d=r, (l—cosAB) =2r, sin® (ATB) = %”' (AG)I, as sin —'?'22 = % for small A9.

Since AB=w(A)= -Z-TE(A!)-

(21 T oan’
d="7 ZZAr | =2 (A,
Z(T ) T? tan S

Now, r_and T are known to have the values 3.85x10" m and 2.4 x 10° 5, respectively. If we
put Ar=1s,dis found 10 be 1.3 x 107} m. This means that while moon tums for 1s around
the earth, the distance by which it falls towards the earth is a little over 1 mm, If the
acceleration of the moon towards the earth is a_in ms™, then the distance through which the
moon falls in | 5 is given by -

=1a_(1s) =1.3x107m, _ (5.8)
ora, =2.6x10"ms™

Now, the acceleration a of a freely fglling object near the surface of the earth has an
experimentally determined approximate value of 9.8 m s72. This gives a value for the ratio of
the two accelerations:

aja= 2.6x107, (5.9)

Note that in the estimation of this ratio, the law of gravitation has not been used at all. Now
using Eq. 5.6, we get

w, oM, ik (&Y _
a _GM,!R,2 L ) . (5.10)

Now, putting the values of R, and r, we have a_fa = 2.7x10™ which agrees reasonably well
with Eq. 5.9.

Newton argued that this could not be a coincidence. There is a force of attraction between
two objects that is proportional to (he product of their masses and inversely proportional to
the square of the distance between the two. The law is indeed universally applicable to all
objects in the universe, be these dust particles or stars and galaxies. Hence the constant (7 is
universal. Its value is 6.673 x 107" Nm? kg~ and is same for all pairs of particles. So we are
now in a position to state the ‘Law of Universal Gravitation’:

The force between any two particles having masses i, and r, separated by a distance
r is attraclive, acting along the line joining the particles and has the magnitude,
m mz
F=cg-12% (5.11)

f‘

But force as we know is a vector quantity.-Hence, we must 1ake care of the direction of F.
So we shall rewrite Eq. 5.11 vectorially. Refer to Fig. 5.7. Let r , be the position vector of
nt, with respect 1o ar, e it points from m w s The gravitational foree F Lo exerted by nr,
on m, is given by

Fa=-G—=r,. (5.12)

r , is the unit vector from m, 1o a1, The minus sign indicates that the force onm, due tom,,

is dlrected Opposile IO F ., il bemg a force of attraction. Likewise F, , the force cxpencnced
by m, due to m, will be directed atong r ,. We know from Newton's lhll‘d law of motion that,
F, = —Fn. So we have from Eq. 5.12

M- (3.12a}

b ==~Fy =-C
i

However, did you note one point? Eq. 5.12 was stated for two point masses. For dealing
with situations like attraction between earth and moon we considered them as point masses
as the distence between them was much greater compared to their sizes. But otherwise we
may have to calculate the force between a sphere and a point mass, say for example the force
between earth and a particle. To tackle such a problem we need to know the *Principle of
Superposition’.
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5.3 PRINCIPLE OF SUPERPOSITION

Eq. 5.12 gives us the force between two point masses. If there are several masses, like m,, m,
and i, as shown in Fig. 5.8, how would we calculate the gravitational force on one of them,
say m ? If only m, and m, were present, the force on m, due to m, would be

F, =-G %';'lzf"m .
21

Similarly if only m, and m, were present, the force on m, due tn:ulm3 would be
iy A
K, =-G —:r"" e
31

Now. if both m, and m, are attracting m, the total force on nt, is the vector sum of F,, and

Iy

n,

Hiy

F,, te. |
ap 1-€ . Fig.58:F =F, +F,,
FI=F,_,+F,,.
Orﬁ=_02g1%_afghﬁr (5.13)
21 3

This is the superposition principle according to which the resuftant Jforce on a mass is the
vector sum of the individual forces acting on it. We shall apply this principle to determine
the gravilational force due to an extended body. But before we go into that discussion, you
may like to try an SAQ.

SAQ3 .
Show that the location of the point between two fixed masses m, and m, at which a mass m_
does not feel any resultant gravitational force due to them is independent of m,

If the force between a point mass O and an extended body (Fig. 5.9) is required, we can
apply the principle of superposition. But the problem will be complicated as the number of
particles is very large. Effectively we shall have to perform integration. In order to getridof

this difficulty we take resort to the concept of Gravitational Potential, which we shall discuss
next. Fig. 5.9 : Force between u puint )
muss and an extended body.

3.4 GRAVITATIONAL FIELD AND POTENTIAL

Ler us consider a particle of mass m, placed at some point. We place another particle of
mass r, at a distance r from it. So each particle experiences a force of attraction due to the
other. If the distance between the particles is changed then also there will be a force. In other
words, however large the value of r might be, there will be some force of attraction, We say
that m, madifies the space around it in some way and sels up a field of influence, called the
gravifational field,

The strength of a gravilational field is given by its intensity. The intensity of the
gravitational field due to a mass M at a distance r from it is given by the force experienced
by a unit mass placed at that point. Hence, the intensity at point P due to mass M , say at
(see Fig. 5.10) will be given by

GM
E=-—r. S (5.14)

r~

—

- ahd OF = r. The force F experienced by a mass m at P M
due to M ar O s given by -

LAy .
where ¥ is the unit vector along O

P
GMnmt 0 g
F=——pr (5.14m)
- : Fig. 5.10: Gravitstional intensity
Thus, from Eq. 5.14 we get F =mE . (5.14b) a1PduetoMar0. ’

If mass s1 is now removed from this point and placed at a larger distance then work has to be
done against this attractive force. In Unit 3. we have dealt with a similar case, Look up
Sec. 3.2.2 anid try the following SAQ. 83
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Concepls in Mechanics

SAQ4
Show that the work done in bringing a mass m frorh a point ¢ to & point P in the
gravitational field of a mass M placed at O (Fig. 5.11) is given by

Since the above work has to be performed, the mass m acquires a P.E. called the
gravitational potentlal energy. This P.E. is mutual to the masses m and M. By convention,
the gravitational potential energy U/ of a mass m in the field of mass M at a distance r is
measured as the negative of the work done in bringing m from infinity to the said point. So
we can get U by pulting R = e in the expression of —W of Eq. 5.15.ie.

Fip. 512

0 y=_GMm (5.16)

r

We shall introduce another term called gravitational potential of a mass M at a distance r. Itis
defined as the negative of the work done in bringing a unit mass from infinity fo that point.

SAQS
Using Eqs. 5.14a and 5.16, verify that
F=-9Y0
dr

The meaning of Eq. 5.17 is that the gravitational force of attraction bemween two masses can
be obtained as the negative space-rate of change of their gravitational P.E. If you look back
at Eq. 3.18 you will find that we have discussed this aspect aboul a conservative force field.
And the gravitational force is indeed a conservative one.

At this stage we shall recall the problem of determination af force beiween a point mass and
an extended body. We were worried over the complication involved in performing the
vector sum of the individual forces. Eq. 5.17 provides us with a way out. We can determine
the overall gravitational P.E. by taking the sum of individual P.E.s. This sum can be
obtained quite conveniently as poiential energy is a scalar quantity. We can then use

Eq. 5.17 to determine the force.

We shall apply whatever we have leamnt so far to the study of the force of gravity. For that
we shall consider earth to be a sphere, neglecting its cqualoﬂal bulge. So let us 1ake up the
problem of determining the force of attraction between a sphere and a point mass. In the
course of this discussion we shall have to do quite a bit of mathematical calculations. But do

not let that put you of{.

You might have noticed that when an onion is peeled off, thin layers come oul one after
another till we reach its central part when almost nothing remains, Similarly, we may
consider a solid sphere as an aggregate of several concentric thin spherical shells as shown
in Fig. 5.12. We shall first find out the gravitational potential energy of a point mass due to a
spherical shell and then go over to the study of spheres.

5.4.1 Gravitational P.E. due to a Spherical Shell

Let a point mass m be placed at a distance r from the centre of a spherical shell of mass M,
and radius R . Let us calculate the gravitational potential energy of the mass due to the shell
wheni)r>R i) r<R_.

T )b e e ra—
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Refer to Fig. 5.13. We first consider a ring-like portion of the shelt contained between the _ Gravitation
directions 6 and © + d9 with respect to.the-axis OP. Let it be of infinitesimal width so that

every point on it is at the same distance, say 7, from P. The angular width of the ring is 49,

its width is R 46, and its radius is R, sin 6. What is its mass? The mass per unit area of the

shell is ¢ = M_/4rR2. The ring’s mass is then M =0dA, dA being the surface area of the

ring. The circumference of the ring is 2rR sin 0. Its area is, therefore, given by

dA = (2nR sin 8) R_d6, (5.18)
M . M,
or- My, = aﬁ- (27R, sin @) R,d0 = 5 Sin 046, . (5.19)
]

We shall now determine the gravitational P.E. at P due 10 this ring. The ring is made up of a
large number of point masses each having mass equal to, say &M.

The gravitational P.E. at P due to oné such point mass is — Gm?M
GmdM ] "

. Sothe gravitational

»Wwhere the summation ¢ X) extends

r

P.E. at P due 5 the ring will be du,.. = E[—

over all the points on Lhe ring. Here G is a constant. Again as every point on the ring is at the
same distance r* from P, r' is also a constant for the points on the ring. So

du,, = [_ Gmd ]: - wom = -Gy,
r r r
On using Eq. 5.19 we get
GmM | sin 6d9
Woing = = 2 (5.20)

The shell can be imagined to be made up of such rings having a common axis OP. Since
P.E. is a scalar quantity we shall integrate Eq. 5,20 to get the gravitational P.E. I of the
shell. On the right hand-side of Eq. 5.20 we now have two variables 8 and r’. It would be
convenient if we can express it in terms of 2 single variable. For this we shall consider the
relation between r’, r and R . From triangle OAP we have,

ri= g RI - 2rR, cos9_

On differentiating with respect to § we get (5.21)

s

2r'£— =2rR,sin 8,
40

, . In the above figure
dr’ _ sin® 49 (5.22) a+b+c=0
IR, r icatb=~¢
Hence, from Eq. 5.20, we get :: S:::J:;::L ::CJ
GmM, , or @ + & + 2ab cos (h—C) =2
ring = R dr (5.23) orcd=a + 12— 2ah cox C
]

dl/

And on integrating Eq. 5.23, we get for the entire spherical shell

U=

—GM’mjdr'.
2rR, <,
n

(5.24)

where ' and i are, respectively, the minimum and maximum values of r’. Now study
Fig. 5.14. For a point P outside the shell, i.e. for r >R,

W=y Y =
V=r—R.5=r+R (5.25a)

and for a point P inside the shell, i.e. for r< R

O S | (5.25b)

L] )

So the gravitational polential energy

L2R,, r>R, (from5.25a)

or U=-5"M: & (5.26)

! r
The force on mass m is given by Eg.5.17as

dU Calln GM:’\ - ’
F=—(E;-Jl"=— 2 r. (5.27) 25
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The negative sign indicates that it is a force of attraction. The negative sign in the expression
of U in Eq. 5.26 also indicates that it is attractive. Comparing Eqs. 5.12 and 5.27, it can be
said that the shell behaves as a point mass having the same mass as that of the shell and
located at its centre. -

Forr<R, we useEq 5.25bto get

U=-5"M 5y  _O™M,
2R, 2rR,
or U= -GT’- = a constant = U, say. r < R. (5.28)
dl} a
From Eq. 5.17, we get F=——-d—r=0. - (5.29)
r .

So P.E. of a mass placed at any peint within the shell remains constant and the gravitational
force on it is zero.

You can now apply the concepts you have leamt in working out the following SAQ.

SAQ6 .

Draw a graph of U vs. r for the spherical shell. Take the range of ras 7 =0 tor = 2R
Explain using physical argument whether I should be continuous at r = R_or not. Poes your
graph agree with your argument?

So far we have determined the gravitationa! P.E. of a point mass due to a spherical shell. Let
us now extend these ideas to the case of a solid sphere.

54.2 Gravitational P.E. due to a Solid Sphere

We have seen earlier that a solid sphere is an aggregate of concentric spherical shells. The
determination of a gravitational P.E. due to a solid sphere at an extemal point is a
straightforward application of the ideas of Sec. 5.4.1 So you may like 1o work it out yourse!f.

SAQ7
Refer 10 Fig. 5.15a. A solid sphere of mass M and radius @ has been shown. Show that the
gravitational potential-energy of a mass m at A (OA = r) due to the sphere is given by

GM.
U, =-21 (5.3¢

{a) (b} ©

Fig. 5.15

We took up the problem of the gravitational {orce on a mass due to a sphere with a view to
studving the varialion of earth's gravity. For t1¢: we not only need to know about the force
experienced by a mass placed exlernal to a sphere bul also by a mass piaced inside it So jet
us woix out the following example,

Example 1
Refer to Fig. 5.15a. Show that the gravitational P.E. of a mass m at B (OB = r) due to the
solid sphere of mass M and radius a is given by

CMm _ - »
Uﬂ = —--——-—5—20 (3a=-r ) (5.31)

See Fig. 5.15b. The point B is on the surface of a solid sphere of radius r and on the inner

ir = T § 1)1 g I e He e ety

gm e e
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surface of a thick spherical shell included between radii r and a. These two will contribute to
the P.E, of m at B. Let us name the contributions as U,, and U,. From the result of SAQ 7,

GM )

we have Uy =— Z » Where M, is the mass of the inner sphere of radivs -

M (4 MP
Ml = 7‘—?(-3-1'?3) = +
2na a (5.32)
. - 2 .
Hence, from Eq, 5.32, Up, = - SH™_ (5.33)
a

For determining U,, we consider the concentric shell included between radii x and x + Jx.
The volume of this shel} is

M

4mx’ dx and its mass = 4M arx’dx = - x’dx.
Zng? a

3l
Since dr is infinitesimal, we can consider this thin shell equivalent to a spherical shell of
radius x. Hence, from Eq. 5.28 we have the P.E. of m due to this shell at B as

M 5 J
Gm(—x dx
3
. (!Um = - a = - 36’;’”'_1'(11. (5.34)

But the thick shell is made up of a number of such thin shells with radii ranging from r to a.
So in order 1o get U,,, we shall have to integrate Eq. 5.34. Thus,

3CMm

24

{az—-rz).

1)
U] - 3GMm .rdx -
" J; i (5.35)
Now, U, =Up + Up,.
From Eqs. 5.33 and 5.35, we get
Ug= -—iﬂ?ﬂ[rz +§-(a2 —-r? )]= Hgi;n—(?laz ~r?) which is Eq. 5.31L
. a 2 2a .
Now, we can calculate the force of attraction on the mass m due to the solid sphere-of mass

M and radius a. Refer to Fig. 5.15c. When m is placed extemnal to the sphere at A
(i.e. r = 0A) we have from Eqs. 5.17 and 5.30 that the force is

d (_ GMm]. GMm ~ (5.36)

r=- 5 r.

F,=->—
A dr r
This is the same as Eq. 5.14a. Ea 2.6 signifies that the force of attraction due to a solid

o . .
sphere on a mass / placed extemal to it is the same as that due 10 a point mass hkaving the
same mass as thal of the sphere and located at its centre. .

r

When m is placed inside the sphere as B (i.e. r = OB) we have from Egs. 5.17 and 5.31 (hat
the force is

. o GMm 2 2.l GMm ~ ;
Fa =_E;{-_ ™ (3;? —F }}r_u 3 IT. . (531
Now, using Eq. 5.32 we may write Eq. 5.37 as
GM nt ~
Fy=-——-T. (5.38)

2
Now, refer (o Fig. 5,15¢. Eq. 5.38 sigaifies that the force experienced by m at B is the same
A5 that due to a point mass at O having mass M, which is. incidentally, the mass of the
sphere with rading 08, So we can infor that when the point magy e iy placed brside o valid

Y ospliere it experiencas a jarce of artraction anly due ta the spherical mass shawn siaded in
Fig. 5.15¢c. The thick spherical shell (shown unshaded in Fig. 5.15¢) does not contribute to
the force of attraction. Now. pulting r = & in cach of Egs. 5.36 and 5.37. we get the orce of

" attraction when r1 is placed 4t § on the surface of the sphere as

GMm .
Fe=-——F (5.39)

a
We shall now use the results of Egs. 5.36. 5.37 and 5.39 ta wudy the variation of carth’s

gravity.

Gravitation
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. B8

Fig. 5.16

5.4.3 Gravity and its Variation

The phenomenon of attraction between the earth and any other body is called gravity. Due
?o such an atiraction a body experiences an acceleration towards the centre of the earth. This
is known as the acceleration due to gravity, and is denoted by g. We shall study how g at a

place varies with aititude and depth.

Refer to Fig. 5.16. We consider the positions of a particle of mass m at A and B,
respectively, where SA = h = the altitude of A and §B = d = the depth of 8. § is a point on the
surface of the earth. OS = R, = the radius of earth. Lel the mass of earth be M . Let the
forces of attraction experienced by a7 at A, B and § be denoted by F,. F, and F,,
respectively. In each of Egs. 5.36, 5.37 and 5.39, we puuM =M ,a=R.. Then we put
r=R,+h R,—dinthe Eqs. 5.36 and 5.37, respectively, to get the magnitudes of the force as
; GM,m F GM,m F GM m R .
= . = . = (R, —d).

RN wRam PR (5.40)

L4 (4

Let the magnitudes of acceleration due to gravity on the surface of earth, and at points A and
B be denoted by ¢, , g, and g,. Then

F. GM
e, =—‘-:——1——go, say (5.41)
m [
. _F __aM,
.‘-,. - m - (R‘ + h)zl (542)
o Fo_GMAR —d) .
=T R,J - (5.43)
From Egs. 5.41 and 5.42, we get
2 .
gORe
g o= 5.42a
TR, 1R G422
kY’ 2h :
or ¢, =& |t+—| =&|l-—| forthxR). (5.42b)
. R{ RE
From Eqgs.™5.41 and 5.43, we gel
8
Gy = R—"(R. -d). (5.43a)

(4

From Eqgs. 5.42a and 5.43a we get that the acce.zration due to gravity varies inversely as the
square al the distance frem the centie of carth for points above the surtace ol carth, and
directly as the distance from the centre of earth for points below the surface of earth. Now
you can work out an SAQ on Eqs. 5.42a and 5.43a.
SAQ 38
a) Plotagraphof g vs. r with r ranging from G o 2R .
b) By what percentage of ils value at sea-level does g increase or decrease when ane goes

101} an altilude of 2500 km and ii) Kolar Gold Field a1 a depil of 3000 m.

We have discussed the variation of g with altitude and depth. Ti also varies with latitude due
to the rotation of the earth about its axis. We are stating the formula for this variation
without proof, which will be given in Unit 10.
gl =g, +@2Rsin? A,
where g (A)= Value of g on the surface of earth at a place having latitude A
g, = Value of g on equator = 9.7805 m 5§72
@ = Angular speed of rotation of earth.

(5.44)

We have discussed how g is affected due lo several factors. We understand from Egs. 5.42
and 5.42a that at any finite distance from the surface of eanh, g is pon-zero. So the effect of
gravity can be felt at any point irrespective of its distance from the centre of the earth. But
we shall see that at any position a particle may be made to escape from the bourds of earth’s
attraction if it is provided with a certain minimum velocity. This is called the velocity of
escape. This concept applies to any spherical celestial object. We shall now derive an
expression for it. :
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5.4.4 Velocity of Escape " Gravitation

Let us consider a particle of mass 1 at a distance r from the centre of a huge spherical body
of mass M (see Fig. 5.17). Its gravitational P.E. at this position is U = —-GMm/r. Read the
paragraph after Eq. 5.27 and you will realise the significance of the negative sign of U. It

indicates that the mass 1 is bound by the attraction of the body of mass M. A
- Now, if the particle is to become free from the bounds of the gravitational attraction of the
body then it must be provided with an external energy E ( 2U). Thereby, its total energy
{E + U} becomes non-negative. Thus, the particle ceases to remain bound and escapes from r
the atiraction of M. If E is provided in the form of K.E. then E =%mv’. where v is the
velocity given to the particle. Accordingly the condition becomes
1
Emrw2 + U is not negative o
or ll'rm2 + (— GM J =0, ie. v 26M or v& ZGM.
2 r r r
Fig. 517

,ZGM . . L . o .
Hence, is the required minimum velocity and it is the expression for the velocity of
r

escape (v,) which we can see is independent of m, the mass of the particle. Thus.

_ [2oM
v, = -. (5.45)

r

If the particle were originally on the surface of carth, then r = R, M =M and from Egs. 545
and 5.41, we get

26M .
'I-l" = R £ = 1'280R£ . (5-46)

Now, taking g, = 9.8 msZ, we getv_=1.1x 10° ms™' = 11 km s™' — a velocity that will
take you from Srinagar to Kanyakumari in about five minutes! So, now you can work out a
simple SAQ.

SAQ9
Find 1he velocity of escape on the surface of moon.

So far we have dealt with the' phenomenon of gravitation and some of its applications.
Newlon’s law of gravitation was the fountainhead of all the discussion. But now we raise the
question — "why at all there is a force of attraction between any fwo maltenial bodies?' Does
Newton's law provide an answer? It cannoi because the gravitational force between two
bodies exists naturally, Such a force is called a * Fundamental Force in Narure’ . There are
three different kinds of fundamental forces in nature. We shall now discuss briefly about
them.

3.5 FUNDAMENTAL FORCES IN NATURE

The three kinds of fundamental forces are (i) gravitational (ii) electroweak and (jii) strong.
You have read in detail about (i) which acts on all matter as you have scen so far. It varies
inversely as the square of the distance but its range is infinite, This force is responsible for
holding together the planets and stars and in overall organisation of solar system and
galaxies.
The second kind is the electroweak force. [tincludes the forces of electromagnetism and
the so-called weak nuctear force. We shall discuss about the iatter towards the end of this
section. Bul let us first identily the eleclromagnelic forces. The force between two charged
particles at rest (electrostatics) or in motion(electrodynamics) comes under the purview of
clectromagneiic forces. The eiecirosialic force between two charges obeys the inverse square
law like the gravitational force between two'masses. However, there is an important '
dissimilarity, Charges can be of two kinds— positive and negative. If the ~harges are of
opposile kind the force between them1s artractive and if they are of the same kind, then the
force between them is repulsive. It can be snown that the gravitational force between an
electron and a proton in a hydrogen atom is 10%9 times weaker than the electrostatic force 89
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Concepts In Mechanica

between them. Thus. we get a comparative estimate of the strengths of gravitational and
electrodatic force.

Now, let us come to the case of moving charges. We know that charges in motion give rise
to electric current. You have also studied Oersted’s experiment in your school science
courses. From this experiment we understand that a corrent carrying conductor is eguijvalent
to a magnet. This is the meeting point of electricity and magnetism and hence the word
‘electromagnetic’ got associated with this field of force. The forces that one comes across in
daily life, like friction, tension, etc. can be eaplained from the stapdpoint of the
electromagnetic force field.

Now, if we make an estimate of the relative strengths of the repulsive electrostatic and the
atiractive gravitational force between two protons in a nucleus we shall find that the former
is 10° imies Jarger than the latter. So how is it that the protons in an atomic nucleus, stay
together instead of flying away? The answer lies in the third king of fundamental force
known as the strong (nuclear) force that exists between the protons inside the nucleus which
is strongly attractive, much stronger than the electrostatic force between them. As the
nucleus also contains neutrons, which are as tightly bound as the protons, this force must
also exist between two neutrons as well as between neutrons and protons. Unlike the
gravitational and the electromagnetic forces, the nuclear force acts only when the nucleons
(protons and neutrons) are very close 1o each other (10~ "m or less). The nuclear forces
decrease very rapidly with distance, so rapidly that a nucleon only interacts with its ¢losest

'neighbours. You will study in detail about the nuclear forces in the Nuclear Physics course.

The strong nuclear force as we have seen just now accounts for the binding of atomic nuclei.
But this cannot account for processes like radioactive beta decay about which once again
you will read in the Nuclear Physics course. This can be explained from the point of view
of the so-called weak nuclear force. It is much weaker than the electromagnetic force at
nuclear distance but siill greater by a factor of 10* than the gravitational force. Just a few
years ago, this weak force was listed separately from the electromagnetic force. Howevera
theory was proposed which led to the unification of the weak forces and the electromagnetic
forces and hence the name ‘electroweak’ forces.

We shall now give the different characteristics of the fundamental forces in nature in Table
5.1.

Table 5.1: Some Characleristics of ihe Three Fundamenital Forces

Force Relative strenglh Range impertance
Strong nuclear | 107 e Holds nucleens together
- -2 Infini Comrols everyday phenomena—
Eleciromagnetic 10 nlinite friction, lension eic.

Electroweak

LWeak nuclear 105 1078 on Nuclear imnsmulation
Gravitational 10™% Infinite Organises large-scale

phenomena and umvere

Now let us sum up what-you have learnt in this unit.

5.6. SUMMARY

@ Newon's law of universal gravitation states that any Lwo panticles in the universe exert an

attractive force on each other, given by
F.=-G EIT_Z?'D = -F,.
fi2
where F,, is the force cxerted by m, onm, and £}, is the umt vector directed from n1, tom,.
along the line joining lhe two masses.
® Any mass creates about itself a field of influence called the gravitational field. The
intensity E and the potential {/ of a gravitational field due to a point mass M at a point are
given by

GM

E--CMamav=-H,
r

2
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. N Gravitation
where £is the unit vector along the line joining the mass M to lhe_ point '

® The gravitational force of attraction due to a solid sphere experienced by a point mass
placed extemal to it is the same as that due to a point mass placed at the centre of the
sphere and whose rnass is equal to thal of the sphere.
When the point mass is placed inside the sphere, it experiences force of attraction only
due to a concentric spherical mass on whose surface it lies. The matter contained in the
shells external to this point mass does not contribute at all to the force of artraction.
® The value of acceleration due to gravity at the points above and-below the surface of
earth varies, respectively, as the inverse square of and directly as the distance of the point
from the centre of earth.
® - The minimum velocity that an object of mass m at a distance r from the centre of a
spherical body of mass M must have so that it can escape from the bounds of the
gravilational attraction of M is called its escape velocity. Its value is2GM / r.
® Gravitational force is fundamental force in nature. There are two other kinds of
fundamental forces — the electroweak force and the strong nuclear force.

57 TERMINAL QUESTIONS

A
l. The weight of 2 body on the surface of the earth is 900N, What will be its weight on the
surface of Mars whose mass is 1/9 and radius 1/2 that of the earth?
2. The Gravitational P.E. of an object of mass i at a height it above the surface of earth is
cqual to —GM m/f(R, + h) according 1o Eq. 5.30. Show that it is consistent with the
expression “mg k" for Gravitational P.E., where 8, 1s the value of acceleration due to
gravity on the surface of earth. '
3. Three bodies A, B, C of masses 5 x 10 kg each are arranged in space at the vertices of an B —C
equilateral iriangle of side 2 km (see Fig, 5.18). How much work should be done to Fig.5.18
scparate them to infinite distance apart? ’
5.8 ANSWERS
SAQs ) :
1 Referto Fig, 5.19. S and P refer to the positions of the sun and the planet, respectively. P
S S
F--270 P
r- .
2. Since ¢ is constant near the surface of earth, we have lor any object falling frecly from rest
for # 5 the Tollowing relations:
v=gr, 5="'a art, Fip. 5.19
or v is propontonal {0 1 and s is proportional to r* which are consistent with the law of
falling bodies.
3. Referto Fig. 5.20. Let the distance between m and »1, be g, Let m be at a distande v from
m, when the resultant gravitational force on-m due 1o m, and m, is zero. Then in this
situation the mugnitudes of forces of atlraction between m. m and nr.nr, must be same,
Hence < .
Gmiom . - ! 1 a—x
1 2| _ Gm_mj or a _x=1ﬂ=b. Nay. L e _:’.
- z m . " -
A (g x) X ¥ it m, m m,
Here b is the value of the positive square root of m.fm, asx < a.
a - Fig 5.20
x= =a cynslanl independens of m,
b+
, , £ - GMma
4. Reguired work done W = I F-dr where F=—-——Tr
r
Q
GMm L
F-dr= ——i:rﬂr -dr=- G:\»:‘m dr (asexplained in Sec. 3.2.2),
r r .
r
GMm "
wa-f S, GMm[lJ = —-GMm(-l— - 1).
# T rlp R r 91
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v,

Fig 521 : U/ va rgraph;

GimM,
Ull '= H‘

.

5. FromEq.5.16, 1 = - —= .52 =
Eq r dr rz
) ~ atf ~
Again, from Eq. 5.14a, p:-G":m,. F=-20%
r r

du
6. U vs. r graph is shown in Fig. 5.21. If U is discontinuous atr = R, then - becomes

infinite at that point. This indicates that in accordance with Eq. 5.17 the gravilalipna.l
force of attraction has to be infinite at the boundary of the spherical shell. But that is
absurd. So U vs. r must be continuous everywhere as shown by the graph.

7. Refer to Fig. 5.22a. The P.E. has to be determined at A. See Fig. 5.22b.

O ¢

(b}
Fig.5.22

The solid sphere as we have seen earlier can be considered as an aggregate of a number
of concentric spherical shells of masses, say m,, m, m,, ... where

mtmtmt.. =M (5.47)
The point A is at a distance r from the centre of each shell. From Eq. 5.26, the P.E. due
to the shells will be given by '

Gmm G G
———'.U3=——_‘—.U1=— !

' r i r

and xo on

Hence, the P.E. due to the sphere at A is
U =U+U,+U + .,
Gm
=~=—(m +m +m +...)
r

~From Eq. 5.47, i, = - SH™

8.a) RefertoFig.5.23.Forr>R,r=R +handforr<R . r= R_—.u. From Egys. 5.43 and
542,

g:goRL forr<R,

Fig.5.23 and
g 2
8=gp~5 forr>R,
- Ses Fig, 524 for vadnticn of g with 7.
k R ¥
b ) IO g:gﬂ[ e _t R =6370km, h=2500km
R F \R¢+h )
f R YV (6370Y o
“\Rovr) “\awmo) =0
Fig-3.24 g =g, 0.5157)
Percentage decrease = B0 "8y 100=48.4
92 %o
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(ii) 8=-;2'(R.. =d)d=3km. R, —d =6367 km.

6367

LE= = g, (0.9995
B= 8oy = &0 ( )
-~ Percentage decrease = 0.05.
. 2GM,,
9. The velocity of escape on moon v, R
m

where M, = mass of the moon, R_ = radius of the moop. Putting these values of G. M_
andR_, wegel v, =237TxX10 ms.

Terminal Questions
I. Mass of earth = M, Radius of earth = R . Mass of body = m. Newton's law of gravitation
pives
—£-=9%00 N
F= G e

£

M
Mass of Mars = 9'

Suppose weight of the body on the surface of Mars = x

2. Referto Fig. 5.25. A is a point on 1he surface of earth and AB = h. For the point A, 1 = 0.
So using the result given in the question we have the values of P.E.s at A and B as

GM GM_m

Uy=-—"—

L =- .
A R u R +h

"

So the P.E. of the object with ~spect (o the surface of earth is

respectively.

UBA":UB"UA:"GMgm[ ! ’J=_GM

R.+# R} (R +MR
Butusually f; « R. "R, +MR =R’ Hence U o,

KL=
From Ey. 5,41, H =

nh.

3. The gravitational P.E, of 2 mass m, inthe field of m, when they are scparated by a
Gaynn,

distancer i ( ] Refer 10 Fig, 5.26. Let the massex kept at the comners of the

equilateral triangle bc m and its side a. So the overall gravitational P.E. of the system is
given by

oo o) e

3 2
or O =— G where m =5x106kg. a=2x10"m
a
U = _3%(6.673x 107" Nm3kg—2) x (25 x 10'2kg?)

Ix10°m =-2.5]

Stnce, the energy is negative the system is bound with an energy of 2.5, So in order to take

them infinite distance apars an external eneegy 2.5 J is required.
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Fig-5.25
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Fig.5.26
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Concepts ln_ Mechanilcs 4. Physics Part I; Robert Resnick and David Halliday; Wiley Eastern Ltd, 1988.
5. The Mechanical Univesse, Mechanics and Heat, Advanced Edition; S.C. Frautschi,
R.P. Olenick, T.M. Apostol, D.L. Goodstein; Cambridge University Press, 1986.
6. Physics Volume I, R. Wolfson, J.M. Pasachoff; Little, Brown and Company, 1987.
A list of commonly occurring quantities in the block along with their unit symbols, special
names (if any) and dimensions is given below. Dimensions are given in terms of length [L],
mass [M], time [T], temperature [K], and charge [Q].
Quantity SI Unlt Dimensions
Special Symbol
name (If any)
Displacement m L]
Velocity ms™! LT
Accelemtion m s~ [LT-)
Angular displacement radian rad
Angular velocity rad 57! [T
Angular acceleration rad 572 1T
Angular momentum kg mis”! [MLT "
Force neweon N [MLT =7
Work, Energy Joule I IMLAT )
Power wall W IMLAT -
Gravitational potential Ig™! [L'T™ 7
Gravitational Intensity Mkg™ [LT -3
Momentum, Impulse kgmy! [MLT ™ ]
Period 5 [T|
Momenl of inenia kg m? [MLY]
Area m? L)
Volume m? I
Density kgm™ ML
Torque Nm IMLT -7
Temperature kelvin K {K|
Electric charge coulemb C 1Q
Electric current ampere A IT='Ql
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Table of Constants
Physical Constants
Symbol Quantity Value
€ speed of [ight in vacuum 2998 x 10*m 5™
TR permeability of free space 1257 x 10 *N A~
g, permittivity of free space 8.854 x 107" C!INm?
et e, "8.98% x 10°N m*C =2
e charge of the proton 1.602 x 107°C
- charge of the electron -L602 x 107°C
A Planck’s constant 6.626 % 10743 o
h Al2x 1055 % 1074] 5
m, clectron rest mass 9.109 x 10™'kg
~e/m. electron charge 10 mass ratio -1.759 % 10"'C kg™*
m, proton rest mass 1.673% 107 kg
m, neutron rest mass 1.675 % 10-2 kg
R Rydberg constant 1.057 x 10"m™!
a, Bohr radius 5.292x 107'm
N, Avogadro constant 6.022 x 10%mal™
2 Universal gas constant % 8.314J K'mot™
i, Boltzmann constant 1.381 x 10725 K™
[ Univers.il gravitational
constant 6,673 x 107''N m*kg?
Astrophysical Data

Celastlal Mass (kg) Mean Radius{im)  Mean dlstance
Body from the centre

of Earih (m)
Sun 1.99 = 10® 656 10¢ 1.50 x 10"
Moon 7.35% [0 74 x 100 185 107
Earth 597 x 10 6.37 % 10® 0

Gravitation
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