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Blocks & Units Introduction 

The present SLM on Measure and Probability Theory consists of eleven units with three 

blocks. 

 The Block - I – Measure Theory, is the first block, which is divided into four units. 

The Unit - 1 – Measure, is the first unit of present self-learning material describes Field, -

Field, Borel Field. Measure, Measure on 𝑅𝑛, Properties of Measure, Outer Measure, Extension of 

measures, Extension Theorem, Outer Extension. Simple Functions, Integration, Non-Negative 

Integrable Functions, Integrable Measurable Functions. 

In Unit – 2 – Convergence, the main emphasis on the Measure Space, Measurable 

Functions, Combinations of measurable function, point wise Convergence, Convergence in 

measure. 

In Unit – 3 – Lebesgue Measure, we have focussed mainly on Lebesgue-Stielitjes 

Measure, Lebesgue-Stieltjes Integral, Riemann-Stieltjes Integration, Lebesgue Dominated 

Convergence Theorem, Monotone Convergence Theorem, Fatou Lemma, Fubini’s Theorem. 

In Unit – 4 – Signed Measures, is being introduced the Signed measures, Hahn and Jordan 

decomposition, Absolute Continuity, The Radon-Nikodym Theorem, Derives of Signed Measures. 

Product Space, Cartesian Products of two Measurable Spaces, Section, Product Measures. 

The Block - II – Probability Measure, Distribution Function and Inequalities is the 

second block in which we have three units. 

In Unit – 5 – Probability Measure is discussed with Probability space of a random 

experiment, probability measures, random variables as a measurable function. Field induced by a 

sequence of random variables.  

In Unit – 6 – Distribution Functions has been introduced by discussing Decomposition of 

distribution functions in purely discrete, absolutely continuous and singular components. 

The Unit –7 - Probability Inequalities dealt with CR-Inequality, Chebyshev’s Inequality, 

Cauchy-Schwartz Inequality, Holder Inequality, Minkowski Inequality, Jensen Inequality, 

Lyapunov Inequality, Kolmogorov Inequality, Hajck-Renyki Inequality. 

The Block - III – Convergence, Characteristics Function and Limit Theorems has four 

units.   



 
 

Unit – 8 – Convergence dealt with Sequences of distribution functions, weak and complete 

convergence of sequence of distribution function, Different types of convergence of sequence of 

random variables distribution function of random vectors. 

Unit –9 – Law of Large Numbers, comprises the Weak Law of Large Numbers (WLLN), 

Strong Law of Large Numbers (SLLN), Khinchin’s Theorem, Borel Zero-One Law, Borel-Cantelli 

Lemmas.  

In Unit – 10 – Characteristic Function, we have discussed the Helly – Bray Lemma and 

Theorem, Weak Compactness Theorem, Kolmogorav Theorems, Characteristic Function, 

Inversion Theorem, Continuity Theorem, Uniqueness Theorem. 

The Unit – 11 – Central Limit Theorems discussed One Dimensional Central Limit 

Problem: Lindeberg-Levy, Lyapunov, Lindeberg-Feller Theorems. 

At the end of every block/unit the summary, self-assessment questions and further readings 

are given.  
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Block & Unit Introduction 

 

The Block - I – Measure Theory, is the first block, which is divided into four units. 

 

The Unit - 1 – Measure, is the first unit of present self-learning material describes Field, -

Field, Borel Field. Measure, Measure on 𝑅𝑛, Properties of Measure, Outer Measure, Extension of 

measures, Extension Theorem, Outer Extension. Simple Functions, Integration, Non-Negative 

Integrable Functions, Integrable Measurable Functions. 

 

In Unit – 2 – Convergence, the main emphasis on the Measure Space, Measurable 

Functions, Combinations of measurable function, point wise Convergence, Convergence in 

measure. 

 

In Unit – 3 – Lebesgue Measure, we have focussed mainly on Lebesgue-Stielitjes 

Measure, Lebesgue-Stieltjes Integral, Riemann-Stieltjes Integration, Lebesgue Dominated 

Convergence Theorem, Monotone Convergence Theorem, Fatou Lemma, Fubini’s Theorem. 

 

In Unit – 4 – Signed Measures, is being introduced the Signed measures, Hahn and Jordan 

decomposition, Absolute Continuity, The Radon-Nikodym Theorem, Derives of Signed Measures. 

Product Space, Cartesian Products of two Measurable Spaces, Section, Product Measures. 

 

At the end of every unit the summary, self-assessment questions and further readings are 

given.  

  



 
 

UNIT: 1    MEASURE 

 

Structure 

1.1   Introduction 

1.2    Objectives 

1.3    Concept of Set Theory 

1.3.1 Different Types of Sets 

1.3.2          Operations of Sets 

1.4   Ring and 𝜎- Ring 

1.5    Field,  𝜎- Field and Boral 𝜎- Field 

1.5.1 Field 

1.5.2          𝜎- Field  

1.5.3 Boral 𝜎- Field 

1.6    Measurable Space and Measurable Sets 

1.7    Measure 

1.7.1 Properties of Measure 

1.7.2         Extension of Measures   

1.7.3 Extension Theorem 

1.7.4 Outer Extension 

1.8    Outer Measure 

1.9    Measurable Function 

1.10     Integrals 

1.11     Non-Negative Integral Function 

1.12     Integrable Measurable Function 

1.13      Self-Assessment Questions 

1.14      Summary 

1.15      References 

1.16       Further Reading  

 



 
 

1.1           Introduction 

   The introduction of the important classes of sets in an abstract space, which are those of a 

field, a σ-field, including the Borel σ-field, and a monotone class. They are illustrated by concrete 

examples, and their relationships are studied.  

The concept of a measure is defined, and some of its basic properties are established. We then 

proceed with the introduction of an outer measure, study its relationship to the underlying measure, 

and determine the class of sets measurable with respect to the outer measure. These results are 

used as a basis toward obtaining an extension of a given measure from a field to the σ-field 

generated by this field. 

1.2           Objectives 

By the end of this unit, the learner should be able to: 

• Understand the basic concept of measure theory. 

• Distinguish between field and sigma field. 

• Describe the properties of measure and their extension. 

• Identify various types of measure. 

• Understand the concept of measurable function. 

1.3       Concept of Set Theory 

 

Set:  Set is a collection of well-defined and distinct objects and it is denoted by capital letters of 

English alphabets. E.g. – 𝐴, 𝐵, 𝐶, …𝑋, 𝑌, 𝑍 

Thus, the 𝐴 = {1, 2, 3} is a set but 𝐵 = {1, 1, 3} is not because 1 appears twice in the second 

collection.  

The set of Natural numbers 𝑁 = {1,2,3, … } 

The set of vowel letters  𝑉 = {𝑎, 𝑒, 𝑖, 𝑜, 𝑢} 

The set 𝐴 = {𝑎, 𝑏, 𝑐} 

The set of integers 𝐼 = {… ,−3,−2,−1,0, 1, 2, 3, … } 

𝑋 = {𝑥: 𝑥𝜀𝑧+, 𝑧+ < 20} 

𝑁 = {1,2,3, ……… .19} 



 
 

𝒴 = {𝑠𝑒𝑡 𝑜𝑓 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑛𝑜. } 

1.3.1       Different Types of Sets  

 

Singleton Set:  If there is only one object or element in a set, then it is called a singleton set. E.g., 

the set 𝐴 = {𝑎} is a singleton set with only one element 𝑎. 

Finite Set:  If the elements in a set are finite in number, then it is called a finite set. Thus 𝑆 =

 {1, 3, 9, 27} is a finite set. 

Infinite Set: If the elements in a set are infinite in number, it is called an infinite set. Thus, 𝑆 =

 {𝑥 ∶  𝑥 = 3𝑛, where 𝑛 is a whole number} 

= {1, 3, 9, 27, 81…… . } is an infinite set. 

Empty Set: A set containing no elements is called an empty set or void set or null set and it is 

denoted by {𝜙} or 𝜙. 

Set of Sets: A set itself may sometimes be an element of another set, i.e., the objects or elements 

of a set may be sets themselves, then the latter set is called the set of sets. E.g., the set of all lines 

in a plane, since a line itself is a set of points. 

Equal Sets: We say two sets 𝑆 and 𝑇 are equal if they have exactly same elements i.e., each 

element of set 𝑆 is equal to each element of 𝑇 and indicate this by writing 𝑆 = 𝑇. 

Proper subset:  A set 𝑇 of 𝑆 will be called a proper subset if 𝑇 < 𝑆 and we write this fact by the 

notation 𝑇 ⊂ 𝑆, which implies that every element of 𝑇 is in 𝑆, and 𝑆 contains at least one element 

which does not belongs to 𝑇. 

Note: The empty set ∅ is a proper subset of every set except itself. If a set contains 𝑛 elements, 

then 2𝑛 subset can be obtained.  

Power Set:  A set formed by all the subsets of set S including the set itself and the empty or null 

set as its elements is called the power set of S. The power set is denoted by 𝑃(𝑆).  



 
 

E.g., if the set 𝐴 = {1, 2, 3}  is then the power set of the set is 

∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.If the number of elements in 𝑆 = 𝑛,  then the number 

of elements in 𝑃(𝑆) = 2𝑛. 

Countable and Uncountable Sets:  A set 𝑆  whose elements can be put in one to one 

corresponding with a set 𝐼 of positive integers is called a countable or enumerable set, otherwise 

it is called uncountable or non-enumerable. 

Cardinality: Number of elements in a set is called cardinality. The set 𝑆 cardinality is denoted by 

|𝑆|.  

E.g., for the set 𝑆 = {2, 4, 6}, the cardinality is |𝑆| = 3.   

Universal Set:  A set which contains all objects including itself without repetition of elements. It 

is denoted by 𝑈. 

E.g., 𝑈 =  {set of starts in the sky},  𝑈 = {Set of people on the earth}, 

𝑈 = {Set of natural numbers} 

Complement Set: The complement set is a set in which has all the elements of universal set except 

the elements given in the set. For set 𝑆, the compliment set is denoted by 𝑆′ or  𝑆̅.  

E.g., Let 𝑈 = {1, 2, 3, 4, 5, 6, 7}   and 𝑆 = {2, 4, 6} , then the complement set of 𝑆  is  𝑆̅ =

{1, 3, 5, 7}.  

Venn Diagram: Venn Diagrams are the diagrams which represent the logical relationship between 

sets.  

E.g., the set of natural numbers (N) is a subset of set of whole numbers (W) which is a subset of 

integers (I). We can represent this relationship through Venn diagram in the following way. 

 

 

 

 

 

 

I 

W 

N 



 
 

1.3.2  Operations on Sets 

The operations on sets are performed on two or more sets to obtain a combination of elements 

as per the operation performed on them. In a set theory, there are three major types of operations 

performed on sets, such as: 

(i) Union of Sets: If two sets 𝐴 and 𝐵 are given, then the union of 𝐴 and 𝐵 is equal to the 

set that contains all the elements present in set 𝐴 and set 𝐵 and it is denoted by 𝐴 ∪ 𝐵. 

E.g., let set 𝐴  =  {1, 2, 3, 4} and 𝐵 = {3, 4, 5, 6},  

   then 𝐴 ∪ 𝐵 =  {1, 2, 3, 4, 3, 4, 5, 6} =  {1, 2, 3, 4, 5, 6}. 

(ii) Intersection of Sets: If two sets 𝐴 and 𝐵 are given, then the intersection of 𝐴 and 𝐵 is 

equal to the set that contains the common elements present in set 𝐴 and set 𝐵 and it is 

denoted by 𝐴 ∩ 𝐵. 

E.g., let set 𝐴  =  {1, 2, 3, 4} and 𝐵 = {3, 4, 5, 6}, then 𝐴 ∩ 𝐵 = {3, 4}. 

(iii) Difference of Sets: The difference of two sets A and B is defined as set of elements 

which belong to A but not to B and is denoted by 𝐴 − 𝐵.  

E.g., let set 𝐴  =  {1, 2, 3, 4} and 𝐵 = {3, 4, 5, 6}, then 𝐴 − 𝐵 = {1, 2}. 

Index and Indexed Set: Let 𝐴𝑟  be a non-empty set, for each r in a set ∇ ,  where 𝛻 =

{1, 2, 3, … , 𝑟, … }. Here, 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑟 , … called indexed set and ∆ =  {1, 2, 3, … } is known as 

index set.  

Notation: 

{𝐴𝑟: 𝑟 𝜖∆} 𝑜𝑟 {𝐴𝑟}𝑟𝜖∆ 

𝐴1 = {1, 2, 3} 

𝐴2 = {4, 5, 6} 

𝐴3 = {2, 3, 4, 5} 

∆= {1, 2, 3} 𝑜𝑟 (𝑐ℎ𝑎𝑖𝑛) 

Hereditary Property: A non-empty family 𝐴, {𝐴𝑟}  of sets is said to be hereditary, if 𝐴𝑟 ⊂

 𝐴𝑠, 𝐴𝑠 ⊂ 𝐴 ⇒   𝐴𝑟 ⊂ 𝐴 

Therefore, 𝑎 +  𝑏 =  𝑏 +  𝑎 

𝑎 + (𝑏 + 𝑐)  =  (𝑎 + 𝑏)  +  𝑐 



 
 

𝑎 (𝑏 + 𝑐)  =  𝑎. 𝑏 +  𝑎. 𝑐. 

𝑎 + (𝑏. 𝑐)  =  (𝑎 + 𝑏) . (𝑎 + 𝑐) 

Theorems: 

(A) Commutative Law: 

(i) 𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴 

(ii) 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴 

(B) Associative Law: 

(i) (𝐴 ∪ 𝐵) ∪ 𝐶 = 𝐴 ∪ (𝐵 ∪ 𝐶) 

(ii) (𝐴 ∩ 𝐵) ∩ 𝐶 = 𝐴 ∩ (𝐴 ∩ 𝐶) 

(C) Distribution law: 

(i) 𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶) 

(ii) 𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶) 

(iii) 𝐴 − (𝐵 ∪ 𝐶) = (𝐴 − 𝐵) ∪ (𝐴 − 𝐶) 

(iv) 𝐴 − (𝐵 ∩ 𝐶) = (𝐴 − 𝐵) ∪ (𝐴 − 𝐶) 

(D) De. Morgan Law: 

(i) (𝐴 ∪ 𝐵)′ = 𝐴′ ∩ 𝐵′ 

(ii) (𝐴 ∩ 𝐵)′ = 𝐴′ ∪ 𝐵′ 

1.4     Ring and 𝝈- Ring  

 

A non-empty subset of Ω is called a ring of sets, if ant 𝐴, 𝐵 ∈ 𝐶 (family of C): 

(i) 𝐴 − 𝐵 ∈ 𝐶 

(ii) 𝐴 ∪ 𝐵 ∈ 𝐶 

It is closed under the formation of unions or differences 

𝐴 ∩ 𝐵 = 𝐴 − (𝐴 − 𝐵), 𝐴∆𝐵 = (𝐴 − 𝐵) ∪ (𝐵 − 𝐴) 

where 𝐴 ∆ 𝐵 stands for the symmetric difference of 𝐴 and 𝐵 implies 

𝐴 ∩ 𝐵 ∈ 𝐶, 𝐴∆𝐵 ∈ 𝐶,  if 𝐶 is a ring of set. Also, ∅ ∈  𝐶, ∅ = 𝐴 − 𝐴. 

A non-empty family 𝐶 of subset of Ω is called a 𝜎- ring of sets if it is closed under the formation 

of differences and countable Unions that is if,  



 
 

𝐴, 𝐵 ∈ 𝐶 = 𝐴 − 𝐵 ∈ 𝐶 and, 𝐴;  ∈  𝐶 =  ⋃ 𝐴𝑖 ∈ 𝐶
∞
𝑖=1  

if ⋂ 𝐴𝑖 = 𝐴 − 𝐴𝑖 ,
∞
𝑖=1  where 𝐴 = ⋂ 𝐴𝑖

∞
𝑖=1  

then, this equality says that 𝜎- ring is also closed under the formation of countable intersections.  

1.5 Fields, 𝝈- Field and Boral 𝝈- Field 

 

A collection of subsets 𝐶of a set Ω is termed as class of subsets of Ω. Let 𝐶 be the class of 

subsets of Ω, then  

(i) Union: 𝐶 is said to be closed under the union, if for any sets 𝐴, 𝐵 ∈ 𝐶, 𝐴 ∪ 𝐵 ∈ 𝐶. 

(ii) Intersection: 𝐶 is said to be closed under the intersection, if for any sets 𝐴, 𝐵 ∈ 𝐶, 

𝐴 ∩ 𝐵 ∈ 𝐶. 

(iii) Complement: 𝑋 is said to be closed under the complement, if for any set 𝐴 ∈ 𝐶,  𝐴̅ ∈

𝐶. 

(iv) Finite Union and Countable Union: 𝐶 is said to be closed under the finite union if for 

any sets 𝐴1, 𝐴2, … , 𝐴𝑛 ∈ 𝐶 , ∪𝑖=1
𝑛 𝐴𝑖 ∈ 𝐶 . Further if 𝑛 → ∞  and if the condition 

∪𝑖=1
𝑛 𝐴𝑖 ∈ 𝐶 is satisfied then, 𝐶 is said to closed under countable unions. 

(v) Finite Intersection and Countable Intersection: 𝐶 is said to be closed under the 

finite intersection if for any sets 𝐴1, 𝐴2, … , 𝐴𝑛 ∈ 𝐶, ∩𝑖=1
𝑛 𝐴𝑖 ∈ 𝐶. Further if 𝑛 → ∞ 

and if the condition ∩𝑖=1
𝑛 𝐴𝑖 ∈ 𝐶 is satisfied then, 𝐶 is said to closed under countable 

unions. 

1.5.1  Field 

 

The class of subsets 𝐶of non empty set Ω  is called a field on Ω, if the following conditions 

satisfying: 

(i) ϕ ∈ C, Ω ∈ C . 

(ii) For any set 𝐴 ∈ 𝐶,  𝐴̅ ∈ 𝐶 i.e., it is closed under complement.  

(iii) For any sets 𝐴1, 𝐴2, … , 𝐴𝑛 ∈ 𝐶, ∪𝑖=1
𝑛 𝐴𝑖 ∈ 𝐶 i.e., it is closed under finite unions. 

1.5.2  𝝈 − Field or 𝝈 −Algebra   

A class of subsets 𝐶 of a non-empty set 𝛺, then 𝐶 is called a σ-field on 𝛺, if the following 

conditions satisfies: 



 
 

(i) 𝜙 ∈ C, 𝛺 ∈ 𝐶 

(ii) For any set  𝐴 ∈ 𝐶, then  𝐴̅ ∈ 𝐶 i.e., it is closed under complement.  

(iii) For any sets 𝐴1, 𝐴2, … 𝐴𝑛 … , ∈ 𝐶 , then ∪𝑖=1
∞ 𝐴𝑖 ∈ 𝐶  i.e., it is closed under infinite 

countable unions. 

Remark 1. Any finite/countable/arbitrary intersection of 𝜎- fields is also a 𝜎 field. 

Remark 2.  The smallest 𝜎- field is 𝐶𝑠 = {𝜙, Ω} and the largest 𝜎- field is 𝐶𝑙 = 𝑃(Ω), the set of 

all subset of 𝐶.  

Remark 3. The smallest 𝜎-field containing 𝐶 is called a 𝜎- field generated by 𝐶 or minimal 𝜎-

field containing 𝐶. 

Remark 4. Every 𝜎- field is a field. 

Proof. The conditions (i) and (ii) s are same in field and 𝜎- field.  

For (iii), if 𝐴1 = 𝐴, 𝐴2 = 𝐵, 𝐴𝑛 = 𝜙, for 𝑛 ≥ 3, then each 𝐴𝑛 ∈ C, and 𝐶 is a 𝜎- field. 

Therefore, ∪𝑛=1
∞ ∈ 𝐶,  

then 𝐴1 ∪ 𝐴2 ∪ …𝑈𝐴𝑛 ∈ 𝐶 

⇒ 𝐴 ∪ 𝐵 ∪ 𝜙 ∪ …∪ 𝜙 ∈ 𝐶 

⇒ 𝐴 ∪ 𝐵 ∈ 𝐶 

Hence, every 𝜎- field is a field.  

1.5.3  Borel 𝛔- Field 

  Let Ω = ℛ, a real line and 𝐶 is a collection of open intervals for real line, and is denoted as 

𝐶 = {(𝑎, 𝑏, 𝑎 < 𝑏, 𝑎, 𝑏 ∈ ℛ}, then the smallest 𝜎- field on ℛ containing 𝐶  is called a Borel 𝜎- 

Field on real line ℛ, and it is denoted by ℬ. The sets in ℬ are called Borel sets.  

Borel 𝝈-Field on 𝓡𝒏:  

Borel 𝜎- field 𝓑𝒏 of the subsets of ℛ𝑛 , the 𝑛-dimensional Euclidean space with points 

(𝑥1, 𝑥2, … 𝑥𝑛) is the smallest 𝜎- field containing 𝑛-dimensional open rectangle 

𝐵 = {(𝑥1, 𝑥2, … 𝑥𝑛)|𝑎𝑖 < 𝑥𝑖 < 𝑏𝑖; 𝑖 = 1,2, … , 𝑛}  



 
 

where 𝑎𝑖, 𝑏𝑖 ∈ ℛ, 𝑖 = 1,2, … , 𝑛 and 𝑎𝑖′s and 𝑏𝑖′s are arbitrary.  

1.6  Measurable Space and Measurable Sets  

 

The pair (Ω, 𝐶) is called a measurable, where Ω is any non empty set and 𝐶 is 𝜎- field on 

Ω. The sets in 𝐶 are called measurable sets.  

1.7  Measure 

 

Let the pair (Ω, 𝐶) be a measurable space. A measure on 𝐶  is a function 𝜇  defined as 

𝜇: 𝐶 → ℛ∗ =  ℛ ∪ {±∞} such that 

(i) 𝜇(𝜙) = 0. 

(ii) 𝜇(𝐴) ≥ 0  ∀ 𝐴 ∈ 𝐶 (𝜇 is nonnegative). 

(iii) If 𝐴1, 𝐴2, … , 𝐴𝑛 ∈ 𝐶 is a collection of pairwise disjoint sets i.e., 𝐴𝑛 ∩ 𝐴𝑚 = 𝜙 for 𝑛 ≠

𝑚, then 𝜇(∪𝑛=1
∞ 𝐴𝑛) = ∑ 𝜇(𝐴𝑛)

∞
𝑛=1  (𝜇 is countable additivity or 𝜎-additive). 

A triplet (Ω, C, μ) is called a measure space. If 𝜇  assumes only the values 𝑎 and ∞, then, the 

measure space (Ω, C, μ) is called degenerate.  

Remark 1. If addition to (i), (ii) and (iii), 𝜇  also satisfies that 𝜇(𝐶) = 1 , then 𝜇  is called a 

probability measure on measurable space (Ω, 𝐶) and it is denoted by 𝑃. A triplet (Ω, 𝐶, 𝑃) is 

called a probability space. 

Example: Let Ω is non empty set and 𝐶 = {Ω, 𝜙)}, also, 𝜇1(𝜙) = 0, 𝜇(Ω) = 1 and 𝜇2(𝜙) =

0, 𝜇2(Ω) = ∞, check whether 𝜇1and 𝜇2 are measure or probability measure? 

Solution: For 𝜇1 

(i) 𝜇1(𝜙) = 0 

 (ii)  𝜇1(Ω) = 1 > 0, so, 𝜇1(𝐴) ≥ 0 for each 𝐴 ∈ 𝐶. 

(iii) If 𝐴𝑛, 𝑛 = 1,2, … , 𝐴𝑛 ∈ 𝐶  is the collection of disjoint sets then, 𝜇1(∪𝑛=1
∞ 𝐴𝑛) =

∑ 𝜇1(𝐴𝑛).
∞
𝑛=1  

Let 𝐴1 be Ω and 𝐴2, 𝐴3, …, be 𝜙, then 

 𝜇1(𝐴1 ∪ 𝐴2 ∪ …𝐴𝑛 ∪ …) = 𝜇1(Ω ∪ 𝜙 ∪ …∪ 𝜙…) 



 
 

     = 𝜇1(Ω) = 1  

Also, ∑ 𝜇1(𝐴1) + 𝜇1(𝐴2) + ⋯+ 𝜇1(𝐴𝑛) + ⋯ . . = 𝜇1(Ω) + 𝜇1(𝜙)
∞
𝑛=1 +⋯+⋯ 

                   = 1 + 0 + 0…+ 0 +⋯ = 1  Hence, 

𝜇1(∪𝑛=1
∞ 𝐴𝑛) = ∑ 𝜇1(𝐴𝑛).

∞
𝑛=1  

(iv) 𝜇1(Ω) = 1 

Hence, 𝜇1 is the probability measure on (Ω, 𝐶). 

For 𝜇2,  

(i) 𝜇2(𝜙) = 0 

 (ii)  𝜇2(Ω) = 1 > 0, so, 𝜇2(𝐴) ≥ 0 for each 𝐴 ∈ 𝐶. 

(iii) If 𝐴𝑛;  𝑛 = 1,2, … , 𝐴𝑛 ∈ 𝐶  is the collection of disjoint sets then, 𝜇2(∪𝑛=1
∞ 𝐴𝑛) =

∑ 𝜇2(𝐴𝑛).
∞
𝑛=1  

Let 𝐴1 be Ω and 𝐴2, 𝐴3, …, be 𝜙, then 

 𝜇2(𝐴1 ∪ 𝐴2 ∪ …𝐴𝑛 ∪ … ) = 𝜇2(Ω ∪ 𝜙 ∪ …∪ 𝜙… ) = ∞  

Also, ∑ 𝜇2(𝐴1) + 𝜇2(𝐴2) + ⋯+ 𝜇2(𝐴𝑛) + ⋯ . . = 𝜇2(Ω) + 𝜇2(𝜙)
∞
𝑛=1 +⋯+⋯ 

                   = ∞+ 0 + 0…+ 0 +⋯ = ∞ 

Hence, 𝜇2(∪𝑛=1
∞ 𝐴𝑛) = ∑ 𝜇2(𝐴𝑛).

∞
𝑛=1  

But it does not follow the (iv) property i.e., 𝜇2(Ω) ≠ 1, therefore, 𝜇2 is the measure only but not 

probability measure. 

1.7.1  Properties of Measure 

 

Properties 1: Let (Ω, 𝐶, 𝜇) be measure space. Then 𝜇 is finitely additive, i.e., if 𝐴1, 𝐴2, … , 𝐴𝑛 is a 

sequence of disjoint sets then, 𝜇(∪𝑚=1
𝑛 𝐴𝑚) = ∑ 𝜇(𝐴𝑚)

𝑛
𝑚=1 . 

Proof: Given that 𝜇  is ameasure on Ω, 𝐶), 𝜇  is countably additive that is there is a sequence 

𝐴1, 𝐴2, … , 𝐴𝑛, 𝐴𝑛+1, … of disjoint set such that  



 
 

𝜇(𝐴1, 𝐴2, … , 𝐴𝑛, 𝐴𝑛+1, … ) = ∑ 𝜇(𝐴𝑛)
∞
𝑛=1            (1) 

Now, choose 𝐴𝑛+1 = 𝐴𝑛+2 = ⋯ = 𝜙 i.e., 𝐴𝑚 = 𝜙,𝑚 > 𝑛. 

Hence from eq. (1), 

 𝜇(∪𝑚=1
𝑛 𝐴𝑚) = ∑ 𝜇(𝐴𝑚)

𝑛
𝑚=1  

So, 𝜇 is finite additivity.  

Properties 2: Let 𝐴, 𝐵 ∈ 𝐶, such that 𝐴 ⊆ 𝐵, the 𝜇(𝐴) ≤ 𝜇(𝐵), it is called monotonicity property. 

Proof. Define 𝐵 = 𝐴 ∪ (𝐵 − 𝐴) 

 Taking 𝜇 of both sides, then we have 

 𝜇(𝐵) = 𝜇(𝐴 ∪ (𝐵 − 𝐴)) 

  = 𝜇(𝐴) + 𝜇(𝐵 − 𝐴),  

because 𝐴 𝑎𝑛𝑑 𝐵 − 𝐴, are disjoint sets and 𝜇 is finite additive.  

Then, 𝜇(𝐵) ≥ 𝜇(𝐴) as 𝜇(𝐵 − 𝐴) ≥ 0, by definition 

Hence 𝜇(𝐴) ≤ 𝜇(𝐵).  

Note: If 𝜇 is a probability measure then 𝜇(𝐵 − 𝐴) = 𝜇(𝐵) − 𝜇(𝐴), because finite terms can be 

subtracted but infinite cannot. 

Properties 3:  Let (Ω, C, μ) ne measure space. For any sets 𝐴, 𝐵 ∈ 𝐶, then 𝜇(𝐴 ∪ 𝐵) ≤ 𝜇(𝐴) +

𝜇(𝐵) and if 𝐴 and 𝐵 are disjoint, then 𝜇(𝐴 ∪ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵).  

Proof.  Define 

𝐴 ∪ 𝐵 = 𝐴 ∪ (𝐵 − 𝐴) 

Take 𝜇 on both sides, we have 

𝜇(𝐴 ∪ 𝐵) = 𝜇(𝐴 ∪ (𝐵 − 𝐴)) 

Now, 𝐴 and 𝐵 − 𝐴 are the disjoint sets and 𝜇 is finitely additive, then 

𝜇(𝐴 ∪ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵 − 𝐴)           (2) 

Since, 𝐵 − 𝐴 ⊆ 𝐵 

Take 𝜇 on both sides and using Property 2, we have 

  𝜇(𝐴 − 𝐵) ≤ 𝜇(𝐵)              (3) 

From (2) and (3), we have 



 
 

𝜇(𝐴 ∪ 𝐵) ≤ 𝜇(𝐴) + 𝜇(𝐵)  

Also, if 𝐴 and 𝐵 are disjoint, then 

𝜇(𝐴 ∪ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵)  

Property 4: For 𝐴1, 𝐴2, … , 𝐴𝑛 ∈ 𝐶, then 𝜇(∪𝑚=1
𝑛 𝐴𝑚) ≤ ∑ 𝜇(𝐴𝑚)

𝑛
𝑚=1  for any 𝑛. 

Proof: Now consider, for 𝑛 = 1, 

 𝜇(𝐴1) = 𝜇(𝐴1), which is true. 

For 𝑛 = 2, we have  

𝜇(𝐴1 ∪𝐴2) ≤ 𝜇(𝐴1) + 𝜇(𝐴2)   (Form Property 3) 

Now, for 𝑛 = 𝑘, suppose it is true that 

 𝜇(∪𝑚=1
𝑘 𝐴𝑚) ≤ ∑ 𝜇(𝐴𝑚)

𝑘
𝑚=1  

For 𝑛 = 𝑘 + 1, suppose 𝐴𝑘+1 ∈ 𝐶, we have 

 𝜇(∪𝑚=1
𝑘+1 𝐴𝑚) ≤ 𝜇(∪𝑚=1

𝑘 𝐴𝑚 ∪ 𝐴𝑘+1) 

Then by Property (3), we have 

 𝜇(∪𝑚=1
𝑘+1 𝐴𝑚) ≤ 𝜇(∪𝑚=1

𝑘 𝐴𝑚) + 𝜇(𝐴𝑘+1) 

Hence, by the property of finite additive 

 𝜇(∪𝑚=1
𝑘+1 𝐴𝑚) ≤ 𝜇(∪𝑚=1

𝑘+1 𝐴𝑚) 

 𝜇(∪𝑚=1
𝑘+1 𝐴𝑚) ≤ 𝜇(∪𝑚=1

𝑘 𝐴𝑚) + 𝜇(𝐴𝑘+1) 

Hence proved by the principal of mathematical induction for positive integer values of 𝑛. 

Property 5: Let (Ω, 𝐶, 𝜇)  be measure space, 𝐴, 𝐵 ∈ 𝐶 , then 𝜇(𝐴 ∪ 𝐵) + 𝜇(𝐴 ∩ 𝐵) = 𝜇(𝐴) +

𝜇(𝐵). 

Proof: Define 

𝐴 ∪ 𝐵 = 𝐴 ∪ (𝐵 − 𝐴) 

Taking 𝜇 measure on both sides, we have 



 
 

 𝜇(𝐴 ∪ 𝐵) = 𝜇(𝐴 ∪ (𝐵 − 𝐴)) 

⇒  𝜇(𝐴 ∪ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵 − 𝐴)                    (4) 

as 𝐴 and 𝐵 − 𝐴 sets are disjoint sets and 𝜇 is finitely additive.  

We can define set 𝐵 as 

 𝐵 = (𝐴 ∩ 𝐵) ∪ (𝐵 − 𝐴) 

Taking 𝜇 measure on both sides, we have 

 𝜇(𝐵) = 𝜇(𝐴 ∩ 𝐵) + 𝜇(𝐵 − 𝐴)                (5)  

as 𝐴 ∩ 𝐵) and (𝐵 − 𝐴) are disjoint sets. 

From (4) and (5), we have 

𝜇(𝐴 ∪ 𝐵) + 𝜇(𝐴 ∩ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵) 

     Hence proved. 

Definition: Let Ω, 𝐶, 𝜇) be a measure space, then 

 

(i) Finite Measure: A measure 𝜇 is said to be a finite measure if 𝜇(Ω) < ∞.  

Aliter: A set 𝐴 ∈ 𝐶 is said to be a set of finite measure if 𝜇(𝐴) < ∞. 

 

(ii) 𝝈- Finite Measure: The measure 𝜇 is called a 𝜎- finite measure if there is a sequence 

of sets 𝐴𝑛 ∈ Ω, such that Ω =∪𝑛=1
∞ (𝐴𝑛) and 𝜇(𝐴𝑛) < ∞,    ∀ 𝑛. 

Aliter: A set 𝐴 ∈ 𝐶 is of 𝜎- finite measure if 𝐴 is a union of a number of measurable sets 

and such that in the union has a finite measure that is for 𝐴 =∪𝑖=1
∞ 𝐴1; 𝜇(𝐴𝑖) < ∞  ∀ 𝑖. 

Remarks 

1. A counting measure is not a finite measure. 

2. If 𝜇 is a 𝜎- finite, then every measurable set is of 𝜎- finite measure, because 𝜇 is a 𝜎- finite, 

hence for each 𝜇(𝐴𝑛) < ∞  ∀ 𝑛. 

3. 𝝁 Null Set: A set 𝐴 ∈ 𝐶 is null if 𝐴 = 𝜙, then 𝜇(𝐴) = 0 is called 𝜇 null set. 



 
 

4. Complete Measure: A measure space (Ω, 𝐶, 𝜇) or a measure 𝜇 is called complete measure 

if 𝐶  contains all 𝜇  null subsets i.e., if 𝐵 ∈ 𝐶 , 𝜇(𝐵) = 0  and 𝐴 ⊆ 𝐵 , then 𝐴 ∈ 𝐶  or i.e., 

every subset if a measurable 𝜇- null set should be measurable.  

5. Every measure is not a complete measure but it can be completed.  

1.7.2  Extension of Measures 

Let 𝑃(Ω) be the class of all subsets of Ω and let 𝐶, 𝐶′ be two subclasses of 𝑃(Ω). Let 𝜙, 𝜙′ 

also be two set functions defined on 𝐶, 𝐶′ respectively and taking values in ℛ. The we call 𝜑′ is an 

extension of 𝜑 and 𝜑 is a restriction of 𝜑′, if 𝐶 ⊂ 𝐶′ and 𝜑 = 𝜑′ on 𝐶.  

Definition: Let (Ω, 𝐶, 𝜇) be a measure space. Let 𝐴 ∈ 𝐶, we can again let 𝐸 and 𝐹 equal to 𝐴, then 

a measure 𝜇′ is called an extension of measure 𝜇 if,  

(i) 𝜇̅(𝜙) ≥ 0 

(ii)  𝜇′(∪𝑛 𝐴𝑛) = 𝜇(∪𝑛 𝐸𝑛 ) = ∑ (𝜇(𝐸𝑛))𝑛 = ∑ 𝜇′(𝐴𝑛)𝑛  

where {𝐴𝑛} be a sequence of disjoints sets in 𝐶 and for each𝑛 again choose sets 𝐸𝑛 and 𝐹𝑛 in 𝐶 

such that 𝐸𝑛 ⊆ 𝐴𝑛 ⊆ 𝐹𝑛 and 𝜇(𝐹𝑛 − 𝐸𝑛) = 0. 

 

1.7.3  Extension Theorem 

 

Theorem: Any measure µ′ on a semiring S is uniquely extended to a measure µ on the generated 

ring R(S). If the initial measure was σ-additive, then the extension is σ-additive as well. 

 

Proof: Let (Ω, 𝐶, 𝜇)be a measure space. If an extension 𝜇′ of 𝜇 exists, then it shall satisfy  

 𝜇(𝐴) = ∑ 𝜇′(𝐴)𝑛
𝑚=1  

where 𝐴𝑚 ∈ 𝐶. 

We need to show two statements for this definition. 

1. Consistency, i.e., independence of the value from a presentation of 𝐴𝑚 ∈ 𝑅(𝑆) as 𝐶 =

∪𝑚=1
𝑛 𝐴𝑚, where 𝐴𝑚 ∈ 𝐶.  

For two different presentation 𝐶 =∪𝑙=1
𝑛 𝐴𝑙 and 𝐶 =∪𝑚=1

𝑛 𝐵𝑚. 

Define 𝐸𝑙𝑚 = 𝐴𝑙 ∩ 𝐵𝑚 which will be pair-wise disjoint.  



 
 

By the additivity of 𝜇′, we have  

 𝜇′(𝐴𝑙) = ∑ 𝜇′(𝐸𝑙𝑚)𝑚   and 𝜇′(𝐵𝑚) = ∑ 𝜇
′(𝐸𝑙𝑚)𝑙  

Then, 

 ∑ 𝜇′(𝐴𝑙) =𝑙 ∑ ∑ 𝜇′𝑚 (𝐸𝑙𝑚) =𝑙 ∑ ∑ 𝜇′(𝐸𝑙𝑚)𝑗𝑚 = ∑ 𝜇′(𝐵𝑚)𝑚  

 2. Additivity: For 𝐶 =∪𝑚=1
𝑛 𝐴𝑚, where 𝐴𝑚 ∈ 𝑅(𝑆). 

 We can present 𝐴𝑚 =∪𝑙=1
𝑛(𝑚) 𝐸𝑙𝑚, 𝐸𝑙𝑚 ∈ 𝑆.  

Thus 𝐶 =∪𝑚=1
𝑛 ∪𝑙=1

𝑛(𝑚) 𝐶𝑙𝑚 and  

 𝜇(𝐴) = ∑ ∑ 𝜇′(𝐸𝑙𝑚) = ∑ 𝜇(𝐴𝑚)
𝑛
𝑚=1  

𝑛(𝑚)
𝑙=1

𝑛
𝑚=1  

Finally, show the 𝜎-additivity. 

For a set 𝐴 =∪𝑚=1
∞ 𝐴𝑚, where 𝐴 and 𝐴𝑚 ∈ 𝑅(𝑆), find presentations 𝐴 =∪𝑙=1

𝑛 𝐵𝑙, 𝐵𝑙 ∈ and 𝐴𝑚 =

∪𝑣=1
𝑢(𝑚) 𝐵𝑣𝑚, 𝐵𝑣𝑚 ∈ 𝑆. 

Define 𝐸𝑙𝑚𝑣 = 𝐵𝑙 ∩ 𝐵𝑙𝑚 ∈ 𝑆, then 𝐵𝑗 =∪𝑚=1
∞ ∪𝑣=1

𝑢(𝑚) 𝐸𝑙𝑚𝑣 and 𝐴𝑚 =∪𝑙=1
𝑛 ∪(𝑣=1)

𝑢(𝑚) 𝐸𝑙𝑚𝑣 

Then, from 𝜎- additivity of 𝜇′ 

𝜇(𝐴) =  ∑𝜇′(𝐵𝑙) 

𝑛

𝑙=1

=∑∑ ∑ 𝜇′(𝐸𝑙𝑚𝑣) = 

𝑢(𝑚)

𝑣=1

∞

𝑚=1

𝑛

𝑙=1

∑∑ 

𝑛

𝑙=1

∑ 𝜇′(𝐸𝑙𝑚𝑣) = 

𝑢(𝑚)

𝑣=1

∑ 𝜇(𝐴𝑚)

∞

𝑚=1

∞

𝑚=1

   

where we changed the summation order in series with non-negative terms. 

1.8  Outer Measure 

 

Let Ω be non empty set, 𝜇∗ be an extended real valued function defined on 𝑃(Ω), the 𝜇∗ is 

called an outer measure if 

(i) 𝜇∗(𝜙) = 0,    𝜇∗(𝐴) ≥ 0  for 𝐴 ∈ 𝑃(Ω) 

(ii) For, 𝐴, 𝐵 ∈ 𝑃(Ω) , 𝐴 ⊆ 𝐵,  then 𝜇∗(𝐴) ≤ 𝜇∗(𝐵)  i.e., 𝜇∗  has the monotonicity 

property.  

(iii) If < 𝐴𝑛 >  is (𝑃Ω), then 𝜇∗(∪𝑛=1
∞ 𝐴𝑛) ≤ ∑ 𝜇∗(𝐴𝑛) 

∞
𝑛=1 i.e., 𝜇∗ is a countably sub-

additive. 



 
 

Remark: Every measure is an outer measure but an outer measure may or may not be measure. 

𝝁∗ Measurability: Let 𝜇∗ ne outer measure on 𝑃(Ω) and, also, let 𝐸 ⊆ Ω, 𝐸𝑐 ⊆ Ω, then set 𝐸 is 

said to be 𝜇∗ measurable, if 𝐴 ⊆ Ω, then 𝜇∗(𝐴) = 𝜇∗(𝐴 ∩ 𝐸) + 𝜇∗(𝐴 ∩ 𝐸𝑐). This is also called 

Caratheodory Measurability or an extension of measure. 

1.9 Measurable Function 

Let (Ω, 𝐶) be a measurable space and let 𝑓 be a finite real valued function of Ω, then 𝑓 is 

said to be a measurable function if for each real 𝛼 such that 

{𝑥 ∈ Ω|𝑓(𝑥) > 𝛼} ∈ 𝐶 or 

 {𝑥 ∈ Ω|𝑓(𝑥) ≥ 𝛼} ∈ 𝐶 or 

 {𝑥 ∈ Ω|𝑓(𝑥) < 𝛼} ∈ 𝐶 or  

 {𝑥 ∈ Ω|𝑓(𝑥) ≤ 𝛼} ∈ 𝐶 

Note: All these sets are equivalent set.  

Indicator Function: Let Ω be any non empty set, and also let 𝐴 ⊆ Ω, then indicator function of 𝐴 

is denoted by 𝐼𝐴 and defined as  

𝐼𝐴 = {
1 , Ω ∈ 𝐴
0    ,      Ω ∉ 𝐴

 

Simple Function: Let 𝑓 be a real valued defined on Ω, then 𝑓 is called simple function if it takes 

only finite many distinct values. 

Note 1: Any function 𝑓 is a simple function if it can be expressed as a linear combination of 

indictor functions of disjoint sets.  

Proof: Let 𝑓 be a real valued function.  

 Let 𝛼1, 𝛼2, …𝛼𝑛 be 𝑛 distinct values taken by 𝑓. 

 Defined, 𝐴𝑖 = {𝑥 ∈ ℛ|𝑓(𝑥) = 𝛼𝑖},    𝑖 = 1, ,2, … , 𝑛 and 𝐴𝑖
′s are disjoint sets (also 𝛼𝑖

′s are 

distinct), therefore, 

 𝐴𝑖 ∩ 𝐴𝑗 = 𝜙   for 𝑖 ≠ 𝑗 and ∪𝑖=1
𝑛 𝐴𝑖 = ℛ  



 
 

 𝑇𝐴𝑖(𝑥) = {
1  ,   𝑥 ∈ 𝐴𝑖
0  ,   𝑥 ∉ 𝐴𝑖

 

i.e., 𝑓(𝑥) = 𝛼𝑖 

Hence, 𝑓(𝑥) =  𝛼1𝐼𝐴1(𝑥) + 𝛼2𝐼𝐴2(𝑥) + ⋯+ 𝛼𝑛𝐼𝐴𝑛(𝑥) , because if 𝑓(𝑥) = 𝛼1 , then 𝐼𝐴1(𝑥) = 1 

all other indicator functions are zero. 

Thereby, 𝑓(𝑥) = ∑ 𝛼𝑖
𝑛
𝑖=1 𝐼𝐴𝑖(𝑥) 

Hence proved that any function of it can be expressed as a finite linear combination of 𝐼𝐴(𝑥) of 

disjoint sets.  

Note 2: The sum, difference, and product of two simple functions is again simple function. The 

limits of simple function if they exist are measurable.  

Note 3: If 𝑓  is 𝐶  measurable function, then 𝐴𝑖 = {𝑥𝑖 ∈ Ω| f(x) = αi} ∈ 𝐶  and 𝐴𝑖 = {𝑥 ∈

Ω|𝑓(𝑥) ≥ 𝛼𝑖} − {𝑥 ∈ Ω|𝑓(𝑥) > 𝛼} 

Elementary Function: A function taking infinite number of distinct values is called an elementary 

function and defined as 

𝑓(𝑥) =∑𝛼𝑖 𝐼𝐴𝑖(𝑥)

∞

𝑖=1

 

Step Function:  A measurable function 𝑓 with finite range is called step function.  

 

1.10     Integrals 

 

 Let (Ω, 𝐶, 𝜇) be s measure space and let 𝐸 ∈ 𝐶 be measurable set and for a measurable 

function 𝑓 on 𝐸, the integral of 𝑓 is given by 

𝜇(𝑓) = ∫ 𝑓𝑑𝜇 = ∫𝑓(𝑥)𝜇(𝑥)
𝐸𝐸

 

When (Ω, C) = (ℛ, ℬ) (that is real line and borel 𝜎- field) and 𝜇 is measure, then the integral of 𝑓 

is given by 

 𝜇(𝑓) = ∫ 𝑓(𝑥)
ℛ

𝑑𝑥 = ∑ 𝛼𝑖𝜇(𝐴𝑖)
𝑛
𝑖=1  



 
 

where 𝐴𝑖 ∈ 𝐶 ∀ 𝑖.  

Remarks 1: Let 𝑓  and  𝑔  be two measurable functions on (Ω, 𝐶, 𝜇)  and let 𝐸 ∈ 𝐶 , then the 

following holds: 

(i) If 𝑓 ≤ 𝑔 on 𝐸, then ∫ 𝑓 𝑑𝜇 ≤ ∫ 𝑔 𝑑𝜇
𝐸𝐸

 

(ii) If 𝐴 ⊂ 𝐵 and 𝑓 ≥ 0, then ∫ 𝑓 𝑑𝜇 ≤ ∫ 𝑓𝑑𝜇
𝐵𝐴

 

(iii) If 𝑐 is a constant, then ∫ 𝑐 𝑓 𝑑𝜇 = 𝑐 ∫ 𝑓 𝑑𝜇
𝐸𝐸

 

(iv) 𝑓 ≅ 0 on 𝐸, then ∫ 𝑓 𝑑𝜇 = 0 
𝐸

even if 𝜇(𝐸) = ∞ 

(v) If 𝜇(𝐸) = 0, then ∫ 𝑓 𝑑𝜇 = 0
𝐸

if 𝑓(𝑥) = ∞ on 𝐸. 

(vi) If 𝑓 ≥ 0, then ∫ 𝑓
𝐸
𝑑𝜇 = ∫ 𝑔𝑓𝐸𝑓𝑑𝜇Ω

 

2. Suppose 𝑓 and 𝑔 are two simple functions, then 

        ∫ (
Ω
𝑓 + 𝑔)𝑑𝜇 = ∫ 𝑓 𝑑𝜇 + ∫ 𝑔 𝑑𝜇

ΩΩ
 

1.11  Non-Negative Integrable Function  

Let (Ω, 𝐶, 𝜇) be a measure space and 𝑓 be a non-negative extended real valued measurable 

function on Ω, then the integral of 𝑓 is 

𝜇(𝑓) = ∫ 𝑓 𝑑𝜇 = 𝑠𝑢𝑝∫ 𝜏 𝑑𝜇
ΩΩ

 

Is known as non-negative integrable function, where 𝜏 ranges over all the simple functions 

𝜏 for which 0 ≤ 𝜏 ≤ 𝑓 on Ω.  

1.12  Integrable Measurable Function  

Let (Ω, 𝐶, 𝜇) be a measure space. A measurable function 𝑓 on Ω is integrable over Ω with 

respect to 𝜇 if |𝑓| is integrable over Ω. For such function, we define the integral 𝑓 over Ω with 

respect to 𝜇 as 

 ∫ 𝑓 𝑑𝜇 = ∫ 𝑓+ 𝑑𝜇 −
Ω

∫ 𝑓− 𝑑𝜇
ΩΩ

 

For a measurable subset 𝐸 on Ω, 𝑓 is integrable over 𝐸 if 𝑓Ω𝐸  is integrable over Ωand we 

define the integral of 𝑓 over 𝐸 as 

 ∫ 𝑓 𝑑𝜇 = ∫ 𝑓Ω𝐸𝑑𝜇Ω𝐸
 



 
 

Remark: Let (Ω, 𝐶, 𝜇) be a measure space and let 𝑓 and 𝑔  be two integrable function over Ω, then 

(i) Linearity: For 𝑎, 𝑏 ∈ ℛ, 𝑎𝑓 + 𝑏𝑔 is integrable over Ω and  

∫(𝑎𝑓 + 𝑏𝑔)𝑑𝜇 = ∫ 𝑓 𝑑𝜇 + 𝑏∫𝑔 𝑑𝜇
ΩΩΩ

 

(ii) Monotonicity: If  𝑓 ≤ 𝑔, then  

`∫ 𝑓 𝑑𝜇 ≤ ∫ 𝑔 𝑑𝜇
ΩΩ

 

(iii) Additivity over Domains: If 𝐴 and 𝐵 are disjoint measurable sets, then 

        ∫ 𝑓
A∪B

𝑑𝜇 = ∫ 𝑓 𝑑𝜇 + ∫ 𝑓 𝑑𝜇
BA

 

Important: The set of integrable functions is a subset of the set of measurable functions. We 

cannot define the integral of a non-negative function 𝑓 unless 𝑓 is measurable, and we cannot 

define the integral of a measurable function 𝑓 (possibly negative) unless 𝑓 is integrable. 

 

1.13 Self-Assessment Exercises 

 

1 Let the class A consist of the single set 𝐴 and the class B consist of the single set 𝐵. What are 

𝐴 ∪ 𝐵 and 𝐴 ∩ 𝐵? 

2 What are the rings, fields, σ-rings and σ-fields generated by the following classes of sets? 

(a)  𝜖 = {𝐸}, the class consisting of one fixed set 𝐸 only 

(b) 𝜖 is the class of all subsets of a fixed set 𝐸. 

(c) 𝜖 is the class of all sets containing exactly two points. 

3 Let 𝑋 be an uncountably infinite set and 𝜖1 the class of sets which are either countable or have 

countable complements. Is 𝜖1 a ring? A field? A σ-ring? Let 𝜖2 be the class of all countable 

subsets of 𝑋. Is 𝜖2 a ring? A field? A 𝜎- ring? 

4 Let 𝜖 be any nonempty class of sets and let P be the class of all possible finite intersections of 

the form 𝐸1 ∩ 𝐸2 ∩. . .∩ 𝐸𝑛 ;  𝑛 = 1, 2, . .. , where 𝐸1 ∈ 𝜖 and for each 𝑗 = 2, . . . , 𝑛, either 𝐸𝑗 ∈

𝜖 𝑜𝑟 𝐸𝑗
𝑐 ∈ 𝜖. Then show that P is a semiring, 𝑃 ⊃ 𝜖, and 𝑅(𝑃)  =  𝑅(𝜖).  

5 Let 𝜇 be a measure defined on a ring R. Show that the class of sets 𝐸 ∈  𝑅 with μ(E) finite, 

forms a ring. 



 
 

6 Let 𝜖 be a class of sets and 𝜇 be a measure on 𝑅(𝜖) such that 𝜇(𝜖)  <  ∞ for all 𝐸 ∈ 𝜖. Show 

that 𝜇 is a finite measure on 𝑅(𝜖). 

7 Let X be any space with two or more points. Write 𝜇(𝜙) = 0, and 𝜇(𝐸) = 1 for 𝐸 ≠ 𝜙. Is 𝜇 an 

outer measure, a measure? 

8 If 𝜇∗ is an outer measure and 𝐸, 𝐹 are two sets, 𝐸 being 𝜇∗-measurable, show that 

𝜇∗(𝐸) + 𝜇∗(𝐹) = 𝜇∗(𝐸 ∪ 𝐹) + 𝜇∗(𝐸 ∩ 𝐹). 

9 Let 𝑥0 be a fixed point of space 𝑋. Is 𝜇∗(𝐸)  =  𝜒𝐸(𝑥0) an outer measure? 

10 If |𝑓| is a measurable function on (Ω, C), is 𝑓 measurable? 

11 Give a measurable space (Ω, 𝐶) and finite measures 𝜇 and 𝜈 on it that satisfy 𝜇(Ω)  =  𝜈(Ω) 

but are such that {𝐴 ∈  𝐶 ∶  𝜇(𝐴)  =  𝜈(𝐴)} is not a 𝜎-algebra. 

12 Is it always the case that if all the 𝐴𝑛 are in 𝜖 then µ(∪𝑛 𝐴𝑛) ≤ ∑ 𝜇(𝐴𝑛)𝑛 . 

13 By answering these questions, learners will be able to gauge their understanding of the unit's 

key concepts and their ability to apply them in various contexts. 

1.14  Summary 

In this unit on measure in probability and statistics, we delved into topics, including rings 

and sigma-rings, fields, and sigma-fields, which play a pivotal role in defining measurable spaces 

and measurable sets. The central theme of measure theory revolves around the notion of a measure 

on Rn, and we explored the key properties of measures and the concept of outer measure. The 

extension of measures is a crucial concept, and the Extension Theorem serves as a fundamental 

tool in this context. The concepts of simple functions that provide a foundation for integration 

were explored, as well as the non-negative integrable and integrable measurable functions, which 

are integral components of the broader study of Lebesgue integration and analysis. These topics 

collectively form the cornerstone of measure theory, offering powerful tools for mathematical 

analysis and understanding complex sets and functions. 
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2.1           Introduction 

   In this chapter we deal with some functions, namely measurable function, Lebesgue 

measurable functions, equivalent function, and characteristics function which are naturally linked 

with the notion of measurable sets. One can ask why we need such a function, the best answer to 

this question is that we ultimately intend to define an integration process modeled on Riemann 

integration which should be stronger than Riemann integration. Since functions are the objects 

which we integrate, we need to define a special class of functions which we will like to integrate.  

There is a concept called convergence in measure for sequences of measurable functions 

𝑓𝑛 → 𝑓 that is especially useful in the theory of probability. In that context, it is useful to know 

that the probability of a random variable 𝑓𝑛 differing from the random variable 𝑓 by more than 𝜖 



 
 

is very small. Firstly, we will dive deep in the measure space and measurable function.  A very 

important function i.e., Lebesgue function will also be discussed in this chapter. In this chapter we 

also define Lebesgue measurable functions and prove its basic properties. We also define a special 

type of measurable function called simple function and mainly show that any measurable function 

can be expressed as the limit of a sequence of simple functions. 

We will consider sequences of real functions and show that with respect to Lebesgue measure, 

the pointwise convergence can be generalized into the notion of convergence almost everywhere 

which means usual pointwise convergence. We also define the convergence in measure for 

sequences of measurable functions. We will dive deep into understanding how these sequences 

stabilize or converge. In doing so, we will encounter different 'flavors' of convergence, each with 

its distinct characteristics and implications.  

 

2.2           Objectives 

By the end of this unit, the learner should be able to: 

• Understand the basic concept of convergence. 

• Concept of the measurable function and Lebesgue measurable function and also distinguish 

between them. 

• Describe the concept the characteristics function. 

• Identify various types of convergence in measure. 

• Understand the combination of measurable function. 

2.3       Measure Space and Measurable Function 

 

Measure spaces are the fundamental objects of measure theory, the branch of mathematics that 

studies generalized concepts of volume. It contains the underlying set, the subset of this set that 

can be used for measurement (σ-algebra), and the method used for measurement (measurement). 

One important example of measurement spaces is the probability space.  

Most of the theory of measurable functions and integration does not depend on the specific 

features of the measure space on which the functions are defined. Measurable functions in measure 



 
 

theory are analogous to continuous functions in topology. A continuous function pulls back open 

sets to open sets, while a measurable function pulls back measurable sets to measurable sets. 

2.3.1     Measure Space 

Let Ω be a non empty set, 𝐶 be a 𝜎-filed on Ω, and 𝜇 is a measure, then the triplet (Ω, C, μ) 

is called a measure space. 

2.3.2     Measurable Function 

  Let (Ω, 𝐶) be a measurable space and let 𝑓 be a finite real valued function of Ω, then 𝑓 is 

said to be a measurable function if for each real 𝛼 such that 

{𝑥 ∈ Ω|𝑓(𝑥) > 𝛼} ∈ 𝐶 or 

 {𝑥 ∈ Ω|𝑓(𝑥) ≥ 𝛼} ∈ 𝐶 or 

 {𝑥 ∈ Ω|𝑓(𝑥) < 𝛼} ∈ 𝐶 or  

 {𝑥 ∈ Ω|𝑓(𝑥) ≤ 𝛼} ∈ 𝐶 

2.3.3      Lebesgue Measurable Function 

We change (Ω, 𝐶) to (ℛ, ℬ). Let  (ℛ, ℬ) be Lebesgue measurable function and let 𝑓 be a 

finite real valued function of ℛ, then 𝑓 is said to be a measurable function if, for each real 𝛼 

 {𝑥 ∈ ℛ|𝑓(𝑥) > 𝛼} ∈  ℬ or 

 {𝑥 ∈ ℛ|𝑓(𝑥) ≥ 𝛼} ∈  ℬ or 

 {𝑥 ∈ ℛ|𝑓(𝑥) < 𝛼} ∈  ℬ or  

 {𝑥 ∈ ℛ|𝑓(𝑥) ≤ 𝛼} ∈  ℬ 

where ℬ is the Borel 𝜎- field of Lebesgue measurable space.  

Example 1: Let Ω = {1,2,3,4} and let  𝜎- field on Ω is 𝐶 = {𝜙, Ω}. Define 𝑓(𝑥) = 1 ⩝  𝑥 ∈ Ω. 

Check the measurability of function 𝑓. 

Solution: For a real 𝛼, 

 {𝑥 ∈ Ω|𝑓(𝑥) > 𝛼} = {
Ω,      α < 1
𝜙 ,    𝛼 ≥ 1

 



 
 

Since 𝐶 = {ϕ, Ω }, then (Ω,𝜙) ∈ 𝐶, hence  {𝑥 ∈ Ω|𝑓(𝑥) > 𝛼} ∈ 𝐶 , then f is the measurable 

function. 

Example 2: Let 𝑓(𝑥) = 𝑎, Ω = {1,2,3,4}  and 𝐶 = {𝜙, Ω} . Check whether the function 𝑓  is 

measurable? 

Solution: For real 𝛼 

 {𝑥 ∈ Ω|𝑓(𝑥) > 𝛼} = {
Ω,      α < a
𝜙 ,    𝛼 ≥ 𝑎

 

Since 𝐶 = {ϕ, Ω }, then (Ω,𝜙) ∈ 𝐶, hence  {𝑥 ∈ Ω|𝑓(𝑥) > 𝛼} ∈ 𝐶 , then f is the measurable 

function i.e., every constant function 𝑓 is the measurable function.  

 

Definition: - Let 𝜇 be a measure function on a 𝜎- ring of subsets of Ω. 

(i) Completeness of Measure Function: The measure function 𝜇 is said to be complete, 

if 𝐵 ∈ 𝐶 such that, 𝜇(𝐵) = 0, 𝐴 ⊂ 𝐵 = 𝐴 ∈ 𝐶 i.e., if all the subsets of measure 0 are 

measurable in this case (Ω, 𝐶, 𝜇) is called a complete measure space. 

(ii) Any set  𝐴 ∈ 𝐶 is said to have finite measure if 𝜇(𝐴) < ∞ .  

(iii) The measure of any set 𝐴 ∈ 𝐶 is said to be 𝜎- finite, if there exist a sequence  〈𝐴𝑛〉  ∈

𝑅 such that 𝑛 ∋ 𝑁 such that 

a. 𝐴 ⊂ ⋃ 𝐴𝑛
∞
𝑛=1  

b. 𝜇 (𝐴𝑛) <  ∞   ∀ 𝑛 ∈ 𝑁 

(iv) The measure function 𝑛 is called finite or 𝜎-finite according as the measure of every 

set is finite or 𝜎-finite.  

(v) The measure function 𝜇 is called totally finite or totally 𝜎- finite if, 

a. 𝑥 ∈ 𝐶 i.e., 𝐶 is algebra sets. 

b. 𝜇(𝑥) is finite or 𝜎- finite.  

2.3.4     Equivalent Function  

 

Two functions f and g defined on the same set E are said to be equivalent If 𝜇[𝐸(𝑓 ≠ 𝑔)] =

0 i.e., if there exist 𝐴, 𝐵,⊂  𝐸 such that 𝐸 =  𝐴 ∪  𝐵, on 𝐴 and 𝑓 =  𝑔 on 𝐴, 𝜇(𝐵) = 0, 𝜇(𝐴) ≠

 0. 



 
 

2.3.5      Characteristic Functions  

 

Let 𝐴 be a subset of set 𝐸. The characteristic function 𝐾𝐴 of 𝐴 is defined as,  

𝐾𝐴(𝑥) = {
1               𝑖𝑓 𝑥 ∈ 𝐴
0,       𝑖𝑓 𝑥 ∈ 𝐸 − 𝐴.

 

The function 𝐾𝐴(𝑥) is measurable if and only if 𝐴 is measurable. 

Note: Existence of non-measurable set implies that the existence of non-measurable function.  

2.4         Combination of Measurable Function 

 

Theorem: Let (Ω, 𝐶)  be a measurable space. The functions 𝑓: Ω → 𝑅  and g : Ω → 𝑅  are two 

measurable functions, then the functions  

(a) 𝑓 + 𝑐   (b)  𝑐𝑓  (c) 𝑓 + 𝑔   (d) 𝑓 − 𝑔     

(e)  𝑓2   (f) 𝑓𝑔   (g)  |𝑓| are measurable functions, where 𝑐 is 

a real valued constant. 

Proof:  Let 𝑓 be a measurable function defined over the measurable se t 𝐸.  

(a) For any real 𝛼 such that 

 {𝑥 ∈ Ω|𝑓(𝑥) + 𝑐 > 𝛼} = {𝑥 ∈ Ω|𝑓(𝑥) > 𝛼 − 𝑐} (If 𝑐  is any constant then, (𝛼 − 𝑐) is a 

real value) 

           = {𝑥 ∈ Ω|𝑓(𝑥) > 𝛼′} ∈ 𝐶 

Therefore, 𝑓 is the measurable function. 

(b)  For any real 𝛼 such that 

 {𝑥 ∈ Ω|𝑓(𝑥) + 𝑐 > 𝛼} ∈ 𝐶 

Case (i): when 𝑐 > 0,  

{𝑥 ∈ Ω|𝑓(𝑥) > 𝛼/𝑐} ∈ 𝐶 = {𝑥 ∈ Ω|𝑓(𝑥) > 𝛼′} ∈ 𝐶 (because 𝑓 is the measurable 

function with respect to 𝐶 and 𝛼/𝑐 is also a real number) 

Case (ii): When 𝑐 < 0 



 
 

{𝑥 ∈ Ω|𝑓(𝑥) < 𝛼/𝑐} ∈ 𝐶 = {𝑥 ∈ Ω|𝑓(𝑥) < 𝛼′} ∈ 𝐶 (because 𝑓 is the measurable 

function with respect to 𝐶 and 𝛼/𝑐 is also a real number) 

Case (iii): When 𝑐 = 0, then 

ℎ(𝑥) = 𝑐𝑓(𝑥) = 0 , if 𝑐 = 0|𝑥 ∈ Ω 

For any real 𝛼, {𝑥 ∈ Ω| h(x) > α} = {
Ω  , α < 0 
𝜙  ,   𝛼 ≥ 0

  ∈ 𝐶 

Therefore, ℎ is the measurable function with respect to 𝐶, hence 𝑓 will be a measurable function.  

(c) First, we prove that 𝐴 = {𝑥 ∈ Ω|𝑓(𝑥) > 𝑔(𝑥)} ∈ 𝐶 

where 𝑓 and 𝑔 are the measurable functions. 

Let 𝑥 ∈ 𝐴, 𝑓(𝑥) > 𝑔(𝑥) 

⇒ there exist a rational number 𝑟 such that 

𝑓(𝑥) > 𝑟 > 𝑔(𝑥) 

Let {𝑟1, 𝑟2, … 𝑟𝑛} be a sequence of all such rational numbers, 

Therefore, 𝐴 =∪𝑛=1
∞ {𝑥 ∈ Ω|f(x) > rn > g(x)} 

   =∪𝑛=1
∞ [{𝑥 ∈ Ω|f(x) > rn} ∩ {𝑥 ∈ Ω|g(x) < rn}] 

   =∪𝑛=1
∞ [{𝑥 ∈ Ω|x > f−1(𝑟𝑛)} ∩ {𝑥 ∈ Ω|x < g

−1(rn)}] (if 𝑓 is measurable, 

then inverse images ∈ 𝐶) 

   =∪𝑛=1
∞ (𝐴𝑛 ∩ 𝐵𝑛) 

⇒ 𝐴𝑛 ∈ 𝐶 (∵ 𝑓 is a measurable function) 

𝐵𝑛 ∈ 𝐶 (∴ 𝑔 is a measurable function).  

Since, 𝐶 is a 𝜎- field, hence intersection also ∈ 𝐶, thereby 

 𝐴𝑛 ∩ 𝐵𝑛 ∈ 𝐶 

⇒∪𝑛=1
∞  (𝐴𝑛 ∩ 𝐵𝑛) ∈ 𝐶 

⇒ {𝑥 ∈ Ω|𝑓(𝑥) + 𝑔(𝑥) > 𝛼} = {𝑥 ∈ Ω|𝑓(𝑥) > 𝛼 − 𝑔(𝑥)} 

Let 𝛼 − 𝑔(𝑥) = ℎ(𝑥).  

Since 𝑔 is a measurable function,  

⇒ −𝑔 is also a measurable function 

 ( ∵ 𝑐𝑔 is measurable function for 𝑐 = −1) 

⇒ 𝛼 − 𝑔(𝑥) is the measurable function  



 
 

(∵ 𝑐 + 𝑔(𝑥) is measurable function with the result 𝑐 = 𝛼) 

Since, 𝑓 is the measurable function and 𝛼 − 𝑔(𝑥) is also measurable function. Hence, 

  {𝑥 ∈ Ω|𝑓(𝑥) > 𝛼 − 𝑔(𝑥)} ∈ 𝐶 

∴ {𝑥 ∈ Ω|𝑓(𝑥) > 𝑔(𝑥)} ∈ 𝐶 

⇒ 𝑓 + 𝑔 is the measurable function. 

(d) The proof will follow by changing ℎ(𝑥) = 𝑎 + 𝑔(𝑥) in (c). 

 

(e) For any real 𝛼, consider 

{𝑥 ∈ Ω|𝑓2(𝑥) > 𝛼} = {
𝜙,                               𝛼 ≤ 0

𝑥 ∈ Ω| − √𝛼 < 𝑓(𝑥) < √𝛼,     𝛼 > 0
 ∈ 𝐶 

⇒ {𝑥 ∈ Ω|𝑓(𝑥) > −√𝛼} ∩ {𝑥 ∈ Ω|𝑓(𝑥) < √𝛼} ∈ 𝐶 

 ⇒ 𝐴 ∩ 𝐵   

∵ 𝐴, 𝐵 ∈ 𝐶, and 𝑓 is measurable function. 𝐴 ∩ 𝐵 ∈ 𝐶 , 𝑓 is measurable function.  

∴ −√𝛼 and √𝛼 are the real numbers 

Hence, {𝑥 ∈ Ω|𝑓2(𝑥) > 𝛼} ∈ 𝐶 

Therefore, 𝑓2(𝑥) is a measurable function.  

(f) Since,  

 4𝑓𝑔 = (𝑓 + 𝑔)2 − (𝑓 − 𝑔)2 

⇒ 𝑓𝑔 =
1

4
[(𝑓 + 𝑔)2 − (𝑓 − 𝑔)2] 

We know that (𝑓 + 𝑔) and (𝑓 − 𝑔) are measurable functions, and 𝑐𝑓 is also a 

measurable function, So 

𝑓𝑔 =
1

4
[(𝑓 + 𝑔)2 − (𝑓 − 𝑔)2] ∈ 𝐶 

Hence, 𝑓𝑔 is a measurable function. 

(g) For any real 𝛼, consider 

{𝑥 ∈ Ω||𝑓(𝑥)| > 𝛼} = {
𝜙,                               𝛼 ≤ 0

𝑥 ∈ Ω| − 𝛼 < 𝑓(𝑥) < 𝛼,     𝛼 > 0
 ∈ 𝐶 

⇒ {𝑥 ∈ Ω|𝑓(𝑥) > −𝛼} ∩ {𝑥 ∈ Ω|𝑓(𝑥) < 𝛼} ∈ 𝐶 



 
 

⇒ 𝐴 ∩ 𝐵   

∵ 𝐴, 𝐵 ∈ 𝐶, and 𝑓 is measurable function. 𝐴 ∩ 𝐵 ∈ 𝐶, 𝑓 is measurable function.  

∴ −𝛼 and 𝛼 are the real numbers 

 ⇒ {𝑥 ∈ Ω||𝑓(𝑥)| > 𝛼} ∈ 𝐶 

 Hence, |𝑓(𝑥)| is a measurable function. 

Theorem:  Let 𝑓 be a measurable function and 𝑓 ≠ 0, then 1/𝑓 also a measurable function.  

Proof: For any real 𝛼,  

 {𝑥 ∈ Ω|1/𝑓(𝑥) < 𝛼} 

      =  {

{𝑥 ∈ Ω|𝑓(𝑥) < 0 }   ,                                               𝛼 = 0

{𝑥 ∈ Ω|𝑓(𝑥) < 0 }  ∪ {𝑥 ∈ Ω|𝑓(𝑥) < 1/𝛼 } , 𝛼 > 0
{𝑥 ∈ Ω|1/𝛼 <  𝑓(𝑥) < 0 }   ,                               𝛼 < 0

 

Since 𝑓 is measurable function and 𝐶 is a 𝜎- field (∵ closed under unions and 

intersections). 

Hence all set ∈ 𝐶, 

⇒ {𝑥 ∈ Ω|1/𝑓(𝑥) < 𝛼} ∈ 𝐶 

 Hence, 1/𝑓 is a measurable function.  

Almost Everywhere Property: Suppose then that (Ω, 𝐶, 𝜇) is a fixed measure space. Suppose that 

some property holds at all points of 𝐴 ∈ 𝐶,  where 𝜇(𝐴𝑐) =  0, then this property is said to hold 

almost everywhere (abbreviated “a.e.” or “a.e. (𝜇)”). For example, if 𝑓 is a function on Ω, the 

statement 𝑓 ≥  0 a.e. means that there is a set 𝐴 ∈ 𝐶, 𝜇(𝐴𝑐) = 0, such that 𝑓(𝑥)  ≥  0 for all 𝑥 ∈

𝐴.  

Note that the set where 𝑓(𝑥) < 0 is to be a subset of the set 𝐴𝑐. The precise set where the property 

does not hold is not necessarily measurable unless, of course, 𝜇 is a complete measure. 

Thus, as defined above, to say that a property holds i.e., means that it holds at all points of 

𝐴, where 𝐴 is a measurable set with 𝜇(𝐴𝑐) = 0. For an example, to say that a function 𝑓 is defined 

a.e. on Ω means that 𝑓 is defined for all 𝑥 ∈ 𝐴, where 𝐴 ∈ 𝐶, 𝜇(𝐴𝑐) = 0. To say that two functions 

𝑓 and 𝑔 are equal a.e. on Ω means that 𝑓(𝑥) = 𝑔(𝑥)  ∀ 𝑥 ∈ 𝐴 (∈ 𝐶), where 𝜇(𝐴𝑐) = 0, and so on. 

 



 
 

2.5        Convergence in Measure 

 

Let (Ω, C, μ) ne a measure space. Consider a sequence {𝑓𝑛} of measurable functions defined on 

𝐸 ∈ Ω and taking values in ℛ. If 𝑓 be a measurable function on 𝐸 for which 𝑓 and each 𝑓𝑛  are 

finite a.e. on 𝐸. The sequence {𝑓𝑛} converges in measure on 𝐸 to 𝑓 provided for each 𝜂 > 0  

lim
𝑛→∞

𝜇({𝑥 ∈ 𝐸||𝑓𝑛(𝑥) − 𝑓(𝑥)| > 𝜂}) = 0 

Note 1: When we say “{𝑓𝑛} converges in measure on 𝐸 to 𝑓” it is implied that 𝑓 and each 𝑓𝑛 are 

measurable and finite a.e. on 𝐸. 

Note 2: Assume E has finite measure. Let {𝑓𝑛} be a sequence of measurable functions on 𝐸 that 

converges pointwise a.e. on 𝐸  to 𝑓 , and 𝑓  and each 𝑓𝑛  are finite a.e. on 𝐸 , then {𝑓𝑛} → 𝑓  in 

measure on 𝐸. 

2.6       Point wise Convergence  

Let (Ω, C, μ)  ne a measure space. Consider a sequence {𝑓𝑛}  of measurable functions 

defined on 𝐸 ∈ Ω, if there exist a measurable function 𝑓 on 𝐸 such that 

lim
𝑛→∞

𝑓𝑛(𝑥) = 𝑓(𝑥),   ∀ 𝑥 ∈ 𝐸 

Then, we say that the sequence {𝑓𝑛} converge point wise to 𝑓 on 𝐸.  

Convergence Almost Every Where: Let {𝑓𝑛} be a sequence of measurable function defined on 𝐸, 

there exist a measurable function 𝑓 over 𝐸 and a set 𝐴 such that  

(i)   𝜇(𝐴) = 0 

(ii) lim
𝑛→∞

𝑓𝑛(𝑥) = 𝑓(𝑥),    ∀ 𝑥 ∈ 𝐸 − 𝐴. 

(i.e., 𝑓𝑛 converges point wise to 𝑓 and 𝐸 − 𝐴), 

then we say that the sequence 𝑓𝑛  converges to 𝑓 almost everywhere. 

Uniform Convergence: Let A {𝑓𝑛} be a measurable function defined over a measurable set E is 

said to be converge uniformly almost everywhere to a measurable function 𝑓, if there exist 𝐸 ⊂ Ω 

as 𝑛 → ∞ if and only if 



 
 

 lim
𝑛→∞

(𝑠𝑢𝑝⏟
𝑥∈𝐸

|𝑓𝑛(𝑥) − 𝑓(𝑥)|) = 0. 

 

2.7  Self-Assessment Questions 

 

1 What is the fundamental idea behind convergence in measure theory? 

2 Define the term "measurable function". 

3 Let 𝑋  be the real line (𝑅) , and Ω  the 𝜎 -field consisting of 𝑋,𝜙, (–∞, 0], (0,∞) . What 

functions defined on 𝑋 are Ω measurable? 

4 Explain the role of a sequence of measurable functions in measure theory. 

5 Distinguish between the almost everywhere convergence and uniform convergence of a 

sequence of measurable functions. 

6 What is "point-wise convergence"?  

7 When do we say a sequence of measurable function converges in measure? 

8 How is the measurable function of a sequence different from that of a simple function? 

9 Why is the concept of convergence in measure important? 

10 Given a sequence of measurable functions where you know they converge almost surely to a 

function 𝑓(, ), what can you infer about their uniform convergence? 

True or False Questions 

11 By answering these questions, learners will be able to gauge their understanding of the unit's 

key concepts and their ability to apply them in various contexts. 

 

2.8   Summary 

This unit covered the fundamental concepts of measure theory, such as measure space, 

where measurable functions play a pivotal role. Among these functions, the Lebesgue measurable 

function plays a crucial foundation for analysis. We delved into equivalent and characteristic 

functions, both essential in representing and understanding measurable sets and their properties. 

Also, the concept of combinations of measurable functions that allow for the manipulation of data 

and the examination of intricate relationships is studied. The concept of convergence in measure, 



 
 

which provides a valuable tool for studying the behaviour of sequences of functions, with point-

wise convergence offering insights into the individual behaviour of functions within these 

sequences, was studied. These topics provided a deeper understanding of the measurable functions 

and properties of Lebesgue integration and mathematical analysis. 
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3.1           Introduction 

When we dive deeper into math, we will find out that the intuitive knowledge gradually 

becomes insufficient, e.g. when we encounter more tricky sets and begin to think about what 

can be integrated, the common sense of “area” is not so applicable anymore. Then “measure” 

comes into play. The Lebesgue measure, named after French mathematician Henri Lebesgue, 

is the standard way of assigning a measure to a geometric object. In this chapter we introduce 

the Lebesgue measure and integral as intuitive and understandable as possible. 

The Riemann integral is the ‘ordinary’ integral encountered in everyday mathematics, and 

can be dealt with (in some situations) by the well-known methods of integration. Sometimes, 



 
 

however, this definition of the integral proves inadequate for applications elsewhere in 

mathematics. The generalization we look upon, the Riemann-Stieltjes integral, integrates a 

given function with respect to another. The benefit of the concept is that, among other things, 

it includes Riemann integrals and finite sums as special cases. 

An important generalization is the Lebesgue–Stieltjes integral, which generalizes the 

Riemann–Stieltjes integral in a way analogous to how the Lebesgue integral generalizes the 

Riemann integral. The concept of Lebesgue dominated convergence and monotone 

convergence theorem are also discussed.     

3.2           Objectives 

By the end of this unit, the learner should be able to: 

• Understand the basic concept of Lebesgue measure. 

• Describe the concept of Borel measurable function. 

• Understand the construction of the Lebesgue integral 

• Distinguish between Lebesgue-Stielitijes integral and Riemann integral. 

• Describe the concept of Lebesgue dominated convergence and monotone convergence. 

• Identify various types of convergence for measurable function  

 

3.3       Borel Measurable Function 

Let ℬ be the Borel field of subset ℛ. 𝐶 be a 𝜎- field of subset of Ω. If 𝑋−1(𝐵) ∈ ℬ for all Borel 

sets 𝐵 ∈ ℬ , then 𝑋  is said to be a measurable function. If Ω = ℛ , then 𝑋  is said to be Borel 

measurable function. 

3.4      Lebesgue-Stieltjes Measure 

Consider a generalization of one-dimensional Lebesgue measure on ℛ. These measures are 

obtained from an increasing, right-continuous function 𝐹 ∶ ℛ → ℛ (i.e., 𝐹(𝑥 + 0) = 𝐹(𝑥)) and 

assign to a half-open interval (𝑎, 𝑏], the measure 

µ𝐹 ((𝑎, 𝑏]) = 𝐹(𝑏) − 𝐹(𝑎),  −∞ < 𝑎 < 𝑏 < ∞ 



 
 

The measure 𝜇𝐹  is called the Lebesgue-Stieltjes measure on ℬ  corresponding to the 

function 𝐹. 

The use of half-open intervals is significant here because a Lebesgue-Stieltjes measure may 

assign nonzero measure to a single point. Thus, unlike Lebesgue measure, we need not have 

µ𝐹 ([𝑎, 𝑏]) = µ𝐹 ((𝑎, 𝑏]). Half-open intervals are also convenient because the complement of a 

half-open interval is a finite union of (possibly infinite) half-open intervals of the same type. Thus, 

the collection of finite unions of half-open intervals forms an algebra or field. 

Remark 1: A nondecreasing (right-continuous) function 𝐹  has at most countably many 

discontinuities. Equivalently the corresponding Lebesgue–Stieltjes measure 𝜇𝐹  has at most 

countably many atoms. 

Proof: If 𝐹 ∶ ℛ → ℛ is monotonic increasing (i.e., 𝑥1 < 𝑥2 implies 𝐹(𝑥1) < 𝐹(𝑋2), then the left-

limit 𝐹(𝑥−) and the right-limit 𝐹(𝑥+) exist at every 𝑥 ∈ ℛ and 𝐹(𝑥−) < 𝐹(𝑥) < 𝐹(𝑥+). Hence 𝐹 

has at most countable many discontinuities, and there are jump discontinuities, i.e., 𝐹(𝑥−) <

𝐹(𝑥+).  

3.5       Lebesgue-Stieltjes Integral 

 

 Let (Ω, 𝐶, 𝜇) be a measure space and 𝑓 be the simple function of such that 

 𝑓(𝑥) = ∑ 𝛼𝑖𝐼𝐴𝑖
𝑛
𝑖=1 (𝑥),    

where 𝐴𝑖 = {𝑥|𝑓(𝑥) = 𝛼𝑖} , 𝑖 = 1,2, … , 𝑛 and 𝐴𝑖
′s are pairwise disjoint.  

Then, the function 𝑓 is Lebesgue integral if 𝜇(𝐴𝑖) < ∞ (finite) for every index 𝑖 for which 

𝛼𝑖
′𝑠 ≠ 0 and 

 ∫ 𝑓(𝑥) 𝑑𝜇(𝑥)
𝑥

 or ∫ 𝑓𝑑𝜇= ∑ 𝛼𝑖𝜇(𝐴𝑖)
𝑛
𝑖=1  

and  

∫ 𝑓 𝑑𝜇 =∑𝛼𝑖𝜇(𝐴𝑖 ∩ 𝐸)

𝑛

𝑖=1

; 
𝐸

𝐸 ⊆ 𝑋 

(exists or not), and call it the Lebesgue-Stieltjes integral of 𝑓 with respect to 𝜇 on (𝑎, 𝑏].  

3.6        Riemann Integral 



 
 

 

Suppose that 𝑓 is a function on ℛ that is defined and bounded on the interval 𝐼 = [𝑎, 𝑏] and 

𝒫 = 𝒫[𝑎, 𝑏] is the set of all partitions of [𝑎, 𝑏]. Then the upper Riemann integral and the lower 

Riemann integral are defined by 

∫ 𝑓(𝑥)𝑑𝑥 = inf
𝑃∈𝒫

𝑈(𝑃, 𝑓)
𝑏̅

𝑎
 and ∫ 𝑓(𝑥)𝑑𝑥 = 𝑠𝑢𝑝

𝑃∈𝒫
𝑈(𝑃, 𝑓)

𝑏

𝑎̅
, 

respectively. If ∫ 𝑓(𝑥)𝑑𝑥 =
𝑏̅

𝑎
∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎̅
, then 𝑓 is called Riemann integrable or just integrable on 

𝐼and the common value of the integral is denoted by ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
. 

 

3.7       Riemann-Stieltjes Integral  

 

Suppose that 𝑓 is a function on ℛ that is defined and bounded on the interval 𝐼 = [𝑎, 𝑏] and 

𝒫 = 𝒫[𝑎, 𝑏] is the set of all partitions of [𝑎, 𝑏], and 𝛼 is function that is defined and monotonically 

increasing on 𝐼 . Then, the upper Riemann-Stieltjes integral and the lower Riemann-Stieltjes 

integral are defined by 

∫ 𝑓(𝑥)𝑑𝛼(𝑥) = inf
𝑃∈𝒫

𝑈(𝑃, 𝑓, 𝛼)
𝑏̅

𝑎
 and ∫ 𝑓(𝑥)𝑑𝛼(𝑥) = 𝑠𝑢𝑝

𝑃∈𝒫
𝑈(𝑃, 𝑓, 𝛼)

𝑏

𝑎̅
, 

respectively. If ∫ 𝑓(𝑥)𝑑𝛼(𝑥) =
𝑏̅

𝑎
∫ 𝑓(𝑥)𝑑𝛼(𝑥)
𝑏

𝑎̅
, then 𝑓  is called Riemann integrable or just 

integrable on 𝐼and the common value of the integral is denoted by ∫ 𝑓(𝑥) 𝑑𝛼(𝑥)
𝑏

𝑎
 or ∫ 𝑓 𝑑𝛼

𝑏

𝑎
. 

Theorem: If 𝑓  is a function that is continuous on the interval 𝐼 = [𝑎, 𝑏], then 𝑓  is Riemann-

Stieltjes integrable on [𝑎, 𝑏]. 

Proof: Let 𝛼 be monotonically increasing on 𝐼 and 𝑓 be continuous on 𝐼. Suppose that 𝜖 > 0 is 

given. Then there exists an 𝜂 > 0 such that [𝛼(𝑏) − 𝛼(𝑎)]𝜂 < 𝜖 . By the Uniform Continuity 

theorem, 𝑓 is uniformly continuous in 𝑎, 𝑏] fromwhic it follows that there exists a 𝛿 > 0 such that 

 [𝑢, 𝑣 ∈ 𝐼 ∧ |𝑢 − 𝑣| < 𝛿 ⇒ |𝑓(𝑢) − 𝑓(𝑣)| < 𝜖]    for all 𝑢, 𝑣 

Let 𝒫 = {𝑥0 = 𝑎, 𝑥1, … , 𝑥𝑛−1, 𝑥𝑛 = 𝑏}be a partition of [𝑎, 𝑏] for which 𝒫 < 𝛿 , for each 𝑗, 𝑗 =

1,2, … , 𝑛 set 𝑀𝑗 = sup
𝑥𝑗−1≤𝑥≤𝑥𝑗 

𝑓(𝑥) and 𝑚𝑗 = inf
𝑥𝑗−1≤𝑥≤𝑥𝑗 

𝑓(𝑥). Then 𝑀𝑗 −𝑚𝑗 ≤ 𝜂 and 



 
 

𝑈(𝒫, 𝑓, 𝛼) − 𝐿(𝒫, 𝑓, 𝛼) =∑(𝑀𝑗 −𝑚𝑗) △ 𝛼𝑗 ≤∑△𝛼𝑗 = 𝜂[𝛼(𝑏) − 𝛼(𝑎)] < 𝜖

𝑛

𝑗=1

𝑛

𝑗=1

 

Since 𝜖 > 0 was arbitrary, we have that there exists 𝒫 such that 

(𝒫 ∧ 𝑈(𝒫, 𝑓, 𝛼) − 𝐿(𝒫, 𝑓, 𝛼) < 𝜖) for all 𝜖 and 𝜖 > 0. 

In view of the integrability criterion, 𝑓 ∈ ℛ(𝛼). Because 𝛼 was arbitrary, we conclude that 𝑓 is 

Riemann-Stieltjes integrable (with respect to any monotonically increasing function on [𝑎, 𝑏]).  

3.8       Lebesgue Dominated Convergence Theorem 

  

Statement: Suppose 𝑓𝑛 ∶ 𝑅 → [−∞,∞]  are (Lebesgue) measurable functions such that the 

pointwise  𝑙𝑖𝑚𝑖𝑡 𝑓(𝑥) = lim
𝑛→∞

 𝑓𝑛(𝑥)  exists. Assume there is an integrable 𝑔: 𝑅 → [0,∞]  with 

|𝑓𝑛(𝑥)| ≤ 𝑔(𝑥) for each 𝑥 ∈ 𝑅. Then 𝑓 is integrable as is 𝑓𝑛 for each 𝑛, and 

lim
𝑛→∞

∫ 𝑓𝑛𝑑𝜇 = ∫ lim
𝑛→∞

𝑓𝑛 𝑑𝜇 = ∫𝑓 𝑑𝜇
ℛℛℛ

 

Proof: Since |𝑓𝑛(𝑥)| ≤ 𝑔(𝑥) and g is integrable ∫ |𝑓𝑛|𝑑𝜇 ≤ ∫ 𝑔 𝑑𝜇 < ∞
 

𝑅

 

𝑅
. So 𝑓𝑛 is integrable. We 

know 𝑓 is measurable (as a pointwise limit of measurable functions) and then,  

similarly, |𝑓(𝑥)|  =  lim
𝑛→∞

|𝑓𝑛(𝑥)| ≤ 𝑔(𝑥) implies that 𝑓 is integrable too.  

The proof does not work properly if 𝑔(𝑥) = ∞ for some 𝑥.  

We know that 𝑔(𝑥)  <  ∞ almost everywhere.  

So, we can take 𝐸 = {𝑥 ∈ 𝑅: 𝑔(𝑥) = ∞} and multiply 𝑔 and each of the functions 𝑓𝑛 and 

𝑓 by 1 − 𝜒𝐸 to make sure all the functions have finite values. As we are changing them all only 

on the set 𝐸 of measure 0, this change does not affect the integrals or the conclusions. We assume 

then all have finite values. 

Let ℎ𝑛 = 𝑔 − 𝑓𝑛, so that ℎ𝑛 ≥ 0.  

By Fatou’s lemma 

lim
𝑛→∞

𝑖𝑛𝑓 ∫ (𝑔 − 𝑓𝑛)𝑑𝜇 ≥ ∫ lim
𝑛→∞

inf(𝑔 − 𝑓𝑛)𝑑𝜇 = ∫ (𝑔 − 𝑓)𝑑𝜇𝑅𝑅

 

𝑅
  

and that gives  



 
 

        𝑙𝑖𝑚
𝑛→∞

inf(∫ 𝑔𝑑𝜇 − ∫ 𝑓𝑛𝑑𝜇𝑅𝑅
) = ∫ 𝑔 𝑑𝜇

𝑅
− lim
𝑛→∞

sup ∫ 𝑓𝑛𝑑𝜇𝑅
≥ ∫ 𝑔𝑑𝜇

𝑅
− ∫ 𝑓𝑑𝜇

𝑅
  

or  lim
𝑛→∞

sup∫ 𝑓𝑛𝑑𝜇𝑅
≤ ∫ 𝑓𝑑𝜇

𝑅
                                                                 (1) 

Repeat this Fatou’s lemma argument with 𝑔 + 𝑓𝑛 rather than 𝑔 − 𝑓𝑛.  

We get 

lim
𝑛→∞

inf ∫ (𝑔 + 𝑓𝑛)𝑑𝜇𝑅
≥ ∫ lim

𝑛→∞ 
inf(𝑔 + 𝑓𝑛)𝑑𝜇 = ∫ (𝑔 + 𝑓)𝑑𝜇𝑅𝑅

  

and that gives 

lim
𝑛→∞

inf(∫ 𝑔𝑑𝜇 + ∫ 𝑓𝑛𝑑𝜇𝑅𝑅
) = ∫ 𝑔𝑑𝜇

𝑅
+ lim
𝑛→∞

inf ∫ 𝑓𝑛𝑑𝜇 ≥ ∫ 𝑔𝑑𝜇 + ∫ 𝑓𝑑𝜇𝑅𝑅𝑅
  

or lim
𝑛→∞

inf ∫ 𝑓𝑛𝑑𝜇𝑅
≥ ∫ 𝑓𝑑𝜇

𝑅
                                                                      (2) 

Combining (1) and (2), we get 

∫ 𝑓𝑑𝜇 ≤
𝑅

lim
𝑛→∞

inf ∫ 𝑓𝑛𝑑𝜇𝑅
≤ lim
𝑛→∞

sup∫ 𝑓𝑛𝑑𝜇𝑅
≤ ∫ 𝑓𝑑𝜇

𝑅
  

which force  

∫ 𝑓𝑑𝜇 = lim
𝑛→∞

inf ∫ 𝑓𝑛𝑑𝜇𝑅
= lim
𝑛→∞

sup∫ 𝑓𝑛𝑑𝜇𝑅𝑅
  

And that gives the result because if  

lim sup
𝑛→∞

𝑎𝑛 = lim inf
𝑛→∞

𝑎𝑛 (for a sequence (𝑎𝑛)𝑛=1
∞ ,  

it implies that  

lim
𝑛→∞

𝑎𝑛 exists and lim
𝑛→∞

𝑎𝑛 = lim sup
𝑛→∞ 

𝑎𝑛 = lim inf
𝑛→∞

𝑎𝑛. 

3.9      Lebesgue Monotonic Convergence Theorem (or) Beppa- Levi’s Theorem 

 

 Let {𝑓𝑛} be a non-decreasing sequence of integrable function defind over a measurable set 

E. Let  lim
𝑛→∞

𝑓𝑛 be integrable over E, then 

lim
𝑛→∞

∫𝑓𝑛
𝐸

(𝑥)𝑑𝑥 =∫ lim
𝑛→∞

𝑓𝑛
𝐸

(𝑥) 𝑑𝑥 



 
 

Proof: Let be a non-decreasing sequence of integrable function defined over a measurable set 𝐸. 

Let  lim
𝑛→∞

𝑓𝑛 be integrable over 𝐸 

To prove that  

lim
𝑛→∞

∫𝑓𝑛
𝐸

(𝑥)𝑑𝑥 =∫ lim
𝑛→∞

𝑓𝑛
𝐸

(𝑥)𝑑𝑥 

Since 𝑓𝑛 is non-decreasing sequence and hence  

𝑓1 ≤ 𝑓2 ≤ 𝑓3 ≤ ⋯ ≤ 𝑓𝑛 , ∀ 𝑛 

⇒ 𝑓1 ≤ 𝑓𝑛,    ∀  𝑛 

⇒ 𝑓1 − 𝑓𝑛  ≤ 0 

⇒ 𝑓𝑛  ≥ 0 ,    ∀  𝑛 

where 𝑦𝑛 = 𝑓𝑛 − 𝑓1 

more over 𝑓𝑛 is a sequence of integrable function {𝑦𝑛} is a sequence of integral  

Finally, {𝑦𝑛} is a sequence of non-negative integrable function. On applying this to the 

Lebesgue bounded convergence theorem.  

Note: To give the Lebesgue bounded convergence theorem. (Statement) 

lim
𝑛→∞

∫ 𝑦𝑛
𝐸

𝑑𝑥 =∫ lim
𝑛→∞

𝑦𝑛
𝐸

𝑑𝑥 

or lim
𝑛→∞

∫ (𝑓𝑛 − 𝑓1)𝐸
𝑑𝑥 =∫ lim

𝑛→∞
((𝑓𝑛 − 𝑓1))𝐸

𝑑𝑥 

or lim
𝑛→∞

∫𝑓𝑛
(𝑥) 𝑑𝑥
𝐸

=  ∫ lim
𝑛→∞

𝑓𝑛(𝑥) 𝑑𝑥𝐸
 

Proved. 

3.10      Fatou’s Lemma’s 

 

Let {𝑓𝑛} be sequence of non-negative integrable functions defined over a measurable set 𝐸 

such that lim
𝑛→∞

inf 𝑓𝑛 = 𝑓  almost everywhere on 𝐸 and lim
𝑛→∞

inf ∫ 𝑓𝑛(𝑥) < ∞, then 

∫𝑓(𝑥)
𝐸

𝑑𝑥 ≤ lim
𝑛→∞

𝑖𝑛𝑓  ∫𝑓𝑛(𝑥)
𝐸

 𝑑𝑥 



 
 

Proof: Let be a sequence of non-negative integrable function defined over a measurable set E such 

that, 

(i) lim
𝑛→∞

𝑖𝑛𝑓  𝑓𝑛 = 𝑓  almost everywhere on 𝐸. 

(ii) lim
𝑛→∞

𝑖𝑛𝑓  ∫ 𝑓𝑛(𝑥)𝑑𝑥 < ∞  

Then, to prove that 

∫𝑓(𝑥)
𝐸

𝑑𝑥 ≤ lim
𝑛→∞

𝑖𝑛𝑓  ∫ 𝑓𝑛(𝑥) 𝑑𝑥 

We define 𝑔𝑘(𝑥) = inf  {𝑓𝑛(𝑥)}  

inf  {𝑓𝑛(𝑥)} such that 𝑛 ≥ 𝑘 

Then 𝑔𝑛(𝑥) ≤ 𝑓𝑛(𝑥),    ∀  𝑛 and therefore 

∫𝑔𝑛(𝑥)
𝐸

 𝑑𝑥 ≤ ∫𝑓𝑛(𝑥)
𝐸

 𝑑𝑥 

Consequently  

lim
𝑛→∞

∫ 𝑔𝑛(𝑥)𝐸
 𝑑𝑥 ≤ lim

𝑛→∞
𝑖𝑛𝑓  ∫ 𝑓𝑛(𝑥)𝐸

 𝑑𝑥                  (3) 

Since is an increasing sequence of non-negative integrable function and hence Lebesgue 

monotonic convergence theorem 

lim
𝑛→∞

∫𝑔𝑛(𝑥)
𝐸

 𝑑𝑥 =  ∫ lim
𝑛→∞

𝑔𝑛(𝑥)
𝐸

 𝑑𝑥 

= ∫ lim
𝑛→∞

inf
𝐸

  𝑓𝑛(𝑥)𝑑𝑥 

= ∫𝑓(𝑥)
𝐸

𝑑𝑥 

From (3) we have 

= ∫𝑓(𝑥)
𝐸

𝑑𝑥 ≤ lim
𝑛→∞

𝑖𝑛𝑓. ∫𝑓𝑛(𝑥)
𝐸

𝑑𝑥 

Proved. 

3.11       Fubini’s Theorem 

 

 Fubini’s theorem is a powerful tool that provides conditions for interchanging the order of 

integration in a double integral. Given that sums are essentially special cases of integrals (with 



 
 

respect to discrete measures), it also gives conditions for interchanging the order of summations, 

or the order of a summation and an integration.  

Fubini’s theorem holds under two different sets of conditions: (a) nonnegative functions 𝑔 (b) 

functions 𝑔 whose absolute value has a finite integral. We state the two versions separately, 

because of some subtle differences.  

Theorem 1: Let 𝑔:Ω1 × Ω2 → ℛ be a nonnegative measurable function. Let 𝒫 = 𝒫1 × 𝒫2 be a 

product measure. Then,  

(a) ∫ 𝑔(𝜔1, 𝜔2)Ω2
 𝑑𝒫2 is a measurable function of 𝜔1 

(b) ∫ 𝑔(𝜔1, 𝜔2)Ω1
 𝑑𝒫1 is a measurable function of 𝜔2 

(c) We have  

∫ [∫ 𝑔(𝜔1, 𝜔2) 𝑑𝒫2Ω2
]  𝑑𝒫1 = Ω1

∫ [∫ 𝑔(𝜔1, 𝜔2) 𝑑𝒫1Ω1
] 𝑑𝒫2Ω2

  

                                                      = ∫ 𝑔(𝜔1, 𝜔2) 𝑑𝒫
Ω1×Ω2

 

Note that some of the integrals above may be infinite, but this is not a problem; since everything 

is nonnegative, expressions of the form ∞−∞ do not arise. 

Proof: For simple functions 𝑔 = ∑ 𝑎𝑖1𝐸𝑖
𝑛
𝑖=1 , 𝐸𝑖 ∈ 𝐶1 × 𝐶2 statement  

(a) Since measurability of 𝜔1 → 𝒫2(𝐸𝜔1) . For a general 𝑔  consider a sequence of simple 

functions 

𝑔𝑟(𝜔1, 𝜔2) ↗ 𝑔(𝜔1, 𝜔2)                    ∀𝜔1, 𝜔2 

as 𝑟 → ∞. Then we have shown that  

𝑓𝑟(𝜔1) = ∫𝑔𝑟(𝜔1, 𝜔2) 𝑑𝒫2
2

 

are 𝐶1 measurable and monotonically increasing 𝑓𝑟 ↗ 𝑓. By the monotonic convergence 

theorem  

𝑓(𝜔1) ≜ lim
𝑟→∞

∫ 𝑔𝑟(𝜔1, 𝜔2) 𝑑𝒫22
                                                                (4) 

= ∫ lim
𝑟→∞

𝑔𝑟(𝜔1, 𝜔2) 𝑑𝒫22
                               (5) 

= ∫ 𝑔(𝜔1, 𝜔2) 𝑑𝒫22
.                                  (6) 



 
 

Since 𝑓 is a limit of measurable 𝑓𝑟
′𝑠 − 𝑓 must be measurable. By (6) the integral over 𝒫2 

is also 𝐶1 measurable. This establishes (a) and (b) by symmetry. Now 

 𝒫(𝐸) = ∫ 𝒫2(𝐸𝜔1)𝒫1(𝑑𝜔1)                           (7) 

= ∫𝒫1(𝐸𝜔2)𝒫2(𝑑𝜔2).                    (8) 

Finally (c), for a simple function 𝑔 is just (7)-(8), while for a general function g we just 

need to integrate (7) interchanging ∫ and lim by the monotonic convergence theorem at 

will. Recall now that a function is said to be integrable if it is measurable and the integral 

of its absolute value is finite. 

Theorem 2. Let 𝑔:Ω1 × Ω2 → ℛ  be a measurable function such that  

∫ |𝑔(𝜔1, 𝜔2)|𝑑𝒫 < ∞Ω1×Ω2
, 

where 𝒫 = 𝒫1 × 𝒫2. 

(a) For almost all 𝜔1 ∈ Ω1, 𝑔(𝜔1, 𝜔2) is an integrable function of 𝜔2. 

(b) For almost all 𝜔2 ∈ Ω2, 𝑔(𝜔1, 𝜔2) is an integrable function of 𝜔1. 

(c)  There exists an integrable function ℎ: Ω1 → ℛ  such that ∫ 𝑔(𝜔1, 𝜔2)𝑑𝒫2Ω2
=

ℎ(𝜔1) , a.s. (i.e., except for a set of 𝜔1  of zero 𝒫1 -measure for which 

∫ 𝑔(𝜔1, 𝜔2) 𝑑𝒫2Ω2
 is undefined or infinite). 

(d) There exists an integrable function ℎ: Ω2 → ℛ  such that ∫ 𝑔(𝜔1, 𝜔2)𝑑𝒫1Ω1
=

ℎ(𝜔2) , a.s. (i.e., except for a set of 𝜔2  of zero 𝒫2 -measure for which 

∫ 𝑔(𝜔1, 𝜔2) 𝑑𝒫1Ω1
 is undefined or infinite). 

(e) We have  

  ∫ [∫ 𝑔(𝜔1, 𝜔2)𝑑𝒫2Ω2
] 𝑑𝒫1Ω1

= ∫ [∫ 𝑔(𝜔1, 𝜔2)𝑑𝒫1Ω1
] 𝑑𝒫2Ω2

  

                                                           = ∫ 𝑔(𝜔1, 𝜔2)𝑑𝒫Ω1×Ω2
. 

 

Proof. By now converting from a non-negative case to integrable case should be familiar. Theorem 

2 is no exception: Given a function 𝑔, decompose it into its positive and negative parts, apply 

Theorem 1 to each part, and in the process make sure that you do not encounter expressions of the 

form ∞−∞.  



 
 

3.12  Self-Assessment Questions 

 

1 What is the fundamental idea behind Boral measurable function? 

2 Define the term " Lebesgue-Stielitijes Measure” in the context of measure theory. 

3 Explain what it means for a Riemann integral and Riemann-Stielitijes Integral. 

4 State and prove the Lebesgue dominated convergence theorem. 

5 Give the applications of the dominated convergence theorem. 

6 Let 𝑔, 𝑓𝑛 ,𝑛 = 1,2, …  be the integrable functions on a measure space (Ω, 𝐶, 𝜇)  such that 

|𝑓𝑛(𝑥) ≤ 𝑔(𝑥)| almost everywhere for each n, Show that 

∫ (lim
𝑛→
 𝑠𝑢𝑝 𝑓𝑛) 𝑑𝜇 ≥ lim

𝑛→∞
𝑠𝑢𝑝 ∫ 𝑓𝑛𝑑𝜇 

7 Let 𝜇 be Lebesgue measure on the real line. Let 

𝑓𝑛(𝑥) = {
−𝑛2,    0 < 𝑥 < 1/𝑛
 0,      otherwise

 

 

3.13   Summary 

This unit comprehensively explored the concept of measure theory and integration by 

delving into Borel measurable functions, which serve as the foundation for understanding the 

measurability of real-valued functions. The Lebesgue-Stieltjes measure was introduced, which 

enables the incorporation of various real-valued functions as measures. The concepts of Lebesgue-

Stieltjes integral and Riemann integral were covered, highlighting their strengths and limitations. 

The unit offered insights into the Riemann-Stieltjes integration, which bridges the gap between 

Riemann and Lebesgue-Stieltjes integrals, offering flexible integration methods. Other crucial 

theorems such as the Lebesgue Dominated Convergence Theorem, Monotone Convergence 

Theorem, Fatou Lemma, and Fubini's Theorem, each contributing to a deeper understanding of 

limit processes, convergence, and inequalities in integration, were also studied. 
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UNIT: 4   SIGNED MEASURES 

 

Structure 

4.1   Introduction 

4.2    Objectives 

4.3    Signed Measure 

4.4  Jordan & Hann Decomposition 

4.5    Radon-Nikodym Theorem 

4.6    Product of Measure Space  

1.6.1 Product Space 

1.6.2         Product of two 𝜎 - Fields   

1.6.3 Product Measure 

4.7    Cartesian Product of two Sets 

4.7.1 Cartesian Product of two Measurable Space 

4.8       Self-Assessment Questions 

4.9       Summary 

4.10      References 

4.11       Further Reading  

4.1           Introduction 

   A signed measure on a measurable space is a set function which has all the properties of a 

measure, except that of non-negativity. It is shown that signed measures are essentially got by 

taking the difference of two measures. The notion of absolute continuity is introduces and the 

famous Radon-Nikodym theorem is proved for σ-finite signed measures. The notion of singularity, 

of one measure with respect to another, is studied. 

Lebesgue measure on 𝑅 generalizes the notion of the length of an interval. In this chapter, we see 

how two-dimensional Lebesgue measure on 𝑅2 generalizes the notion of the area of a rectangle. 

More generally, we construct new measures that are the products of two measures. 



 
 

Cartesian product is the product of any two sets, but this product is actually ordered i.e, the 

resultant set contains all possible and ordered pairs such that the first element of the pair belongs 

to the first set and the second element belongs to the second set. In addition to this, many real-life 

objects can be represented by using cartesian products such as a deck of cards, chess boards, 

computer images, etc. Most of the digital images displayed by computers are represented as pixels 

which are graphical representations of cartesian products. 

 

4.2           Objectives 

By the end of this unit, the learner should be able to: 

• Understand the basic concept of signed measure. 

• Distinguish between measure and signed measure. 

•  Describe the concept of product of measure space.  

• Describe the concept of Cartesian product.  

• Understand the difference between Cartesian product and product of measure space.  

 

4.3       Signed Measure 

 

Suppose (Ω, 𝐶) be a measurable space. A function 𝜇: 𝐶 → ℝ  is called signed measure on 

(Ω, 𝐶), if function 𝜈 has the following properties: 

(i) Either one of the following is true 

• 𝜇(𝐶) < ∞  ∀ 𝐴 ∈ 𝐶 

• 𝜇(𝐶) > −∞   ∀  𝐴 ∈ 𝐶  

(ii) 𝜇(𝜙) = 0 

(iii) For any sequence {𝐴𝑛}𝑛=1
∞ ⊂ 𝐶 of pairwise disjoint sets, then  

𝜇(∪𝑛=1
∞ 𝐴𝑛) = ∑𝜇(𝐴𝑛)

∞

𝑛=1

 

Note 1: Here we adopt the convention that if one term in the right-hand side of (i) is equal to ±∞, 

then the entire sum is equal to ±∞. It is important to use condition (i), 



 
 

which avoids situations when one term is ∞ and another term is −∞. 

Note 2:  A set 𝐸 ∈ 𝑀 is said to be positive (negative, null) for the signed measure 𝜇 if 𝐹 ∈ 𝑀, 𝐹 ⊂

𝐸 ⇒ 𝜇(𝐹) ≥ 0 (≤ 0, = 0) 

 

Remark 1: Assume that (Ω, 𝐶) is a measurable space and that 𝜇1, 𝜇2 are measures on (Ω, 𝐶). If 

at least one of the µ𝑖’s is finite, then 

µ =  µ1 − µ2 

is a signed measure on (Ω, 𝐶). 

Remark 2: Let (Ω, 𝐶, 𝜇) be a measure space and let f be an integrable function. Then if 𝑓 = 𝑓+ −

𝑓−, we have that  

𝜆(𝐸) = ∫ 𝑓 𝑑𝜇 = ∫ 𝑓+𝑑𝜇 − ∫𝑓−𝑑𝜇
𝐸𝐸𝐸

 

is a signed measure on(Ω, 𝐶). 

 

Remark 3: Let 𝜇 ne signed measure on (Ω, 𝐶), then if 

(i) {𝐸𝑛} is an increasing sequence, 𝐸𝑛 ∈ 𝐶, 𝐸𝑛 ⊂ 𝐸𝑛+1, then 𝜇(∪𝑛 𝐸𝑛) = lim
n→∞

𝜇(𝐸𝑛)  

(ii) {𝐸𝑛}  is an decreasing sequence, 𝐸𝑛 ∈ 𝐶, 𝐸𝑛 ⊃ 𝐸𝑛+1 ,  and 𝜇(𝐸1)  is finite, then 

𝜇(∩𝑛 𝐸𝑛) = lim
n→∞

𝜇(𝐸𝑛)  

 

4.4       Jordan and Hahn Decompositions 

Theorem: Hahn Decomposition: Let 𝜇 be a signed measure on (Ω, 𝐶). Then there exist a 

positive set 𝑃 and a negative set 𝑁 for 𝜇 such that 

 𝑃 ∪ 𝑁 = Ω and 𝑃 ∩ 𝑁 = 𝜙.  

This partition is unique, in the sense that if 𝑃′ and 𝑁′ are another such pair of sets, then 𝑃∆𝑃′ =

𝑁∆𝑁′ is null.  

Proof: Without loss of generality, we assume that 𝜇 does not take value +∞.  



 
 

Let 𝑐 = sup{𝜇(𝐸): 𝐴 𝑖𝑠 𝜇 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒}. Then there exists a sequence of sets 𝐸𝑛 ∈ 𝐶 such that 

𝜇(𝐸𝑛) → 𝑐. 

We consider the fields 𝒜𝑛 generated by the sets 𝐸1, 𝐸2, … 𝐸𝑛.  

Let now 𝐹𝑛 ∈ 𝒜𝑛 be such that 

 𝜇(𝐹𝑛) = max
𝐹∈𝒜𝑛

𝜇(𝐹) 

then 𝜇(𝐸𝑛) ≤ 𝜇(𝐹𝑛) ≤ 𝑐 

For any 𝐷 ∈ 𝒜𝑛 such that 

𝐷 ∩ 𝐹𝑛 = 𝜙 

We know that 𝜇(𝐷) ≤ 0  and for any𝐺 ∈ 𝒜𝑛 such that 𝐺 ⊂ 𝐹𝑛, we have 

𝜇(𝐺) ≥ 0 

Let now, 𝐵𝑚 =∩𝑚=1
∞ 𝐹𝑚 

Then, 𝜇(𝐵𝑚) = lim
n→∞

𝜇( ∩𝑚=1
𝑛 𝐹𝑚)   

We have 𝐷𝑚,𝑛 =∩𝑚=1
𝑛−1 𝐹𝑚\𝐹𝑛 ∈ 𝒜𝑛, and 𝜇(𝐷𝑚,𝑛) ≤ 0. Since 𝐷𝑚,𝑛 ∩ 𝐹𝑛 = 𝜙 

Thus, 𝜇(∩𝑚=1
𝑛 𝐹𝑚) ≥ 𝜇(∩𝑚=1

𝑛−1 ) ≥ 𝜇(𝐹𝑛) and 𝜇(𝐵𝑚) ≥ 𝜇(𝐹𝑚). 

Now consider the set 𝑃 =∪𝑚 𝐵𝑚, then 𝜇(𝑃) = 𝑐 

If 𝐸 ⊂ 𝑃, then 𝜇(𝑃\𝐸) = 𝜇(𝑃) − 𝜇(𝐹) and thus, 𝜇(𝐸) ≥ 0 and if 𝐹 ⊂  𝑃𝑐,  

Then 𝜇(𝐹 ∪ 𝑃) = 𝜇(𝐹) + 𝜇(𝑃) and 𝜇(𝐹) ≤ 0. It means that 𝑃 is a positive set and its 

complement 𝑁 = Ω\𝑃 is negative. 

 The decomposition given by the theorem is called Hahn decomposition. It is usually not 

unique, but if 𝑋 = 𝑃 ∪ 𝑁 = 𝑃′ ∪ 𝑁′, where 𝑃 ∩ 𝑁 = 𝑃′ ∩ 𝑁′ = 𝜙 and 𝑃, 𝑃′ are positive sets and 

𝑁,𝑁′ are negative sets, then 𝜇(𝑁∆𝑁′) = 𝜇(𝑃∆𝑃′) = 0. 

 

Definition: Two measures µ and 𝜈 on (Ω, 𝐶) are said to be mutually singular if there are disjoint 

sets 𝐴, 𝐵 ∈  𝐶 with Ω =  𝐴 ∪  𝐵 and µ(𝐴) = 0 while 𝜈(𝐵) = 0. In this case, we write µ ⊥ 𝜈. 



 
 

 

Theorem: Jordan Decomposition: Let 𝜇 be a signed measure on  (Ω, 𝐶). Then there are two 

unique positive measures 𝜇+ and 𝜇− on  (Ω, 𝐶) such that  

𝜇+ ⊥ 𝜇−  and 𝜇 = 𝜇+ − 𝜇−. 

Furthermore, if 𝜆 and 𝜈 are two any positive measures with 

 𝜇 = 𝜆 − 𝜈 

then for each 𝐸 ∈ 𝐶, we have  

 𝜆(𝐸) ≥ 

Proof: Let {𝜇+, 𝜇−} be a Jordan decomposition of 𝜇 arising from the Hahn decomposition {𝑃, 𝑁}. 

Then, we have 

 𝜇 = 𝜇+ − 𝜇− 

Moreover, since 

 𝜇+(𝑁) = 𝜇(𝑃 ∩ 𝑁) = 𝜇−(𝑃) = 0 

We have that 𝜇+ ⊥ 𝜇− 

Let 𝜆 and 𝜈 be any two positive measures with 

µ = 𝜆 − 𝜈 

and let 𝐸 ∈ 𝐴. Then  

 𝜇+(𝐸) = 𝜇(𝑃 ∩ 𝐸) 

  = 𝜆(𝑃 ∩ 𝐸) − 𝜈(𝑃 ∩ 𝐸) 

  ≤ 𝜆(𝑃 ∩ 𝐸) 

  ≤ 𝜆(𝐸) 

A similar argument shows that 𝜈(𝐸) ≥ 𝜇−(𝐸). 

Finally assume that 𝜇+ ⊥ 𝜇− 

Let {𝐴, 𝐵} be a partition of Ω so that 𝜆(𝐵) = 0 and 𝜈(𝐴) = 0.  

For each 𝐸 ∈ 𝐶, we have 

 𝜇(𝐸 ∩ 𝐴) = 𝜆(𝐸 ∩ 𝐴) − 𝜈(𝐸 ∩ 𝐴) = 𝜆(𝐸 ∩ 𝐴) ≥ 0 

That is 𝐴 is positive.  

Similarly, 𝐵 is negative, so {𝐴, 𝐵} is a Hahn decomposition. It follows that for an 𝐸 ∈ 𝐶  

𝜇+(𝐸) = 𝜇(𝐸 ∩ 𝑃) = 𝜇(𝐸 ∩ 𝐴) = 𝜆(𝐸 ∩ 𝐴) = 𝜆(𝐸) 



 
 

𝜇−(𝐸) = −𝜇(𝐸 ∩ 𝑁) = −𝜇(𝐸 ∩ 𝐵) = 𝜈(𝐸 ∩ 𝐵) = 𝜈(𝐸) 

 

Definition: The decomposition of signed measure ν on measure space (Ω, 𝐶) into the difference 

of two (nonnegative) measures given in the Jordan Decomposition Theorem is called the Jordan 

decomposition of 𝜇. 

Definition (Absolute Continuity): Let 𝜇 and 𝜈 be the measures on (Ω, 𝐶). The measure 𝜇 is said 

to be absolutely continuous with respect to 𝜈, if every null set of 𝜈 is also a null set of 𝜈 and it is 

denoted by 𝜇 ≪ 𝜈. 

Aliter: The measures 𝜇 and 𝜈 on (Ω, 𝐶). Then, 𝜇 ≪ 𝜈, if and only if 

 ∀ 𝐸 ∈ 𝐶: 𝜈(𝐸) = 0 ⇒ 𝜇(𝐸) = 0. 

Definition (Mutually Singular): Let 𝜇 and 𝜈 be the measures on (Ω, 𝐶). The measures 𝜇 and 𝜈 

are mutually singular, if there exists 𝐸 ∈ 𝐶 such that 𝐸 is null for 𝜇 and 𝐸𝑐 is null for 𝜈 and it is 

denoted by 𝜇 ⊥ 𝜈. 

Lemma: Let (Ω, 𝐶, 𝜇) be a measure space and let  𝜈 be a measure or signed measure defined on 

𝐶, then 𝜈 ≪ 𝜇 if and only if 𝜈+ ≪ 𝜈 and 𝜈− ≪ 𝜈. Also, 𝜈 ≪ 𝜇 if and only if |𝜈| ≪ 𝜇. 

Proof: 𝐶 = 𝑃 ∪ 𝑁 , where 𝑃  is the positive and 𝑁 is the negative set determined by Hahn 

Decomposition on Ω, so that 𝑃 = Ω\𝑁. Then 𝜈+(𝐸) = 𝜈(𝐸 ∩ 𝑃) and 𝜈−(𝐸) = −𝜈(𝐸 ∩ 𝑁) for all 

𝐸 ∈ 𝐶. 

If 𝜈+ ≪ 𝜈  and 𝜈− ≪ 𝜈 , then 𝜈(𝐸) = 𝜈+(𝐸) − 𝜈−(𝐸) = 0 for all 𝐸 ∈ 𝐶satisfying 𝜇(𝐸) = 0  and 

therefore, 𝜈 ≪ 𝜇. 

Conversely, suppose that 𝜈 ≪ 𝜇. 

Let 𝐸 ∈ 𝐶 satisfy 𝜇(𝐸) = 0. Then 

𝜇(𝐸 ∩ 𝑃) = 0 and 𝜇(𝐸 ∩ 𝑁) = 0, and 

Therefore, 

𝜈+(𝐸) = 𝜈(𝐸 ∩ 𝑃) = 0 and 𝜈−(𝐸) = −𝜈(𝐸 ∩ 𝑁) = 0 

Thus, 𝜈+ ≪ 𝜈 and 𝜈− ≪ 𝜈 if and only if 𝜈 ≪ 𝜇. 

Now, 



 
 

0 ≤ 𝜈+(𝐸) ≤ |𝜈|(𝐸), 0 ≤ 𝑣−(𝐸) ≤ |𝜈|(𝐸) for all 𝐸 ∈ 𝐶. 

and |𝜈|(𝐸) = 𝜈+(𝐸) + 𝜈−(𝐸) for all 𝐸 ∈ 𝐶 

Therefore, |𝜈|(𝐸) = 0 if and only if 𝜈+(𝐸) = 0 and 𝜈−(𝐸) = 0 

It follows that |𝜈| ≪ 𝜇 if and only if 𝜈+ ≪ 𝜈 as required.  

4.5            Radon-Nikodym Theorem  

 

Theorem: Let 𝜇 and 𝜈 be two finite measures on a measurable space (Ω, 𝐶) (𝜇 is positive measure 

and 𝜈 is signed measure). If 𝜇 is absolutely continuous with respect to 𝜈 i.e., 𝜇 ≪ 𝜈, there is a 

function ℎ that is integrable with respect to 𝜈 such that for all 𝐸 ∈ 𝐶 

𝜇(𝐸) = ∫ℎ 𝑑𝜇
𝐸

 

and moreover, ℎ is unique upto almost everywhere equivalence. 

Proof: Let 𝜇 and 𝜈 be two finite measures on 𝐶.  

Define the positive finite Borel measure 𝑧 = 𝜇 + 𝜈 

Let 𝐻  denote 𝐿2(Ω, 𝐶, 𝑧). For all 𝑓 ∈ 𝐻 , by the fact that 𝑧 ≥ 𝜈  and then the Cauchy-Schwarz 

inequality, 

∫ |𝑓|𝑑𝜈 ≤ ∫ 1|𝑓|𝑑𝑧 ≤ (∫ 1𝑑𝑧
𝑋

)
𝑋

1/2

𝑋
(∫ |𝑓|2𝑑𝑧
𝑋

)
1/2
= (𝜈(𝑋))

1/2
(∫ |𝑓|2𝑑𝑧
𝑋

)
1/2

         (1) 

Thus, for all 𝑓 ∈ 𝐻, 𝑓 ∈ 𝐿1(Ω, 𝐶, 𝜈), and we may define a linear function 𝐿 on 𝐻 by 

 𝐿(𝑓) = ∫ 𝑓𝑑𝜈
𝑋

  

It follows from (1) that for all 𝑓 ∈ 𝐻,  

|𝐿(𝑓)| ≤ ∫|𝑓|𝑑𝑣 ≤ (𝑣(𝑋))
1
2 ∥ 𝑓 ∥𝐻

𝑋

 

Therefore, 𝐿 is bounded, and by the Riesz Representation Theorem, there exists a unique 

function𝑔 ∈ 𝐻 such that 

∫ 𝑓𝑑𝜈 = ∫ 𝑓𝑔 𝑑𝑧
𝑋𝑋

                (2) 

Hence, for any 𝐸 ∈ 𝐶, 𝜈(𝐸) ≥ ∫  𝑔 𝑑𝑧 ≥ 0
𝐸

, and this means that 

 0 ≤ 𝑔(𝑥) ≤ 1 

Almost everywhere with respect to 𝑧. 



 
 

Now let 𝐴 = {𝑥: 𝑔(𝑥) > 0}, or what is the same 

 𝐴𝑐 = {𝑥: 𝑔(𝑥) = 0} 

Taking𝑓 = 1𝐴𝑐 in (2), we see that 

𝜇(𝐴𝑐) = 0 

Therefore, if we define a measure 𝜇(𝑠) by  

𝜇(𝑠)(𝐸) = 𝜇(𝐴𝑐 ∩ 𝐸) for all 𝐸 ∈ 𝐶 

 𝜇(𝑠)(𝐴) = 0 

Since, 𝜇(𝑠)(𝐴) = 0 and 𝑣(𝐴𝑐) = 0, then 𝜇(𝑠) and 𝑣 are mutually singular. 

Next define 𝜇(𝑎𝑐) by 

𝜇(𝑎𝑐) = 𝜇 − 𝜇(𝑠) 

or, what is the same 

𝜇(𝑎𝑐)(𝐸) = 𝜇(𝐸 ∩ 𝐴) for all 𝐸 ∈ 𝐶 

It remains to find ℎ, which we shall show is given by ℎ = (1 − 𝑔)/𝑔 on 𝐴. To see this, use 𝑧 =

𝜇 + 𝜈 to rewrite (2) as 

∫ 𝑓(1 − 𝑔)𝑑𝜈 = ∫ 𝑓𝑔 𝑑𝜇
𝑋𝑋

 for all 𝑓 ∈ 𝐻              (3) 

Now, let 𝐸 be any measurable subset of 𝐴, and for each positive number 𝑁 define 

𝑓𝑁 = 1𝐸min{𝑔
−1, 𝑁} 

Since, 𝑔 > 0 on 𝐸, 𝑔−1 is defined and finite 

1𝐸𝑔
−1 = lim

𝑁→
𝑓𝑁               (4) 

almost everywhere.  

Moreover, since 𝑓𝑁 is bounded, it belongs to 𝐻, hence from (3) 

∫ 𝑓𝑁(1 − 𝑔)𝑑𝜈 = ∫ 𝑓𝑁𝑔 𝑑𝜇𝑋𝑋
  

By (4) and the Lebesgue monotone convergence theorem, 

∫
1 − 𝑔

𝑔
𝑑𝜈 = lim

𝑁→
∫𝑓𝑁(1 − 𝑔)𝑑𝜈
𝑋𝐸

 

   = lim
𝑁→
∫ 𝑓𝑁𝑔𝑑𝜇𝑋

= 𝜇(𝐸). 

Taking 𝐸 = 𝐴, 

∫
1 − 𝑔

𝑔
𝑑𝜈 = 𝜇(𝐴) ≤ 𝜇(Ω) < ∞

𝐸

 



 
 

Hence the non-negative measurable function ℎ defined by 

ℎ(𝑥) = {
0  ; 𝑥 ∈ 𝐴𝑐

1−𝑔(𝑥)

𝑔(𝑥)
 ; 𝑥 ∈ 𝐴

     

is integrable with respect to 𝜈 and for all measurable sets 𝐸,  

𝜇(𝑎𝑐) = 𝜇(𝐸 ∩ 𝐴) = ∫ℎ 𝑑𝜈
𝐸

 

It follows immediately that if 𝜈(𝐸) = 0, then 𝜇(𝑎𝑐)(𝐸) = 0, so that 𝜇(𝑎𝑐) is indeed absolutely 

continuous with respect to 𝜈. 

Also, by definition, there exist sets 𝐴𝑗 ∈ 𝐶 such that 

𝜈(𝐴𝑗) = 0 and 𝜆𝑗(𝐴𝑗
𝑐) = 0 for 𝑗 = 1, 2 

where 𝜆𝑗 is another measure such that 𝜆𝑗 ⊥ 𝑣 for 𝑗 = 1, 2. 

Let 𝑏 − 𝐴1 ∪ 𝐴2. Then, 𝜈(𝐵) ≤ 𝜈(𝐴1) + 𝜈(𝐴2) = 0 

Hence, 𝜈(𝐵) = 0. 

Consequently, 𝜌𝑗(𝐵) = 0, 

Where 𝜌𝑗 is a measure such that 𝜌𝑗 ≪ 𝜈 and 𝜇 = 𝜆𝑗 + 𝜌𝑗 for 𝑗 = 1, 2. 

Now also let,  

𝐵𝑐 = 𝐴1
𝑐 + 𝐴2

𝑐 ⊂ 𝐴𝑗
𝑐 for 𝑗 = 1, 2. 

Hence, 𝜆𝑗(𝐵
𝑐) = 0 for 𝑗 = 1, 2. 

 Now, for any 𝐸 ∈ 𝐶, and each 𝑗 = 1, 2 

𝜌𝑗 = 𝜌𝑗(𝐸 ∩ 𝐵) + 𝜌𝑗(𝐸 ∩ 𝐵
𝑐) = 𝜌𝑗(𝐸 ∩ 𝐵

𝑐) 

= 𝜌𝑗(𝐸 ∩ 𝐵
𝑐) + 𝜆𝑗(𝐸 ∩ 𝐵

𝑐) = 𝜇(𝐸 ∩ 𝐵) 

Where, we have used, successively, the fact that  

𝜌𝑗(𝐸 ∩ 𝐵) = 0 

𝜆𝑗(𝐸 ∩ 𝐵
𝑐) = 0 

and  𝜇 = 𝜆𝑗 + 𝜌𝑗 

Thus, 𝜌𝑗(𝐸) = 𝜇(𝐸 ∩ 𝐵) for 𝑗 = 1, 2 

which shows that 𝜌1 = 𝜌2. 

Finally, 𝜆𝑗 = 𝜇 − 𝜌𝑗, so 𝜆1 = 𝜆2. 



 
 

 

4.6          Products of Measure Spaces 

 

Definition: Let 𝑋 and 𝑌 are set. A rectangle in 𝑋 × 𝑌 is a set of the form 𝐴 × 𝐵, where 𝐴 ⊂ 𝑋 

and 𝐵 ⊂ 𝑌. 

4.6.1       Product Space  

Given two measurable spaces 𝐴 and 𝐵, the product space 𝐴 × 𝐵 is the cartesian product 

of the sets 𝐴 and 𝐵, endowed with the 𝜎-algebra generated by the sets of the form 𝐸 × 𝐹, where 

𝐸 is measurable in 𝐴 and 𝐹 is measurable in 𝐵. 

4.6.2      Product of two 𝝈- fields 

Definition: Let (Ω1, 𝐶1) and (Ω2, C2) be two measurable spaces. The product 𝜎-field 𝐶⨂𝑆 on 

Ω1 × Ω2 is defined as the 𝜎-field generated by the collection of all sets of the from  

 {𝐴1 × 𝐴2: 𝐴1 ∈ 𝐶1, 𝐴2 ∈ 𝐶2} 

The sets in this collection are called measurable rectangles. 

Note: 𝐶1⨂𝐶2 ≠ 𝐶1 × 𝐶2 because 𝐶1 × 𝐶2 may not be closed on 𝐴𝑐 or 𝐴1 ∪ 𝐴2. 

4.6.3     Product Measure 

Let (Ω1, 𝐶1, 𝜇1) and (Ω2, C2, 𝜇2) be 𝜎- finite measurable spaces. Then there is a unique 

measure 𝜋 on 𝜎-field 𝐶1 × 𝐶2 such that 

𝜋(𝐴 × 𝐵) = 𝜇1(𝐴)𝜇2(𝐵) 

Hold for each 𝐴 ∈ 𝐶1 and 𝐵 ∈ 𝐶2. Furthermore, the measure under 𝜋 of an arbitrary set 𝐸 ∈ 𝐴 × 𝐵 

is given by 

𝜋(𝐸) = ∫ 𝜇2(𝐸Ω1)𝜇1(𝑑𝑥) = ∫ 𝜇1(𝐸Ω2)𝜇1(𝑑𝑦)
Ω1Ω1

 

The measure 𝜋 is called the product of 𝜇1 and 𝜇2.   

 



 
 

4.7        Cartesian Product of Two Sets 

 

The Cartesian product of two sets 𝐴 and 𝐵 is 

𝐴 × 𝐵 = {(𝑎, 𝑏): 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. 

In a similar way we define the Cartesian product of 𝑛 ∈ 𝑁 sets. The repeated Cartesian product 

of the same set, denoted as 

𝐴𝑑 = 𝐴 ×⋯× 𝐴,   𝑑 ∈ 𝑁, 

is the set of 𝑑-tuples or 𝑑-dimensional vectors whose components are elements in 𝐴. 

4.7.1 Cartesian Product of Two Measurable Spaces 

 Let (Ω1, 𝐶1, µ1) and (Ω2, 𝐶2, 𝜇2) be two measure spaces. We consider the Cartesian 

product Ω1 × Ω2 and for 𝐴 ⊂ Ω1  and 𝐵 ⊂ Ω2, we call 𝐴 × 𝐵 a rectangle. If 𝐴 ∈ 𝐶1 and 𝐵 ∈ 𝐶2, 

we call 𝐴 × 𝐵 a measurable rectangle provided µ1(𝐴) < ∞ and 𝜇2(𝐵)  <  ∞. 

Note: The obvious choice for the measure of 𝐴 × 𝐵 is µ1(𝐴) · 𝜇2(𝐵). 

 

4.8  Self-Assessment Questions 

 

1 Let (Ω, 𝐶, 𝜇) be a measure space and 𝑣1 and 𝑣2 be signed measure on 𝐶. Prove the following: 

(i)  If 𝜈1 ⊥ 𝜇 and 𝜈2 ⊥ 𝜇, then 𝜈1 + 𝜈2 ⊥ 𝜇. 

(ii) If 𝜈1 ≪ 𝜇 and 𝜈2 ≪ 𝜇, then 𝜈1 + 𝜈2 ≪ 𝜇 

(iii)If 𝜈1 ≪ 𝜇, then |𝜈1 ≪ 𝜇 |, and conversely 

(iv) If 𝜈1 ≪ 𝜇 and 𝜈2 ⊥ 𝜇, then 𝜈1 ⊥ 𝜈2 

(v) If 𝜈1 ≪ and 𝜈1 ⊥ 𝜇, then 𝜈1 ≡ 0 

2 Let 𝑚 be Lebesgue measure on the interval [0, +∞], and let 𝜇 be a finite unsigned measure. 

Then 

(i) Show that 𝜇 is a continuous measure if and only if the function 𝑥 ↦ 𝜇([0, 𝑥]) is continuous. 



 
 

(ii) Show that 𝜇  is an absolutely continuous measure with respect to 𝑚  if and only if the 

function 𝑥 ↦ 𝜇([0, 𝑥]) is absolutely continuous. 

3 Given two sets 𝐶 = {1,2,6} and 𝐷 = {8,3}. Find the cartesian product 𝐶 × 𝐷. 

4 Find the cartesian product of 𝐶2, where, 𝐶 = {1,2}. 

5  If 𝐶 = ∅ and 𝐷 = {1, 4, 6, −1, 7}, then find the number of elements in the cartesian product 

𝐶 × 𝐷. 

True or False Questions 

6  For the two non-empty sets A and B, the cartesian product A × B = B × A.  

 

4.9   Summary 

This chapter delved into the intricate realm of measure theory, focusing on the concept of 

signed measures, which allows for the integration of functions with both positive and negative 

values. The Jordan decomposition theorem for measures was studied, which is a corollary of the 

Hahn decomposition theorem and is useful for the Lebesgue decomposition theorem, along with 

the Radon-Nikodym Theorem, which enables the representation of one measure with respect to 

another and offers a deeper understanding of measure transformations. The study extended to the 

derivatives of signed measures, a fundamental tool for understanding how measures change with 

respect to each other. Topics like product spaces and the Cartesian Product of two Sets were also 

explored, highlighting the concepts of product of two 𝜎 Fields, Product Measure and Cartesian 

Product of two Measurable Spaces. 
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Block & Units Introduction 

 

The Block - II – Probability Measure, Distribution Function and Inequalities is the 

second block in which we have three units. 

 

In Unit – 5 – Probability Measure is discussed with Probability space of a random 

experiment, probability measures, random variables as a measurable function. Field induced by a 

sequence of random variables.  

 

In Unit – 6 – Distribution Functions has been introduced by discussing Decomposition of 

distribution functions in purely discrete, absolutely continuous and singular components. 

 

The Unit –7 - Probability Inequalities dealt with CR-Inequality, Chebyshev’s Inequality, 

Cauchy-Schwartz Inequality, Holder Inequality, Minkowski Inequality, Jensen Inequality, 

Lyapunov Inequality, Kolmogorov Inequality, Hajck-Renyki Inequality. 

 

At the end of every unit the summary, self-assessment questions and further readings are 

given.  

 

 

 

  



 
 

UNIT: 5   PROBABILITY MEASURES 

 

Structure 

5.1   Introduction 

5.2    Objectives 

5.3    Basic Definitions 

5.4  Random Variable and Measurable Functions 

5.5       Independent Events and Independent Random Variables 

5.6       Self-Assessment Questions 

5.7       Summary 

5.8       References 

5.9        Further Reading  

5.1           Introduction 

   Probability theory has become increasingly important in multiple parts of science. Modern 

probability theory makes major use of measure theory. As we will see, a probability measure is 

simply a measure such that the measure of the whole space equals 1. However, probability theory 

is not simply the special case of measure theory where the whole space has measure 1. The 

questions that probability theory investigates differ from the questions natural to measure theory.  

Even when concepts in probability theory have the same meaning as well-known concepts in 

measure theory, the terminology and notation can be quite different. Thus, one goal of this chapter 

is to introduce the vocabulary of probability theory. This difference in vocabulary between 

probability theory and measure theory occurred because the two subjects had different historical 

developments, only coming together in the first half of the twentieth century. 

5.2           Objectives 

By the end of this unit, the learner should be able to: 

• Understand the basic concept of probability measure. 



 
 

• Distinguish between the probability space and sample space  

• Understand the concept of random experiment.  

• Describe the concept of random variables. 

• Distinguish between random experiment and random variable.  

• Identify the relationship between random variable and measurable function. 

 

5.3      Basic Definitions 

 

Random Experiment: An experiment with more than one out comes which can be repeated any 

number of times under more or less similar condition but the outcomes of which very irregularly 

from repetition to repetition is called a random experiment. That is for a random experiment there 

are more than one outcome and the outcome very from repetition to repetition. 

Example 1: Tossing a coin. The outcome of a trial can be either tail or head showing up. 

Sample space: A sample space is the set of all possible simple outcomes (or sample points) of a 

random experiment. 

Example: For the experiment of roll of a die, the sample space is 

𝑆 =  {1, 2, 3, 4, 5, 6}. 

Probability Space: A probability space is a triplet (Ω,ℱ, 𝑃)  such as: 

(i) A sample space, 𝛺, which is the set of all possible outcomes of a random experiment. 

(ii) The 𝜎-field or 𝜎- algebra ℱ is a set of subsets of Ω such that  

(a) 𝜙, Ω ∈ 𝐹 , (b) if 𝐴 ∈  𝐹 , then 𝐴𝑐 ∈ 𝐹, (c) if 𝐴𝑛 ∈ 𝐹 for 𝑛 =  1,2. . ., then ∪ 𝐴𝑛 ∈ 𝐹.  
 

In words, 𝐹 is closed under complementation and under countable unions, and contains the 

empty set. Elements of 𝐹 are called measurable sets. 



 
 

(iii)  The probability measure is any function 𝑃: 𝐹 → [0,1]  is such that if 𝐴𝑛 ∈ 𝐹  and are 

pairwise disjoint, then 𝑃(∪ 𝐴𝑛)  =  ∑𝑃(𝐴𝑛) (countable additivity) and such that 𝑃(Ω)  =

 1. 𝑃(𝐴) is called the probability of 𝐴. 

 

Example: Suppose 𝑛 ∈ 𝑍+  and Ω is a set containing exactly 𝑛  elements. Let 𝐶  denote the 

collection of all subsets of Ω. Then  

counting measure on Ω

𝑛
 

is a probability measure on (Ω, 𝐹). 

Remark 1: Let 𝑚  denote Lebesgue measure on the interval [0, 1] . Then 𝑚  is a probability 

measure on ([0, 1], 𝐵), where 𝐵 denotes the σ-algebra of Borel subsets of [0, 1]. 

 

Definition: Suppose (Ω, 𝐹, 𝑃) is a probability space. An event A is said to happen almost surely if 

the probability of 𝐴 is 1, or equivalently if 𝑃(Ω\𝐴) = 0. 

 

5.4           Random Variable and Measurable Function 

Definition: Any measurable function X on Ω is called a random variable. 

Random variable is a measurable function from the measure space (Ω, 𝐹) to (𝑅, ℬ). That is, a 

function 𝑋:Ω → 𝑅 such that the preimage of every set in ℬ is in 𝐹. Say 𝑋 is 𝐹-measurable.  

Aliter: A random variable is a function 𝑋:Ω → 𝑅. It is said to be measurable with respect to 𝐹 (or 

we say that X is a random variable w.r.t F) if for every Borel set 𝐵 ∈ ℬ(𝑅) 

 𝑋−1(𝐵):=  {𝜔 ∈ Ω: 𝑋(𝜔) ∈ 𝐵} ∈ 𝐹. 

That is 𝑋 is measurable with respect to 𝐹 if all possible inverse of 𝑋 can be found in 𝐹. 

For any event 𝑋 and any 𝑥 ∈  𝑅, the probability 𝑃(𝑋 ≤ 𝑥) is defined, which is referred to as the 

probability that the random variable 𝑋 is bounded by 𝑥. 

For example, if 𝐴 is any event, then the indicator function 𝐼𝐴 on Ω is a random variable. Fix a 

random variable 𝑋 on Ω.  

Recall that, for any Borel set 𝐴 ⊂ 𝑅, the set 

{𝑋 ∈ 𝐴} = 𝑋−1(𝐴) 



 
 

is measurable. Hence, the set {𝑋 ∈ 𝐴} is an event and we can consider the probability 

𝑃(𝑋 ∈ 𝐴) that 𝑋 is in 𝐴.  

Set for any Borel set A ⊂ R, 

𝑃𝑋 (𝐴) = 𝑃(𝑋 ∈ 𝐴) 

Then we obtain a real-valued functional 𝑃𝑋(𝐴) on the 𝜎-algebra ℬ(𝑅) of all Borel sets in 𝑅. 

Lemma: For any random variable 𝑋, 𝑃𝑋 is a probability measure on ℬ(𝑅). Conversely, given any 

probability measure 𝜇 on ℬ(𝑅), there exists a probability space and a random variable 𝑋 on it such 

that 𝑃𝑋 = 𝜇. 

Proof: We can write 𝑃𝑋(𝐴) = 𝑃(𝑋
−1(𝐴)). Since 𝑋−1 preserves all set-theoretic operations, by 

this formula the probability measure P on 𝐹 induces a probability measure on ℬ.  

For example, check additivity: 

𝑃𝑋(𝐴 ⨆ 𝐵)  =  𝑃(𝑋
−1(𝐴 ⨆ 𝐵))  =  𝑃(𝑋−1(𝐴)⨆ 𝑋−1(𝐵)) 

= 𝑃(𝑋−1(𝐴))  +  𝑃(𝑋−1(𝐵)) 

The 𝜎-additivity is proved in the same way. Note also that 

𝑃𝑋(𝑅) = 𝑃(𝑋
−1(𝑅)) = 𝑃(Ω) = 1 

For the converse statement, consider the probability space 

(Ω, 𝐹, 𝑃) = (𝑅, ℬ, 𝜇) 

and the random variable on it 

𝑋(𝑥)  =  𝑥. 

Then 

𝑃𝑋(𝐴) = 𝑃(𝑋 ∈ 𝐴) = 𝑃(𝑥: 𝑋(𝑥) ∈ 𝐴) = 𝜇(𝐴) 

Hence, each random variable 𝑋 induces a probability measure 𝑃𝑋 on real Borel sets. 

The measure 𝑃𝑋 is called the distribution of 𝑋.  

In probabilistic terminology, 𝑃𝑋(𝐴) is the probability that the value of the random variable 𝑋 

occurs to be in 𝐴. 

Any probability measure on ℬ is also called a distribution. As we have seen, any distribution is 

the distribution of some random variable. 



 
 

Consider examples distributions on 𝑅. There is a large class of distributions possessing a density, 

which can be described as follows. Let 𝑓 be a non-negative Lebesgue integrable function on 𝑅 

such that  

∫𝑓 𝑑𝜆 = 1
𝑅

 

where 𝜆 =  𝜆1 is the one-dimensional Lebesgue measure.  

Define the measure 𝜇 on ℬ(𝑅) by 

𝜇(𝐴)  =  ∫𝑓 𝑑𝜆
𝐴

 

Since, 𝜇 is a measure and 𝜇(𝑅) = 1, 𝜇 is a 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒. The Function 𝑓 is called the 

density of 𝜇 or the density function of 𝜇. 

Definition: Let (Ω, 𝐹) be a measurable space and {𝑋𝑖, 𝑖 ∈ 𝐼} be a sequence of random variables on 

(Ω, 𝐹). The 𝜎-field generated by 𝑋𝑖, 𝑖 ∈ 𝐼, denoted as 𝜎(𝑋𝑖, 𝑖 ∈ 𝐼), is the smallest 𝜎-field 𝐺 on Ω 

such that all the random variables 𝑋𝑖 are 𝐺-measurable. 

 

Example 1: Let (Ω, 𝐹) be a measurable space. If 𝑋0 is a constant random variable       

(i.e., 𝑋0(𝜔) = 𝑐 ∈ 𝑅, ∀𝜔 ∈  Ω),  

then 𝜎(𝑋0)  =  {∅,Ω}. 

Example 2: Let Ω =  {1,2,3,4,5, 6}.  

The following are 𝜎 −fields on Ω: 

𝐹1 = {∅, {1}, {2,3,4,5, 6}, Ω}. 

𝐹2 = {∅, {1, 3, 5}, {2, 4, 6}, Ω} 

𝐹3 = {∅, {1, 2, 3}, {4, 5, 6}, Ω}.  

and 𝐹 = 𝒫(Ω). Then, 

 𝜎(𝑋1) = 𝑃(Ω) and 

𝜎(𝑋2) = 𝐹2. 

 



 
 

5.5  Independent Events and Independent Random Variables 

 

The notion of independent events, which we now define, is one of the key concepts that 

distinguishes probability theory from measure theory. 

Suppose (Ω, 𝐹, 𝑃) is a probability space.  

Then, two events 𝐴 and 𝐵 are called independent if  

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) · 𝑃(𝐵)  

More generally, a family of events {𝐴𝑘}𝑘∈𝐼  is called independent if 

 𝑃(𝐴𝑘1 ∩· · ·∩ 𝐴𝑘𝑛) = 𝑃(𝐴𝑘1) · · ·  𝑃(𝐴𝑘𝑛 )  

whenever 𝑘1, . . . , 𝑘𝑛 are distinct elements of I. 

 

Example: Independent events: coin tossing 

Suppose Ω =  {𝐻, 𝑇}3 , where 𝐻 and 𝑇 are symbols that you can think of as denoting “heads” and 

“tails”. Thus, elements of Ω are 3-tuples of the form 𝜔 =  (𝜔1, 𝜔2, 𝜔3), where each 𝜔𝑗 is 𝐻 or 𝑇. 

Let 𝐹 be the collection of all subsets of Ω, and let 𝑃 =  (counting measure on Ω)/8, as we expect 

from a fair coin toss. Let 𝐴 = {𝜔 ∈ Ω ∶  𝜔1 = 𝜔2 = 𝐻}  and 𝐵 = {𝜔 ∈ Ω:𝜔3 = 𝐻} . Then A 

contains two elements and thus 𝑃(𝐴) =
1

4
 , corresponding to probability 

1

4
 that the first two coin 

tosses are all heads. Also, 𝐵  contains four elements and thus 𝑃(𝐵) =
1

2
 , corresponding to 

probability 
1

2
 that the third coin toss is heads.  

Now 𝑃(𝐴 ∩ 𝐵) =
1

8
 = 𝑃(𝐴) · 𝑃(𝐵),  

where the first equality holds because 𝐴 ∩  𝐵 consists of only the one element (𝐻,𝐻,𝐻) and the 

second equality holds because 𝑃(𝐴) = 1/4 , thus the above equations shows that 𝐴  and 𝐵  are 

independent. 

If the events are independent then the random variable corresponding to them also independent 

random variables. 

 

5.6  Self-Assessment Questions 

 



 
 

1 What is the fundamental idea behind the probability theory? 

2 What is the fundamental idea behind the random variable in probability theory? 

3 Suppose (Ω, 𝐹, 𝑃) is a probability space and 𝐴 ∈  𝐹. Prove that 𝐴 and Ω \ 𝐴 are independent 

if and only if 𝑃(𝐴)  =  0 or 𝑃(𝐴)  =  1. 

4 Define the term “random variable”. 

5 Suppose 𝑃 is Lebesgue measure on [0, 1]. Give an example of two disjoint Borel subsets sets 

𝐴 and 𝐵 of [0, 1] such that 𝑃(𝐴) = 𝑃(𝐵) =
1

2
 , [0,

1

2
 ] and 𝐴 are independent, and [0,

1

2
] and 𝐵 

are independent. 

6 Suppose (Ω, 𝐹, 𝑃)  is a probability space and 𝐴, 𝐵 ∈  𝐹 . Prove that the following are 

equivalent:  

(i) 𝐴 and 𝐵 are independent events.  

(ii) 𝐴 and Ω \ 𝐵 are independent events. 

(iii) Ω \ 𝐴 and 𝐵 are independent events.  

(iv)  Ω \ 𝐴 and Ω \ 𝐵 are independent events. 

7 Give an example of a probability space (Ω, 𝐹, 𝑃) and events 𝐴, 𝐵1, 𝐵2 such that 𝐴 and 𝐵1 are 

independent, 𝐴 and 𝐵2 are independent, but 𝐴 and 𝐵1 ∪ 𝐵2 are not independent. 

8 By answering these questions, learners will be able to gauge their understanding of the unit's 

key concepts and their ability to apply them in various contexts. 

 

5.7   Summary 

This unit highlights the basic concept of a probability measure, essential for quantifying 

uncertainty and randomness, and distinguishes between probability and sample space. The concept 

of a random experiment and random variables were introduced, providing a structured framework 

for studying uncertain events and their outcomes. The crucial distinction between random 

experiments, which encompass the broader scenario, and random variables, which focus on 

specific quantities or characteristics within that context, was also defined. The relationship 

between random variables and measurable functions was explored, along with examples for both 

of these concepts.   
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6.1           Introduction 

   There is a very interesting thing about probability: everything seems to be so obvious, but 

when we investigate it a bit more into depth, it suddenly turns out that we don’t actually understand 

it. The probability distribution which is usually encountered in our early stage of learning 

probability is the uniform distribution. Uniform means all the event has the same probability of 

happening.  

6.2           Objectives 

By the end of this unit, the learner should be able to: 

• Understand the basic concept of probability distribution. 

• Understand the distribution function of random vectors. 

• Distinguish between probability distribution and distribution function. 

• Describe the decomposition of distribution function.  



 
 

• Distinguish between density function and distribution function. 

 

6.3     Probability Distribution 

 

Definition: Suppose (Ω, 𝐹, 𝑃) is a probability space and 𝑋 is a random variable. The probability 

distribution of 𝑋 is the probability measure 𝑃𝑋 defined on (𝑅, 𝐵) by   

𝑃𝑋(𝐵) = 𝑃(𝑋 ∈ 𝐵) = 𝑃( 𝑋
 −1(𝐵)) 

   

6.4      Distribution Function 

 

Definition: Suppose a random variable 𝑋: (Ω,ℬ, 𝑃) → 𝑅 ∪ {−∞,∞}, the function 𝐹: 𝑅 → [0,1] 

defined by 

𝐹(𝑥) = 𝑃({𝜔 ∈ Ω: 𝑋(𝜔) ≤ 𝑥}) 

The function 𝐹 is called distribution function or cumulative distribution function, if it satisfies the 

following properties: 

(i) lim
𝑡→−∞

𝐹(𝑡) = 0 

Generally written as 𝐹(−∞) = 0 

(ii) lim
𝑡→∞

𝐹(𝑡) = 1 

Generally written as 𝐹(∞) = 1 

(iii) 𝐹 is an non decreasing function i.e., if 𝑠 < 𝑡, then 𝐹(𝑠) ≤ 𝐹(𝑡) 

(iv) 𝐹 is right continuous i.e., for all 𝑡 lim
𝑠↘𝑡
𝐹(𝑠) = 𝐹(𝑡)  

Example: Consider the random variable 𝑋  defined on the probability space 

 𝑋: ([0,1], ℬ, 𝜇) → 𝑅, 𝑋(𝑡) = 𝑡  

such that 

 𝜇({𝜔 ∈ [0,1]: 𝑋(𝜔) ≤ 𝑡 }) = 𝜇([0, 𝑡]) = 𝑡 

The random variable 𝑋 has the uniform distribution on [0,1].  

The cumulative distribution of uniform distribution on [0,1] is defined as 



 
 

𝐹(𝑡) = {
0,              𝑡 < 0
𝑡, 𝑡 ∈ [0,1]
1,              𝑡 > 1

 

 

So, 𝐹 is strictly increasing function and hence one-to-one on [0,1]. Thus, 𝐹|[0,1] has an inverse 

function (𝐹|[0,1])
−1
: [0,1] → [0,1] . In fact, 𝑋 = (𝐹|[0,1])

−1
. 

 

6.5      Decomposition of Distribution Function 

Theorem: Every nondecreasing and right continuous function 𝐹 on 𝑅 has a decomposition 

𝐹(𝑥) = 𝐹1(𝑥) + 𝐹2(𝑥) + 𝐹3(𝑥),      𝑥 ∈ 𝑅 

where 𝐹1, 𝐹2, 𝐹3 are nondecreasing and right continuous function, and 𝐹1 is purely discreate, 𝐹2is 

absolutely continuous, and 𝐹3 is singular. Each of  𝐹1, 𝐹2, 𝐹3 is unique up to an additive constant. 

𝐹 has at most countably many discontinuities, arising solely from possible jumps in the discreate 

component 𝐹1.  

Proof: Let F be a nondecreasing right continuous function defined on 𝑅 and 𝜇𝐹 its corresponding 

Lebesgue-Stieltjes measure on ℬ. Let 𝜇𝐹 = 𝜈1 + 𝜈2 + 𝜈3 be the decomposition of 𝜇𝐹 into its three 

components.  

If 𝜇𝐹 ≪ 𝑚, 𝐹 is said to be absolutely continuous with density function 

 𝑓 = 𝑑𝜇𝐹/𝑑𝑚.  

Since 𝜇𝐹{(𝑎, 𝑏]} < ∞  for all −∞ < 𝑎 < 𝑏 < ∞, it follows from the Radon-Nikodym Theorem 

that  

 (𝐹(𝑏) − 𝐹(𝑏) = 𝜇𝐹{(𝑎, 𝑏] } = ∫ 𝑓(𝑡)𝑑𝑡 = ∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎(𝑎,𝑏] 
 

Then, for each 𝑎 and for all 𝑥, 

𝐹(𝑥) = 𝐹(𝑎) + ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎

 

where we write ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
= −∫ 𝑓(𝑡)𝑑𝑡

𝑎

𝑥
 when 𝑥 < 𝑎 

If 𝐹 is continuous and 𝜇𝐹 ⊥ 𝑚, F is said to be (continuous) singular.  



 
 

Recall that 𝐹 is continuous if and only if 𝜇𝐹({𝑥}) = 0 for all 𝑥 ∈ 𝑅 . Thus,  𝐹 is singular means 

that 𝜇𝐹 ⊥ 𝑚  and 𝜇𝐹({𝑥}) = 0, for all 𝑥 ∈ 𝑅.  

 If 𝜇𝐹 is atomic (discreate), then 𝐹 is called discreate. 

Then 𝜇𝐹 (𝐶
𝑐)) = 0 for some countable set 𝐶 =  {𝑥𝑛}𝑛=1

∞  and for –∞ < 𝑎 < 𝑏 < ∞, 

𝐹(𝑏)–𝐹(𝑎) =  𝜇𝐹{(𝑎, 𝑏]} = 𝜇𝐹{(𝑎, 𝑏] ∩ 𝐶} = ∑ 𝜇𝐹({𝑥𝑛})

𝑎<𝑥𝑛<𝑏 

 

Thus if,   

𝑝𝑛 = 𝜇𝐹({𝑥𝑛}), 

 then 𝐹(𝑥)  =  𝐹(𝑎)  + ∑ 𝑝𝑛𝑎<𝑥𝑛<𝑏  for all 𝑥 ≥  𝑎. 

Therefore, by noting that 𝐹(𝑥) − 𝐹(0) = 𝐹1(𝑥) + 𝐹2(𝑥) + 𝐹3(𝑥)  and by adding the 

constant 𝐹(0) any of the 𝐹𝑖′s. Since each 𝜈𝑖 (𝑖 = 1,2,3) is unique and each 𝐹𝑖is unique up to an 

additive constant by above Theorem. 

Since 𝐹 has at most countably many (jump) discontinuities. This also follows from the 

above decomposition since each absolutely continuous and singular components of a Lebesgue–

Stieltjes measure have no atoms. Hence the only atoms arise from the discrete component.  

If we assume that 𝐹 is a distribution function, then the Decomposition of Distribution can 

be done by this theorem. 

Therefore, the decomposition of distribution function is purely discreate, absolutely continuous 

and singular. 

6.6  Density Function 

Suppose 𝑋 is a random variable on some probability space. If there exists ℎ ∈ 𝐿1(𝑅) (where  

𝐿1 (𝑅) will always refer to the vector space of real-valued F-measurable functions on Ω such that 

∫ | 𝑓 |𝑑𝑃 < ∞
Ω

 ) such that   

𝐹(𝑥) = ∫ ℎ𝑑𝜇
𝑥

−∞

 

 for all 𝑥 ∈ 𝑅, then ℎ is called the density function of 𝑋. 

Example:  Let 𝛼 > 0 and  



 
 

ℎ(𝑥) = {
0     ,    𝑥 < 0
𝛼𝑒−𝛼𝑥  , 𝑥 ≥ 0

 

Then this density function ℎ is called the exponential density on [0,∞).  

For the corresponding random variable 𝑋(𝑥) = 𝑥  for 𝑥 ∈ 𝑅, the distribution function  𝐹(𝑥) is 

given by 

𝐹(𝑥) = {
0    ,    𝑥 < 0

1 − 𝑒−𝛼𝑥    𝑥 ≥ 0
 

6.7  Absolutely Continuous and Singular Components 

The concept of absolute continuity for a real-valued function of a real variable is particularly 

important when studying the various forms of the Fundamental Theorem of Calculus for the 

Lebesgue integral. 

Definition: Let 𝑓: [𝑎, 𝑏] → 𝑅. Then the following definitions regarding 𝑓 

(i) Continuous: 𝑓  is continuous at 𝑥0 ∈ [𝑎, 𝑏]  if and if only if each 𝜖 > 0  there exists 𝛿 >

0 such that 𝑥 ∈ [𝑎, 𝑏] and |𝑥 − 𝑥0| < 𝛿 implies that |𝑓(𝑥) − 𝑓(𝑥0)| < 𝜖. 

(ii) Uniformly continuous: 𝑓 is uniformly continuous at [𝑎, 𝑏] if and if only if each 𝜖 > 0 there 

exists 𝛿 > 0 such that 𝑥, 𝑦 ∈ [𝑎, 𝑏] and |𝑥 − 𝑦| < 𝛿 implies that |𝑓(𝑥) − 𝑓(𝑦)| < 𝜖. 

(iii)Absolutely continuous: 𝑓  is absolutely continuous at [𝑎, 𝑏]  if and if only if each 𝜖 > 0 

there exists 𝛿 > 0 such that for each 𝑛 ∈ 𝑁 

𝑎 ≤ 𝑥1 < 𝑦1 ≤ 𝑥2 < 𝑦2 ≤ ⋯ ≤ 𝑥𝑛 < 𝑦𝑛 ≤ 𝑏 with ∑ (𝑦𝑖 − 𝑥𝑖) < 𝛿
𝑛
𝑖=1   

 implies that  

∑ |𝑓(𝑦𝑖) − 𝑓(𝑥𝑖)|
𝑛
𝑖=1 < 𝜖. 

Definition: (Singular Function). A function 𝑓: [𝑎, 𝑏] → 𝐶 or 𝑓: 𝑅 → 𝐶 is singular if 𝑓  is 

differentiable at almost every point in its domain and 𝑓 ′ = 0  almost everywhere, where 𝑓′ is the 

derivative of 𝑓. 

6.8  Self-Assessment Questions 



 
 

 

1 What is the fundamental concept behind the theory of distribution function in probability? 

2 Show that the product of two absolutely continuous functions on a closed finite interval [𝑎, 𝑏] 

is absolutely continuous. 

3 Let 𝑓(𝑥) = {
xn sin

2π

x
  if x ∈ (0, 1]

0                otherwise
  

where 𝑛 ∈  𝑁. Prove the following conclusions.  

a. 𝑓 is continuous at each point of [0, 1]. 

b. 𝑓 is uniformly continuous on [0, 1]. 

c. 𝑓 is not absolutely continuous on [0, 1] if n = 1 but f is absolutely continuous provided n > 

1. 

4 Suppose (Ω, 𝐹, 𝑃) is a probability space and 𝑋 is a random variable. Prove that the following 

are equivalent:  

(a)  𝐹 is a continuous function on R. 

(b) 𝐹 is a uniformly continuous function on R. 

(c) 𝑃(𝑋 = 𝑥) = 0 for every 𝑥 ∈ 𝑅. 

5 How is the distribution function of a random vector different from that of a single random 

variable? 

6 Let 𝑋 be a random variable with distribution function 

𝐹(𝑥) =

{
 
 

 
 

0     ,    𝑥 < 0
1

2
      ,   𝑥 = 0

1

2
+
𝑥

2
      , 0 < 𝑥 < 1

1        ,   1 ≤ 𝑥

 

Write the decomposition form of 𝐹(𝑥). 

7 By answering these questions, learners will be able to gauge their understanding of the unit's 

key concepts and their ability to apply them in various contexts. 

 

6.9   Summary 



 
 

The unit delved into the fundamental concepts of probability theory, starting with the core 

notion of probability distributions, which are pivotal in characterizing the likelihood of various 

outcomes in a random experiment. Distribution functions, often referred to as cumulative 

distribution functions, were also studied to have a comprehensive view of how probabilities 

accumulate for different values. The core concept of decomposition of distribution functions in 

purely discrete, absolutely continuous and singular components was covered in the unit, 

illuminating the various ways in which probabilities are distributed. Through this study, we gained 

insights into the probability distributions, distribution functions and decomposition of distribution 

functions. 
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7.1           Introduction 

   Probability inequalities are mathematical expressions that provide bounds or limits on the 

probabilities of certain events or random variables. These inequalities are fundamental tools in 

probability theory and statistics and are used to make statements about the likelihood of events 

occurring in various situations. The Cramér-Rao Inequality is a key idea in estimation theory 

because it limits the range of any unbiased estimator that is used to figure out a parameter. It is 

useful for judging how well estimators work because it sets a lower bound on the variance. On the 

other hand, Chebyshev's Inequality is a basic probability tool that tells how likely a random 

variable will be more than a certain number of standard deviations away from its mean. It shows 

how data likes to cluster around the mean. The Cauchy-Schwartz Inequality can be used in many 



 
 

ways to figure out the inner product of two random variables or vectors. Holder Inequality adds to 

what Cauchy-Schwartz can do by setting limits on the integrals of products of functions, which is 

very important in many areas, like probability theory and functional analysis. The Minkowski 

Inequality is an important part of measure theory, functional analysis, and probability. It shows 

that the norms of sums of random variables are related to the norms of their sums. This makes it a 

great tool for limiting the tails of probability distributions. Jensen's Inequality is a very important 

part of both convex analysis and probability theory and gives us a way to look at predictions by 

creating an inequality for the expected value of a random variable that is convex. This inequality 

can be used in many different situations. Also, the Lyapunov Inequality is used a lot in probability 

and statistics, which enables us to figure out the moments of a random variable by looking at the 

higher moments. The Kolmogorov Inequality is a key tool for figuring out the tail probabilities of 

the maximum of independent random variables and is also an important tool for understanding 

the extreme value theory and rare events. Lastly, the Hajek-Renyi Inequality is an important part 

of probability theory, especially considering big differences. It limits the chances of events 

deviating significantly from their expected values. This is useful for figuring out how likely 

extreme results will happen in different situations. 

 

7.2           Objectives 

By the end of this unit, the learner should be able to: 

• Understand the basic concept of inequalities in probability theory. 

• Describe the importance of Chebycheve’s Inequality. 

• Describe the role of C-R Inequality in the probability theory. 

• Understand the concept of convex function. 

• Understand the different inequalities with their applications. 

 

7.3      Chebychev’s Inequality 

 

Statement: It provides an upper bound to the probability that the absolute deviation of a random 

variable from its mean will exceed a given threshold. 



 
 

If 𝑋 is a random variable with mean 𝜇 and variance 𝜎2, then for 𝑘 > 0,  

𝑃{|𝑋 − 𝜇| ≥ 𝑘} ≤
𝜎2

𝑘2
 

or  

𝑃{|𝑋 − 𝜇| < 𝑘} ≥ 1 −
𝜎2

𝑘2
 

Proof: Consider  

𝜎2 = 𝑉𝑎𝑟(𝑋) 

= ∫ (𝑡 − 𝜇)2𝑓𝑋(𝑡)𝑑𝑡
∞

−∞

 

≥ ∫ (𝑡 − 𝜇)2𝑓𝑋(𝑡)𝑑𝑡
𝜇−𝑘

−∞
+ ∫ (𝑡 − 𝜇)2𝑓𝑋(𝑡)𝑑𝑡

∞

𝜇+𝑘
, 

Where the last line is by restricting the region over which we integrate a positive function. Then 

this is  

≥ ∫ 𝑘2𝑓𝑋(𝑡)𝑑𝑡
𝜇−𝑘

−∞
+ ∫ 𝑘2𝑓𝑋(𝑡)𝑑𝑡

∞

𝜇+𝑘
, 

Since 𝑡 ≤ 𝜇 − 𝑘 ⟹ 𝑘 ≤ |𝑡 − 𝑘| ⟹ 𝑘2 ≤ (𝑡 − 𝜇)2.  

But we rearrange and use the definition of density function to get  

= 𝑘2 (∫ 𝑓𝑋(𝑡)𝑑𝑡
𝜇−𝑘

−∞

+∫ 𝑓𝑋(𝑡)𝑑𝑡
∞

𝜇+𝑘

) 

= 𝑘2𝑃(𝑋 ≤ 𝜇 − 𝑘 𝑜𝑟 𝑋 ≥ 𝜇 + 𝑘) 

= 𝑘2𝑃(|𝑋 − 𝜇| ≥ 𝑘). 

Thus,  

𝜎2 ≥ 𝑘2𝑃(|𝑋 − 𝜇| ≥ 𝑘), 

And dividing through by 𝑘2 gives  

𝑃{|𝑋 − 𝜇| ≥ 𝑘} ≤
𝜎2

𝑘2
. 

Example: Suppose that we extract an individual at random from a population whose members have 

an average income of $40,000, with a standard deviation of $20,000. What is the probability of 

extracting an individual whose income is either less than $10,000 or greater than $70,000? In the 



 
 

absence of more information about the distribution of income, we cannot compute this probability 

exactly. However, we can use Chebyshev's inequality to compute an upper bound to it. 

Solution: If 𝑋 denotes income, then 𝑋 is less than $10,000 or greater than $70,000 if and only if  

|𝑋 − 𝜇| ≥ 𝑘 

where 𝜇 = 40,000 and 𝑘 = 30,000. 

The probability that this happens is: 

𝑃{|𝑋 − 𝜇| ≥ 𝑘} ≤
𝜎2

𝑘2
=
400,000,000

900,000,000
= 4/9 

Therefore, the probability of extracting an individual outside the income range $10,000-$70,000 

is less than 4/9. 

 

7.4       Cauchy-Schwartz Inequality 

Statement: If 𝑋 and 𝑌 are random variables taking real values then  

[𝐸(𝑋𝑌)]2 ≤ 𝐸(𝑋2)𝐸(𝑌2).                              (1) 

Proof: let us consider a real valued function of the real variable 𝑡, defined by  

𝑍(𝑡) = 𝐸(𝑋 + 𝑡𝑌)2 

which is always non-negative, since (𝑋 + 𝑡𝑌)2 ≥ 0, for all real 𝑋, 𝑌 and 𝑡. 

Thus       𝑍(𝑡) = 𝐸(𝑋 + 𝑡𝑌)2 ≥ 0   ∀ 𝑡. 

⟹ 𝑍(𝑡) = 𝐸[𝑋2 + 2𝑡𝑋𝑌 + 𝑡2𝑌2] 

                          = 𝐸(𝑋2) + 2𝑡𝐸(𝑋𝑌) + 𝑡2𝐸(𝑌2) ≥ 0, for all 𝑡. 

Obviously, 𝑍(𝑡)  is a quadratic expression in ′𝑡′ where 𝑡  is constant, i.e., not random. Clearly 

𝐸(𝑋 + 𝑡𝑌)2 ≥ 0 for all real values of 𝑡. Now recall that for 𝑎, 𝑏, 𝑐, the polynomial 𝑎𝑡2 + 𝑏𝑡 + 𝑐 

remains non-negative as 𝑡 changes if and only if 𝑎 ≥ 0 and the discriminant 𝑏2 − 4𝑎𝑐 ≤ 0. So 

𝑏2 − 4𝑎𝑐 = 4𝐸(𝑋𝑌)2 − 4𝐸(𝑋2)𝐸(𝑌2) 

So,     4𝐸(𝑋𝑌)2 − 4𝐸(𝑋2)𝐸(𝑌2) ≤ 0 

⟹ 𝐸(𝑋𝑌)2 − 𝐸(𝑋2)𝐸(𝑌2) ≤ 0 



 
 

⟹ 𝐸(𝑋𝑌)2 ≤ 𝐸(𝑋2)𝐸(𝑌2) 

Remark 1: The sign of equality holds in (1) if and only if 

 𝐸(𝑋 + 𝑡𝑌)2 = 0 ∀ 𝑡     ⟹       𝑃{(𝑋 + 𝑡𝑌)2 = 0} = 1. 

Remark 2: If the random variable 𝑋 takes the real values 𝑥1, 𝑥2, … , 𝑥𝑛 and the r.v. 𝑌 takes the real 

values 𝑦1, 𝑦2, … , 𝑦𝑛 then Cauchy-Schwartz inequality implies: 

(
1

𝑛
∑𝑥𝑖𝑦𝑖

𝑛

𝑖=1

)

2

≤ (
1

𝑛
∑𝑥𝑖

2

𝑛

𝑖=1

)(
1

𝑛
∑𝑦𝑖

2

𝑛

𝑖=1

)  

⟹  (∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1 )2 ≤ (∑ 𝑥𝑖

2𝑛
𝑖=1 )(∑ 𝑦𝑖

2𝑛
𝑖=1 ) 

The sign of equality holds if and only if 
𝑥𝑖

𝑦𝑖
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑘    ∀ 𝑖 = 1, 2, … , 𝑛. 

Remark 3: Replacing 𝑋 by |𝑋 − 𝐸(𝑋)| = |𝑋 − 𝜇𝑥|and taking 𝑌 = 1 in (*), we get 

[𝐸|𝑋 − 𝜇𝑥|]
2 ≤ 𝐸|𝑋 − 𝜇𝑥|

2. 𝐸(1) 

⟹ (Mean Deviation about mean)2 ≤ 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑋) 

⟹ M.D.≤ S.D.  

7.5        Holder’s Inequality 

Lemma: Let 𝑎, 𝑏 > 0  and 𝑝, 𝑞 > 1  satisfy 𝑝−1 + 𝑞−1 = 1.  Then 𝑝−1𝑎𝑝 + 𝑞−1𝑏𝑞 ≥ 𝑎𝑏  with 

equality if and only if 𝑎𝑝 = 𝑏𝑞. 

Proof: for fix 𝑏 > 0, let 𝑔(𝑎; 𝑏) = 𝑝−1𝑎𝑝 + 𝑞−1𝑏𝑞 − 𝑎𝑏. 

We require that 𝑔(𝑎;  𝑏) ≥ 0 for all 𝑎.  

Differentiating w.r.t. 𝑎 for fixed 𝑏 yields 

𝛿𝑔

𝛿𝑎
= 𝑎𝑝−1 − 𝑏=0 

⟹ 𝑎𝑝−1 = 𝑏 

so that 𝑔(𝑎;  𝑏) is minimized (the second derivative is strictly positive at all 𝑎) when 𝑎𝑝−1 = 𝑏, 

and at this value of 𝑎, the function takes the value  

𝑝−1𝑎𝑝 + 𝑞−1(𝑎𝑝−1)𝑞 − 𝑎𝑝 = 𝑝−1𝑎𝑝 + 𝑞−1𝑎𝑝 − 𝑎𝑝    



 
 

(using 𝑝−1 + 𝑞−1 = 1 which implies that 𝑝 + 𝑞 = 𝑝𝑞, so (𝑎𝑝−1)𝑞 = 𝑎𝑝𝑞−𝑞 = 𝑎𝑝) 

Now 
𝛿2𝑔

𝛿𝑎2
= (𝑝 − 1)𝑎(𝑝−2) > 0 

 As the second derivative is strictly positive at all 𝑎, the minimum is attained at the unique value 

of 𝑎 where 𝑎𝑝−1 = 𝑏, where, raising both sides to power 𝑞 yields 𝑎𝑝 = 𝑏𝑞. 

Theorem: (Holder’s Inequality):  Suppose 𝑋 and 𝑌 be two random variables and 𝑝, 𝑞 > 1 such 

that 𝑝−1 + 𝑞−1 = 1, then 

 |𝐸(𝑋𝑌)| ≤ 𝐸|𝑋𝑌| ≤ {𝐸|𝑋|𝑝}1/𝑝 {𝐸|𝑌|𝑞}1/𝑞. 

Proof:  we know that 

−|𝑋𝑌| ≤ 𝑋𝑌 ≤ |𝑋𝑌| 

⟹  𝐸{−|𝑋𝑌|} ≤ 𝐸(𝑋𝑌) ≤ 𝐸|𝑋𝑌|  

⟹  −𝐸{|𝑋𝑌|} ≤ 𝐸(𝑋𝑌) ≤ 𝐸|𝑋𝑌|  

(since if 𝑋 ≥ 0 then 𝐸(𝑋) ≥ 0 and if 𝑋 ≥ 𝑌 then 𝐸(𝑋) ≥ 𝐸(𝑌)) 

Therefore, |𝐸(𝑋𝑌)| ≤ 𝐸|𝑋𝑌|. 

Now to prove,  

𝐸|𝑋𝑌| ≤ {𝐸|𝑋|𝑝}1/𝑝 {𝐸|𝑌|𝑞}1/𝑞,  

In Lemma set 

 𝑎 =
|𝑋|

{𝐸|𝑋|𝑝}1/𝑝
      and      𝑏 =

|𝑌|

{𝐸|𝑌|𝑞}1/𝑞
, 

We get 

𝑝−1
|𝑋|𝑝

𝐸|𝑋|𝑝
+ 𝑞−1

|𝑌|𝑞

𝐸|𝑌|𝑞
≥

|𝑋𝑌|

{𝐸|𝑋|𝑝}1/𝑝{𝐸|𝑌|𝑞}1/𝑞
 

Taking expectations on both sides, we get  

𝑝−1
𝐸|𝑋|𝑝

𝐸|𝑋|𝑝
+ 𝑞−1

𝐸|𝑌|𝑞

𝐸|𝑌|𝑞
≥

𝐸|𝑋𝑌|

{𝐸|𝑋|𝑝}1/𝑝{𝐸|𝑌|𝑞}1/𝑞
 

⟹ 𝑝−1 + 𝑞−1 ≥
𝐸|𝑋𝑌|

{𝐸|𝑋|𝑝}1/𝑝{𝐸|𝑌|𝑞}1/𝑞
  

⟹ 𝐸|𝑋𝑌| ≤ {𝐸|𝑋|𝑝}1/𝑝{𝐸|𝑌|𝑞}1/𝑞.  



 
 

Remark: if 𝑝 = 𝑞 = 2, then 𝐸|𝑋𝑌| ≤ √𝐸|𝑋|2𝐸|𝑌|2 which is Chauchy-Schwartz inequality. 

7.6         Minkowski Inequality  

Statement: Let 𝑋 and 𝑌 be two random variables and 1 < 𝑝 < ∞. Then  

{𝐸|𝑋 + 𝑌|𝑝}1/𝑝 ≤ {𝐸|𝑋|𝑝}
1

𝑝 + {𝐸|𝑌|𝑝}
1

𝑝. 

Proof: By the triangle inequality |𝑋 + 𝑌| ≤ |𝑋| + |𝑌| 

Multiply both sides by |𝑋 + 𝑌|𝑝−1, we get 

|𝑋 + 𝑌||𝑋 + 𝑌|𝑝−1 ≤ |𝑋||𝑋 + 𝑌|𝑝−1 + |𝑌||𝑋 + 𝑌|𝑝−1 

⟹ |𝑋 + 𝑌|𝑝 ≤ |𝑋||𝑋 + 𝑌|𝑝−1 + |𝑌||𝑋 + 𝑌|𝑝−1 

Taking expectation on both sides, we get 

𝐸|𝑋 + 𝑌|𝑝 ≤ 𝐸{|𝑋||𝑋 + 𝑌|𝑝−1} + 𝐸{|𝑌||𝑋 + 𝑌|𝑝−1} 

Now using Holder’s inequality on right hand side, we have 

𝐸|𝑋 + 𝑌|𝑝 ≤ {𝐸|𝑋|𝑝}
1
𝑝{𝐸|𝑋 + 𝑌|(𝑝−1)𝑞}

1/𝑞
+ {𝐸|𝑌|𝑝}

1
𝑝{𝐸|𝑋 + 𝑌|(𝑝−1)𝑞}

1/𝑞
 

⟹ 
𝐸|𝑋+𝑌|𝑝

{𝐸|𝑋+𝑌|(𝑝−1)𝑞}
1
𝑞

≤ [{𝐸|𝑋|𝑝}
1

𝑝 + {𝐸|𝑌|𝑝}
1

𝑝] 

⟹
𝐸|𝑋+𝑌|𝑝

{𝐸|𝑋+𝑌|𝑝}
1−
1
𝑝

≤ [{𝐸|𝑋|𝑝}
1

𝑝 + {𝐸|𝑌|𝑝}
1

𝑝]          

  (since, 𝑝−1 + 𝑞−1 = 1 ⟹ (𝑝 − 1)𝑞 = 𝑝)) 

⟹ 𝐸|𝑋 + 𝑌|𝑝 ≤ [{𝐸|𝑋|𝑝}
1
𝑝 + {𝐸|𝑌|𝑝}

1
𝑝] 

Continuous Convex Function: A continuous function 𝑔(𝑥) on the interval 𝐼 is convex if for 

every 𝑥1 and 𝑥2,
𝑥1+𝑥2

2
∈ 𝐼, we have  

𝑔 (
𝑥1 + 𝑥2
2

) ≤
1

2
𝑔(𝑥1) +

1

2
𝑔(𝑥2) 



 
 

7.7          Jensen’s Inequality 

Statement:   If 𝑔 is a continuous and convex function on the interval 𝐼, and 𝑋 is a random variable 

whose values are in 𝐼 with probability 1, then 

𝐸[𝑔(𝑋)] ≥ 𝑔[𝐸(𝑋)],  

provided the expectations exists. 

Proof: Let 𝑙(𝑋) be tangent to 𝑔(𝑋). Let 𝑔(𝑋) = 𝑎 + 𝑏𝑋 for some 𝑎 and 𝑏. 

Since 𝑔(𝑋) is convex, then 

 𝑔(𝑋) ≥ 𝑙(𝑋) = 𝑎 + 𝑏𝑋 

⟹    𝑔(𝑋) ≥ 𝑎 + 𝑏𝑋 

⟹ 𝐸[𝑔(𝑋)] ≥ 𝑎 + 𝑏𝐸(𝑋) 

= 𝑙(𝐸(𝑥)) = 𝑔(𝐸(𝑥)) 

Hence, 𝐸[𝑔(𝑋)] ≥ 𝑔(𝐸(𝑥)). 

Corollary to Jensen’s Inequality: If 𝑔is a continuous and concave function on the interval 𝐼, and 

𝑋 is a random variable whose values are in 𝐼 with probability 1, then  

𝐸[𝑔(𝑋)] ≤ 𝑔[𝐸(𝑋)], 

provided the expectations exists. 

For example,  

• 𝑔(𝑥) = 𝑥2is convex function then 𝐸(𝑋2) ≥ {𝐸(𝑋)}2.  

• 𝑔(𝑥) = log 𝑥 is a concave function then 𝐸{log(𝑋)} ≤ log{𝐸(𝑋)}. 

7.8       Lyapunov Inequality 

Statement: Suppose 𝑋 and 𝑌  be two random variables and 𝑝, 𝑞 > 1 such that 𝑝−1 + 𝑞−1 = 1, 

then 

 {𝐸|𝑋|𝑟}1/𝑟 ≤ {𝐸|𝑋|𝑠}1/𝑠 for 1 < 𝑟 < 𝑠 < ∞. 

Proof: Put 𝑌 = 1  with probability 1 in Holder’s inequality. Then for 1 < 𝑝 < ∞,  



 
 

𝐸|𝑋| ≤ {𝐸|𝑋|𝑝}
1
𝑝.  

Let 1 < 𝑟 < 𝑝. Then 

𝐸|𝑋|𝑟 ≤ {𝐸|𝑋|𝑝𝑟}
1
𝑝 

and letting 𝑠 = 𝑝𝑟 > 𝑟 yields 

𝐸|𝑋|𝑟 ≤ {𝐸|𝑋|𝑠}
𝑟
𝑠  

So that  

{𝐸|𝑋|𝑟}1/𝑟 ≤ {𝐸|𝑋|𝑠}
𝑟

𝑠 for 1 < 𝑟 < 𝑠 < ∞. 

7.9      Kolmogorov Inequality 

Statement: Suppose  𝑋1, 𝑋2, … , 𝑋𝑛 are independent with 𝐸(𝑋𝑖) = 0 and     𝑉𝑎𝑟(𝑋𝑖) < ∞. 𝑆𝑗 =

𝑋1 +⋯+ 𝑋𝑗. Then, 

𝑃 (max
1≤𝑗≤𝑛

|𝑆𝑗| ≥ 𝜖) =
𝑣𝑎𝑟(𝑆𝑛)

𝜖2
. 

Proof: Let 𝑇 = min{𝑗 ≤ 𝑛: |𝑆𝑗| ≥ 𝜖}, with minimum of empty set being ∞. Then, {𝑇 ≤ 𝑗} or    

 {𝑇 = 𝑗} only depends on 𝑋1, … , 𝑋𝑗 and as a result   

{𝑇 ≥ 𝑗} = {𝑇 ≤ 𝑗 − 1}𝑐 = {𝑆𝑖 ≤ 𝜖, 1 ≤ 𝑖 ≤ 𝑗 − 1} 

Only depends on 𝑋1, … , 𝑋𝑗−1 and therefore is independent of 𝑋𝑗, 𝑋𝑗+1,….  

Write,  

𝑃 (max
1≤𝑗≤𝑛

|𝑆𝑗| ≥ 𝜖) = 𝑃(𝑇 ≤ 𝑛) ≤ 𝜖
−2𝐸(|𝑆𝑟|

21{𝑇≤𝑛}) ≤ 𝜖
−2𝐸(|𝑆𝑇Λ𝑛|

2) 

= 𝜖−2𝐸(|∑𝑋𝑗

𝑇Λ𝑛

𝑗=1

|

2

) = 𝜖−2𝐸 (|∑𝑋𝑗1{𝑇≥𝑗}

𝑛

𝑗=1

|

2

) 

                = 𝜖−2 {𝐸 (∑𝑋𝑗
21{𝑇≥𝑗}

𝑛

𝑗=1

) + 2 ∑ 𝐸(𝑋𝑗𝑋𝑖1{𝑇≥𝑗}1{𝑇≥𝑖}

𝑛

1≤𝑖≤𝑗≤𝑛

} 

                           = 𝜖−2 {∑𝐸(𝑋𝑗
2)𝑃(𝑇 ≥ 𝑗)

𝑛

𝑗=1

+ 2 ∑ 𝐸(𝑋𝑗)𝐸(𝑋𝑖1{𝑇≥𝑗}1{𝑇≥𝑖}

𝑛

1≤𝑖≤𝑗≤𝑛

) } 



 
 

= 𝜖−2∑𝐸(𝑋𝑗
2)𝑃(𝑇 ≥ 𝑗)

𝑛

𝑗=1

+ 0 

≤
𝑣𝑎𝑟(𝑆𝑛)

𝜖−2
. 

 

7.10    Hajck-Renyki Inequality 

Statement: Let {𝑋𝑛, 𝑛 ≥ 1} be an associated sequence of random variables with 𝑉𝑎𝑟(𝑋𝑗) = 𝜎𝑗
2 

and {𝑏𝑛, 𝑛 ≥ 1} be a positive non-decreasing sequence of real numbers. Then, for any 𝜖 > 0,  

𝑃 { max
1≤𝑘≤𝑛

|
1

𝑏𝑛
∑ [𝑋 − 𝐸(𝑋𝑖)]
𝑘
𝑖=1 | ≥ 𝜖} ≤ 4𝜖−2 {∑

𝑉𝑎𝑟(𝑋𝑗)

𝑏𝑗
2 + ∑

𝐶𝑜𝑣(𝑋𝑗,𝑋𝑘)

𝑏𝑗𝑏𝑘
1≤𝑗≠𝑘≤𝑛

𝑛
𝑗=1 }  

Proof: Let 𝑌𝑗 = 𝑏𝑗
−1[𝑋 − 𝐸(𝑋𝑖)]. It is clear that {𝑌𝑛, 𝑛 ≥ 1} is a zero mean associated sequence. 

Let 𝑆𝑛 = ∑ [𝑋 − 𝐸(𝑋𝑖)]
𝑛
𝑗=1 , 𝑛 ≥ 1. Let 𝑏0 = 0.  

Note that 𝑆𝑘 = ∑ 𝑏𝑗𝑌𝑗
𝑘
𝑗=1 = ∑ (∑ (𝑏𝑖 − 𝑏𝑖−1)

𝑗
𝑖=1 )𝑌𝑗

𝑘
𝑗=1   

 = ∑ (𝑏𝑖 − 𝑏𝑖−1)
𝑘
𝑖=1 (∑ 𝑌𝑗

𝑘
𝑗=𝑖 )  

Since 𝑏𝑘
−1∑ (𝑏𝑖 − 𝑏𝑖−1) = 1

𝑘
(𝑖=1) , it follows that 

[|
𝑆𝑘

𝑏𝑘
| ≥ 𝜀] ⊂ [max

1≤𝑖≤𝑘
|∑ 𝑌𝑗
𝑘
𝑗=𝑖 | ≥ 𝜀]  

and hence  

[ max
1≤𝑘≤𝑛

|
𝑆𝑘

𝑏𝑘
| ≥ 𝜀] ⊂ [ max

1≤𝑘≤𝑛
max
1≤𝑖≤𝑘

|∑ 𝑌𝑗
𝑘
𝑗=𝑖 | ≥ 𝜀]  

 = [ max
1≤𝑖≤𝑘≤𝑛

|∑ 𝑌𝑗 − ∑ 𝑌𝑗
𝑖
𝑗=1

𝑘
𝑗=1 | ≥ 𝜀] ⊂ [max

1≤𝑖≤𝑛
|∑ 𝑌𝑗
𝑖
𝑗=1 | ≥

𝜀

2
].  

Therefore, 

 𝑃 ( max
1≤𝑘≤𝑛

|
𝑆𝑘

𝑏𝑘
| ≥ 𝜀) ≤ 𝑃 (max

1≤𝑖≤𝑛
|∑ 𝑌𝑗
𝑖
𝑗=1 | ≥

𝜀

2
).  



 
 

Applying the Chebyschev’s inequality, we get that 

 𝑃 ( max
1≤𝑘≤𝑛

|
𝑆𝑘

𝑏𝑘
| ≥ 𝜀) ≤ 4𝜀−2𝐸 (max

1≤𝑖≤𝑛
|∑ 𝑌𝑗
𝑖
𝑗=1 |

2
).  

We now apply the Kolmogorov-type inequality, for the expression on right-hand side of the above 

inequality, valid for partial sums of associated random variables {𝑌𝑗 , 1 ≤ 𝑗 ≤ 𝑛} with mean zero. 

Hence, we have 

 𝑃 ( max
1≤𝑘≤𝑛

|
𝑆𝑘

𝑏𝑘
| ≥ 𝜀) ≤ 4𝜀−2𝐸[∑ 𝑌𝑗

𝑛
𝑗=1 ]

2
 

         = 4𝜀−2𝑉𝑎𝑟[∑ 𝑌𝑗
𝑛
𝑗=1 ]  

            = 4𝜀−2{∑ 𝑉𝑎𝑟(𝑌𝑗)
𝑛
𝑗=1 + ∑ 𝐶𝑜𝑣(𝑌𝑗 , 𝑌𝑘)1≤𝑗≠𝑘≤𝑛 }  

             = 4𝜀−2 {∑
𝑉𝑎𝑟(𝑋𝑗)

𝑏𝑗
2 

𝑛
𝑗=1 + ∑

𝐶𝑜𝑣(𝑋𝑗,𝑋𝑘)

𝑏𝑗𝑏𝑘
1≤𝑗≠𝑘≤𝑛 }.  

From the non-decreasing positive property of the sequence {𝑏𝑛, 𝑛 ≥ 1}, it follows that 

𝑃 ( max
1≤𝑘≤𝑛

|
1

𝑏𝑛
∑ [𝑋𝑖 − 𝐸(𝑋𝑖)]
𝑘
𝑖=1 | ≥ 𝜀) ≤ 4𝜀−2 {∑

𝑉𝑎𝑟(𝑋𝑗)

𝑏𝑗
2

𝑛
𝑗=1 + ∑

𝐶𝑜𝑣(𝑋𝑗,𝑋𝑘)

𝑏𝑗𝑏𝑘
1≤𝑗≠𝑘≤𝑛 }  

Proving the Hajck-Renyki Inequality.  

 

7.11    C-R Inequality 

Likelihood Function: Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 have a joint density function 𝑓(𝑋1, 𝑋2, . . . , 𝑋𝑛|𝜃), where 

𝜃 is the parameter. Given 𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . , 𝑋𝑛 = 𝑥𝑛 is observed, the function of 𝜃 defined by  

𝐿(𝜃) = 𝐿(𝜃|𝑥1, 𝑥2, … , 𝑥𝑛) =  𝑓(𝑥1, 𝑥2, … , 𝑥𝑛|𝜃) 

is called the likelihood function. 

Regularity conditions for Cramer-Rao Inequality 

(i) The parameter space Θ is a non degenerate open interval on the real line 𝑅(−∞,∞). 

(ii) For almost all 𝑥 = (𝑥1, 𝑥2… , 𝑥𝑛) and for all 𝜃 ∈ Θ,  

𝜕

𝜕𝜃
𝐿(𝑥, 𝜃)  



 
 

exists and is independent 𝜃. 

(iii)The range of integration is independent of the parameter 𝜃, so that 𝑓(𝑥, 𝜃) is differentiable 

under integral sign.  

If range is not independent of 𝜃 and 𝑓 is zero at the extremes of the range i.e., 𝑓(𝑎, 𝜃) =

0 = 𝑓(𝑏, 𝜃), then 

𝜕

𝜕𝜃
∫ 𝑓 𝑑𝑥 =
𝑏

𝑎

∫
𝜕𝑓

𝜕𝜃
𝑑𝑥 − 𝑓(𝑎, 𝜃)

𝜕𝑎

𝜕𝜃
+ 𝑓(𝑏, 𝜃)

𝜕𝑏

𝜕𝜃
  

𝑏

𝑎

 

⇒
𝜕

𝜕𝜃
∫ 𝑓 𝑑𝑥 = ∫

𝜕𝑓

𝜕𝜃
𝑑𝑥

𝑏

𝑎
,

𝑏

𝑎
since 𝑓(𝑎, 𝜃) = 0 = 𝑓(𝑏, 𝜃). 

(iv) The conditions of uniform convergence of integrals are satisfied so that differentiation 

under the integral sign is valid. 

(v) 𝐼(𝜃) = 𝐸 [{
𝜕

𝜕𝜃
log 𝐿(𝑥, 𝜃)}

2

], exists and is positive for all 𝜃 ∈ Θ. 

Statement: If 𝑡 is an unbiased estimator for 𝛾(𝜃), a function of parameter 𝜃, then  

𝑉𝑎𝑟(𝑡) ≥
{
𝜕
𝜕𝜃
𝛾(𝜃)}

𝐸 (
𝜕
𝜕𝜃
log 𝐿)

2 =
{𝛾′(𝜃)}2

𝐼(𝜃)
 

where 𝐼(𝜃) is the information on 𝜃, supplied by the sample. 

In other words, Cramer-Rao inequality provides a lower bound 
{𝛾′(𝜃)}

2

𝐼(𝜃)
, to the variance of an 

unbiased estimator of 𝛾(𝜃). 

Proof: Let 𝑋 be a random variable having the p.d.f.  𝑓(𝑥, 𝜃) and let 𝐿 be the likelihood function 

of the random sample (𝑥1, 𝑥2, … 𝑥𝑛) from this population. Then  

 𝐿 = 𝐿(𝑥, 𝜃) = ∏ 𝑓(𝑥𝑖, 𝜃)
𝑛
𝑖=1  

Since 𝐿 is the joint p.d.f. of (𝑥1, 𝑥2, … 𝑥𝑛), then 

∫ 𝐿(𝑥, 𝜃)𝑑𝑥 = 1 



 
 

where ∫ 𝑑𝑥 = ∫ ∫…∫ 𝑑𝑥1𝑑𝑥2…𝑑𝑥𝑛 

Differentiating with respect to 𝜃   and using regularity conditions given above, we get 

∫
𝜕

𝜕𝜃
𝐿 𝑑𝑥 = 0 

⇒ ∫ (
𝜕

𝜕𝜃
log 𝐿) 𝑑𝑥 = 0 

⇒ 𝐸 (
𝜕

𝜕𝜃
log 𝐿) = 0                (2) 

Now, let 𝑡 = 𝑡(𝑥1, 𝑥2, … , 𝑥𝑛) be an unbaised estimator of 𝛾(𝜃) such that 

𝐸(𝑡) = 𝛾(𝜃) 

⇒ ∫ 𝑡 𝐿 𝑑𝑥 = 𝛾(𝜃) 

Differentiating with respect to 𝜃, we get 

∫ 𝑡
𝜕𝐿

𝜕𝜃
𝑑𝑥 = 𝛾′(𝜃) 

⇒ ∫ (
𝜕

𝜕𝜃
log 𝐿) 𝐿 𝑑𝑥 = 𝛾′(𝜃) 

⇒ 𝐸 (𝑡 
𝜕

𝜕𝜃
log 𝐿) = 𝛾′(𝜃) 

𝐶𝑜𝑣 (𝑡,
𝜕

𝜕𝜃
log 𝐿) = 𝐸 (𝑡 

𝜕

𝜕𝜃
log 𝐿) − 𝐸(𝑡)𝐸 (

𝜕

𝜕𝜃
log 𝐿) = 𝛾′(𝜃) 

We have 

[𝑟(𝑋, 𝑌)]2 ≤ 1 

⇒ [𝐶𝑜𝑣 (𝑡,
𝜕

𝜕𝜃
log 𝐿)]

2

≤ 𝑉𝑎𝑟(𝑋)𝑉𝑎𝑟(𝑌) 



 
 

∴ [𝐶𝑜𝑣 (𝑡,
𝜕

𝜕𝜃
log 𝐿)]

2

≤ 𝑉𝑎𝑟 (𝑡)𝑉𝑎𝑟 (
𝜕

𝜕𝜃
log 𝐿) 

⇒ [𝛾′(𝜃)]2 ≤ 𝑉𝑎𝑟 (𝑡) [𝐸 {
𝜕

𝜕𝜃
log 𝐿}

2

− {𝐸 (
𝜕

𝜕𝜃
log 𝐿)}

2

] 

⇒ [𝛾′(𝜃) ≤ 𝑉𝑎𝑟(𝑡)]𝐸 {
𝜕

𝜕𝜃
log 𝐿}

2

 

⇒ 𝑉𝑎𝑟(𝑡) ≥
[𝛾′(𝜃]2

𝐸 {
𝜕
𝜕𝜃
log 𝐿}

2 

Which is Cramer-Rao inequality. 

Remark 1: If 𝑡 is an unbiased estimator of parameter 𝜃 i.e., 𝛾(𝜃) = 𝜃 then 𝛾′(𝜃) = 1, 

𝑉𝑎𝑟(𝑡) ≥
1

𝐸 (
𝜕
𝜕𝜃
log 𝐿)

2 =
1

𝐼(𝜃)
 

where 𝐼(𝜃) = 𝐸 {(
𝜕

𝜕𝜃
log 𝐿)

2

} is called by R.A. Fisher as the amount of information on 𝜃 supplied 

by the sample (𝑥1, 𝑥2, … , 𝑥𝑛) and its reciprocal 1/𝐼(𝜃), as the information limit to the variance of 

estimator 𝑡 = 𝑡(𝑥1, 𝑥2, … , 𝑥𝑛).  

Remark 2: An estimator T is said to be unbiased estimator of 𝛾(𝜃) if 𝐸(𝑇) = 𝛾(𝜃). 

7.12  Self-Assessment Questions 

 

1 What is the importance of various inequalities in probability theory? 

2 Suppose a fair coin is tossed 50 times. The bound on the probability that the number of heads 

will be greater than 35 or less than 15 can be found using Chebyshev's Inequality.  

3 Let X be a random variable such that 𝐸(𝑋) = 0 and 𝑃(−3 < 𝑋 < 2) =
1

2
. Find the bound of 

its variance. 



 
 

4 Let 𝑋 be a random variable such that 𝐸(𝑋) = 1 and 𝑉𝑎𝑟(𝑋) = 1. Find a lower bound to the 

probability 𝑃 ≥ 3). 

5 Define the term "convex function". 

6 Explain what is means of unbiased estimator.  

7 By answering these questions, learners will be able to gauge their understanding of the unit's 

key concepts and their ability to apply them in various contexts. 

 

7.13   Summary 

The unit “Probability Inequalities” covered a diverse array of inequalities such as CR-

Inequality, Chebyshev's Inequality, Cauchy-Schwartz Inequality, Holder Inequality, Minkowski 

Inequality, Jensen Inequality, Lyapunov Inequality, Kolmogorov Inequality, and Hajck-Renyki 

Inequality, which serve as valuable tools for understanding the distribution and properties of 

random variables.  

Studying these inequalities provides the concepts of bounds, relationships, and constraints, 

contributing to a deeper understanding of probability distributions, moments, and statistical 

analysis. Studying these inequalities is indispensable in various contexts, as they allow us to derive 

meaningful conclusions and make informed decisions in probability and statistics. 
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Block & Units Introduction 

 

The Block - III – Convergence, Characteristics Function and Limit Theorems has four 

units.   

Unit – 8 – Convergence dealt with Sequences of distribution functions, weak and complete 

convergence of sequence of distribution function, Different types of convergence of sequence of 

random variables distribution function of random vectors. 

 

Unit –9 – Law of Large Numbers, comprises the Weak Law of Large Numbers (WLLN), 

Strong Law of Large Numbers (SLLN), Khinchin’s Theorem, Borel Zero-One Law, Borel-Cantelli 

Lemmas.  

 

In Unit – 10 – Characteristic Function, we have discussed the Helly – Bray Lemma and 

Theorem, Weak Compactness Theorem, Kolmogorav Theorems, Characteristic Function, 

Inversion Theorem, Continuity Theorem, Uniqueness Theorem. 

 

The Unit – 11 – Central Limit Theorems discussed One Dimensional Central Limit 

Problem: Lindeberg-Levy, Lyapunov, Lindeberg-Feller Theorems. 

 

At the end of every unit the summary, self-assessment questions and further readings are 

given.  

  



 
 

UNIT:8    CONVERGENCE  

Structure 

8.1          Introduction 

8.2          Objectives 

8.3          Sequence of Distribution Functions 

8.3.1    Supporting Lemmas and Results 

8.4          Weak and Complete Convergence of Sequence of Distribution Functions 

8.4.1 Weak Convergence (Convergence in Distribution) 

8.4.2 Complete Convergence 

8.4.3 Supporting Results 

8.5          Different Types of Convergence of Sequence of Random Variable 

8.5.1 Almost Sure Convergence or Convergence Almost Everywhere 

8.5.2 Convergence in Probability 

8.5.2.1 Supporting Results 

8.5.3 Convergence in Mean 

8.5.3.1 Supporting Results 

8.5.4 Convergence in Distribution or Weak Convergence 

8.5.4.1 Supporting Results and Theorems 

8.6         Distribution Function of Random Vectors 

8.7         Self-Assessment Questions 

8.8        Summary 

8.9         References 

8.10       Further Reading  

8.1           Introduction 

   In the fascinating world of probability and statistics, the idea of convergence stands as one 

of the cornerstone concepts. At its core, convergence deals with understanding how certain 



 
 

mathematical entities, primarily sequences, approach a specific value or behavior as they advance. 

But why is such a concept vital? 

Imagine making repeated measurements in an experiment. As you accumulate data, you'd 

expect your conclusions or results to stabilize or 'converge' to a certain truth. Similarly, in 

probability, as we gather more data or consider more trials, we expect our outcomes to settle down 

to a particular behavior. This 'settling down' is encapsulated by the notion of convergence. 

In the context of random variables, which can be thought of as unpredictable quantities 

driven by chance, understanding convergence is akin to predicting how these quantities will 

behave as the number of trials or observations increases. This predictability can be crucial, 

especially when making decisions based on these variables. 

In this unit, our journey begins with sequences of distribution functions, which capture the 

probabilistic behavior of sequences of random variables. We will dive deep into understanding 

how these sequences stabilize or converge. In doing so, we will encounter different 'flavors' of 

convergence, each with its distinct characteristics and implications. From the weak convergence, 

which concerns the convergence of distributions, to the almost sure convergence, which delves 

into almost certain outcomes, our exploration will be both broad and deep. 

Furthermore, as we dive deeper, we'll encounter the realm of random vectors. Unlike a 

single random variable, which can be visualized as a singular uncertain quantity, random vectors 

represent multiple such quantities simultaneously. How do these vectors behave in tandem? What 

does convergence mean in this multi-dimensional setting? 

So, as we embark on this exploration of convergence, we are not just studying an abstract 

mathematical concept. We are gearing up to understand the very behavior and essence of 

randomness and uncertainty, and how they manifest themselves in the face of increasing trials or 

observations. Buckle up for a deep dive into the heart of probability theory! 

8.2           Objectives 

By the end of this unit, the learner should be able to: 

• Understand the basic concept of convergence in probability theory. 

• Distinguish between sequence of distribution functions and sequence of random variables. 

• Describe the difference between weak and complete convergence. 



 
 

• Identify various types of convergence for sequences of random variables. 

• Understand the distribution function of random vectors. 

 

8.3          Sequence of Distribution Functions 

In probability and statistics, distribution functions (or cumulative distribution functions, 

CDFs) give the probability that a random variable is less than or equal to a particular value. When 

we talk about a sequence of distribution functions, we are considering a series of such functions, 

each one corresponding to a different random variable or distribution. 

Main Concept: Think of each distribution function in the sequence as representing the probability 

distribution of a different group of people's heights. As you move through the sequence, you might 

be looking at groups from different towns, countries, or even different time periods. The sequence 

can tell you how the overall pattern (or distribution) of heights changes from one group to the next. 

1. Convergence of Distribution Functions: If, for every value (like a specific height), the 

probability of being less than or equal to that value gets closer and closer for each group in the 

sequence, then the sequence of distribution functions is said to converge. 

Example: Suppose you're studying the heights of high school graduates over several decades. If 

over time, the probability of finding a student taller than 6 feet increases and gets closer to a 

specific value (say 20%), then the sequence of distribution functions representing the heights of 

students over the decades is converging at the 6 feet mark. 

2. Pointwise Convergence: If a sequence of distribution functions converges for a particular value 

(like a specific height), then it is said to have pointwise convergence at that height. 

Example: Using the above high school graduates’ example, if the sequence is converging only at 

6 feet but not necessarily at other heights, then it has pointwise convergence at 6 feet. 

3. Uniform Convergence: If a sequence of distribution functions converges for all values (all 

possible heights) simultaneously, it's said to have uniform convergence. 



 
 

Example: If for our high school graduates, the sequence is converging not just at 6 feet but at 5 

feet, 5.5 feet, 6.5 feet, and so on (for every possible height), then the sequence has uniform 

convergence. 

Definition: 

 A sequence of distribution functions refers to an ordered set of cumulative distribution 

functions (CDFs). Let us say {𝐹𝑛} is a sequence of distribution functions. For each n, 𝐹𝑛(𝑥)gives 

the probability that the random variable associated with that distribution function is less than or 

equal to 𝑥. That is, for each 𝑛, 

𝐹𝑛(𝑥) = 𝑃(𝑋𝑛 ≤ 𝑥) 

Where {𝑋𝑛} is the sequence of random variables associated with {𝐹𝑛}. 

Properties:  

Since each 𝐹𝑛 is a distribution function, it will have the standard properties of any cdf 

• 0 ≤ 𝐹𝑛 ≤ 1 

• 𝐹𝑛 is non-decreasing. 

• log𝑥→−∞ 𝐹𝑛(𝑥) = 0, and log𝑥→∞ 𝐹𝑛(𝑥) = 1 

• 𝐹𝑛 is right continuous, meaning for any point 𝑥, log𝑦→𝑥 𝐹𝑛(𝑦) = 𝐹𝑛(𝑥). 

8.3.1     Supporting Lemmas and Results 

Monotonicity: Distribution functions are non-decreasing. This means that as you move to 

higher values (like taller heights), the probability can't decrease. The probability of someone 

being less than 5 feet is obviously lower than the probability of someone being less than 6 feet. 

Right Continuity: If you consider any specific height, and then think about heights just a tiny 

bit taller, the probability won't suddenly jump up. It might stay the same or increase slightly, 

but it won't make abrupt jumps. 

Boundedness: Distribution functions are always between 0 and 1, inclusive. This means that 

the probability of a person having a height less than or equal to any value will always be 

between 0% and 100%. 



 
 

In practice, these ideas about sequences of distribution functions can be very useful. For 

example, statisticians might use them to study how certain characteristics of populations 

change over time or across different contexts. Understanding whether a sequence of 

distribution functions converges, and in what way, can provide insights into underlying trends 

or patterns in the data. 

8.3.2         Convergence 

One of the central interests regarding a sequence of distribution functions is whether it 

converges to another distribution function. There are different modes of convergence, like weak 

convergence and complete convergence, which we discussed previously. 

Convergence basically means that elements (or values) in a sequence get closer and closer to a 

particular value as we progress further in the sequence. 

1. Simple Numerical Sequence: 

Consider the sequence: 
1

2
,
3

4
,
5

6
, … 

As you can see, each term is just a bit less than 1 and gets closer and closer to 1 as we keep 

progressing. So, we say that this sequence converges to 1. 

Simply it can understand as, it is like trying to reach a destination, and with each step, you are 

covering half the remaining distance. You are getting very close, but technically, you will never 

quite reach it. However, for all practical purposes, you are converging to that destination. 

2. Real-world Example - Zooming In On a Picture: 

Imagine you are looking at a digital picture of a vast landscape on your computer, and you 

decide to zoom in on a specific tree. Each time you zoom in, the tree takes up a larger and larger 

portion of your screen. If you could zoom in infinitely, the entire screen would essentially be filled 

by that tree. So, as the number of zooms increases, the proportion of the screen filled by the tree 

converges to 100%. 

3. Functional Convergence - Cooking on a Stove: 

Imagine you are heating a pot of water on a stove. At the start, the temperature of the water 

might be at room temperature, say 20°C. As time progresses and you continue heating, the 



 
 

temperature rises: 30°C, 40°C, 80°C, 90°C, and so on. If you are aiming to boil the water, it will 

tend to reach but never exceed 100°C (at standard atmospheric pressure). In this case, the 

temperature of the water is converging to 100°C. 

4. Geometric Example - Drawing a Triangle Inside a Circle: 

Imagine a circle, and inside that circle, you draw a triangle (3 sides). Now, increase the 

number of sides: draw a square (4 sides), then a pentagon (5 sides), and so on. As you increase the 

number of sides indefinitely, the shape you draw starts looking more and more like the circle itself. 

In this sense, the perimeter of these shapes is converging to the circumference of the circle. 

5. Convergence in Technology - Data Streaming: 

Imagine you are streaming a video online. At first, due to slower internet, the video might 

start in low resolution. But as the buffer builds up and the internet catches up, the video quality 

improves, moving to 480p, then 720p, and then to 1080p. Here, the video quality is converging to 

its highest available resolution as time progresses and the conditions (internet speed) improve. 

In all these examples, the idea is the same: As you progress (whether through a sequence, 

over time, by zooming in, etc.), values or conditions tend to get closer and closer to a specific 

target or value, which we refer to as convergence. 

8.3.3      Applications 

Studying sequences of distribution functions has various applications: 

Limit Theorems:  

The convergence of sequences of distribution functions plays a role in probability's limit 

theorems, like the Central Limit Theorem or the Law of Large Numbers. 

Asymptotic Analysis:  

In statistics, studying the behavior of estimators as the sample size grows (asymptotic 

behavior) often involves looking at sequences of distribution functions. 

Stochastic Processes:  



 
 

When dealing with processes indexed by time or another parameter, sequences of 

distribution functions help describe the probabilistic behavior of the process. 

Joint Distribution Functions: 

When working with random vectors or multiple random variables simultaneously, 

sequences can be described in terms of joint distribution functions. For a bivariate case, 𝐹𝑛(𝑥, 𝑦) 

would represent the probability that the first random variable in the nth distribution is less than or 

equal to x and the second is less than or equal to y. 

Examples:    Consider a sequence of Bernoulli random variables 𝑋𝑛   with parameter 𝑝𝑛, where 

𝑝𝑛  is a sequence of numbers in [0,1]. The distribution function 𝐹𝑛(𝑥) is simple: it jumps from 0 

to 1−𝑝𝑛 at 0 and from 1−𝑝 n to 1 at 1. As n changes, if the sequence 𝑝𝑛  changes (say it converges 

to some 𝑝), the sequence of distribution functions 𝐹𝑛 will reflect that change. 

In essence, a sequence of distribution functions provides a rigorous framework to study the 

probabilistic behavior of a sequence of random variables. Understanding this sequence's properties 

and behavior, especially its convergence, is pivotal in both theoretical and applied probability and 

statistics. 

8.4      Weak and Complete Convergence of Sequence of Distribution Functions 

The convergence of sequences of distribution functions is crucial in understanding the 

behaviour of random sequences and in inferential statistics. When discussing the convergence of 

distribution functions, two main types of convergence are typically highlighted: weak convergence 

and complete convergence. Let us delve into these concepts: 

8.4.1          Weak Convergence (Convergence in Distribution) 

In simple words, weak convergence (also known as convergence in distribution) refers to 

a sequence of random variables getting closer and closer in terms of their distributional behavior, 

even if they don't necessarily get close in terms of their actual values. Essentially, if you were to 

sketch the histograms or plots of these random variables, they would start looking more and more 

alike as you go further in the sequence, converging to the same shape or distribution in the limit. 



 
 

Definition:  

A sequence of distribution functions 𝐹𝑛 is said to converge weakly (or in distribution) to a 

distribution function 𝐹 if, for all points 𝑥 at which 𝐹 is continuous, 

log𝑛→∞ 𝐹𝑛(𝑥) = 𝐹(𝑥) 

This form of convergence is also represented as  

𝐹𝑛
𝑤
→ 𝐹  𝑜𝑟  𝐹𝑛

𝐷
→ 𝐹 

Intuition:  

The weak convergence can be visualized as the graph of 𝐹𝑛 approaching the graph of 𝐹 at 

all continuous points of 𝐹. It implies that the distributions represented by 𝐹𝑛 become closer and 

closer to the distribution represented by 𝐹 as 𝑛 grows larger. 

Significance: 

 This type of convergence is foundational for many central results in probability and 

statistics, like the Central Limit Theorem. 

 

Examples: 

Central Limit Theorem (CLT): This is a classic example of convergence in distribution. Imagine 

you're rolling a fair six-sided die. The average of a few rolls will not necessarily resemble any 

specific pattern. But if you were to roll the dice, say, 1000 times, and average the results, and then 

do this whole process repeatedly, the averages would start to cluster around a particular value (3.5 

for a fair die). Furthermore, the way these averages spread around 3.5 would follow a normal (bell-

shaped) distribution. The CLT says that as the number of rolls (or observations) increases, the 

distribution of the average tends to a normal distribution, regardless of the original distribution. 

So, the sequence of averages converges in distribution to a normal distribution. 

Law of Large Numbers: Imagine you are flipping a fair coin. You are interested in the proportion 

of heads you get. At first, after a few flips, you might get sequences like H, T, H, T (50% heads) 

or H, H, T, H (75% heads). But if you flip the coin a very large number of times, the proportion of 

heads you observe will get closer and closer to 0.5. In terms of convergence in distribution, as the 



 
 

number of coin flips grows, the distribution of the proportion of heads you get converges to a 

single point at 0.5.  

These examples illustrate how various sequences of random variables, under specific 

conditions, can have their behavior (in terms of probabilities) converge to that of another random 

variable or a specific point. 

8.4.2     Complete Convergence 

In simple words, weak convergence (also known as convergence in distribution) refers to 

a sequence of random variables getting closer and closer in terms of their distributional behavior, 

even if they don't necessarily get close in terms of their actual values. Essentially, if you were to 

sketch the histograms or plots of these random variables, they would start looking more and more 

alike as you go further in the sequence, converging to the same shape or distribution in the limit. 

In straightforward terms, complete convergence is a concept that deals with how quickly 

and consistently a sequence of random variables approaches a limit. 

A sequence of random variables is said to converge completely to a limit if, when you sum 

up the probabilities that the random variables deviate from the limit by more than some small 

amount, that total sum is finite. In other words, not only should the sequence converge, but the 

deviations from the limit should become rare enough, fast enough, to make this sum finite. 

In a more intuitive sense, complete convergence is stronger than just convergence in 

probability but not as strong as almost sure convergence. It ensures that the random variables in 

the sequence get closer to the limit quickly enough for our mathematical comfort. 

Definition: A sequence of distribution function 𝐹𝑛 is said to converge completely to a distribution 

𝐹, if for every 𝜖 > 0 

log𝑛→∞𝑃(𝑠𝑢𝑝𝑥|𝐹𝑛(𝑥)−𝐹(𝑥)| > 𝜖) = 0 

Intuition: Unlike weak convergence, which requires the convergence to occur only at the 

continuous points of 𝐹, complete convergence mandates the convergence of 𝐹𝑛  to F to be uniform 

over all real numbers. In other words, the graphs of 𝐹𝑛  and 𝐹 should become arbitrarily close over 

the entire real line as 𝑛 increases. 



 
 

Significance: Complete convergence is a stronger form of convergence than weak convergence. 

If a sequence of distribution functions converges completely to 𝐹, it also converges weakly to 𝐹, 

but the converse is not always true. 

8.4.3       Supporting Results 

Kolmogorov's Three-Series Theorem: A necessary and sufficient condition for a series of random 

variables to converge almost surely is given by their variances and covariances. If the individual 

and cross terms of these series converge, then the series itself will converge almost surely. This 

theorem provides a way to ensure that the complete convergence condition holds. 

Examples: 

Converging Sum of Random Variables: Consider a sequence of random variables 𝑍𝑛 where each 

𝑍𝑛 is independently and identically distributed, and assume 𝐸(𝑍𝑛
2) = 1 (i.e., the expectation of 𝑍𝑛

2
 

is 1). Now, consider a new sequence  

𝑌𝑛 =
𝑍𝑛
2𝑛

. The sum of 𝑌𝑛, i.e.,  

𝑆 = ∑ 𝑌∞
𝑛=1 𝑛

 , converges completely. Here, the decreasing factor of 
1

2𝑛
 ensures that the series of 

probabilities decays quickly enough for complete convergence. 

 

Borel-Cantelli Lemma: This is a foundational result that can be applied to understand complete 

convergence. Let us take an example. Consider flipping a fair coin. Let An be the event that we 

get heads on the nth flip. Now, let us consider a modified scenario. Instead of flipping the coin 

indefinitely, we will flip it 2𝑛 times on the nth day. The probability of getting heads on all 2𝑛 flips 

on the nth day is (
1

2
)
2𝑛

. The sum of these probabilities over all days is: ∑ (
1

2
)
2𝑛

∞
𝑛=1 . 

This sum is finite. According to the Borel-Cantelli Lemma, the event that we get heads on all 2𝑛 

flips on the nth day will happen only finitely many times. This is an example where probabilities 

converge fast enough to ensure complete convergence in terms of events happening. 



 
 

Complete convergence helps in scenarios where we do not just want to know that 

something will happen eventually, but we also want to ensure that the "not happening" becomes 

rarer at a specific rate. 

Comparison: 

While both forms of convergence describe how a sequence of distribution functions 

approach another, the requirements for complete convergence are more stringent. Weak 

convergence is concerned mainly with the behavior at continuous points of the limit function. In 

contrast, complete convergence requires a sort of "uniform closeness" between the converging 

functions and the limit function across the entire real line. 

In many statistical applications, especially when dealing with large samples, weak convergence 

(or convergence in distribution) becomes the focus, primarily because of its connections to limit 

theorems and the asymptotic behavior of statistics. Complete convergence, while fundamental, is 

less commonly encountered in standard statistical practice. 

8.5   Different Types of Convergence of Sequence of Random Variable 

 

The concept of convergence plays a foundational role in this understanding. As we delve 

deeper into the subject, it becomes evident that there are multiple ways in which a sequence of 

random variables can approach a limit. Each mode of convergence captures a unique aspect of this 

limiting behavior, dictated by specific criteria and with its own set of implications. In this section, 

we shall explore various modes of convergence, including almost sure convergence, convergence 

in probability, weak convergence (or convergence in distribution), and convergence in mean. 

8.5.1       Almost Sure Convergence or Convergence almost Everywhere 

Definition:  

A sequence of random variable 𝑋1, 𝑋2, … is said to converge almost surely to a random 

variable 𝑋, if the probability that 𝑋𝑛 converges to 𝑋 as 𝑛 approaches infinity is 1. This is denoted 

as: 

𝑋𝑛
𝑎.𝑠.
→ 𝑋 

Intuition:  



 
 

For a fixed outcome in the sample space, the sequence 𝑋1(𝜔), 𝑋1(𝜔), …is a real sequence, 

and this sequence converges to 𝑋(𝜔). This holds true for all outcomes 𝜔 except possibly for a set 

with probability zero. 

8.5.2     Convergence in Probability 

Definition: 

 A sequence of random variable 𝑋1, 𝑋2, … converges in probability to 𝑋 if for every 𝜖 > 0 

log𝑛→∞𝑃[|𝑋𝑛 −𝑋| > 𝜖] = 0 

It is denoted as  

𝑋𝑛
𝑃
→ 𝑋 

Intuition:  

as 𝑛 grows, the probability that 𝑋𝑛 differs from 𝑋 by more than a small amount 𝜖 becomes 

increasingly smaller. 

 

8.5.2.1   Supporting Results 

Characterization via Subsequences: 

If 𝑋𝑛   converges to  𝑋 in probability, then for every subsequence 𝑋𝑛𝑘 , there exists a further 

subsequence 𝑋𝑛𝑘𝑙   such that 𝑋𝑛𝑘𝑙 converges to X almost surely. 

Boundedness in Probability: 

If 𝑋𝑛   converges to 𝑋 in probability and ∣𝑋𝑛  ∣≤M almost surely for all n, then ∣𝑋∣≤M almost surely. 

Continuous Mapping Theorem: 

If 𝑋𝑛   converges to 𝑋 in probability and 𝑔 is a continuous function, then 𝑔(𝑋
𝑛
)  converges to 

𝑔(𝑋) in probability. 

Sum of Converging Sequences: 

If 𝑋𝑛   converges to 𝑋 in probability and 𝑌𝑛   converges to 𝑌 in probability, then Xn+Yn converges 

to X+Y in probability. 



 
 

Relationship with Other Convergences: 

Convergence almost surely implies convergence in probability. Convergence in  Lp  (for p>0) 

implies convergence in probability 

Examples:  

Let 𝑋𝑛 be a random variable such that 𝑋𝑛={
𝑛 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

1

𝑛

0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 −
1

𝑛

 

Does 𝑋𝑛 converges to 0 in probability? 

Solution: 𝑃(|𝑋𝑛 − 0| > 𝜖) = 𝑃(𝑋𝑛 > 𝜖) = {
1

𝑛
𝑖𝑓 𝜖 < 𝑛

0 𝑖𝑓 𝜖 ≥ 𝑛
 

𝑓𝑜𝑟 𝑎𝑛𝑦 𝑓𝑖𝑥𝑒𝑑 𝜖 > 0, 𝑎𝑠 𝑛 → ∞, 𝑃(𝑋𝑛 > 𝜖) =
1

𝑛
, which will tend to zero as n tends to infinity. 

Thus 𝑋𝑛 converges to 0 in probability. 

Example: let 𝑌𝑛 =
1

𝑛
 for all natural numbers n. Does 𝑌𝑛 converge to 0 in probability? 

Solution: Since 𝑌𝑛 is a deterministic sequence and nota sequence of random variables in the usual 

sense, 𝑌𝑛 converges to 0 almost surely, and hence also in probability. 

8.5.3     Convergence in Mean (Convergence in 𝐋𝐩) 

In simpler terms, convergence in 𝐿𝑝 means that the average size of the p-th power of the 

differences between the sequence and its limit gets closer and closer to zero. This mode of 

convergence is stronger than convergence in probability but weaker than almost sure convergence. 

It is particularly useful when considering the behavior of the moments (like variances) of random 

variables. 

Definition:  

A sequence of random variable 𝑋1, 𝑋2, … . 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 in mean of order p (𝐿𝑝) to X if: 

log𝑛→∞𝐸[|𝑋𝑛 −𝑋|
𝑝] = 0;𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑝 ≥ 1 

Intuition:  

the expected value of the 𝑝𝑡ℎ power of the difference between 𝑋𝑛 and 𝑋 goes to zero as 𝑛 

approaches infinity. The most common case is 𝑝 = 2 which is convergence in mean square. 



 
 

8.5.3.1 Supporting Results  

1. Cauchy Criterion for Convergence in 𝑳𝒑 

A sequence of random variable 𝑋1, 𝑋2, … . 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 in  𝐿𝑝  if and only if for every  𝜖 >

0, 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑁(𝜖): 

𝐸[|𝑋𝑛 − 𝑋|
𝑝] < 𝝐 

2. Relationship with Convergence in Probability 

If 𝑋𝑛 converges in distribution to 𝑋 in  𝐿𝑝 for some in  𝑝 > 0, then 𝑋𝑛 also converges to 𝑋 in  

probability. 

3. Bounded Convergence in 𝑳𝒑: 

If |𝑋𝑛 | ≤ 𝑴 almost surely for all n, and 𝑋𝑛 converges to 𝑋 almost surely then 𝑋𝑛 converges to 𝑋 

in  𝐿𝑝 for in  1 ≤ 𝑝 < ∞. 

Example: Convergence in 𝐋𝟐 

Consider 𝑋𝑛={
𝑛 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

1

𝑛

0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 −
1

𝑛

 

Check if 𝑋𝑛 converges to 0 in mean squared. 

Solution: compute 𝐸[|𝑋𝑛 − 0|
2] 

𝐸[𝑋𝑛
2] = 𝑛2

1

𝑛
+ 0. (1 −

1

𝑛
) = 𝑛 

Here  

𝐸[𝑋𝑛
2] = 𝑛 , which does not converge to 0 as n tends to infinity. Thus  

𝑋𝑛 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 Convergence in L2. 

Example: Convergence in 𝐋𝟏 

Consider 𝑋𝑛={
1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

1

𝑛

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Check if 𝑋𝑛 converges to 0 in 𝐋𝟏. 

Solution: compute 𝐸[𝑋𝑛 − 0] =
1

𝑛
 



 
 

which converge to 0 as n tends to infinity. Thus  𝑋𝑛 Convergences in L1. 

"Convergence in mean" describes the behavior of random variables' expected values as 

they tend to a limit. It provides a strong form of convergence (especially for p>1) but is less 

commonly encountered in basic statistics than convergence in probability or almost sure 

convergence. 

8.5.4       Convergence in Distribution or Weak Convergence 

Definition:  

A sequence of random variable 𝑋1, 𝑋2, … converges in distribution to X if the cumulative 

distribution function 𝑋𝑛 denoted as , 𝐹𝑛(𝑥), converges to the cdf of X, 𝐹(𝑥) at all points x where 

𝐹(𝑥) is continuous. This is denoted as: 

𝑋𝑛
𝐷
→ 𝑋 

Intuition:  

The distribution or the probabilistic behavior of 𝑋𝑛becomes closer to that of 𝑋 as n 

increases. Note that this does not necessarily mean the random variables themselves are getting 

close. 

Each type of convergence has its significance. For instance, convergence in probability is 

commonly used in the context of estimators in statistics, while convergence in distribution is the 

basis for the central limit theorem. 

It is essential to understand that these modes of convergence are not equivalent. For instance, 

almost sure convergence implies convergence in probability, but the converse is not necessarily 

true. 

8.5.4.1 Supporting Results and Theorems 

1. Skorohod’s Representation Theorem: 

This result asserts that if 𝑋𝑛 converges in distribution to 𝑋, then there exist probability 

spaces and random variables 𝑌𝑛 and 𝑌 on these spaces such that: 

a). The distribution of 𝑌𝑛 and 𝑌 are the same as those of 𝑋𝑛 and 𝑋 respectively. 

b). 𝑌𝑛 converges almost surely to 𝑌. 



 
 

 

2. Portmanteau Lemma:  

A sequence of random variables 𝑋𝑛 converges in distribution to 𝑋 if and only if one of the 

following holds: 

a). For every bounded continuous function 𝑔: 

log𝑛→∞𝐸[𝑔(𝑋𝑛)] = 𝐸[𝑔(𝑋)] 

b). for every open set 𝑈: 

log inf𝑛→∞𝑃(𝑋𝑛 ∈ 𝑈) = 𝑃(𝑋 ∈ 𝑈) 

c). for every closed set 𝐺: 

log sup𝑛→∞𝑃(𝑋𝑛 ∈ 𝐺) = 𝑃(𝑋 ∈ 𝐺) 

 

3. Continuous Mapping Theorem:  

If 𝑋𝑛 converges in distribution to 𝑋 and 𝑔 is a function continuous at points where 𝐹𝑋(𝑥), 

is continuous then 𝑔(𝑋
𝑛
) converges in distribution to 𝑔(𝑋), 

 

4. Slutsky’s Theorem: 

If 𝑋𝑛 converges in distribution to 𝑋 and 𝑌𝑛 converges in probability to c, then: 

a). 𝑋𝑛 + 𝑌𝑛  converges in distribution to 𝑋 + 𝑐. 

b). 𝑋𝑛. 𝑌𝑛  converges in distribution to 𝑋. 𝑐. 

 

5. Cramer-Wold Thorem:  

For random vectors 𝑋𝑛 converges in distribution to 𝑋 if and only if for every 𝑡 in Euclidean 

space. 𝑡′𝑋𝑛 converges in distribution to 𝑡′𝑋. 

 

Proofs for these theorems can be quite involved, especially in a short format. They typically 

involve intricate uses of measure theory, tightness of measures, and properties of distribution 

functions. For a complete exposition of these proofs, I recommend referring to comprehensive 

probability theory books such as "Probability and Measure" by Patrick Billingsley or "Weak 

Convergence and Empirical Processes" by A. W. van der Vaart and Jon A. Wellner. These texts 



 
 

offer step-by-step detailed proofs for the above theorems and many more concepts related to weak 

convergence. 

 

Example: Let 𝑋𝑛  be a sequence of random variables such that 𝑋𝑛  has the probability density 

function (pdf) 

{𝑛
2𝑥 0 ≤ 𝑥 ≤

1

𝑛
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Determine if 𝑋𝑛 converges in distribution, and if so, to which random variable. 

 

Solution:  

Firstly, note that 𝑓
𝑛
(𝑥) is a valid pdf because: 

∫ 𝑓
𝑛
(𝑥)𝑑𝑥 = ∫ 𝑛2𝑥 𝑑𝑥 = 𝑛2 (

1

2𝑛2
− 0) = 1

1
𝑛

0

∞

−∞
 

Given the pdf we can find the cumulative distribution function 𝐹𝑛(𝑥): 

{
 
 

 
 

0 𝑥 < 0

∫ 𝑛2𝑡 𝑑𝑡
𝑥

0
0 ≤ 𝑥 ≤

1

𝑛

1 𝑥 >
1

𝑛

 

For 0 ≤ 𝑥 ≤
1

𝑛
, 

𝐹𝑛(𝑥) = 𝑛
2
𝑥2

2
 

So   

0 𝑥 < 0

𝑛2
𝑥2

2
0 ≤ 𝑥 ≤

1

𝑛

1 𝑥 >
1

𝑛

 

Now let us find the limit: 

log𝑛→∞ 𝐹𝑛(𝑥) 

For 𝑥 < 0, 𝑡ℎ𝑒 𝑙𝑖𝑚𝑖𝑡 𝑖𝑠 0,  

For 𝑥 = 0, 𝑡ℎ𝑒 𝑙𝑖𝑚𝑖𝑡 𝑖𝑠 0, but for For 𝑥 > 0, since 𝑥 >
1

𝑛
 for large n, the limit is 1. Therefore  

𝑋𝑛 converges in distribution to 𝑋 that is 0 with probability 1 (a degenerate random variable at 0). 



 
 

 

8.6    Distribution Function of Random Vectors 

 

The distribution function (or cumulative distribution function, CDF) of a random vector is 

a generalization of the distribution function of a single random variable to multiple dimensions. It 

captures the joint behavior of multiple random variables simultaneously. 

Generation of the distribution function of a single random variable to multiple dimensions. 

It captures the joint behavior of multiple random variables simultaneously. 

For a random vector 𝑋 = (𝑋1, 𝑋2, … . , 𝑋𝑘)  where 𝑋𝑖′𝑠  are random variables, the joint 

distribution function or joint cdf  is defined as: 

𝐹𝑋(𝑥1, 𝑥2, … . , 𝑥𝑘) = 𝑃(𝑋1 ≤ 𝑥1, 𝑋2 ≤ 𝑥2, … . , 𝑋𝑘 ≤ 𝑥𝑘) 

This function gives the probability that the random variable 𝑋1 takes a value less than or 

equal to 𝑥1 , the random variable 𝑋2  takes a value less than or equal to 𝑥2  and so on, 

simultaneously. 

This joint distribution function characterizes the entire probabilistic behavior of the random 

vector X and can be used to deduce various properties, such as joint probabilities and marginal 

distributions, of the random variables involved. 

 

Example 1: Two-dimensional random vector 

Let X=(X,Y) be a random vector representing the height (X) and weight (Y) of individuals in a 

certain population. Suppose the joint CDF, 𝐹𝑋(x,y), gives the probability that a randomly chosen 

individual has height less than or equal to x cm and weight less than or equal to y kg. 

If we want to know the probability that a person's height is less than 170 cm and weight is less 

than 65 kg, we evaluate:  𝐹𝑋 (170,65). 

Example 2: Transformations of Random Variables 

Let's consider a random vector W=(X,Y) where X represents the age of a car and Y 

represents its price. If cars depreciate over time, the joint CDF might reflect that older cars (larger 

x values) tend to have lower prices. 



 
 

So, if 𝐹𝑊  (3,10,000) is 0.8, it means there's an 80% chance that a randomly selected car 

will be 3 years old or younger and priced at $10,000 or less. 

 

Example 3: Consider the random vector X= (X1, X2), where X1 and X2 represent the outcomes 

of rolling two six-sided dice, respectively. 

The joint CDF, 𝐹𝑋 (x1, x2), gives the probability that the first die shows a number less than 

or equal to x1 and the second die shows a number less than or equal to x2. 

Let us say we want to find the probability that the first die shows 3 or less and the second 

die shows 4 or less. We evaluate: 𝐹𝑋 (3,4) 

Considering each die has equal probability for each side: 𝐹𝑋 (3,4) = 3/6 ×4/6 = 1/3 

Thus, there is a 1/3 chance that the first die will show 3 or fewer and the second die will show 4 

or fewer. 

8.7   Self-Assessment Exercises 

 

1 What is the fundamental idea behind convergence in probability theory? 

2 Define the term "distribution function" in the context of random variables. 

3 Explain what it means for a sequence of distribution functions Fn(x) to converge to F(x). 

4 How does understanding the sequence of distribution functions aid in grasping the behavior of 

a sequence of random variables? 

5 Distinguish between weak convergence and complete convergence of a sequence of 

distribution functions. 

6 What is "almost sure convergence"? How does it differ from "convergence in probability"? 

7 Describe "convergence in Lp norm". For what values of p is this definition relevant? 

8 When do we say a sequence of random variables converges in distribution? 

9 How is the distribution function of a random vector different from that of a single random 

variable? 

10 Define the joint distribution function for a random vector X=(X1,X2,...,Xk). 

11 Why is the concept of convergence crucial when considering the Central Limit Theorem or the 

Law of Large Numbers? 



 
 

12 Given a sequence of random variables where you know they converge almost surely to a 

random variable X, what can you infer about their convergence in probability? 

True or False Questions 

13 Weak convergence of a sequence of distribution functions implies complete convergence. 

14 Almost sure convergence of a sequence of random variables implies convergence in 

distribution. 

Scenario-Based Question 

15 Consider a casino game where the outcome of each game is a random variable. If a player 

keeps playing indefinitely, under what type of convergence would you expect the player's 

average winnings (or losses) to stabilize? 

16 By answering these questions, learners will be able to gauge their understanding of the unit's 

key concepts and their ability to apply them in various contexts. 

8.8   Summary 

In this unit on convergence in the realm of probability and statistics, we delved into 

understanding how sequences, especially those of random variables, approach specific behaviors 

or values as they progress. Starting with the basic sequence of distribution functions, we explored 

how the probabilistic attributes of these sequences stabilize. The unit differentiated between 

various modes of convergence, namely weak and complete convergence for distribution functions, 

and almost sure convergence, convergence in probability, convergence in 𝐿𝑝  norm, and 

convergence in distribution for sequences of random variables. This knowledge was further 

expanded to the multi-dimensional setting of random vectors, elucidating the intricate nature of 

their joint distribution functions. Through this comprehensive exploration, we gained insights into 

the fundamental behavior and essence of randomness and uncertainty as they manifest in 

increasing observations or trials. 
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9.1   Introduction 

The Law of Large Numbers (LLN) is a pivotal theorem in probability theory, gracefully 

bridging the realms of theory and application, elucidating the deterministic pathways emerging 

amidst probabilistic chaos. Originating from the formative work of Jacob Bernoulli and later 

refined by numerous statisticians and mathematicians, the LLN provides profound insights into 

the long-term behavior of series of random experiments or processes. This unit unveils the layers 

of the LLN and explores its numerous manifestations and related principles. Beginning with an 

exploration of the essential concepts and theoretical foundations of the Weak and Strong Laws of 

Large Numbers, we plunge into the fascinating world where averages of random variables 

showcase predictable patterns as the sample size burgeons. We'll unfold Khinchin’s theorem, 



 
 

offering a nuanced perspective on conditions for the weak law to hold for independent and 

identically distributed random variables. Then, navigating through the theoretical landscapes 

shaped by the Borel-zero-one law and Borel-Cantelli lemma, we shall explore the probability 

spaces where seemingly random events exhibit stark determinism upon infinite repetitions. 

Through this journey, we will not only decipher the logical beauty embedded in probabilistic 

theories but also comprehend their profound implications on practical statistical inferences and 

real-world phenomena, enabling us to gaze into the apparently chaotic realms of randomness with 

a lens of predictable stability. 

9.2  Objectives 

By the end of the Unit, learner will be able to: 

• Understand the basic concept of the Law of Large Numbers. 

• Differentiate between the Weak and Strong Law of Large Numbers. 

• Grasp the essence of Khinchin’s theorem. 

• Understand the Borel-zero-one law and its implications. 

• Familiarize oneself with the Borel-Cantelli lemma. 

9.3  Weak Law of Large Numbers (WLLN) 

This law states that the sample average converges in probability towards the expected 

value. Given a sequence of random variables with the same expected value, the weak LLN 

provides conditions under which the sample averages approach this expected value. 

Statement:  

The weak Law of Large Numbers states that as the size of a sample drawn from a 

population increase, the sample mean (or average) will get closer to the population mean. 

Formally, if 𝑋1, 𝑋2, … are independent and identically distributed (i.i.d) random variables with 

expected value 𝐸[𝑋𝑖] = 𝜇 𝑎𝑛𝑑  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑉𝑎𝑟[𝑋𝑖] = 𝜎
2 < ∞, 𝑡ℎ𝑒𝑛 𝑓𝑜𝑟 𝑎𝑛𝑦 𝜖 > 0; 

𝑃 (|
𝑋1, 𝑋2, … , 𝑋𝑛

𝑛
− 𝜇| ≥ 𝜖) → 0 

As 𝑛 → ∞. 



 
 

Proof: 

For simplicity, we will use Chebyshev’s inequality to prove the WLLN. 

Given that 𝑋1, 𝑋2, … are independent and identically distributed (i.i.d) random variables 

with expected value 𝐸[𝑋𝑖] = 𝜇 𝑎𝑛𝑑  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑉𝑎𝑟[𝑋𝑖] = 𝜎
2 < ∞, let 𝑆𝑛 = 𝑋1 +𝑋2 +⋯+𝑋𝑛 

The expected value of 𝑆𝑛 is 

𝐸[𝑆𝑛] = 𝑛𝜇 

and 

𝑉[𝑆𝑛] = 𝑛𝜎
2 

because the variables are independent. Now consider the sample mean 𝑋𝑛̅̅ ̅̅ =
𝑆𝑛
𝑛

 

we are interested in 

𝑃(|𝑋𝑛̅̅̅̅ − 𝜇| ≥ 𝜖) 

Using Chebyshev’s inequality 

𝑃(|𝑋𝑛̅̅̅̅ − 𝜇| ≥ 𝜖) ≤
𝑉𝑎𝑟(𝑋𝑛̅̅̅̅ )

𝜖2
 

 

Where 𝑉𝑎𝑟(𝑋𝑛̅̅̅̅ ) =
𝜎2

𝑛
 

Thus, the inequality will become 

𝑃(|𝑋𝑛̅̅̅̅ − 𝜇| ≥ 𝜖) ≤
𝜎2

𝑛𝜖2
 

As 𝑛 → 0 , 

𝑃(|𝑋𝑛̅̅̅̅ − 𝜇| ≥ 𝜖) → 0. 

Example: Consider flipping a fair coin. Let us represent heads by 1 and tails by 0. If we were to 

flip the coin infinitely many times, the Weak Law of Large Numbers tells us that the average value 

will converge to the true mean of the distribution, which is 0.5 (since it's a fair coin). 

So, if you were to flip the coin 10 times, you might get an average of 0.6 or 0.4 or some 

other value. But if you flip it 1,000 times, the average will be much closer to 0.5. And as you 

continue, say 10,000 or 100,000 times, the average will get even closer to 0.5, thanks to the WLLN. 



 
 

Example: Let {𝑋𝑛} be a sequence of i.i.d. random variables, where each 𝑋𝑛 represents the outcome 

of a fair die roll. Let us demonstrate that the sample mean converges to the expected value using 

WLLN. 

Solution: each 𝑋𝑛 takes values from 1 to 6 with equal probability of 1/6, thus 

𝐸[𝑋
𝑛
] =

1

6
. 1 +

1

6
. 2 +⋯+ 

1

6
. 6 = 3.5 

The variance is 

 

𝑉𝑎𝑟[𝑋
𝑛
] = 𝐸[𝑋

𝑛
2
] − (𝐸[𝑋𝑛])

2
 

𝐸[𝑋𝑛
2]= 

1

6
. 12 +

1

6
. 22 +⋯+ 

1

6
. 62 =15.1667 

Thus, 𝑉𝑎𝑟[𝑋
𝑛
] = 15.1667 − (3.5)2 = 2.9167 

Now consider n rolls of the die and their sample mean 

𝑋𝑛̅̅ ̅̅ =
𝑋1, 𝑋2, … , 𝑋𝑛

𝑛
 

Using Chebyshev’s inequality: 

𝑃(|𝑋̅𝑛 − 𝜇| ≥ 𝜖) ≤
𝑉𝑎𝑟[𝑋𝑖]

𝑛𝜖2
=
2.9167

𝑛𝜖2
 

As n tends to infinity the right-hand side goes to 0 for any fixed 𝜖, confirming the WLLN. 

The WLLN basically tells us that as we take more and more samples from a distribution 

(with a finite mean), the average of these samples gets closer and closer to the true mean of the 

distribution. In other words, with a sufficiently large sample size, the sample mean becomes a 

reliable estimator of the population mean. 

 

Illustrative Example: 

Suppose you are flipping a fair coin, where "Heads" is represented by 1 and "Tails" by 0. 

The expected value (mean) of a single flip is μ=0.5. 

Now, if you flip the coin, say, 5 times, you might get a sequence like: 1, 0, 0, 1, 1. The 

sample average in this case is 0.6. This is somewhat close to the true mean of 0.5, but not exactly. 



 
 

However, if you flip the coin 10,000 times, the proportion of heads you observe will likely 

be much closer to 0.5. For instance, you might observe 5012 heads, which gives a sample average 

of 0.5012. 

The WLLN assures that as the number of coin flips (or general samples from any 

distribution with a finite mean) increases, the sample mean converges in probability to the true 

mean. 

9.3.1       Applications 

The Weak Law of Large Numbers underpins much of classical statistics and is crucial for 

ensuring that sample averages (and other sample statistics) provide consistent estimates of 

population parameters. It's frequently invoked in scenarios where we want to estimate population 

quantities using sample data, such as in polling, quality control, and many other areas of research 

and industry. 

9.4 Strong Law of Large Numbers (SLLN) 

Unlike the weak LLN, the strong LLN talks about almost sure convergence. That is, the 

sample average not only converges in probability but also with a probability of one towards the 

expected value. 

The Strong Law of Large Numbers provides a more robust statement than the Weak Law. 

It states that the sample averages converge almost surely to the expected value, i.e., the probability 

that the sample average converges to the expected value is one. 

Formally, let 𝑋1, 𝑋2, … are independent and identically distributed (i.i.d) random variables 

with expected value 𝐸[𝑋𝑖] = 𝜇. Let 𝑋̅𝑛 =
𝑋1+𝑋2+⋯+𝑋𝑛

𝑛
, then 

𝑃(log𝑛→∞ 𝑋̅𝑛 = 𝜇) = 1 

Proof:  

To prove SLLN, one of the common methods uses the Borel-Cantelli lemma for the 

purpose of this proof, we shall assume 𝐸(𝑋𝑖
2) < ∞ and use the fact that 

𝑉𝑎𝑟[𝑋𝑖] = 𝐸(𝑋𝑖
2) − 𝜇2. First observe that for any positive 𝜖: 

𝑃(|𝑋̅𝑛 − 𝜇| ≥ 𝜖) ≤
𝑉𝑎𝑟[𝑋𝑖]

𝑛𝜖2
 



 
 

This comes from Chebyshev’s -Inequality, now summing over all n: 

∑ 𝑃(|𝑋̅𝑛 − 𝜇| ≥ 𝜖)

∞

𝒏=𝟏

≤
𝑉𝑎𝑟[𝑋𝑖]

𝜖2
∑
1

𝑛

∞

𝑛=1

 

The series on the right is a harmonic series and diverges. However, since each term in the 

series on the left represents a probability of a particular event, the sum represents a count of the 

number of times the sample average deviates from the mean by at least 𝜖. 

Using Borel-Cantelli lemma, if ∑ 𝑃(𝐴𝑛)
∞
𝒏=𝟏 ∞ , where 𝐴𝑛  are independent events. then 

𝑃(𝐴𝑛𝑖. 𝑜. ) = 1, where 𝑖. 𝑜. stands for infinitely often. But this is a contradiction since the series 

above is an upper bound on the number of deviations of size 𝜖, implying that the sample mean 

cannot deviate from the true mean by 𝜖 infinitely often. 

Therefore,  

𝑃(log𝑛→∞ 𝑋̅𝑛 = 𝜇) = 1 

Which completes the proof of the SLLN. 

Remark: The difference between the Weak and Strong Law of Large Numbers lies in the mode of 

convergence. While WLLN speaks about convergence in probability, SLLN asserts almost sure 

convergence. The Strong Law guarantees that the sample mean will converge to the true mean for 

almost every sample path, with exceptions being possible but occurring with probability zero. 

9.5  Khinchin’s Theorem 

Khinchin's theorem (or the Law of the Iterated Logarithm) is a central result in probability 

theory and is particularly important in the context of the theory of random walks and limit 

theorems. The theorem gives conditions under which the "oscillations" of the partial sums of 

independent and identically distributed (i.i.d.) random variables are of a specific magnitude. 

Named after the Russian mathematician Aleksandr Khinchin, this theorem provides insights into 

the "extreme" fluctuations of the cumulative sum of i.i.d. random variables, especially when 

normalized appropriately. Khinchin's theorem provides conditions under which the weak law of 

large numbers holds for independent and identically distributed random variables. 

Statement:  



 
 

Let (𝐴
𝑛
) be a sequence of independently and identically distributed random variables, each 

with finite expected value 𝐸[𝑋𝑖] = 𝜇. Let 𝑋̅𝑛 =
𝑋1+𝑋2+⋯+𝑋𝑛

𝑛
 be the sample mean of the first n 

variables. Then  

log𝑛→∞ 𝑃(|𝑋𝑛
̅̅ ̅̅ − 𝜇| ≥ 𝜖) = 0 ;  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝜖 > 0  

In other words, the sample mean 𝑋𝑛̅̅ ̅̅  converges in probability to the expected value 𝜇. 

Proof:  

Using the properties of variance of 𝑋𝑛̅̅ ̅̅ , and the fact that the𝑋𝑖′𝑠 are independent: 

𝑉𝑎𝑟[𝑋̅𝑛] = 𝑉𝑎𝑟 (
𝑋1 + 𝑋2 +⋯+ 𝑋𝑛

𝑛
) =

1

𝑛2
∑𝑉𝑎𝑟(𝑋𝑖)

𝑛

𝑖=1

 

Given the i.i.d assumption, 𝑉𝑎𝑟(𝑋𝑖) = 𝑉𝑎𝑟(𝑋𝑗); 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 j. if we call it common variance 

𝜎2. Then 

𝑉𝑎𝑟[𝑋̅𝑛] =
1

𝑛2
𝑛𝜎2 = 𝜎2/𝑛 

we can apply Chebyshev’s Inequality 

𝑃(|𝑋̅𝑛 − 𝜇| ≥ 𝜖) ≤
𝑉𝑎𝑟[𝑋̅𝑛]

𝜖2
 

Using the above results we can write it as : 

𝑃(|𝑋̅𝑛 − 𝜇| ≥ 𝜖) ≤
𝜎2

𝑛𝜖2
 

Thus as 𝑛 → ∞,  

log𝑛→∞ 𝑃(|𝑋𝑛
̅̅ ̅̅ − 𝜇| ≥ 𝜖) = 0 ;  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝜖 > 0  

This concludes the proof. The sample mean 𝑋𝑛̅̅ ̅̅  of IID random variables with a finite 

expected value converges in probability to the true expected value 𝜇. 

9.5.1         Chebyshev's Inequality 

It is the supporting lemma above theorem. 

Statement:  

For any random variable X with mean μ and variance 𝜎2, and for any k>0, the Chebyshev 

inequality is given by: 



 
 

𝑃(|𝑋 − 𝜇| > 𝑘𝜎) ≤
1

𝑘2
 

This inequality provides an upper bound on the probability that the random variable deviates from 

its mean by more than a specified amount k. 

Proof:  

Consider the non-negative random variable 𝑍 = (𝑋 − 𝜇)2, expected value of 𝑍 is: 

𝐸(𝑍) =E(𝑋 − 𝜇)2 = 𝜎2 

Which is nothing but variance of 𝑋  

Now we can say that, 

𝑃(|𝑋 − 𝜇| > 𝑘𝜎) = 𝑃((𝑋 − 𝜇)2 > 𝑘2𝜎2), 

Using Markov’s inequality which states that for any non-negative random variable Y,  and 

a>0 ; 𝑃(𝑌 ≥ 𝑎) ≤
𝐸[𝑌]

𝑎
 

Here we can say that 𝑌 = (𝑋 − 𝜇)2 𝑎𝑛𝑑 𝑎 = 𝑘2𝜎2. 

Putting these values in the Markov’s inequality, we get 

𝑃((𝑋 − 𝜇)2 ≥ 𝑘2𝜎2) ≤
𝐸[(𝑋 − 𝜇)2]

𝑘2𝜎2
 

Or, 

𝑃((𝑋 − 𝜇)2 ≥ 𝑘2𝜎2) ≤
𝝈𝟐

𝑘2𝜎2
 

Or, 

𝑃((𝑋 − 𝜇)2 ≥ 𝑘2𝜎2) ≤
𝟏

𝑘2
 

Hence the result. 

Chebyshev's inequality is a powerful tool because it applies to any random variable with a 

finite mean and variance, regardless of the distribution. It provides a general bound, which in many 

cases might not be tight, but it's a guarantee regardless of the specific distributional form. 

 

Example: Suppose we have a sequence of i.i.d. random variables, where each 𝑋𝑛 represents the 

number of heads observed in n coin flips of a fair coin. We want to show that the sample mean of 

the number of heads observed converges in probability to 0.5 using Khinchin's theorem. 



 
 

Solution: Each 𝑋𝑛 is a Bernoulli random variable that takes the value 1 with probability 0.5 (if 

heads) and 0 with probability 0.5 (if tails). Hence the expected value is: 

𝐸[𝑋
𝑛
] = 0.5 × 1 + 0.5 × 0 = 0.5 

The variance is : 

𝑉[𝑋
𝑛
] = 𝐸[𝑋𝑛

2
]− (𝐸[𝑋𝑛])

2
= 0.25 

For the sample mean, we use Chebyshev’s inequality: 

𝑃(|𝑋̅𝑛 − 0.5| > 𝜖) ≤
0.25

𝑛𝜖2
 

Here as n become large, the right- hand side tends to 0 for any fixed 𝜖. by Kinchin’s 

theorem, this confirms that the sample mean 𝑋̅𝑛 of the number of heads observed in n coin flips 

converges in probability to 0.5. 

 

Intuitive Explanation: 

The theorem provides a boundary for the "oscillations" or "fluctuations" of the partial sums 

Sn. While the Central Limit Theorem tells us that the normalized sums converge in distribution to 

a normal distribution, Khinchin's theorem gives us a sense of the magnitude of the maximum 

excursions or fluctuations of these sums from their expected value. 

In simpler words, even though the average behavior of the random variables may conform to the 

Central Limit Theorem, their wild fluctuations are bounded by the √2𝑛 log 𝑙𝑜𝑔𝑛. term, a slower-

growing function than √𝑛, which is used in the Central Limit Theorem. 

9.5.2     Applications 

Khinchin's theorem finds applications in the study of random walks and in understanding 

the extreme behavior of stochastic processes. For example, when considering a simple random 

walk (like flipping a coin and moving left or right on the number line), this theorem describes the 

"worst-case" or most extreme fluctuations of the walk over time. 

Khinchin's theorem provides a version of the Law of Large Numbers for IID random variables. It 

assures us that the sample mean will get arbitrarily close to the true mean as the sample size 

increases. This result is foundational in statistics and probability theory. 



 
 

9.6   Borel-Zero-One Law 

This law is a fundamental concept in probability, stating that for a sequence of independent 

events, the probability of infinitely many of them occurring is either zero or one. 

Statement:  

Let (𝑋𝑛)  be a sequence of independent random variables, and let ℱ𝑛 𝑏𝑒 𝜎 − 𝑎𝑙𝑔𝑒𝑏𝑟𝑎 

generated by 𝑋1, 𝑋2, … , 𝑋𝑛. Let 𝑇 be the tail 𝜎 − 𝑎𝑙𝑔𝑒𝑏𝑟𝑎 defined as  

𝑇 =⋂ℱ𝑛 

∞

𝑛=1

 

Then any event in 𝐴 𝑖𝑛 𝑇 has either 𝑃(𝐴) = 0 or 𝑃(𝐴) = 1. 

Proof: 

 First, observe that for each n, the the tail 𝜎 − 𝑎𝑙𝑔𝑒𝑏𝑟𝑎 𝑇 is independent of the −𝑎𝑙𝑔𝑒𝑏𝑟𝑎 

ℱ𝑛 .  this is because  𝑇 𝑖𝑠 𝑎 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑒𝑣𝑒𝑟𝑦 ℱ
𝑛 
𝑓𝑜𝑟 𝑘 ≥ 𝑛 , and the independence of the 

𝑋𝑖′𝑠ensures the independence of  𝑇 𝑎𝑛𝑑 ℱ𝑛 . 

Let 𝐴  𝑏𝑒 𝑎𝑛𝑦 𝑒𝑣𝑒𝑛𝑡 𝑖𝑛 𝑇. Then 𝐴 ∩ 𝐵 𝑖𝑠 𝑖𝑛 𝑇 for any event 𝐵 𝑖𝑛 ℱ𝑛 because 𝑇 is a 𝜎 −

𝑎𝑙𝑔𝑒𝑏𝑟𝑎. Since 𝐴 𝑎𝑛𝑑 𝐵 are independent, we have 

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴). 𝑃(𝐵). 

However, since A belongs to the tail 𝜎 − 𝑎𝑙𝑔𝑒𝑏𝑟𝑎. It is unaffected by removing the effect 

of finitely many random variables. Thus, 𝐴 = (𝐴 ∩ 𝐵), therefore 

𝑃(𝐴) = 𝑃(𝐴)𝑃(𝐵) 

Now either 𝑃(𝐴) = 0 or 𝑃(𝐴) = 1, 

If none of them is true, then the above equation yields a contradiction, so this case is 

impossible. Now if 𝑃(𝐴) = 0, then the equation holds true and 𝑃(𝐴) = 1 then also the equation 

holds true. Thus, for any event A in the tail 𝜎 − 𝑎𝑙𝑔𝑒𝑏𝑟𝑎 𝑇, its probability is either 0 or 1 which 

proves the Borel’s zero one law. 

In simple terms, for events that only concern the "tail behavior" of a sequence of 

independent random variables (i.e., events that are not affected by a finite number of the variables 

in the sequence), the probability of such events occurring is either 0% or 100%. 



 
 

Intuitive Explanation: 

The Borel-Zero-One Law sheds light on the "all or nothing" nature of certain types of 

events in infinite sequences. If the occurrence of an event does not depend on any fixed number of 

initial terms of the sequence but only on the behavior of the tail (the terms far out in the sequence), 

then this event is either "almost sure" to happen or "almost sure" not to happen. 

Example: 

One of the classic examples involves the tossing of a fair coin infinitely many times. Let's 

consider the event A where the coin shows up heads infinitely often. 

Now, no matter how the first few tosses (or any finite number of initial tosses) turn out, it 

does not determine whether heads will show up infinitely often. This event's outcome depends on 

the entire infinite sequence's behavior. 

According to the Borel-Zero-One Law, the probability of this event is either 0 or 1. In this 

specific case, the probability is actually 1, meaning that when flipping a fair coin infinitely many 

times, one will almost surely see heads an infinite number of times. 

9.6.1      Applications 

While the Borel-Zero-One Law might seem abstract, it has practical implications. It aids 

in understanding the long-term behavior of sequences of independent trials. The law plays a 

foundational role in ergodic theory, random walks, and other domains of probability and statistics. 

In essence, the Borel-Zero-One Law underscores the deterministic nature of certain 

probabilistic events when looking at them over infinite sequences. Even in a world of randomness 

and chance, some events become certain (or impossible) given enough time and trials. The Borel's 

Zero-One Law does not specify whether a tail event has a probability of 0 or 1. It just asserts that 

it is one of those two values. The power of this theorem lies in the fact that it gives us a nontrivial 

conclusion about a broad class of events without requiring specific knowledge of the underlying 

distribution of the random variables. 

9.7    Borel-Cantelli Lemma 

There are two parts to the Borel-Cantelli Lemma: 



 
 

Lemma part-1:  

If the sum of the probabilities of a sequence of events is finite, then the probability that 

infinitely many of them occur is zero. i.e. Given a sequence (𝐴𝑛), if ∑ 𝑃(𝐴𝑛)
∞
𝑛=1 < ∞, then the 

probability that infinitely many of 𝐴𝑛 occurs is zero. 

Proof: 

The proof uses the fact that for any non-negative series, if its sum is finite, then the series 

terms must go to zero, 

Consider the sequence of partial sums: 

𝐵𝑚 =⋃ 𝐴𝑛

∞

𝑛=𝑚

 

Thus, 𝑃(𝐵
𝑚
) is the probability that at least one of the events 𝐴𝑚, 𝐴𝑚+1, … occurs. Now, 

using subadditivity: 

𝑃(𝐵
𝑚
) ≤ ∑ 𝑃(𝐴𝑛)

∞

𝑛=𝑚

 

Since the series ∑ 𝑃(𝐴𝑛)
∞
𝑛=𝑚  is convergent, its tail ∑ 𝑃(𝐴𝑛)

∞
𝑛=𝑚  must go to zero as 𝑚 → ∞. 

Therefore 𝑃(𝐵
𝑚
) → 0. Thus, the probability that any of the events 𝐴𝑚, 𝐴𝑚+1, … occurs goes to 0. 

Meaning, the probability that infinitely many occur is 0. 

Lemma part-2:  

For independent events, if the sum of their probabilities is infinite, then the probability that 

infinitely many of them occur is one i.e. if the events (𝐴𝑛) are independent and∑ 𝑃(𝐴𝑛) = ∞
∞
𝑛=1  

then the probability that infinitely many 𝐴𝑛 occur is 1. 

Proof:  

Let 𝐵𝑛 be the event that 𝐴𝑘 does not occur for all 𝑘 ≥ 𝑛. We want to show that 𝑃(𝐵
𝑛
) = 0 

for all n. 

𝑃(𝐵
𝑛
) = 𝑃(⋂𝐴𝑘

𝑐

∞

𝑘=𝑛

) 

𝑃(𝐵
𝑛
) =∏(1 − 𝑃(𝐴𝑘))

∞

𝑘=𝑛

 



 
 

Now consider the product: ∏ (1 − 𝑃(𝐴𝑘))
𝑛
𝑘=1 , taking logarithm of this product, we get 

∑ 𝑙𝑜𝑔(1 − 𝑃(𝐴𝑘))
𝑛
𝑘=1 . Using inequality 

log(1 − 𝑥) ≤ −𝑥 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 1, we get 

∑ 𝑙𝑜𝑔(1 − 𝑃(𝐴𝑘))

𝑛

𝑘=𝑛

≤ −∑ 𝑃(𝐴𝑘)

𝑛

𝑘=1

 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 1 

Since ∑ 𝑃(𝐴𝑘)
𝑛
𝑘=1 = ∞, the right-hand side goes to negative infinity as n tends to infinity 

and so does the left hand side. This means the logarithm of the product goes to negative infinity, 

implying that the product itself goes to 0. Hence 𝑃(𝐵
𝑛
) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛. 

Note: Borel's Zero-One Law and Borel-Cantelli Lemmas are distinct but both provide deep 

insights into the behavior of infinite sequences of events. 

Example: consider tossing a fair coin. Let 𝐴𝑛 be an event that you get heads on nth toss. Since the 

coin is fair,  𝑃(𝐴
𝑛
) =

1

2
. Let us create a new sequence of events, 𝐵𝑛, where 𝐵𝑛 is the event that you 

get heads on the 2𝑛𝑡ℎ toss. Then 𝑃(𝐵𝑛) =
1

2𝑛
. 

The sum of the probabilities is: 

∑ 𝑃(𝐵𝑛)

∞

𝒏=𝟏

=∑
1

2𝑛
< ∞

∞

𝒏=𝟏

 

By Borel-Cantelli Lemma, the event 𝐵𝑛 will occur only infinitely many times almost surely. 

Example: consider throwing a dart at the interval [0,1] uniformly. Let 𝐴𝑛 be an event that the dart 

lands in the interval [0,
1

𝑛
]. Then 𝑃(𝐴

𝑛
) =

1

𝑛
 

The sum of probabilities is: 

∑ 𝑃(𝐴𝑛)

∞

𝒏=𝟏

=∑
1

𝑛
= ∞

∞

𝒏=𝟏

 

By Borel Cantelli Lemma, given that the events are independent, the dart will land in the 

interval [0,
1

𝑛
] infinitely often, almost surely. these examples demonstrate how the Borel-Cantelli 

Lemma can be applied in different contexts, using both first and second parts of lemma. 

9.8     Summary 



 
 

In this unit titled "Law of Large Numbers," we delve into the foundational principles 

governing the outcomes of repetitive experiments. Beginning with an introduction to the essence 

of the Law of Large Numbers, the unit differentiates between its two main forms: the Weak and 

Strong Law. While the Weak Law states that the sample average converges in probability towards 

the expected value, the Strong Law emphasizes almost sure convergence. Khinchin’s theorem 

provides the conditions for the Weak Law to hold for independent, identically distributed variables. 

The unit further introduces the Borel-zero-one law, which posits that for a sequence of independent 

events, their infinite occurrence probability is strictly binary - either zero or one. Building on this, 

the Borel-Cantelli Lemma, divided into two parts, dictates the conditions under which sequences 

of events occur with a probability of zero or one. The unit, rich with theoretical insights, also 

encourages learners to delve deeper into these concepts through self-assessment and additional 

readings. 

9.9     Self-Assessment Exercises 

1. Differentiate between the weak and strong laws of large numbers. 

2. What are the implications of Khinchin’s theorem? 

3. Under what conditions does the Borel-Cantelli lemma apply? 

4. What is the primary distinction between the Weak and Strong Law of Large Numbers? 

5. State, in your own words, the main premise of the Law of Large Numbers. 

6. Under what conditions does the sample average converge towards the expected value 

according to the Weak Law of Large Numbers? 

7. Explain the term "almost sure convergence" in the context of the Strong Law of Large 

Numbers. 

8. Summarize the significance of Khinchin’s theorem in relation to the Weak Law of Large 

Numbers. 

9. Describe the Borel-zero-one law. How does it relate to sequences of independent events? 

10. What are the two key parts of the Borel-Cantelli Lemma? 

11. Under the Borel-Cantelli Lemma, when does the probability of infinitely many events 

occurring become zero? 



 
 

12. If a sequence of events is independent and the sum of their probabilities is infinite, what 

can be inferred about their occurrence based on the Borel-Cantelli Lemma? 

13. Which of the following books would provide further reading on the Law of Large Numbers: 

a) Convergence of Probability Measures by Patrick Billingsley, b) The Art of Probability 

by Rick Durrett, or c) A First Look at Rigorous Probability Theory by Jeffrey S. Rosenthal? 
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9.11         Further Reading 

 

Here is the list of recommended books on the Law of Large Numbers, along with their 

respective publishers: 

• "An Introduction to Probability Theory and Its Applications, Vol. 1" by William Feller, 

John Wiley & Sons. 



 
 

• "Probability and Measure" by Patrick Billingsley, John Wiley & Sons. 

• "A First Course in Probability" by Sheldon Ross, Pearson. 

• "The Law of Large Numbers: Probability and Statistics and Their Applications" by M. 

Loève, Chelsea Publishing. 

• "The Doctrine of Chances: Probabilistic Aspects of Gambling" by Stewart N. Ethier, 

Springer. 

These books, along with their publishers, should give you a good starting point in your 

exploration of the Law of Large Numbers and its various implications and applications in 

probability and statistics. 
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10.1   Introduction 

The realm of probability theory is vast, and its applications are seen across various fields, 

such as statistics, finance, and engineering. Characteristic functions provide an essential tool in 

this field, offering a bridge between the probability and frequency domain. In this unit, we delve 

deep into understanding the foundation of characteristic functions and associated theorems. 

Probability theory, an intricate tapestry of mathematical concepts and principles, enables 

us to understand and model uncertainty in various domains. From predicting stock market 

fluctuations to modeling the diffusion of particles in a liquid, its applications are vast and profound. 

Among the numerous tools and concepts in probability theory, characteristic functions stand out 

as particularly powerful. They provide a unique approach to understanding random variables and 

their distributions, primarily by mapping them from the real line into a complex plane. Such a 



 
 

transformation, akin to the Fourier Transform in signal processing, allows for many problems in 

probability to be handled more elegantly and often more simply. 

As we journey through this unit, we will encounter the foundational Helly-Bray Lemma, 

highlighting the intimate connection between probability measures and characteristic functions. 

The Kolmogorov Theorem, on the other hand, provides a perspective on the convergence of 

random variables. This is especially crucial in the context of the Law of Large Numbers and the 

Central Limit Theorem, cornerstones of statistical theory. 

Characteristic functions aren't just theoretical constructs; they have real-world 

implications. By understanding how to invert these functions through the Inversion Theorem, we 

can navigate from the frequency to the probability domain, unlocking a plethora of applications. 

Furthermore, the Continuity and Uniqueness Theorems add depth to our understanding, 

emphasizing the robustness of the links between distributions and their characteristic functions. 

Prepare yourself for an engaging exploration, as this unit dives deep into the world of 

characteristic functions, unveiling their mysteries, and elucidating their pivotal role in probability 

theory. Whether you're a seasoned statistician or a curious learner, the insights from this unit will 

undoubtedly enrich your appreciation for the elegance and power of mathematical reasoning in 

deciphering the unpredictable nature of randomness. 

10.2    Objectives 

By the end of this unit, learners should be able to: 

• Understand the foundational concept behind Helly-Bray Lemma. 

• Grasp the significance and applications of the Kolmogorov Theorem. 

• Describe and interpret the characteristic function. 

• Apply the Inversion Theorem in probability scenarios. 

• Understand the basis and implications of the Continuity and Uniqueness Theorems. 

• Evaluate problems using the knowledge from this unit. 

10.3   Helly-Bray Lemma 



 
 

The Helly-Bray Lemma states that if two probability measures have the same characteristic 

functions, then they also have the same distribution functions. It sets the foundation for 

understanding the relationship between distributions and their characteristic functions. 

 

Statement: 

 If two probability measures P and Q on R have the same characteristic functions, then they 

are identical. 

Proof:  

Let μ and ν be the probability measures corresponding to the random variables X and Y, 

such that their characteristic functions ∅𝜇(𝑡) 𝑎𝑛𝑑 ∅𝑣(𝑡) are identical. 

Approach using the Lévy Continuity Theorem: 

It's known by the Lévy Continuity Theorem that a sequence of characteristic functions 

converges to another characteristic function if and only if their corresponding sequence of 

probability measures converges weakly to the measure associated with the limiting characteristic 

function. 

Identity in the Distribution: 

If two characteristic functions are identical, it can be seen as a special case of convergence 

where the sequence is constant. That is, if for every 𝑡, ∅𝜇(𝑡) = ∅𝑣(𝑡), then one can imagine a 

sequence of measures, all identical to 𝑣, converging weakly to μ. But weak convergence to a 

unique limit is a property of probability measures. 

Since the characteristic functions are identical, and given the properties of weak 

convergence, it must be that μ and ν are identical. 

This is a proof in broad strokes. To fill in the details would require a more extensive 

exposition of the weak- topology on the space of measures, the concept of weak convergence, and 

properties of the Fourier transform on the space of tempered distributions. 

 

Illustrative Examples: 

Bird Migration Patterns: 



 
 

Suppose you are studying the migration patterns of a certain species of bird over the years. 

Every year, the birds seem to be favoring a new region slightly different from the last year. If these 

yearly patterns converge weakly to a particular pattern, then the Helly-Bray Lemma ensures that 

any continuous measurement you make on these patterns (like average distance traveled, assuming 

it's bounded) will also converge over the years. 

Taste Preferences in Coffee Shops: 

Imagine you own a chain of coffee shops, and over time, you notice that the preferences of 

customers for different types of coffee are changing. Every year, more people prefer lattes over 

cappuccinos, for instance. If you model this yearly preference change as a sequence of probability 

distributions that converges weakly to a certain distribution, then any average measure you 

compute on these distributions (like the average sweetness preferred, given it's bounded and 

continuous) will also converge. 

Distribution of Books in Libraries: 

Consider various public libraries and their collections of books across genres. Over 

decades, suppose the proportion of genres in new libraries is approaching a specific distribution 

(like 30% fiction, 20% science, 50% history). If this trend represents weak convergence to a 

particular distribution, then any continuous bounded measure (like average page count of books, 

if it has an upper limit) will converge across libraries as well. 

Color Patterns in Art: 

Let us say there is a sequence of art movements where the color palette used by artists is 

evolving. First, artists favored blues and greens; then, they moved to reds and yellows, and so on. 

If the distribution of colors used in artworks across these movements converges weakly to a certain 

distribution, the Helly-Bray Lemma ensures that any bounded continuous measure we compute on 

these color patterns (like average brightness or hue, given they're bounded) will also converge 

across the movements. 

The real power of the lemma is in its application to sequences of probability measures and 

how they interact with bounded continuous functions. 

10.4     Kolmogorov Theorem 



 
 

This theorem deals with the convergence of random variables. It states that for a sequence 

of independent and identically distributed random variables, their sum, when normalized, 

converges in distribution to the standard normal distribution under certain conditions. 

Statement:  

Let (𝑋𝑛) be a sequence of random variables and let 𝑋 be another random variable. If the 

following two conditions hold: 

The sequence (𝑋𝑛) is such that, for every 𝜖 >0, there exists a compact set 𝐾𝜖 such that  

P(𝑋𝑛 ∈ 𝐾𝜖)>1− 𝜖 for all 𝑛. 

The characteristic functions ∅𝑋𝑛(𝑡) converge pointwise to ∅𝑋(𝑡)for every 𝑡 ∈R. Then, the 

sequence of distribution functions 𝐹𝑋𝑛 converges weakly to 𝐹𝑋. 

Proof: Convergence in Distribution:  

By the definition of weak convergence, for any bounded and continuous function 𝑔, we 

have: 

∫𝑔(𝑥)𝑑𝐹𝑋𝑛(𝑥) →∫𝑔(𝑥)𝑑𝐹𝑋(𝑥) 

Characteristic Functions and Fourier Transform: 

Given any function 𝑔 with compact support and is differentiable, the Fourier inversion 

formula tells us that: 

𝑔(𝑥) =
1

2𝜋
∫𝑒−𝑖𝑡𝑥𝑔̂ (𝑡)𝑑𝑡 

  Where 𝑔̂ is the Fourier transform of 𝑔. 

Due to the tightness condition, there exists a compact set 𝐾 such that 𝑋𝑛 and 𝑋 are both 

majorly contained in 𝐾. This allows us to multiply 𝑔 by an indicator function 𝐼𝐾 which equals 1 

on K and 0 elsewhere, without significantly altering the integrals. The boundedness of g and the 

compactness of K ensure the convergence of the integral. 

Using Pointwise Convergence of Characteristic Functions: 

Expanding the integral of 𝑔  against the distribution of 𝑋𝑛  using the Fourier inversion 

formula and using the properties of the Fourier transform, we can relate this to the characteristic 



 
 

functions of 𝑋𝑛 and 𝑋. The pointwise convergence of the characteristic functions guarantees the 

convergence of these integrals. 

Using the properties of weak convergence, we deduce that if the integrals converge for a 

dense set of functions 𝑔 , they converge for all bounded, continuous functions. Hence, the 

distributions 𝐹𝑋𝑛 converge weakly to 𝐹𝑋. 

The theorem guarantees that, under certain conditions, there is a probability space on which 

these random variables can be defined such that they have the given finite-dimensional 

distributions. 

To phrase it simply, Kolmogorov's existence theorem tells us that if we know how all the 

finite collections of random variables behave (in terms of their joint distributions), then there exists 

a consistent probabilistic structure where all these random variables can "live" together. 

10.4.1   Kolmogorov's Consistency Theorem (or Existence Theorem) 

Given a collection of consistent finite-dimensional distributions, there exists a probability 

space and a collection of random variables on this space such that the finite-dimensional 

distributions of these random variables are precisely the given distributions. 

To understand this, consider the following illustrative examples: 

Weather Modeling: 

Imagine you are trying to simulate the weather for an entire year, day by day. You have 

models that can simulate: 

The weather for any individual day. 

The joint weather for any pair of days. 

The joint weather for any trio of days. 

And so on... 

If all these models are consistent (e.g., the two-day model agrees with the one-day model 

for each of its days), then Kolmogorov's theorem assures you that there exists a model that can 

simulate the weather for the entire year in a way that is consistent with all of your smaller models. 

Stock Market Movements: 



 
 

Suppose you have statistical models that describe how a set of stocks move: 

On any individual day. 

Jointly over any pair of days. 

Jointly over any trio of days. 

And so on... 

Again, if all these models are consistent with each other, then there is a "global" model that 

can simulate the stock market movements over a long period in a way that is consistent with all 

the smaller models. 

The theorem is of fundamental importance in probability theory, especially when 

constructing complex stochastic processes from simpler pieces. While the examples provided offer 

an intuitive grasp, the actual theorem is deeply mathematical and requires a comprehensive 

understanding of measure theory to fully appreciate. 

10.5    Characteristic Function 

A characteristic function provides a complex-valued function that characterizes the 

probability distribution of a random variable. It is particularly useful in deriving distributional 

properties and the sums of independent random variables. 

The characteristic function of random variable 𝑋 is defined as expectation of 𝑒𝑖𝑡𝑋, where 𝑖 

is imaginary unit and 𝑡  is a real number. Formally, for a random variable 𝑋  with probability 

density function 𝑓(𝑥), the characteristic function ∅𝑋(𝑡) is given as 

∅𝑋(𝑡) = 𝐸[𝑒
𝑖𝑡𝑋] 

For discrete random variables 

∅𝑋(𝑡) = 𝐸[𝑒
𝑖𝑡𝑋] =∑ 𝑒𝑖𝑡𝑋𝑃(𝑋 = 𝑥) 

And, for continuous random variable 

∅𝑋(𝑡) = 𝐸[𝑒
𝑖𝑡𝑋] = ∫ 𝑒𝑖𝑡𝑋𝑓(𝑥)𝑑𝑥 

The characteristic function always exists and provides an alternative way to describe the 

distribution of a random variable. One of its primary advantages is that the characteristic function 

of the sum of independent random variables is the product of their individual characteristic 

functions. 



 
 

Examples:  

1. Bernoulli Distribution: 

Consider a Bernoulli random variable X taking values 0 and 1 with 

probability 𝑝 𝑎𝑛𝑑 (1 − 𝑝) respectively. The characteristic function is: 

∅𝑋(𝑡) = (1 − 𝑝)+ 𝑝𝑒
𝑖𝑡 

2. Uniform distribution on [0,1]: 

If X is uniformly distributed over [0,1] then its probability density function is 

𝑓(𝑥) = 1 𝑓𝑜𝑟 𝑥 ∈ [0,1], the characteristic function is: 

∅𝑋(𝑡) = ∫ 𝑒
𝑖𝑡𝑋. 1. 𝑑𝑥

1

0
=
𝑒𝑖𝑡 − 1

𝑖𝑡
 

 

3. Standard Normal Distribution:  

For a standard normal random variable Z with mean zero and variance 1, the 

characteristic function is  

∅𝑋(𝑡) = 𝑒
−𝑡
2

2
⁄

 

The characteristic function is a powerful tool in probability theory and statistics. It is 

especially useful in problems of summing independent random variables, as the characteristic 

function of the sum is simply the product of the characteristic functions. 

The characteristic function always exists for any random variable and provides a unique 

representation of its probability distribution. Two random variables with the same distribution will 

have the same characteristic function. 

Uniqueness: The characteristic function uniquely determines the distribution of a random variable. 

If two random variables have the same characteristic function, they have the same distribution. 

Inversion Formula: Given the characteristic function, it's possible (under certain conditions) to 

recover the distribution of the random variable. 

Moments: The moments of the random variable (like mean, variance, etc.) can be derived from its 

characteristic function. 

Illustrative Examples: 



 
 

Musical Analogy: Imagine the distribution of a random variable as a musical tune. The 

characteristic function is like the set of frequencies that, when combined, produce that tune. Just 

as you can recreate a tune by combining its constituent frequencies, you can recreate a probability 

distribution using its characteristic function. 

Light Analogy: Think of the distribution of a random variable as a pattern of light and shadow on 

a wall. If this pattern is produced by shining light through a complex stencil, then the characteristic 

function is akin to the stencil itself. It's a tool that encodes all the information about the light and 

shadow pattern (i.e., the distribution). 

Simplified Example: 

Let us discuss the case of a coin flip without going into heavy math. Suppose you have a 

fair coin, and you assign the value +1 for heads and -1 for tails. The distribution of this random 

assignment (either +1 or -1) has a particular shape or behavior. The characteristic function for this 

distribution captures that behavior in a complex exponential format. So, if you know the 

characteristic function of this coin flip scenario, you can deduce features about the original 

distribution, like the probability of getting heads or tails. 

In more technical applications, the characteristic function plays a vital role in simplifying 

the math, especially when dealing with sums of independent random variables. The product of 

their individual characteristic functions gives the characteristic function of their sum, which can 

be a very handy property. 

10.6    Inversion Theorem 

The inversion theorem, in the context of characteristic functions, provides a method to 

recover the distribution of a random variable from its characteristic function. It's a cornerstone in 

the theory of characteristic functions. The Inversion Theorem is pivotal in probability theory. It 

offers a way to retrieve the probability distribution of a random variable from its characteristic 

function. 

Statement:  



 
 

Given a characteristic function ∅𝑋(𝑡) of a random variable X with cumulative distribution 

function 𝐹(𝑥), 𝑖𝑓 𝐹(𝑥)𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑡 𝑥0, then  

𝐹(𝑥0) =
1

2𝜋
log𝑇→∞∫

𝑒𝑖𝑡𝑥0∅𝑋(𝑡)

𝑖𝑡

𝑇

−𝑇

𝑑𝑡 

Proof:  

For ant real number x using the definition of the characteristic function: 

∅𝑋(𝑡) = ∫𝑒
𝑖𝑡𝑥 𝑑𝐹(𝑥) 

Multiplying both sides by 
𝑒−𝑖𝑡𝑥0

𝑖𝑡
 and integrating it with respect to t from -T to T, we get 

∫
𝑒−𝑖𝑡𝑥0∅𝑋(𝑡)

𝑖𝑡
𝑑𝑡 = ∫

𝑒−𝑖𝑡𝑥0

𝑖𝑡

𝑇

−𝑇

𝑇

−𝑇
𝑑𝑡∫𝑒𝑖𝑡𝑥 𝑑𝐹(𝑥) 

= ∫(∫
𝑒−𝑖𝑡(𝑥0−𝑥)

𝑖𝑡

𝑇

−𝑇

𝑑𝑡) 𝑑𝐹(𝑥) 

The function 
𝑒−𝑖𝑡𝑥0

𝑖𝑡
 is problematic at t=0. However, one can show that: 

|∫
𝑒−𝑖𝑡(𝑥0−𝑥)

𝑖𝑡

𝑇

−𝑇
𝑑𝑡| ≤ 𝜋; ∀ 𝑥 

Using standard techniques from complex analysis. 

One of the key insights is that. As T goes to infinity, the inner integral in the convolution 

closely resembles the indicator function of the interval [−
1

2
,
1

2
]. Specifically one can show  

log𝑇→∞∫
𝑒−𝑖𝑡(𝑥0−𝑥)

𝑖𝑡

𝑇

−𝑇
𝑑𝑡 =  𝜋𝐼

[−
1
2,
1
2]
(𝑥
0
− 𝑥) 

Where 𝐼𝐴 is the indicator function of set 𝐴. 

Given the approximating property above, we can substitute it back into our original 

equation to get 

∫𝜋𝐼
[−
1
2,
1
2]
(𝑥
0
− 𝑥)𝑓𝐹(𝑥) = 𝜋 [𝐹 (𝑥0 +

1

2
)−𝐹(𝑥0 −

1

2
)] 

Because 𝐹(𝑥) is continuous at x0, the value 𝐹 (𝑥0 +
1

2
) 𝑎𝑛𝑑 𝐹(𝑥0 −

1

2
) both converges to 

𝐹(𝑥0) as the interval shrinks to zero. 

Thus, combining all the above equations, we get the desired result: 

  



 
 

𝐹(𝑥0) =
1

2𝜋
log𝑇→∞∫

𝑒𝑖𝑡𝑥0∅𝑋(𝑡)

𝑖𝑡

𝑇

−𝑇

𝑑𝑡 

 

The specific mathematical details involve complex analysis and integrals, but for a qualitative 

understanding, consider the following analogy: 

 

Analogy: 

Imagine you are given a puzzle, but instead of the typical jigsaw pieces, you are provided 

with descriptions of how each piece connects to its neighbors. The Inversion Theorem is like a 

guideline that allows you to use these descriptions to reconstruct the original image of the puzzle. 

The Inversion Theorem is crucial for several reasons: 

Uniqueness: It reinforces the fact that the characteristic function uniquely determines the 

distribution. If two random variables have different distributions, they will have different 

characteristic functions. 

Practical Computation: In some scenarios, it is easier to work with characteristic functions 

(especially when dealing with sums or products of independent random variables). Once you have 

done the necessary operations in the "characteristic function domain", you can use the Inversion 

Theorem to return to the "probability distribution domain". 

Theoretical Foundation: It serves as a foundational result in probability theory and statistics, 

establishing a deep link between the probabilistic properties of a random variable and its 

characteristic function. 

Simplified Example: 

Suppose you have been studying a random phenomenon (like the height of individuals in 

a population) and have derived its characteristic function. Now, you wish to know the probability 

that the height falls within a certain range. Instead of directly dealing with the raw data, you can 

utilize the characteristic function and the Inversion Theorem to deduce this probability. 



 
 

Remember, while the above explanations aim to provide an intuitive grasp, the Inversion 

Theorem is rooted in complex mathematical formulations. But at its heart, it is a bridge between 

the world of characteristic functions and the probability distributions they represent. 

10.7    Continuity Theorem 

This theorem provides conditions under which convergence in distribution implies 

convergence of characteristic functions. It's instrumental in ensuring that transformations in the 

frequency domain have valid representations in the probability domain. 

Statement:  

Let 𝑋𝑛 𝑎𝑛𝑑 𝑋  be random variables with characteristic functions ∅𝑋𝑛(𝑡)  and ∅𝑋(𝑡) 

respectively. If ∅𝑋𝑛(𝑡)  converges to ∅𝑋(𝑡)  pointwise as 𝑛 → ∞ 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑡  and if ∅𝑋  is 

continuous at 𝑡 = 0, then the distribution of 𝑋𝑛 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 𝑤𝑒𝑎𝑘𝑙𝑦 𝑡𝑜 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑋. 

Proof:  

For any bounded, continuous function 𝑔:ℝ → ℝ, we have 

∫𝑔(𝑥)𝑑𝐹𝑋𝑛(𝑥) → ∫𝑔(𝑥)𝑑𝐹𝑋(𝑥) ; 𝑎𝑠 𝑛 → ∞ 

Where 𝐹𝑋𝑛  𝑎𝑛𝑑 𝐹𝑋 are cumulative distribution function of 𝑋𝑛 𝑎𝑛𝑑 𝑋 respectively. 

Recall that the set of bounded, continuous functions is dense in the space of bounded, 

measurable functions with respect to the 𝐿1 norm. So, any such function can be approximated 

arbitrarily closely by bounded, continuous functions. 

Given that ∅𝑋𝑛(𝑡) converges to ∅𝑋(𝑡) pointwise as 𝑛 → ∞ and the continuous property of 

∅𝑋(𝑡) at t=0, it can be shown, through the properties of the Fourier transformation, that for every 

bounded, continuous function 𝑔, 

∫𝑔(𝑥)𝑑𝐹𝑋𝑛(𝑥) → ∫𝑔(𝑥)𝑑𝐹𝑋(𝑥) ; 𝑎𝑠 𝑛 → ∞ 

Also, by the definition of weak convergence which states that, for every bounded, 

continuous function 𝑔, 

∫𝑔(𝑥)𝑑𝐹𝑋𝑛(𝑥) → ∫𝑔(𝑥)𝑑𝐹𝑋(𝑥) ; 𝑎𝑠 𝑛 → ∞ 



 
 

Given that this holds from the properties of characteristic functions, as shown in previous 

step, the distribution 𝐹𝑋𝑛 converge weakly to 𝐹𝑋.  

The proof, in essence, is about using the characteristics of the Fourier transform and its relationship 

to the underlying distribution. 

Importance of the theorem:  

Tool for Proving Convergence: Many problems in probability and statistics involve showing that 

a sequence of random variables (or their distributions) converges to something. The Continuity 

Theorem provides a mechanism for this. If we can prove that the characteristic functions converge, 

it can lead us to conclusions about the convergence of the random variables themselves. 

Connection between Pointwise Convergence and Distribution Convergence: It offers a bridge 

between the pointwise convergence of characteristic functions and the convergence in distribution 

of random variables. 

Illustrative Example: 

Imagine you are watching a series of movies from a particular director. Each movie has its 

own "mood" or "tone," which we can think of as its distribution. Now, if someone told you that 

the "essence" or "core theme" (analogous to the characteristic function) of each movie is getting 

more and more like that of a classic film, the Continuity Theorem ensures that the mood or tone 

of the director's movies is also getting closer and closer to that of the classic film, under the right 

conditions. 

This is, of course, a very abstract way to think about it. The actual theorem operates in the 

realm of complex functions and probability distributions. However, the essence is that by 

observing how the characteristic functions behave, we can deduce how the actual random 

processes or variables behave. 

10.8   Uniqueness Theorem 

The Uniqueness Theorem strengthens the link between characteristic functions and 

probability distributions. It essentially states that a probability distribution is uniquely determined 

by its characteristic function. 



 
 

Statement:  

If X and Y are random variables with characteristic function ∅𝑋(𝑡) and ∅𝑌(𝑡). If ∅𝑋(𝑡) = 

∅𝑌(𝑡); for all t in an interval containing 0, then X and Y have the same distribution. 

Proof:  

The main idea behind the proof is to use the Inversion Theorem to show that the two 

random variables have the same distribution function. 

Given that ∅𝑋(𝑡) =  ∅𝑌(𝑡)  for all t , we can consider the difference between the two 

characteristic functions: 

∆(𝑡) = ∅𝑋(𝑡) − ∅𝑌(𝑡) = 0;𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡. 

Using the Inversion Theorem, if 𝐹𝑋(𝑥) and 𝐹𝑌(𝑥) are cumulative distribution functions of 

X and Y respectively, then for any 𝑎 < 𝑏 

𝐹𝑋(𝑏)−𝐹𝑋(𝑎) =
1

2𝜋
log𝑇→∞∫

𝑒−𝑖𝑡𝑏 − 𝑒−𝑖𝑡𝑎

𝑖𝑡

𝑇

−𝑇
∅𝑋(𝑡)𝑑𝑡 

𝐹𝑌(𝑏)− 𝐹𝑌(𝑎) =
1

2𝜋
log𝑇→∞∫

𝑒−𝑖𝑡𝑏 − 𝑒−𝑖𝑡𝑎

𝑖𝑡

𝑇

−𝑇
∅𝑌(𝑡)𝑑𝑡 

Since, given that ∅𝑋(𝑡) = ∅𝑌(𝑡) for all t and using the expressions from the Inversion 

Theorem, we can deduce that for all 𝑎 < 𝑏 

𝐹𝑋(𝑏)−𝐹𝑋(𝑎) =𝐹𝑌(𝑏)− 𝐹𝑌(𝑎)  

This means the two cumulative distribution functions are equal, and thus , the distributions 

of X and Y are the same. 

The proof is essentially a direct consequence of the Inversion Theorem. It shows the 

powerful connection between the characteristic function of a random variable and its distribution. 

If two random variables have the same characteristic function over an interval containing 0, they 

must have the same distribution. 

This theorem emphasizes that there is a one-to-one correspondence between the probability 

distribution of a random variable and its characteristic function. 

Importance: 



 
 

One-to-One Correspondence: It confirms that the characteristic function contains all the 

information about the distribution of a random variable. If two random variables have the same 

characteristic function, they are essentially "the same" in terms of their distributions. 

Theoretical Clarity: The theorem clarifies the relationship between distribution functions and 

characteristic functions, two fundamental constructs in probability theory. 

Practical Implications: In some contexts, it's easier to work with characteristic functions. 

Knowing that the characteristic function uniquely determines the distribution means that if you 

can manipulate or understand the characteristic function, you have a complete understanding of 

the distribution. 

 

Illustrative Example: 

Imagine every person has a unique fingerprint that represents their identity. If two people 

have the same fingerprint, then they are the same individual (ignoring the idea of identical twins 

for this analogy). Similarly, the characteristic function is like the "fingerprint" of a probability 

distribution. If two distributions have the same "fingerprint" (characteristic function), then they 

are the same distribution. 

In a more practical scenario, suppose you are studying two seemingly different phenomena, 

but upon analysis, you find their characteristic functions to be the same. The Uniqueness Theorem 

tells you that the underlying probability distributions governing these phenomena are identical. 

In essence, the Uniqueness Theorem reinforces the idea that the characteristic function 

captures all the information about a random variable's distribution. If you know the characteristic 

function, you know the distribution, and vice versa. 

10.9   Summary 

In the unit "Characteristic Functions," we delved into the world of probability distributions 

and their corresponding characteristic functions, which provide a Fourier transform representation 

of a random variable. Starting with an introduction to the underlying concepts, the unit unveiled 

key theorems and their implications: the Helly-Bray Lemma, which speaks to the convergence of 

characteristic functions; the Kolmogorov Theorem, establishing conditions for convergence; and 



 
 

the pivotal Inversion and Continuity Theorems, which bridge the relationship between 

characteristic functions and the probability distributions they represent. The unit also highlighted 

the Uniqueness Theorem, asserting that a random variable's distribution is uniquely determined by 

its characteristic function. Throughout, the material emphasized the crucial role of characteristic 

functions in understanding and analyzing the properties and behavior of random variables and their 

distributions. 

10.10  Self-Assessment Exercises 

1. Define the Helly-Bray Lemma in your own words. 

2. Explain the importance of the Kolmogorov Theorem. 

3. What is the relationship between the characteristic function and the distribution of a 

random variable? 

4. How does the Inversion Theorem aid in deriving the probability distribution from a 

characteristic function? 

5. What implications does the Continuity Theorem have on the convergence of random 

variables? 

6. Explain the significance of the Uniqueness Theorem. 

7. What is the definition of a characteristic function for a random variable? 

8. State the Helly-Bray Lemma. How does it relate to the convergence of characteristic 

functions? 

9. Briefly describe the essence of the Kolmogorov Theorem in the context of characteristic 

functions. 

10. If X and Y are independent random variables with characteristic functions ϕX (t) and ϕY 

(t), respectively, what is the characteristic function of X+Y? 

11. State the Inversion Theorem. How can it be used to recover a probability distribution from 

its characteristic function? 

12. Describe the main premise of the Continuity Theorem. How does it relate the convergence 

of characteristic functions to the convergence of distributions? 

13. What does the Uniqueness Theorem tell us about the relationship between a random 

variable's distribution and its characteristic function? 



 
 

14. What are some of the practical applications of characteristic functions in probability and 

statistics? 

15. Given the random variable X which follows a standard normal distribution, what is the 

form of its characteristic function? 

16. Why is knowledge of complex analysis important when working with characteristic 

functions? 
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11.1     Introduction 

The Central Limit Theorem (CLT) is a cornerstone of probability theory and statistics. It 

provides a bridge that connects the sometimes-vast differences of individual distributions to a 

common result: the Gaussian or normal distribution. This unit explores the details, assumptions, 

and several forms of the CLT, all of which are foundational for understanding statistical inferences. 

In the vast realm of probability and statistics, certain principles and theorems lay the 

foundational understanding necessary for deeper exploration and application. Among them, the 

Central Limit Theorem (CLT) shines as one of the most pivotal. Whether you're a student 

beginning your journey in the subject, a professional leveraging data, or someone with a passing 

interest in the mathematical phenomena behind everyday events, the CLT has implications that 

touch upon a myriad of areas. 

The essence of the CLT lies in its profound assertion: no matter the original distribution of 

a set of variables, their sum (or average) will always tend towards a normal distribution as their 



 
 

number grows. It's akin to the common thread that binds the fabric of randomness, bringing order 

and predictability in the face of inherent variability. 

This unit will guide through the nuances of the CLT, its various forms, and its underlying 

principles. We will embark on a journey from its one-dimensional version to the more generalized 

Lindeberg-Levy, Lyapunov, and Lindeberg-Feller theorems. By the end of this unit, the learner 

not only appreciate the beauty and power of the CLT but also be equipped to apply it in real-world 

scenarios. 

11.2  Objectives 

By the end of this chapter, learner should be able to: 

• Understand the significance of the Central Limit Theorem. 

• Describe the one-dimensional version of the CLT. 

• Comprehend the Lindeberg-Levy, Lyapunov, and Lindeberg-Feller Theorems. 

• Apply the CLT in practical statistical scenarios. 

11.3       One-Dimensional Central Limit Problem 

Definition: 

The one-dimensional central limit problem refers to the convergence in distribution of the 

sum of independent random variables to the normal distribution. In simpler terms, no matter what 

individual distributions our random variables come from, as we add more and more of them 

together, their normalized sum will look more and more like a standard normal distribution. 

Formal Presentation: Let 𝑋1, 𝑋2, 𝑋3, … be a sequence of independent and identically distributed 

(i.i.d.) random variables, each with an expected value  

E[𝑋𝑖]=μ and a variance Var(𝑋𝑖)=σ2. The sum of these variables is: 

𝑆𝑛 =∑𝑋1

𝑛

𝑖=1

 

Now, consider the normalized version: 𝑍𝑛 =
𝑆𝑛−𝑛𝜇

𝜎𝑛
   

 As 𝑛  approaches infinity (i.e., as we consider more and more random variables), the 

distribution of 𝑍𝑛 tends towards a standard normal distribution (with mean 0 and variance 1). 



 
 

 

Example: 

Tossing a Coin Imagine we are tossing a fair coin. Let's represent a heads by the number 1 

and tails by 0. If we toss the coin once, the average value is E[X]=0.5, and the variance is 

Var(X)=0.25. 

Now, consider tossing the coin n times and calculating the sum of the results. The expected 

sum is 𝑛 ×0.5 and the variance is 𝑛 ×0.25. 

Let's define our normalized sum for n coin tosses as: 

𝑍𝑛 =
𝑆𝑛 − 0.5𝑛

0.5 𝑛
 

 As n gets larger, according to the one-dimensional CLT, 𝑍𝑛 will tend towards a standard 

normal distribution. 

Visualization: 

For a small 𝑛, say 5 or 10, the distribution of the sum (or average) of the coin tosses won't 

look very normal. It will be binomial, in fact. But as you increase 𝑛 to 30, 50, or even 100, the 

distribution starts looking bell-shaped or 'normal'. By the time you reach 𝑛 =1000, the distribution 

of the average of the coin tosses will be almost indistinguishable from a normal curve. 

If you have a series of random processes (like the daily average temperature in a city over 

several years) and the characteristic functions of these processes are getting closer and closer to 

some other function, then the original processes (in this case, the temperature patterns) are also 

approaching a specific pattern or behavior. 

The importance of the CLT lies in its implications: 

Universality: Regardless of the original distribution of Xi (as long as it has finite mean and 

variance), the sum or average of a large number of these variables will have a distribution that is 

approximately normal. This is why the normal distribution appears in so many natural phenomena. 

Simplifies Analyses: Many statistical methods are based on the assumption of normality. The CLT 

provides a justification for using these methods in practice when dealing with large samples. 

Illustrative Example: 



 
 

Suppose you are rolling a fair six-sided die. The outcomes are 1,2,…,6 with equal 

probabilities. If you roll the die once, the distribution of outcomes is uniform. However, if you roll 

the die, say, 50 times and compute the average result each time, the distribution of those averages 

will start to resemble a bell-shaped curve (a normal distribution), even though the individual rolls 

follow a uniform distribution. The more times you roll and average, the closer the distribution of 

averages gets to a normal distribution. This is the essence of the Central Limit Theorem in action. 

The one-dimensional central limit theorem provides a powerful tool in statistics. Many 

real-world phenomena can be approximated as the sum of many small, independent effects. Even 

if learner do not know the original distribution of these effects, we know that their sum will tend 

towards a normal distribution, which is a well-understood and widely studied distribution. This 

allows statisticians to make inferences and predictions with confidence. 

11.4  Lindeberg-Levy Theorem  

The Lindeberg-Levy Theorem is a specific case of the Central Limit Theorem (CLT) 

tailored for sequences of independent and identically distributed (i.i.d.) random variables. It 

provides conditions under which the sum of these i.i.d. variables, when properly normalized, 

converges in distribution to the standard normal distribution. 

Statement:  

Let 𝑋1, 𝑋2, 𝑋3, … be a sequence of independent and identically distributed (i.i.d.) random 

variables, each with an expected value  

E[𝑋𝑖]=μ and a variance Var(𝑋𝑖)=σ2. The sum of these variables is: 

𝑆𝑛 =∑𝑋1

𝑛

𝑖=1

 

Now, consider the normalized version: 𝑍𝑛 =
𝑆𝑛−𝑛𝜇

𝜎√𝑛
   

As 𝑛 approaches infinity, 𝑍𝑛 converges in distribution to a standard normal distribution 

(with mean 0 and variance 1). 

The theorem essentially says that if learner takes a large number of variables from the same 

distribution (with a finite mean and variance) and add them up, then the average will follow a 



 
 

normal distribution. This behavior holds true regardless of the shape or type of their common 

distribution, if it has a well-defined mean and variance. 

Proof:  

The proof of Lindeberg Levy theorem utilizes characteristic functions. 

Given that 𝑋1, 𝑋2, 𝑋3, … be a sequence of independent and identically distributed (i.i.d.) random 

variables, each with an expected value  

E[𝑋𝑖]=μ and a variance Var(𝑋𝑖)=σ2. The characteristic function of 𝑋1 is: 

∅(𝑡) = 𝐸[𝑒𝑖𝑡𝑋1] 

The characteristic function for    is 

∅𝑧𝑛(𝑡) = 𝐸[𝑒
𝑖𝑡𝑧𝑛] 

Using properties of expected values and independence, this can be expanded as 

∅𝑧𝑛(𝑡) = 𝐸 [𝑒
𝑖𝑡
𝑆𝑛−𝑛𝜇
𝜎√𝑛 ] 

∅𝑧𝑛(𝑡) = 𝐸 [𝑒
𝑖𝑡
∑ 𝑋𝑛
𝑖=1 𝑖

−𝑛𝜇

𝜎√𝑛 ] 

∅𝑧𝑛(𝑡) =∏𝐸 [𝑒
𝑖𝑡
𝑋𝑖−𝑛𝜇
𝜎√𝑛 ]

𝑛

𝑖=1

 

∅𝑧𝑛(𝑡) = (∅ (
𝑡

𝜎√𝑛
))

𝑛

 

By Taylor series expansion around 0, given as: 

∅(𝑡) = 1 + 𝑖𝑡𝜇 −
1

2
𝑡2𝜎2 + 𝑜(𝑡). 

The above expression can write as: 

log𝑛→∞ (∅ (
𝑡

𝜎√𝑛
))
𝑛

= exp (−
1

2
𝑡2). 

The right-hand side is the characteristic function of a standard normal distribution. Since 

the convergence of characteristic functions implies convergence in distribution, Zn converges in 

distribution to the standard normal as n approaches infinity. 

Why is the Lindeberg-Levy Theorem important? 



 
 

Special Case: It's a special case of the more general CLT, which applies to i.i.d. variables with a 

common finite variance. This theorem is often taught in introductory courses because it covers 

many practical scenarios and has simpler conditions than some more general versions. 

Foundational: Like other versions of the CLT, it underpins many methods in statistics. If you are 

conducting a study and collect a large sample of i.i.d. data with a known average and variance, 

you can make inferences about the population using techniques that assume normality, thanks to 

the Lindeberg-Levy theorem. 

Illustrative Example: 

Consider measuring the time it takes for different people to complete a specific task, like 

solving a puzzle. Each person's time can be considered a random variable. Even if individual times 

are not normally distributed, if you take a sample of a large number of people and compute the 

average time, the Lindeberg-Levy theorem tells you that this average will be approximately 

normally distributed (given that the variance is finite). So, you could then use this to make 

inferences about the average time it would take for anyone randomly selected from the population 

to complete the puzzle. 

In essence, the Lindeberg-Levy theorem is one of the foundational stones of inferential 

statistics, allowing researchers in various fields to draw conclusions from sample data. 

The One-Dimensional Central Limit Problem specifically focuses on the convergence of 

the distribution of sums (or averages) of i.i.d. variables to the normal distribution in one-

dimensional space. There are multi-dimensional generalizations and various other versions of the 

CLT that delve deeper into different aspects of convergence and types of random variables, but 

the one-dimensional case is the most commonly cited and taught. 

11.5   Lyapunov Theorem 

The Lyapunov Central Limit Theorem is a more general form of the Central Limit Theorem 

(CLT) that provides conditions under which the sum of independent, but not necessarily identically 

distributed, random variables converge in distribution to a normal distribution. It's particularly 

useful when the variances of the individual random variables differ or when we want to establish 

normal convergence without assuming identical distributions. 



 
 

Statement: 

Consider 𝑋1, 𝑋2, 𝑋3, … be a sequence of independent distributed random variables, each 

with an expected value  

E[𝑋𝑖]=𝜇𝑖 and a variance Var(𝑋𝑖)= 𝜎𝑖
2>0 

Sn =∑Xi

n

i=1

 

If there exists 𝛿 > 0 

log𝑛→∞
1

𝑠𝑛
2+𝛿

∑𝐸|𝑋𝑖 − 𝜇𝑖|
2+𝛿

= 0

𝑛

𝑖=1

 

Where 𝑠𝑛
2 = 𝑉𝑎𝑟(𝑆𝑛) = ∑ 𝜎2𝑛

𝑖=1  

Then the normalized sum, 

𝑍𝑛 =
𝑆𝑛 −𝐸(𝑆𝑛)

𝑆𝑛
 

Converges to standard normal distribution as n tends to infinity. 

Proof:   

The proof of Lyapunov's theorem is more involved and relies on the properties of 

characteristic functions, much like the proof of the Lindeberg-Levy theorem, but it also introduces 

the use of Lyapunov's inequality.  

Characteristic Functions:  

Start by defining the characteristic function of Zn and express it in terms of the 

characteristic functions of the individual random variables. i.e. 

Let ∅𝑧𝑛(𝑡) be the characteristic function of Zn. Using properties of characteristic function 

and the independence of Xi’s 

∅𝑧𝑛(𝑡) = 𝐸 [𝑒
𝑖𝑡
𝑆𝑛−𝑛𝜇
𝜎√𝑛 ] 

∅𝑧𝑛(𝑡) = 𝐸 [𝑒
𝑖𝑡
∑ 𝑋𝑛
𝑖=1 𝑖

−𝑛𝜇

𝜎√𝑛 ] 

∅𝑧𝑛(𝑡) =∏𝐸 [𝑒
𝑖𝑡
𝑋𝑖−𝑛𝜇
𝜎√𝑛 ]

𝑛
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∅𝑧𝑛(𝑡) =∏∅𝑖 (
𝑡
𝑠𝑛⁄ )

𝑛

𝑖=1

 

Where ∅𝑖 is the characteristic function of 𝑋𝑖 − 𝜇𝑖. 

Taylor Expansion:  

Use a Taylor series expansion of the characteristic function of each random variable Xi 

about 0. 

∅𝑖(𝑡) = 1+ 𝑖𝑡𝐸[𝑋𝑖 − 𝜇𝑖]−
1

2
𝑡2(𝐸[𝑋𝑖 − 𝜇𝑖])

2
+ ∫ (𝑒𝑖𝑡𝑥 − 1− 𝑖𝑡𝑥)𝑒−

𝑥2
2
⁄∞

−∞
𝑑𝐹𝑖(𝑥)). 

Lyapunov's Inequality:  

Using Lyapunov's condition, we can manage the integral term. Recall the condition: 

log𝑛→∞
1

𝑠𝑛
2+𝛿

∑𝐸|𝑋𝑖 − 𝜇𝑖|
2+𝛿

= 0

𝑛

𝑖=1

 

With this condition, for any fixed t, we can show that: 

log𝑛→∞∑∫ (𝑒
𝑖𝑡𝑥
𝑆𝑛 − 1−

𝑖𝑡𝑥

𝑆𝑛
) 𝑒

−𝑥2
2
⁄ 𝑑𝐹𝑖(𝑥)

∞

−∞

𝑛

𝑖=1

= 0 

This step involves using the condition and the Dominated Convergence Theorem. By 

managing the higher order terms with Lyapunov's condition and taking the limit as n→∞, show 

that the characteristic function of Zn converges to that of the standard normal distribution. 

Given the above steps, and using the properties of the logarithm and exponential functions, 

we find that: 

log𝑛→∞ (∅ (
𝑡

𝜎√𝑛
))

𝑛

= exp (−
1

2
𝑡2) 

Convergence in Distribution:  

As previously stated, the convergence of characteristic functions implies convergence in 

distribution. Thus, Zn converges in distribution to a standard normal random variable as n 

approaches infinity. 

In simpler terms, the Lyapunov condition checks if the higher moments (beyond variance) 

of the random variables grow at a rate that is "manageable" compared to the sum of their variances. 



 
 

If this condition is satisfied, then even without identical distributions, the sum of the random 

variables will still converge to a normal distribution when standardized. 

Why is the Lyapunov Theorem important? 

Generality: This theorem covers a broader set of scenarios than the standard CLT versions because 

it doesn't assume identically distributed random variables. 

Varied Applications: In real-world situations, it's common to encounter sums of random variables 

from different distributions (e.g., in risk management, where diverse risk factors may impact a 

total outcome). 

Illustrative Example: 

Imagine a company analyzing the total delay in shipping products to customers. Different 

products might be shipped from different warehouses, each with its own distribution of delay 

times. While the delay for a single product type might not be normally distributed, the total delay 

for a large order (with products from multiple warehouses) could be approximated as normally 

distributed if the Lyapunov condition is met. 

 

Overall, the Lyapunov theorem provides a robust tool for researchers and practitioners when 

dealing with sums of random variables from varied sources or distributions. It generalizes the idea 

that under appropriate conditions, the behavior of large sums of random variables can be 

understood using the familiar bell-shaped curve of the normal distribution. 

11.6  Lindeberg-Feller Theorem 

The Lindeberg-Feller Central Limit Theorem is a generalized version of the Central Limit 

Theorem (CLT) that addresses the sum of independent but not necessarily identically distributed 

random variables. It provides a set of conditions under which the sum of these variables will 

converge in distribution to a normal distribution. The theorem is often simply referred to as the 

"Lindeberg Condition". 

Statement: 



 
 

Let 𝑋1, 𝑋2, …be a sequence of independent random variables, each with expected value 

𝐸(𝑋𝑖) = 𝜇𝑖 and variance 𝑉𝑎𝑟(𝑋𝑖) = 𝜎𝑖
2, define 

𝑆𝑛 =∑𝑋𝑖

𝑛

𝑖=1

 

𝑠𝑛
2 =∑𝜎𝑖

2

𝑛

𝑖=1

 

Suppose the Lindeberg condition holds: 

For every 𝜖 > 0 

log𝑛→∞
1

𝑠𝑛
2
∑𝐸 [(𝑋𝑖 − 𝜇𝑖)

2
. 1(|𝑋𝑖 − 𝜇𝑖|𝜖𝑠𝑛)]

𝑛

𝑖=1

= 0 

Then normalized sum: 

𝑍𝑛 =
𝑆𝑛 −𝐸(𝑆𝑛)

𝑠𝑛
 

Converges in distribution to the standard normal distribution as n approaches to infinity. 

Proof: 

For the normalized sum 𝑍𝑛, its characteristic function is: 

∅𝑧𝑛(𝑡) = 𝐸 [𝑒
𝑖𝑡
𝑆𝑛−𝑛𝜇
𝜎√𝑛 ] 

∅𝑧𝑛(𝑡) = 𝐸 [𝑒
𝑖𝑡
∑ 𝑋𝑛
𝑖=1 𝑖

−𝑛𝜇

𝜎√𝑛 ] 

∅𝑧𝑛(𝑡) =∏𝐸 [𝑒
𝑖𝑡
𝑋𝑖−𝑛𝜇
𝜎√𝑛 ]

𝑛

𝑖=1

 

∅𝑧𝑛(𝑡) =∏∅𝑖 (
𝑡
𝑠𝑛⁄ )

𝑛

𝑖=1

 

Where ∅𝑖 is the characteristic function of 𝑋𝑖 − 𝜇𝑖. 

a Taylor series expansion of the characteristic function of each random variable Xi about 0. 

∅𝑖(𝑡) = 1+ 𝑖𝑡𝐸[𝑋𝑖 − 𝜇𝑖]−
1

2
𝑡2(𝐸[𝑋𝑖 − 𝜇𝑖])

2
+ 𝑜(𝑡2) 

The main challenge is to control the error term, 𝑜(𝑡2). Using the Lindeberg condition, it is 

possible to show that for ant fixed t 



 
 

log𝑛→∞∑𝐸 [(𝑋𝑖 − 𝜇𝑖)
2
. 1(|𝑋𝑖 − 𝜇𝑖|𝜖𝑠𝑛)]

𝑛

𝑖=1

= 0 

This essentially ensures that the impact of large deviations from the mean becomes 

negligible as n grows, facilitating the application of the Central Limit Theorem. 

Combining the above results, we can show that: 

log𝑛→∞∅ (
𝑡

𝜎√𝑛
) = exp (−

1

2
𝑡2) 

This is a characteristic function of standard normal distribution. 

By the continuity theorem in the theory of characteristic functions, if the characteristic functions 

converge, the distributions themselves converge. Hence, Zn converges in distribution to a standard 

normal random variable as n goes to infinity. 

Significance of the theorem 

Flexibility: Unlike some other forms of the CLT, the Lindeberg-Feller theorem doesn't require the 

random variables to be identically distributed. This makes it applicable to more diverse real-world 

scenarios. 

Tail Behavior: The Lindeberg condition specifically inspects the behavior of the tails of the 

distributions. This is insightful in many applications, particularly in risk management and finance 

where tail behavior can be crucial. 

 

Illustrative Example: 

Consider a factory producing items, where each item can have a defect with varying 

probabilities, and the nature/severity of the defect can differ across product types (different 

distributions). While each individual product type might have its own distinct distribution of 

defects, if the factory produces a large mix of these products and if the conditions of the Lindeberg-

Feller theorem are satisfied, the proportion of defects in large batches can be approximated using 

a normal distribution. 

In sum, the Lindeberg-Feller theorem provides a robust framework for understanding the 

distribution of the sum of non-identically distributed random variables, especially as the number 

of variables becomes large. 



 
 

The Lindeberg-Feller Central Limit Theorem is a powerful generalization of the classical 

Central Limit Theorem. It handles the case where the random variables are not identically 

distributed, as long as they satisfy the Lindeberg condition. This condition ensures that no single 

random variable or small group of them has a disproportionately large impact on the sum, allowing 

for the emergence of the normal distribution in the limit. 

Let us go through some solved examples to understand the Central Limit Theorem (CLT) 

better. 

Example 1: Dice Rolling 

Suppose you roll a fair six-sided die. The expected value (mean) E[X] is 3.5 and the 

variance Var(X) is 2.92. If you roll the die n times and take the average each time, the CLT states 

that the distribution of those averages will tend to be normal as n increases, with a mean of 3.5 and 

variance 2.92/n. 

Let us calculate the average of rolling the dice 30 times. If we repeat this experiment a 

large number of times and plot the averages, the distribution of these averages would approach a 

normal distribution. To get the standard deviation of the average of 30 rolls, you'd take the square 

root of 2.92/30, which is about 0.311. 

If you were to ask the probability that the average of those 30 rolls is between 3 and 4, 

you'd use a normal distribution table (or software) with mean 3.5 and standard deviation 0.311 to 

find that probability. 

Example 2: Sample Average of a Uniform Distribution 

Suppose the time (in hours) it takes for a package to be delivered follows a uniform 

distribution between 2 and 6 hours. That means any time between 2 to 6 hours is equally likely. 

The mean E[X] is 4 hours and the variance Var(X) is 
42

12
 𝑜𝑟 

4

3
 . 

Now, let us say you order 50 packages. What is the probability that the average delivery 

time of these 50 packages is less than 3.9 hours? 

The standard deviation of the average of 50 delivery times would be the square root of 

(4/3)/50, which is about 0.163. 

You would then convert 3.9 hours to a z-score: 



 
 

𝑧 =
3.9 − 4

0.163
= −0.613 

You would then use a z-table (or software) to find the probability that a standard normal variable 

is less than -0.613, which would give you the desired probability. 

Example 3: Binomial Approximation 

Suppose 20% of a town's population are smokers. If you randomly survey 100 people, what 

is the probability that more than 25 of them are smokers? 

Here, we are dealing with a binomial distribution with n=100 and p=0.2. The mean is 

np=20, and the variance is np (1−p )=16. 

However, with the CLT, we can approximate this binomial with a normal distribution, 

especially since our n is large. 

The standard deviation is the square root of 16, which is 4. 

To find the probability that more than 25 people are smokers, we'd first convert 25 to a z-

score:  

𝑧 =
25 − 20

4
1.25 

Then, using a z-table (or software), you'd find the probability that a standard normal 

variable is greater than 1.25 to get the desired probability. 

Note: These examples are simplifications and, in practice, certain nuances should be considered. 

For instance, the third example (binomial approximation) is a common application of the CLT, but 

one should ensure that both  

np and n(1−p) are sufficiently large for the normal approximation to be valid. 

11.7  Summary 

In this unit, the Central Limit Theorem (CLT), a foundational concept in probability and 

statistics, was dissected. Beginning with an introduction, we explored the idea that the normalized 

sum (or average) of a large number of independent, identically distributed random variables tends 

to follow a normal distribution, irrespective of the original distribution of the variables. Delving 

deeper, the one-dimensional central limit problem highlighted this phenomenon with practical 

examples. The unit then introduced three theorems that generalize the CLT to different conditions: 



 
 

the Lindeberg-Levy theorem, which applies when variables are identically distributed; the 

Lyapunov theorem, which requires only a condition on moments and works even when the 

distributions are not identical; and the Lindeberg-Feller theorem, another generalization to non-

identical distributions but based on a different condition. Each theorem was meticulously stated, 

proven, and elucidated with examples. The unit closed with self-assessment questions and 

suggestions for further reading, reinforcing the importance and widespread applicability of the 

CLT in statistical theory and practice. 

11.8       Self-Assessment Exercises 

1. What is the primary implication of the Central Limit Theorem (CLT) concerning the sum 

of a large number of random variables? 

2. Suppose you are given a dataset with observations from a clearly non-normal distribution. 

If you were to take numerous samples from this dataset and average them, what would the 

distribution of these averages approach, according to the CLT? 

3. Under what conditions does the Lindeberg-Levy theorem state that the sum of independent 

random variables will be approximately normally distributed? 

4. Contrast the conditions under which the Lindeberg-Levy theorem and the Lyapunov 

theorem are applied. 

5. For the Lyapunov theorem, explain in your own words what the Lyapunov condition checks 

about the random variables. 

6. Describe the Lindeberg condition that is central to the Lindeberg-Feller theorem. Why is 

this condition important? 

7. Given the sequence of random variables 𝑋1, 𝑋2, …, each with mean μ and variance σ2, if 

𝑆𝑛 = ∑ 𝑋1
𝑛
𝑖=1 , what would be the normalized form of Sn used in the context of the CLT? 

8. True or False: The Central Limit Theorem is only valid for random variables that come 

from a normal distribution. 

9. Why is the Central Limit Theorem considered as cornerstone in the field of statistics and 

probability? 

10. If the random variables in question are not identically distributed, which of the theorems 

(Lindeberg-Levy, Lyapunov, or Lindeberg-Feller) might you consider applying, and why? 



 
 

These questions span a range of difficulty levels, from basic recall and understanding to more 

complex application and analysis, allowing for a comprehensive self-assessment of the unit's 

content. 
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