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UNIT-1

METHODS OF INTEGRATION

Structure
1.1  Introduction
Objective
1.2 Basic Definitions
13 Standard Integrals
14  Algebra of Integrals
1.5 Integration by Substitution
1.5.1 Method of Substitution
1.5.2 Integrals using Trigonometric formula
15.3 Trigonometric and Hyperbolic Substitution
1.6 Two properties of Definite integrals
1.7 Integration by Parts

1.7.1 Evaluation of [ sinbx and [ea* cosbx dx

1.7.2 Evaluation of [V a’—x’ dx, [ a® +x’ dx, and
[ x> —a’
1.7.3 Evaluation of the type [ ¢™ [f(x) + £(x)] dx

1.8  Summary

19  Terminal Questions/Answers

1.1 Introduction

In this unit we have seen that the definite integral Jvf(X) dx

represents the signed area bounded by the curve y = f(x), the x-axis and
the lines x = a and x = b. The fundamental theorem of Calculus gives us
an easy way of evaluating such an integral, by first finding the
antiderivative of the given function, whenever it exists. Starting from this
unit, we shall study various methods and techniques of integration. In this
unit, we shall consider two main methods:

UGMM-103/5



UGMM-103/6

(1) The method of substitution and

(2) The method of integration by parts.
Objectives:
After reading this unit we should be able to:

. Define the indefinite integral of a function

. Evaluate certain standard integrals by finding the antiderivatives of
the integrands

. Use the rules of the algebra of integrals to evaluate some integrals

e Integrate a product of two functions, by parts.

1.2 Basic Definitions

The anti derivative of a function is not unique. More precisely, we
have seen that if a function F is an anti derivative of a function f, then F+c
is also an anti derivtive of f, where ¢ is any arbitrary constant. Now we

shall introduce a notation here. We shall use the symbol '[f(x) dx to

denote the class of all anti derivatives of f. We call it the indefinite integral
or just the integral of f. You must have noticed that we use the same sign

J here that we have used for definite integrals in Unit 9. Thus, if F(x) is

an anti derivative of f(x), then we can write I f(x)dx =F(x)+c

This ¢ is called the constant of integration. As in the case of definite
integrals, f(x) is called the integrand and dx indicates that f(x) is integrated
with respect to the variable x. For example, in the equation

I (av+b)“dv=w+c

(av + b)4 is the integrand, v is the variable of integration, and
(av +b)’

5 + ¢ is the integral of the integrand (av + b)".
a

You will also agree that the indefinite integral of cosx is sinx +c, since we
know that sin x is an antiderivative of cos x. Similarly, the indefinite

integrals of Iezxdx=%ezx+c , and the indefinite integral of

4
. X
X’ + llsj (x’ +1)dx = 7—1— X +C. You have seen in Unit 9 that the

b
definite integral L f(X) dx is a uniquely defined real number whose value

depends on a, b and the function f.



On the other hand, the indefinite integral J. f(x)dx is a class of functions

which differe from one another by constants. It is not a definite number, it
is not even a definite function. We say that the indefinite integral is unique
upto an arbitrary constant. Unlike the definite integral which depends on a,
b and f, the indefinite integral depends only on f.
b
All the symbols in the notation J f (x)dx for the definite integral have an
a

interpretation.

The symbol J reminds us of summation, a and b give the limits for x for
the summation. And f(x) dx shows that we are not considering the sum of
function values multiplied by small increments in the values of x.

In the case of an indefinite integral, however, the notation I f(x)dx has

no similar interpretation. The inspiration for this notation comes from the
fundamental theorem of Calculus.

Thus, having defined an indefinite integral, let us get acquainted with the
various techniques for evaluating integrals.

1.3 Standard Integrals

Integration would be a fairly simple matter if we had a list of
integral formulas, or a table of integrals, in which we could locate any
integral that we ever needed to evaluate. But the diversity of integrals that
we encounter in practice, makes it impossible to have such a table. One
way to overcome this problem is to have a short table of integrals of
elementary functions, and learn the techniques by which the range of
applicability of this short table can be extended. Accordingly, we build up
a table (Table 1) of standard types of integrals formulas by inverting
formulas for derivatives, Check the validity of each entry in Table 1, by
verifying that the derivative of any integral is the given corresponding
function.

Table 1
S.No. Function Integral
1' Xn Xn+1
—+c,n#-1
n+1
2. sinx -cosx+c
3. cosx sinx + ¢
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4. sec’x tanx +c

5. cosec’x -cotx+c

6. secx tanx secxtc

7. Cosecx cot x -cosecxtc

8. 1 Sin"'x+c, or —cos'x+¢

1-x’

9. 1 ~cot'x+c
1+x°

10. 1 Sec'x+c
xvVx’ -1

11. Infx|+c
x

12. e e*+c

13. a (a*/Ina).+c

14. sinhx coshx+c

15. coshx sinhx+c

16. Sech’x tanhx+c

17. cosech’x -cotx+c

18. sechx tanhx -sechx+c

19. cosech cothx -cosechx+c

1.4 Algebra of Integrals

We are familiar with the rule for differentiation which says

d d d
S af 00 +by0]=a 11 (0] +b—[g(x)
UGMM-103/8



There is a similar rule for integration:
Rule 1: j[af (X)+bg(x)]dx = aj f (x)dx +bj g(x)dx
Theorem 1: If f is an integrable function, then so is kf(x) and

[ fk(x)dx =k f(x)dx
.. d
Proof: Let I kf(x) = F(x) +c. Then by definition d_ [F(x) +c] =1(x)
X

di[k{F(X) + ¢} ] =kf(x). Again, by definition, we have j kf(x) dx
X

=k[F(x) + c]

=k | fxdx

Theorem 2: If f and g are two integrable functions, then f+g is integrable,
and we have

| )+ g@oldx = | fodx + | gx)dx

Proof: Let [ fx)dx =F(x) +c. | g(x)dx =G(x) +c
d

Then, d_ [{F(x) + ¢} +{G(x)*+c}] =f(x) + g(x)
X

Rule (1) may be extended to include a finite number of functions, that is,
we can write

Rule 2) | [kifi(x) + kofa(x)+... Hhafu(x)dx

k| fix)dxtko| B | £i(x)dx

We can make use of rule (2) to evaluate certain integrals which are not
listed in Table 1.

Example 1: Let us evaluate j (X +l)3dx
X

1 1
We know that (X+—)’ =X’ +3x+ 3. — therefore
X X X

j(x+1)3dx:j (x3+3x+3+i3)dx
X X X

UGMM-103/9
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=X3dX+3I de+3_[d—x+ & Rule 2
X

3
X

Using integrals formulas 1 and 11 from Table 1, we have

-2

1o [ X’ X
j (x+) dx—(?+cl)+3(?+c2 ]+3(In|x|+c3)+(_—2+c4)

+C

:lx4+%X2+3in|x|— -

Note that c¢;+ 3c,+3c3+c4 has been replaced by a single arbitrary constant
C.

Example 2: Suppose we want to evaluatej (2+3 sin x + 4€*)dx
This integral can be written as 2[ dx +3 j sin x dx +4 J e* dx
=2x-3 cosx+4ex+c.NotethatJ dx=j 1dx=j xX*dx=x+c

1
Example 3: To evaluate the definite integral IO (x+2x2)* dx,
Thus, J (x+2x2)* dx dx = j (x> +4x” + 4x*) dx

4 5

1
:j dex+4j X3dX+4j xXtdx =—x>+x*+ gx +c

According to our definition indefinite integral, this gives an antiderivative
of

(x + 2x°)* for a given value of ¢. By using the fundamental Theorem of
Calculus we can now evaluate the definite integral.
1
1 232 1, 4 s
L(x+2x )dx = EX + X +§x +c
0

1 4 32
=(z+1+—=-+c)-¢c)=—
(3 5 )=©) 15

Note that for the purpose of evaluating a definite integral, we could take
the antiderviative corresponding to ¢ = 0, that is,

—x'+x'+ gXS , as the constants cancel out.



We could evaluate a number of integrals. But still there are certain

integrals like j sin2x dx which cannot be evaluated. The method of

substitution which we are going to describe in the next section will come
in handy in these cases.

1.5 Integration by Substitution

In this section we shall study the first of the main methods of
integration dealt with in this unit the method of substitution. This is one of
the most commonly used techniques of integration.

1.5.1 Method of Substitution

Theorem 3: If j f(v)dv = F(v) + c, then on substituting g(x) for v, we get

| fle)lg()dx = [ £(v)dv.
Proof: We shall make use of the chain rule for derivatives to prove this

V) .
=f(v). Now if we

theorem. Since I f(v)dv = F(v) + c, we can write

v
write v as a function of x, say v = g(x), then
iF[g(x) = dFlg(x)] : dg(x) by chain rule
dx dg(x) dx

dg(x)

=flg (x). — —— Isince v =g(x) =flg(x). g'(x)
dx
This shows that F[g(x)] is an antiderivative of f{g(x)'(x). The means that

| flg(0lg (x)dx=Fleg(x)] + c=F(v) +c=] fv)dv.

Evaluate J Sin2x dx, we could take v = g(x)= 2x and get

| sin2x dx = % | sin2x (2) dx

1
= E j sinvdyv, since g(x) = 2x and g'(x) = 2.

—COSV COS2X
+Cc= +cC
2 2

We make a special mention of the following three cases which follow
from theorem 3.

UGMM-103/11



Case (i) if f(v) =v", n # - 1 and v = g(x), then

[ taor 0 ax= BT
n+l1

Case( i1) If f(v) = 1/v and v = g(x).

Then by formula .[ %dx =In|g(x)|+c
g(Xx

Case (iif) | f(x) dx = F(x) + c, then

a(b)
Lb flex)lg (x) dx = I f(v) dv, where v = g(x) [The limits of
ga)
integration are g(a) and g(b) = F(V) ]ii:;
and x = b—g(x) = g(b).]

Example 4: Let us integrate (2x + 1) (x> + x + 1)°

Since x =a = v =g(x) = g(a),

d
For this we observe that d_ X+x+1)=2x+1
X

Thus, | (2x+1) (x* +x + 1)’ dx is of the form | [g¢(x)]" g'(x) dx and hence
can be evaluated as in (1) above

1
Therefore, J(2x+1) (x*+x+1)° dx = E (x*+x+1)%+c

Alternatively, to find [(2x + 1) (x*+x+1)° dx we can substitute x*+x+1 by u

du
This means — = 2X + 1.
dx

1
Therefore [(2x+1)(x*+x+1)° dx = [ v’ du = < (x*+x+1)°+c¢
Example 5: Let us evaluate [ (ax + b)" dx

=[ (ax +b)" dx = 1 (ax +b)" dx.
a

) (ax +b)™
Therefore, when n # 1, J(ax+b)"dX = ———~—
a(n+1)
, dx 1
And when n=- 1, J(ax+b)" dx =] = —In |ax+b| +c
ax+b a

UGMM-103/12 Example 6: Suppose we want to evaluate the definite integral



[

du

X +2x+3

x+1
dx . We put x> + 2x +

— = 2(x +1). Further,
dx

When x =0, u=3, and whenx=2,u=11. Thus

J-z x+1 d _l 2ld_u _lnd_u_
0 x> +2x +1 2% udx 2% 4
1 11
In3)= — In —
2 3

3

l.

nju

n 1
3 :E

Example 7: To evaluate J xe’™ dx, we substitute 2x* =

du

— =4x

dx

1

= [e" du= le“Jrc.:lX +c
4 4

2x2

u. This implies

(In 11 -

u. Since

du

, We can write, I xe*dx = lj X 4xdx = lj' e' —dx
4 4 dx

Check your progress

(1)

)

Write down the integrals of the following

q x* ) x*? 0 i) 4x7

(iv) 3

(@ () 1-2x+x* (i) (x—%)2 (iii) (1+x)’

by () e +e™+4 (ii) 4cosx — 3sinx + e*+x

(iv) 4sech’x+e* — 8x .

. 2 5  2x*+5
) @) =+— (i) ———
1-x* X X +1
d  ()a+bl+ex+d (i) (\/x — %)2
© 0 sin” X + cosh4x (i) (2 +x)3- \/;)

sin® X cos’ X

Evaluate the following definite integrals

@ @ [[x'dx ) f”—zxdx
X

UGMM-103/13
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®) ) [ (x+ %)de (i) jo'(x +1)°dx

3) Evaluate
3 dx
Jsx—3dx o) [ 2x+1)d
@ [ V5x=3dx () [ (2x+1)°dx («:)L4+5X
5dx Xx+1 3 3x74+2x+1
d - -
()I10x+7 | J

X +2x+7 2x*+x°+x-8

(2) J‘ x\/3 /X4/3 —1dx (h)I x dx

1-3x’

Example 8: To evaluate | sin ax dx, we proceeded in the same manner as
we did for Jsin 2xdx. We make the substitution ax =u

. u : 1, du 1
This gives — =a. Thus,] sin ax dx = —Jsin u.—.dx= — cos ax +¢
dx a dx

Example 9: Suppose we want to evaluate

(i) Jeotx dx (i) Jtanx dx and (iii) [cosec2x dx

CoX

- dx. Now since —sin X = cosx, this
sin X dx

integral falls in the category of case (ii) mentioned earlier, and thus, [cotx
dx — In |sinx|+c

(i) we can write Jcotx dx, =

(1) to evaluate Jtanx dx, we write
secx tan X
ftan x dx = ——————dx =InJsec x| + ¢, as — sec X = sec X
sec dx
tan X

(ii1) to integrate cosec 2x we write

1,2 2 2x —cot2
fcos e 2x dXZEI cosec2x(cosec2x — cot x)dX

cosec2x —cot2x

Here again, d_ (cosec2x — cot2x) = 2cosec2x (cosec2x — cot 2x)
X

. 1
This means Jcosec2dx = 5 In |cosec2x — cot 2x| +c

sin?x

Example 10: Let us evaluate | e sin 2x dx



u
If we put sin’x = u the I = 2sin X cosx = sin 2x
X

Therefore, I e sin2x dx = Je" du =e"+c = €™ * + cx
1.5.2 Integrals using Trigonometric Formulas

In this section, we shall evaluate integrals with the help of the following

. . : 1
trigonometric formulas sin’x = E(l — C0s2X) ,

cos’ X = %(1 +c082X).

. 3 3. 1 . 5 3 1
sin® X = —sin X ——sin3X COS” X = — COS X + —COS3X
4 4 4 4

1

sinmx cosnx = — [sin(m+n)x+ sin( m — n)x], cosmx cosnx = — [cOS

1
2
(m+n) X + cos (m — n)x ], sinmx sinnx = % [cos(m —n)x — cos(m + n)x]

Example 11: To evaluate [cos® ax dx. We write

Jcos® ax dx =] (g cos ax + l cos 3ax) dx = EI cos ax dx + 1 [cos 3ax
4 4 4 4
dx
3

=— sinax+ — sin3ax+c¢
4a 12a

Example 12: Let us evaluate (i) [ sin3x cos4x and (ii) Jsinx sin2x sin3x dx

Here the integrand is the form of a product of trigonometric functions. We
shall write it as a sum of trigonometric functions so that it can be
integrated easily.

(i) Jsin3x cos4x dx =] % (sin7x — sin x) dx = 5 (sin7x dx - 5 [sin x

=—— cos7xt+t—cosx+c

(ii) To evaluatelsin2x cos3x dx, again we express the product sinx sin2x
sin3x as a sum of trigonometric functions.

Sin sin2x sin3x = — sinX (€C0s X — C0$5X) = — SINX COSX SINX COS5X

UGMM-103/15
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1

= —sin2x - Z (sin 6x — sin 4x)

1 1 1
Therefoe, [sin x sin2x sin3x dx = Zfsin2x dx + Zfsin4x dx - Zf sin6x

dx
1 1
= ——c0s 2Xx ——cos4x + — cos 6x +c
Check your progress
(4) Proceeding exactly as in Example 8, full up the blanks in the table
below.
S.No. f(x) [f(x) dx
1. Sin ax —é COS ax +c
2. Cos ax lsin ax +c
a
3. sec’ax e
4. cosex’ax ...
5. Cosecax cotax ..........
6. sec™tanx ...l
7. e
8. as
(5) Evaluate the following integrals
(a) Jsecxdx  (b) Ln/z sin’x cosx dx  (c) Je™™sec’x dx
(6) Evaluate each of the following integrals.

COSX

/3
(@) (i) Jsin’x cosx dx, (i) j dx (iii)L/6 cot2x cosec’2xdx

sin’ X

(i) [sin2 020 (v) [ sinB(1+cos’0)d0

. . s sin’0do
(a) (1)!(1+COSG) sin 6 dO (ii) J-O m



(b) i) [ scoBtand(1+scco)’ o
(c) (i) Jsin*0do (ii) Jsin 36 cosO dO
/2 /2
(1i1) IO co0s50 cos0do (iv) L c0s0 cos20 cos40 dO

1.5.3 Trigonometric and Hyperbolic Substitution

Various trigonometric and hyperbolic identities like sin’0 + cos’0=1

sinh O

cosh©
evaluating certain integrals. In this section we shall see how.

1+ tan’0 = secze, tanho =

and so on, prove very useful while

A trigonometric or hyperbolic substitution is generally used to integrate

expressions involving \/ a’— Xz,\/ x*—a’ or a® + x%. We suggest the
following substitutions

Expression involved Substitution
2l _ x? x=a sinf
a’ + x2 X = a tan0O or a sinh 0
X% _a’ x = a secO or a chsh@
a’+x” x=atan 0

dx dx
Thus to evaluate I ﬁ,put x = a sinf. Then we know that Eza

cos0. This means we can write

dx
I Ja? —x> _'[ Ja’—a’sin®0

(x/a)t+c

acos0do J- acos0do

=[ d6=6+c =sin™
acos0

Similarly to evaluate J. > we shall put x = a tan 6

a’+x

oA, dx asec’ 0dO
Since —=sec"0 dO, we get I > = I
do

a’+x° a*+a’.tan?%0
2
:J‘ w:lj d@:g-l—c :l tan™ (x/a)+c
a“sec’ 0 a a a

UGMM-103/17
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dx L o
We can also evaluate I W, by substituting x = a tan 6.This gives

X 2
—=a sec 0. Thus,

j dx _.[ asec’06do
Ja? 42 Ja’+a’tan’0

‘x +4/a’ +x°

=In
| a

=Iseced9 = In [sec® + tan O+c

‘+C

We can also evaluate this integral by putting x = sinh6. With this

dx
substitution we get, I ﬁzsinh'l(x/a) +c, and we know that
a +X

Sin b’ X+4x*+a® dx N
(x/a) = im similarly, J‘ —————= =cosh™ (x/a)+c,
a [XZ _ a2
x+4x’—a’ dx 1 .
= In. +C and I ——— =—sec (x/a)tc
a xVx’—a*> a

Let us put these results in the form of a table 3

Table 3
S.No. f(x) If(x)dx
1. 1 Sin™' (x/a)+c
a’—x’
2. 1 1
> 5 —tan (x/a)+c
a +X a
3. a |
— —sec” (x/a)t+c
XVX —a a
a1 xtixrat
\/ﬁ In +C
a —Xx a
Or sinh™ (x/a)+c
> 1 X ++/x>—a’
\/ﬁ In +cC
X —a a

Or cosh™ (x/a)+c




Sometimes the integrand does not seem to fall in any of the types
mentioned, but it is possible to modify or rearrange it so that it conforms
to one of these types.

dx
Example 13: Suppose we want to evaluate j
N2x —x’

Let us try to rearrange the terms in the integrand ——to suit us. We
2X — X

, > dx e dx
will see that .[1 m —J; m

. Note that

dv
Ifweputx —1=v, ——land _[\/7 .[
2X —X N

dx
new limits of integration. We get J. ———=gin"'v| =sin"1-
1 2
V2X —X 0

Y
sinl0=— =
2
XZ
Example 14: The integration in _[ p dx
I+x
du X’ 1 o 3%’
If we put x’>=u, — =3x7, thus r - dx =~ [- - dx
dx T+ x 371+ x
Ip 1 du
o -—dx
T 3% 40t dx
1

1
=— —du, by Theorem 3 (*."u =1 when x = 1 and u =0 when x = 0)
31 +u

Here the integrand can be evaluated. Thus, we get

1+u’

} 1
Lp3x 6dX=ltan'lu ——L-0=2
391 +x 3 34 12

1.6 Properties of Definite Integrals

We have already derived some properties of the definite integrals.

These are the

(i) Constant Function Property: Lb cdx =c(b—a)

UGMM-103/19
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(ii) Constant Multiple Property: Lb kf(x)dx = kfabf(x)dx

b
(iii) Interval Union Property: '[:f(x)dx=_L f(x)dx+I f(x)dx where

a<c<b.
(iv) Comparison Property: Ififc <f(x)<dV d V x € [a, b],
b

then c(b—a) <[ f(x) dx <d(b —a)

Now we shall use the method of substitution to derive two more properties
to add to this list. Let’s consider them one by one

a a/2 a/2
v) J‘O f(x)dx = J:) f(x)dx +J-0 f(a—x)dx for any integrable
function f.
a a/2 a/2
We already known that [ fods = [ f(x) dx + |~ f(a - x) dx for
a a/2
any integrable function f. We already know that J.O f(x)dx = L f(x)
dx + L/z f (x)dx
Now if we put x = a — y in the second integral on the right hand side, then

o_
dx

[ f(x)dx = [~ fa-y)dy=["f(a-y)dy=["f(a-x)dx

since we get

a a/2 a/2
Since x is a dummy variable. Thus [ fx)dx = [~ fx)ydx+ [~ fa
—x ) dx.

i 27
Example 15: Let us evaluate (i) J:) sin® x cos’ x dx and (i) L cos’x
dx

(1) Using property (v), we can write

LI 5 /2 Loy 5 /2 .y 5
IO SIN” x cos” x dx = jo SIn - x cos” x dx + L SN (m-x)cos” (1 — x)dx
n/2 . 4 5 /2 . 4 5
=j0 SN x cos’x dx + JO SIn - x (- cos X)” dx
/2 ., 4 5 /2 . 4 5
=j0 S x cos” x dx - IO S x (cos’x)dx =0
. [P" 3 m 3 m 3 m 3
(11) J:) COoS x dx = L COS 2n-xdx) = I COS x dx + L COS'(2m — x)dx
n

T /2 /2
=2Lcos3xdx=2[L cos3xd+j0 cos’ (x - x) dx]



/2 /2
=2[I0 COS3de—J.O cos’ x dx] =0

Our next property greatly simplifies some integrals when the integrands
are even or odd function.

(vi) If f is even function of x, i.e., f{ - x) = f(x), then Lb f(x)dx= 2
[ f(x)d

And if fis an odd function i.e. f(- x) = f(x), then [ f(x)dx =0

We shall prove the result for even functions. The result for odd

functions follows easily and is left to you as an exercise.
Then |1 f0x) dx= [ £(x)dxt[ f (x)dx
If we put x = - y in the first integral on the right hand side, we get
0 0 a a
[ f()dx =[ f(=y)—dy = | f(y)dy =], f(x)dx. Thus
[ f(x)dx =2[ "f(x)dx
Using this property we can directly say that

J'm sin xdx = OIM cosxdx = Zj_n/zcosddx = 2sin X]Z/z =2
/2 -1/2 0

—T

Check your progress

(7) The cost of a transistor radio is Rs. 700/-. Its value is depreciating

with time according to the formula ﬂ: =500 where Rs. V is its

dt  (1+t%)
value at t years after its purchase. What will be its value 3 years after
its purchase? (Don’t’ forget the constant of integration. Think how
you can find it which the help of the given information).

(8) Integrate each of the following with respect to the corresponding
variable

o1 o 1
N Ve i

| 1
™ P2+ 5
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X . t? RS
™ a1 ™ T 16 NN
1

(viii)
2x —x°
(ix) 1 (x) 1
X)) —F7F7—7—/—/——— X))
NI+ x+x° y +6y+5
g . S
X1 mnt: =1—
1+x° 1+x? 1+x°

(9) (a) Evaluate J: sin’ x cos® x d x
/2 .
(b) Show that [ sin 2x In (tan x) dx = 0

(c) Prove that J:a f(x)dx = 0 if f is an odd function of x.

In this section we have seen how the method of substitutions enables us to
substantially increase our list of integrable functions. (Here by “integrable
function” we mean a function which we can integrate)

1.7 Integration By Parts

In this section we shall evolve a method for evaluating integrals of
the types

[ ux)v(x) dx, in which the integrand u(x)v(x) is the product of two
functions. In other words, we shall first evolve the integral analogue of

0V = U0V + V() -Su(x)

and then use that result to evaluate some standard integrals.

Integrals of a Product of Two Functions

We can calculate the derivative of the product of two functions by the
formula

d d d
——[uE)VE)]=ux) - v(x)+v(x) ——ux)
X dx dx
L d d d
Let us rewrite this as u(x)—v(x)) dx = I —[ux)v(x)] — v(x) —u(x)
dx dx dx

Integrating both the sides with respect to x, we have



d d d
fux) — (v (x)) dx = [ — (ux)v(x))dx - Jv(x) — (u(x)dx. Or
dx dx dx

d d
fux)— (v(x)) dx =u(x) v(x) - | v(x) — (u(x))dx ... (1)
dx dx

To express this in a more symmetrical form, we replace u(x) by f(x), and
put

div(x) = g(X). This means v(x) = [g(x) dx.
X

As a result of this substitution, (1) takes the form
[f)g(x) dx = f(x) ] g(x) dx - [ {f1(x) [g(x) dx} dx
This formula may be read as:

The integral of the product of two functions = First factor x integral
of second factor — integral of (derivative of first factor x integral of
second factor)

It is called the formula for integration by parts. This formula may appear a
little complicated to you. But the success of this method depends upon
choosing the first factor in such a way that the second term on the right
hand side may be easy to evaluate. It is also essential to choose the second
factor such that it can be easily integrated.

Example 16: Let us use the method of integration by parts to evaluate [xe*
dx.

In the integrand xe* we chose x as the first factor and e* as the second
factor. Thus, we get

fxexdx=xfexdx—fdi(x)fexdx} dx =xe* - | e* dx
X

/2
Example 17: To evaluate L X’ cos x dx. We shall take x* as the first

factor and cos x as the second. Let us first evaluate the corresponding
indefinite integral.

[x* cos x dx = x*| cos x dx — f{d—(xz)cos x dx} dx = x* sin x — J2x sin x
X

dx

=x”sinx — 2 [ x sin x dx

We shall again use the formula of integration by parts to evaluate | x sin x
dx. Thus | x sin x dx =x (- cos X) - | (1) ( - cos x) dx as (f(x) = x, g(x) =
sin (x)

—_-xcosx+]cosxdx=-xcosx+sinx+c
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Hence, [ x* cos x dx = x* sin x + 2x cos x — 2 sin + ¢
Note that we have written the arbitrary constant as c instead of 2¢

/2

/2
Now L xcos x dx = (x* sin x + 2x cos x — 2 sin X +c) 15

Example 18: Let us now evaluate | x In x| dx

Here we take In |x| as the first factor since it can be differentiated easily,
but cannot be integrated that easily. We shall take x to be the second
factor.

X 1) x*
In [x| dx =]In dx =(In|x|——| |— || — |dx
P In x| dx = fin ] x dx = (In| x| - I[XLJ
:lx2ln|x|—lj XdX=lX21n|X|—lX2—C
2 2 2 4

While choosing In [x| as the first factor, we mentioned that it cannot be
integrated easily. The method of integration by pats, in fact, helps us in
integrating Inx too.

Example 19: We can find | Inx dx by taking Inx as the first factor and 1 as
the second factor. Thus, [1n x dx = [(1n x) (1) dx

= InxJ 1dx -I(lhdx) dx = (In x) (x) -Il (x) dx
X X

=X1nx—fdx=X1nx—x+c=x1nx—x1ne+csince Ine=1=xln
(x/e)tc

1.7.1 Evaluations of [¢® sinbx and [e® cosbx dx

To evaluate Je™ sin bx dx and | ™ cosbx dx, we use the formula for

1
integration by parts. Je™ sin bx dx = (¢™) (-E cos bx) — (ac™) (- B cos bx)

a a :
dx =——e* cos bx + EI e™ cosbx dx = —Eea" cos bx + Fea" sin bx -

b

a . .
—2] sin bx dx

2
a a
We obtain. (1+§) [e™ sin bx dx = ¢ (Esin bx - 5 cos bx)

This means, | ¢ sin bx dx = ——€" (asinbx—bcosbx)+c
a~+b



We can similarly show that [e®™ cos bx dx = e" (acos bc—Dbsin

a’+b’
bx) +c

If we put a = rcos6, b = rsin0, these formulas become

[e™ sin bx dx = e"sin (bx - 0) + ¢

1
va’+b’
ax 1 ax -1 b
[e*™ cos bx dx = ———— ¢ cos (bx - 0) + ¢, where 6 =tan™ —.
vJa +b

a

Example 20: using the formula discussed in this sub-section, we can
easily check that

TT
i) Je* sin x dx = ——¢* sin (x - — )+ ¢. and
(1) NG ( 4)

1 T
(ii) Je* cos +/3xdx = 5 e* cos (v/3x — E)Jrc
Example 21: To evaluate [e** sin x cos 2x dx, we shall first write

1
sin X cos 2x = E (sin 3x — sin x). Therefore, [¢** sin x cos2x dx

1
Je** sin 3x dx - — [e* sin x dx

1
2

Now the two integrals on the right hand side can be evaluated. We see that

1 3
[e** sin 3x dx = ﬁezx sin (3x + tan™! 5 ) +c and

. 1
[e** sin x dx = ﬁez sin (X — tan™' E ) +c. Hence

Je* sin x cos2x dx = e™ [ ! sin (3x — tan'lg) = Lsin (x — tan'll
V13 J5 2

e
Example 22: Suppose we want to evaluate [x* sin (a 1n x) dx
Let 1nx = u, This implies x = " and du/dx = 1/x

Then, Jx° sin (alnx) dx =] x* sin (alnx) (1/x) dx
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_[.4u . _ 1 4u . -1
=[e™ sin au du = ﬁ e’ sin (au) —tan~ (a/4) +c
+a

1
————x"sin (aln x) — tan™ 2 +c
V16 +a’ 4

Check your progress

(10) Evaluate
(@) Jx*Inxdx Take f(x) = 1nx and g(x) = x*
(b) (1 +x)e*dx Take f(x) =1 + x and g(x) = ¢*
(©) J1+x%) e dx
(d) Jx*sinx cos x dx Tak f(x) = x* and g(x) =

sin X cos X = — sin2x

(11) Evaluate the following integrals by choosing 1 as the second factor.
1
(a) Jsin! x dx  (b) Ltan‘l xdx (iii) [ cot'x dx

(12) Integrate: (a) x sin”'x (b) 1n (1+x%) w.r.t.x.
(13) Evaluate the following integrals

(a) Ja™ cosdx dx (b) Je*™ sin 3x dx (c) Je™ cos x cos2x dx
(d) [e** cos’xdx

(e) | cos h ax sin bx dx (write cosh ax in terms of the exponential function)

(f) [xe™ sin bx dx
1.7.2 Evaluation of [+/a? — x* dx, [+/a*> + x> dx, and | +/x*> —a® dx

In this sub-section, we shall see that integrals like |/ a’—x’ dx, |
vJa’ +x’dxand [+/x” —a’ dx can also be evaluated with the help of

the formula for integration by parts and table 3.

[+a? —x*dx =] +a* +x (1)dx

—Ja —x xx - [ (——2 x x)dx
V [ =



=x+a’—x’ + dx =x+/a’—x —I (a —* )dx

[

=x+/a’—x’ +azj %—I Ja? —x*dx
a’—x

Shifting the last term on the right hand side to the left we get

I a’—x’dx =x+a’—x +aJ'\/7

Using the formula | B (X e, we obtai
sing the formula m—sm (a) ¢, we obtain

1 a’ . X
'[ va'—x*dx =—x+a’ —x* + —sin' (=) +¢
2 2 a
Similarly, we shall

2
I va’ +x*dx :%x\/eﬁ +x° +a7sin"1(§)+c
a

1 a’, x++a’+x’°
:EX\/a2 +x° +71n +¢ and

a

2
J. VxP—adx = %X\/Xz —-a’ —%cosh'l(i) +c
a

+C

2 2 2
—xfx et - L X

a

1
Example 23: Let us evaluate L\/ X +x°dx

Now j;\/X+X2dx:Ll\/(X+1/2)2—1/4dx Let x+%:u

_[le/x +x’dx = f//;\/uz —1/4du
= {%u«/uz “1/4 —%m‘” vu —1/4

1/2

1/2

:¥:%m(3+z V2)

have
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1.7.3 Integrals of the Type [ e* [f(x) + f'(x) Jdx

We first prove that formula I e” [f(x)+f'(x)]dx = e* f(x) +c and see how it

can be used in integrating some functions.
By the formula for integration by parts I e f(x)dx = J. f(x)e*dx
= f(x) ¢* - [ £ (x) ¢ dx + c. This implies [ €*  [f(x) + £'(x)] dx = &* f(x) +

C

Example 24 Let us evaluate the following integrals.

()J- 1+x edx (11) j \/ —sinx

7x/2dX
(2+x)’ I+ cosx
We take up (i) first,
j I+x e'd I(2+X) 1 o*d _J'[ + -1 o dx
(2+x)’ (2 +x)’ 2+x  (2+x)

= e* +c,since -1 :i( ! )
2+x 2+x)* dx\2+x

Now we shall evaluate (i1)

X . X
m COS— —SIn —
_x/zdX — J' 22 - 2 e—x/ZdX

COS X

@ |

1+ cosx
1 X 1 X X i

=—_[ sec—e ““dx ——J' tan—sec—e ' “dx . Now
2 2 2 2 2

j sec %e-m dx = (sec %) (-2¢™%) - I (%sec %) (- 2¢™%)dx

X X X .
=2 sex —e ¥+ I sec —tan —e™2dx. Thus,

J- 1 —=sinx

1+ cosx

e—x/ZdX

— _secoe™? 4 lj sec—dx —lf sectan e dx
2 2 2 2 2

X
=—sec—e ¥ +¢
2



Check your progress

(14) Verify that

2 [ a2 2
(a)jx/a2+x2dx:%xx/a2+x2+%lnx+ X e

a

2 /< 2 2
(b)I\/xz—ade:%x\/xz—az—%lnx-i_ T8 e

a

(15) Evaluate the following integrals

X +2

(@ | @x7+2x+3)dx ® | dx
X
(c) [ sinh (x/2) cosh (x /2) dx
d X X 2d 4 Xz
@ ] (@ - dx (e)jz—dmx
() J. ﬁdx (2) J. sin xe®™ dx
1 =2 SIN X COS X
h d i _—
()j1+9x2 * L (1+sinx)’ )

G) I (x*x)° x° dx (k) _[ xv/xt +2x* +2dx

xtan™ x L1=x
1 ——dx cos (——)dx
()I(1+xz)3/2 (m)j (1+x2)
d’v dv d*u .
(16) Prove that '[u 2dX=u——V \'% de, and use it to

dx dx dx

evaluate j X’ sin x dx
Note:

The results, | f(X) dx = [F(x)]'- F(b) - F(a)
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Where F(x) is the antiderivaties of f(x), F(x) will make sense only if f(x)
exists at every point of the interval. Hence we have to be careful in using
this result.

1 b
Thus, | —dx=[In|x|]=In L]

2 |a
But 1/x is not defined at x =0, and In [x| is also not differentiable at x = 0.
As such, at this stage, we should use the result only if the interval [a, b]
does not include x # 0.

2 =11

1
=in 2 is not valid. jlz—dx = ln—2 = lnzis
X

Again, consider Il—l dx=[sin"x ], T
X= x], ==
’ 0 /1 _x?2 ]

1
However ﬁ does not exist at x = 1, and sin” x is not differentiable
1-x

at x = 1. L (sin'x) exists at x = 1, but R(sin"'x)does not exist, since sin x
itself does not exist when x > 1.

The antiderivtive of every function need not exist, i.e. it need not be any of
the functions we are familiar with. For example, there is no function
known to us whose derivative is ¢™*. However the value of the definite

b
integral Lf(X) dx of every function, where f(x) is continuous on the
interval [a, b], can be found out by numerical methods to any degree of
b
approximation. We can find the approximate value of L ex’ dx, for all

real values of a and b. In fact, this integral is very important in probability
theory and you will use it very often if you take the course on probability
and statistics.

1.8 Summary

In this unit we have covered the following points

(1) If F(x) is an antiderivtive of f(x), then the indefinite integral (or
simply, integral) of f(x) is

I f(x)dx = F(x) + ¢, where ¢ is an arbitrary constant
@ JIkf® +labE) + ... +ky £(x)] dx =

ki fi)dx + k2| fx)dx + ... +ka] fu(x)dx



(3) The method of substitutions gives “
b g(b) .
J, flecog odx = [ 'F ) du, ifu=g(0

In particular

| (0" £(x) dx = %ﬂ:, n#-l,and | %dx = In [f(x)|+c

[feodc=["feoax+ [ fa—xdx

rf (x)dx = ZJ-O f(x)dx,if f is even
’ 0, if fis odd
(4) Standard formulas

dx . X
J'ﬁ:sm —+c
vai —x a

dx X ++/a’ +x°
J. =In +c
JaZ+x’ a
dx X +4/x>—a’
_[\/ > - =In +c
x’—a a

(5) Integration of a product of two functions (integration by parts),

x)v(x)dx = u(x)f v(x)dx —I {u'(x)}j v(x)dx}dx

1 a’ . X
This leads us to: J Jai—x*dx 25\/212 -x° +7sm '+
a

2 [n2 2
J.\/az—xde=%x\/a2—xz+%lnx+ a+x +c

a

2 /< 2 2
J\/xz—ade:%x\/xz—az—%lnx+ X +a +c

a

2

1 b
_[ e sin bx dx = —Zealx sin (bx — tan” — )+c
a~+b a

b
—)+C

1 ax
——— € cos (bx —tan’
va +b a

[ e [fx) + F(x)]dx =" f(x) + ¢

_[ e” cosbx dx =
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Solution and answers of check your progress

5

X
1) (a) i) ?+c (i) -2x"% (i) “4x '+ (iv) 3x +c

3 3

) (i) Xx—x 4+t (i) X——2X—l+c
3 3 X

2 4

(iii) X + +x3+7+c

2
X
(c) 1) e"—e*+4x+c (ii)4sinx +3 cosx +e* + 7+c
(iii) 4tanh x + ¢* — 4x* +c
(d) (i) 2sin” x + 5In |x| +c

2(x’ +1)+3
x* +1

dx

(i) | dx =2[ dx+3[

=2 x + 3tan’' x +¢

Caxt bx’ cex? X’
(e) (1) + + 5 +dx +c¢ (i) 7-2x+ln [x[+c

4 3
sin® x + cos” x
® G [ dx=
sin’ x cos® x
I(sm X + cos’ x) —2sin’* x cos’ x
Sll’l XCOS X
= dx+J' dx—2jdx=-cotx+tabx—2x+c
SlIl X COS X
2
(iii) 6X + 3)2( —ﬂx” —gx”2 +c
5
2 @ @O %— 5 (1) %+ In2 (b) (i) % (1) %
12 12 du
3)  (a) J(5x—=3)"dx=— 15(5x 3)"2 dx if 5x —3 =, o 5
X
1 3/2 2
= lIu“z du= - = =—(x-3)"+c¢
5 5 3/2 15



(4)

S.No.

)

‘(a) Isec x dx =

(b) ﬁ(2x+1)7 +c (o) éln% () %m 110x + Tj+¢

1
(e) E1n|x2 +2x+7|+c

3
31
Ohx +x*+x-8—| =In—
, 6
3/4)(x** —1)*"* 1
(g) ( )( ) + c= _(X4/3 _1)3/2 +C
3/2 2
1 ;
(hy ——+/1-3x"+c¢
3
f(x) [f(x) dx
1
sin ax — —cos ax+c
a
I .
COS ax —sS1n ax +c¢
a
seczax —tan ax +c¢
a
coseczax — —cotax +c¢
a
1
sec ax tan ax — secax tc¢
a
1
cosec ax cot ax — — cosec ax t+c¢
a
ax 1 ax
€ —e
a
i 1 amX
a ——+C
mlna

] secx(sec+ x tan x

secX + tanx

/2 . P
(b) jo sin” X x cos xdx =

sin’x | 1
3 3

0

dx =In |sec x + tan x | +c
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tanx

. du
(¢) if u = tanx, d_ =sec” x =[e™™ sec? x dx = [e" du = e" = ™™ +¢

X

sin’ x =2
+cC (1)

©) (2@ tc

sin’ X

/3 2 1 /3 2
(111)I cot2x cosec” 2x dx = —I cot2x (2 cosec” 2x) dx
n/6 2 /6

=0

1 cot?2x ]
—X
2 2

n/6

du
(iv) Put cos 20 = u, then E =-2sin 20

1 1 1
[sin 260 ¢®do = ——e'du=——¢"+c=——e"" +¢
2 2 2

jm in6 (1 + cos* de—r/2 i ede+jm2 ino cos*0do
(v) , sin (1+cos™0)do = , sin ,  sinbcos

n/2 59 n/2 1 6
:—cose} _ o8 } =1l+—-—=—
. 5, 5 5
_ (1+cos0)
®@-———F—+¢
5
i ! 1 1 24315
n) ——— - ———F—_
10 (1-5tan®)’ || 2 (1-5y3)

o (+sec®)' T a+4/2)'=2" 1+1242
(111) 4 = 4 = 4

0

1
© @ j sin* = I sin’0 sin® do =I (% sin0 - Z sin 0 sin30)do

:gj'{l— (L-2sin’ 6)}d9—%j(c052—cos4de

3 1 1

3
8 Ide— 8 j €0s20d06 - 8 IcosZG do + 8 ,[ cos46 do



1sin20 1sin46
+ +c

3 1
8 2 2 8 4
1

(EO—sin29+lsin49)+c
42 8

1
(i) sin 30 cos0 do = [['sin0 do + [ sin26 do]

1 —cos49

[ —c0s20+c]
. /2
(i) [ coss0 coso do -S40 SO0 _ g
’ 12,
(iv) J.On/z cos0 cos20 cos40do _19
dx dx Lx+(12),

I\/1+x+x _I\/(3/4+(x+1/2) =Sy

\(x+1/2)+\/3/4+(x+1/2)
\ V372 \

(xX+1/2)+x* +x +1 ‘
V312 "

2x+1+2«/x2+x+1‘
3 |

or

=In

=In

= cosh‘l( ) +c

(111)I VY +6y+ '[ 1/(y+3
d d
@ )I1+X T j XI & =x—tan' x+c¢

500
(7 ) =- 500 tan™'t+c, v(0)= 700

=-5000tan” 0 +c=c = c =70, v(3) =700 — 500 tan™ 3
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T . 5 3 /2 . 5 3 /2 . 5 2
9) (a) IO SIN” x cos” x dx = L SIn” x cos”x dx + jo SIn” (m-x)cos”(m-
x)dx

n/2 . 5 3 n/2 ., 5 3
= J-O SIn” xcos xdx - L SIn” cos” xdx=0
/2 X /4
(b) IO sin2x In tan x dx = .[0 SIn 2x In tan x dx

n/4 T T
= L s1n2XE(— X)ln tan(E —x)dx

/4, /4
= _[O sin 21Intan xdx + L sin 2x In cot x dx

=" sin2x In tan x cot ) dx = [ sin2x In 1dx =0
© [ f(x)dx =] f(x)dx + [ F(x)x
Put x - -y in [ f(x)dx
= [ f(x)dx =—[ f(x)dx + | f(x)dx =0
(10) (2) Jx®Inx dx =Inxx?dx - | (ész dx) dx

:lnxx——lj‘ x*dx)dx =X nx-2 e
3 3 3 9

(b) xe*+c

© | (15" dx = (1 + xD)e* - 2] xe* dx = (1+xD)e* — 2[xe" - [ &*
dx]

= (1+x%) e* - 2xe*+ 2" +c =" (x* = 2x +3) + ¢
Loy o]
(d) Z [-x° cos” 2x + X sin2x + E cos2x] tc

1

\/72de = x sin! x +
1-x

(1) (a) [ 1.sin? x dx = sin? xx - [

NJ1—-X7 +c¢

wt 1 1
b) ———In2 t'x+ —1n(1+ x>
UGMM-103/36 ®) 4 2 n2 (e)x cotx 2 n(1+x)



X’ 1 X’
(12) (a) J.x sin? x dx = —sin" x - — J. dx
NS
X’ sin’u
Putxzsinuin]\/lizd =J cosudu
— X" agx coSu
1—cos2
= .[ sinzudu=.f2—udu

1 1. 1 1 .
=—u——sin2u+c=—u——sinucosu+c¢
2 4 2 2

1

= —[sin” x — x cos (sin™ x)]+c

2

1
~Jx sin™ x dx = X? sin” x - Z [sin” x - xvV1—x* J+c

2%’
1+x

dx

(b) In (1+53) dx = | 1. 1n (1+x%) dx = x In (1) - |

2

Jdx =x1In (1 +X2)—2[ x — tan™! x] +¢

—In(1+x%-]2[1- !
1+

2

(13) (a) % a®™ (2 cos 4x + 4 sin 4x) + ¢ (b) %63)((3 sin 3x — 3cos 3x) + ¢

1 1
(¢) J ¢* cos x cos 2x dx = 5 [ (cos3x + cosx)dx = 5 [le*™ cos 3x

dx +

4x 1 1 4x : 1 4x
[e™cos x dx] =—[—¢™ (4 cos 3x + 3sin 3x) +—e " (4 cos x +
2°25 17
sin X)] + ¢

J'eZX(COSZX-I-l 1

(d) J e cos? x dx = )dx = > [fezx cos2x dx +

e™ dx]

= l[lez"(2cos2x + 2sin 2x) +lez"] +c
78 2
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e +e™ 1
(¢) [ cosh ax sin bx dx= | (T) sin b dx=— [Je™ sin bx dx +] e

1
Msinbx dx] = ——————[e" (asinbx —bcos bx ) +e™ (-asinbx —b

2(a’+b?)

cos bx)]+c

63) [ xe™ sin bx dx = x | ¢ sin bx dx —I ~€" (a sin bx — b cos

a’+b
bx) dx
X e™(asin bx — b cos bx) [ac™ ( a sin bx — b
= a Sin bx — COS DX)—————|ac a Sin ox — COS
a’+b’ (a* +b*)’
bx)

~be™ (‘acosbx + bsinbx)]+c

(14) (a) I«/a2 +x*dx = x+a’ +x° —I %dx
a’+x

=x+a’+x’> — a”+x° dx +
I«/a +x? '[\/
:xx/a2+x2+azlnx+ a’ +x° —j\/az+x2dx+c

a

2 2 2
X a’., Xx+4a’+x
~Jaja? + x2dx :Ex/az +x* +7ln +c

a

X2
(b) XJ‘ Vx?—atdx =x+4/x’ —a’ —J- ﬁdx
x’—a

= xx>—a’ —I \/x2—a2dx—j%2dx
x’—a

"'Ide:%X\/Xz_aZ\/XZ_az _%1nx+m+c

a
x* x’
(15) (a) 7+x2+3x+c (b)?+2ln|x|+c
@ ~coshx + ) e
a) —cosnx +C —_— I
2 2
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(b) %x/xul} =§(\/5—\/§) ® _71(){7—+2)+c

(f) -+ (h) %tan‘l (3x)+c¢

. In/z Sin X COS X
* (1+sinx)’

Q] (X2+2)6X3dx=%Jt6(t—2)dt

8 7
:%[It7dt—2ft6dt =1t—6—t7
_(X2+2)8_(X2+X)7+C
16 7

(k) [ xv/x*+2x7 +2dx = x/(x* +1)* +1 dx%j«/t2+1 dt
—ty1+t? +isinh‘t+c :%(x2 +DVx* +2x* +2 +% sin”!

x>+ 1) +c

()I Xtan 'x

3/2

———-dx = 6sin 6d6, ifx = tan 6

=-0cosO+ I cos 0 dO (integration by parts) =- 6 cos 0 + sin 0 +
c

) L 1= X’
(m) Put x = tan 0 in _[ cos (1 —)dx=2[6 tan 6 + In |cosB|] + ¢
+ X
where 0 tan™ x

(n) Iex(insinercotx)dx:fexlnsinxdx+,[excotxdx

=Insinx e - ,[ cotx e dx + J e cot x d x=¢" In sin x.

v dv du dv
dx =u— —,—dx
: dx:"‘

dx ’dx
dv  du du d’v
=u—-v—+ —+IV - dx
dx dx dx dx UGMM-103/39
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: d’ :
j x*sin x dx :_[ X3F(—smx)dx =—x>cos X +3x*sinx -6
X

jxsinxdx

=_x cosx+3xzsinx—6[-xcosx+J.cosxdx]=—x3 cos + 3x°
sin X + 6(x cos X —inx) + ¢

1.9 Terminal Questions and Answers

(1) Evaluate

. xdx
1. )
1+x*
. em sind~1x d
11. —ax
f 1-x2
x+sinx
iii. )
1+cosx
. 1-x
1v. [—dx
1+x

V. JV1 + sinx.dx



UNIT-2

REDUCTION FORMULAS

Structure

2.1.  Introduction

2.2.  Objective

2.3.  Reduction formula

2.4. Integrals Involving trigonometric functions

2.4.1. Reduction Formulas for I sin"x dx and I cos"x dx

2.4.2. Reduction Formulas for I tan"x dx and I sec'x dx
2.5. Integrals involving products of trigonometric functions
2.5.1. Integrand of the Type sin"xcos"x
2.5.2. Integrand of the type e"*sinx
2.6. Integrals Involving Hyperbolic Functions
2.7.  Summary

2.8.  Terminal Questions

2.1 Introduction

In this unit we have introduced the concept of a definite integral
and have obtained the values of integrals of some standard forms. We
have also studied two important methods of evaluating integrals, namely,
the method of substitution and the method of integration by parts. In the
solution of many physical or engineering problems, we have to integrate
some integrands involving powers or products of trigonometric functions.
In this unit we shall devise a quicker method for evaluating these integrals.
We shall consider some standard form of integrands one by one, and
derive formulas to integrate them.

The integrands which we will discuss here have one thing in common.
They depend upon an integer parameter. By using the method of
integration by parts we shall try to express such an integral in terms of
another similar integral with a lower value of the parameter. We will see
that by the repeated use of this technique, we shall be able to evaluate the
given integral.
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2.2 Objective

®*  Studyof Jx"e¥dx

®*  Study of sin"x dx, [ cos™ x dx | tan" x dx, etc.
®  Study OfJ. sin” x cos" x dx’
*  Study ij e™ sin" x dx

o Study ofJ. sinh” x dx, I cosh” xdx

2.3 Reduction Formula

Sometimes the integrand is not only a function of the independent
variable, but it also depends upon a number n (usually an integer). For

example, in ,[ sin” xdx, the integrand sin" x depends on x and n. Similarly,

in j e* cosmx depends on x and m. The numbers n and m in these two
examples are called parameters. We shall discuss only integer parameter
here. On integrating by parts we sometimes obtain the value of the given
integral in terms of another similar integral in which the parameter has a
smaller value. Thus, after a number of steps we might arrive at an
integrand which can be readily evaluated. Such a process is called the
method of successive reduction, and a formula connection an integral with
parameter n to a similar integral with a lower value of the parameter, is
called a reduction formula.

Definition 1: A formula of the form J.f(x, n) dx = g(x) + J. f(x, k) dx.

where k <n, is called a reduction formula.

Example 1: The integrand in [ x"e* dx depends on x and also on the

parameter n which is the exponent of x, Let 1,= J x" e dx.

Integrating this by parts, with x" as the first function and €¢* as the second

function gives us I, = X[ e dx - | (nx"! [ e dx) dx =x"¢e"—n J "' e
)dx

Note that the integrand in the integral on the right hand side is similar to
the one we started with. The only difference is that the exponent of x is n -
1, Or, we can say that the xponent of x is reduced by 1, Thus, we can write

In=x"e"—nl;. --—-- (1). The formula (1) is a reduction gives us

[x*e*dx =x* e* — 4x’e* — 12x% ¥ + 24xe* + 24" + ¢



in five simple steps. This became possible because of formula (1). In this
unit we shall derive many such reduction formulas. These fall into three
main categories according as the integrand

(i) A power of trigonometric functions.
(1)) A product of trigonometric function, and

(i11) Involves hyperbolic functions.

2.4 Integrals involving Trigonometric Function

There are many occasions when we have to integrate powers of
trigonometric functions. In this section we shall indicate how to proceed in
such cases.

2.4.1 Reduction Formulas for | sin™ x dx

In this sub-section we will consider integrands which are powers of either

sinx or cosX. Let us take a power of sinx first. For evaluating f sin” x dx,
we write

I, = J'sin”x dx
zjsin”’lx.sinx dx, if n > 1.
Taking sin™'x as the first function and sin x as the second and then

integrating by parts, we get I, = sin™'x (-cos x) — (n — 1) J sin™x cos x (-
cosx ) dx

=_sin"'x cosx + (n—1) [ sin™2x cos? x dx

=—sin"'x cos x + (n— I)J [sin" 2k (1 — sin’x) dx
= —sin"'x cosx + (n — 1) [sin"x dx - sin" x) dx]
=—sin"'x cos x + (n— 1) [lno — L]

Hence, I, + (n— 1) I, = - sin™ ' x cosx + (n — 1) L »
nl, = - sin™ x cos x + (n — 1)

—sin"'xcosx n-1
or I = + I
n n

n-2

Hence the reduction formula for J.sin”x dx is

—sin"'Xxcosx n-1
+

I, = Isin“xdx =
n n

J‘siondx , This is (value for
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- n-l

) —sin’ XcosX n-1

In:J.sm”XdX: + I
n n

Now evaluate the definite integral Ifsin”x dx

With the help of reduction formula (1) we can write

4 z
V4 = n-1 5 2
z sin"'xcosx |2 n-17 . .
jozsln”x dx:[— } + Ism” 2xdx
n
0

v
n_12 . n-2 .
=— .[ sin"“xdx because sin0=0, and cos0=0.
n
0

Replacing n by n-2 in equation (2), we have

(n-2)-1 (n=3)
o= Ty e =7

again replaing n = n-2 in equation (4), we have

(n-5)
In—4 = n_4 In—6

| _(n=1)(n=33(n=5),
Then we have 'n n n—ol\n_a)™®
So
(n—lj n-3 (n—s 42
ol ey g 3

sinxdx, if nisanodd no. andn>3
sin"xdx =

S o | N

dx, if nisanevenno. andn>2

SN O oy

7\
>
S|
—
N—
7/ N\
S| =
| |
DO | W
N—
7\
S| =S
| |
N on
N
S| w
2o | —

c . n-1
. . —sin"~ XcosX n-—1
Since we have |, = Ism”xdx = + I

n n

UGMM-103/44 Putting n = 3 in above equation, we get



—sin*' xcosx 3-1
+
3 3

—sin’ XcosX 2
=+,
3 3

—sin’ Xcosx 2¢ .
=+ | sin xdx
3 3

—sin’ Xcosx 2
:f——cosx

. 3 _
J-sm Xdx = I, ,

Similarly, putting n=4 we have

w —sin*"' xcosx 4-1
jsm Xdx = 2 + 2 l,,

—sin’ xcosX 3¢ . ,
=—————————+=|sin"xdx
4 4
sin’ XcosX 3] sinxcosx 1 .,
=—— = ——+—J.s1n xdx
4 4 2 2

sin® Xcosx 3 . 3
= ————smxcosx+§x

4

Example 1:We shall now use the reduction formula for ,[ sin” x dx to

n/2 .
evaluate the definite integral JO sin” xdx .. We first observe that

. .n—1
w2, —sin” XcosXxX n—1¢02 . n—1
I sin” xdx = + I sin" ’xdx =——
0 n n n
sin™? xdx, n > 2.
w2 4 ni2 . 4 2 ez .
Thus, j smsxdx:—f sin’ xdx =—.=| “sinxdx
0 5 0 5 3 0
/2
8 8
=—(-cosx)| =—
15 o 15

2.4.2 Reduction Formulas for [cos" x dx

To find a reduction Formulas for Icos” xdx where n is a positive

integer and also deduced J? cos" xdx

Method 1: By property of definite integral, we have

I: f (x)dx :Ioa f (a—x)dx
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T

ie. J.OE sin" xdx = E sin” (% - xj dx

T
= J.Oz cos" xdx

Therefore from equation (5), we have

(”‘IJ(” 3](” 5) ........... 4 2.1, if nisanodd no.
n J\n-2){n-4 3

1

2

A

Let us now derive the reduction formula for I cos" x dx. Again let us write

T

E cos" Xdx = | sin"xdx =

ce—oln

/. .
ox if nisanevenno.

Method 2:

I, = | cos"x dx = Jcos™ x cos xdx, n > 1. Integrating this integral by
parts we get

I,= Jcos™ x sinx - (n—1) cos™ x (- sinx ). Sin x dx
— n-1 : J' n2_ s 2
=cos xsinx+(n+1) ) cos ™ x sin” xdx

=cos"' x sinx + (n— 1) | cos™ x (1 — cos® x) dx= cos™ x sin x + (n -1)
(In—2 - Il’l)

By rearranging the terms we get [, = I cos" x dx =

cos"'xsinx n-1
+ 1

n-2

n n

This formula is valid for n>2. What happens when n=0 or 1?

n/2 n-— ]. /2 n_2
As we have IO sin XdX——n . sin" " xdx,n >2 .Using this

formula repeatedly we get

i n-ln-3n-5 4 zjsmxdx if nisanodd number,n > 3.
R e L
. — i, — —j dx, if n 1s an ven number,n> 2.
n n-2 n-4 4 2%
This means
x/2 n_—l.n—3 ........ i %f if nisan odd number,n > 3.
I SinnXdX: 1 n—2 5 3
0 n-1 n-3 i l

........ . ,df nisevenn > 2

We can reverse the order of the factors, and write this as



B 28 A2 i nisodd,> 3
J' sin" xdx = 1335 nliIznn
— e —...—,if niseven,n >2
24 n 2

n/2
Arguing similarly for J. cos" xdx we get

0

2
J.mcosn xdx = jmsn“xdx =3
0 0 1
2

2 4 n-1 .. .
. §§ .......... ——.ifnisodd, n >3
T n _ n
(l)ProveI0 cos" xdx 13 nel n
— e ——..—,if niseven,n >2
2 4 n 2
n/2 P n/2 6 .
(2) Evaluate (a) IO cos” xdx, (b) jo cos’ xdx, using the

reduction formula

2.4.2 Reduction Formulas for [ tan” xdx and | sec” xdx

In this sub-sectioin we will tak up two other trigonometric functions tanx

and secx. This is, we will derive the reduction formulas for I tan" xdx, n >
2. We start in a slightly different manner. Instead of writing tan" x = tanx
tan""'x, as we did in the case of sin"x, we shall write tan"x = tan™*x.tan’x.

So we write In=,[ tan” x dx

= Jtan"2x tan’xdx =] tan™2 x (sec’ x — 1) dx = [ tan™? x sec’xdx - [tan™
xdx----(2)
We must have observed that the second integral on the right hand side is

I12. Now in the first integral on the right hand side, the integrand is of the
form

f X m+1

[FOI™f '(X)dx:ﬁ +c
m+1

, - 5 tan""' x ,
This J tan© x sec” xdx = ———+cC . Therefore, (2) give
n_
tan""'—1
In = )
n—1
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, . tan""'—1
Thus the reduction formula for ,f tan’ x dx = In =

n-2
n-—1

To derive the reduction formula for ,[ sec” xdx (n > 2). We first write

sec"x= sec"*x sec?x, and then integrate by parts. Thus

L= | sec” xdx = [ sec™x sec? xdx = sec™ x tan x — (n—2) [ sec™x sec x
tan” xdx

=sec™” x tan X — (n — 2) | sec™ xtan® xdx

= sec"” x tan x — (n- 2) | sec™ x (sec’ x — 1) dx = sec" x tan x — (n — 2)
(ln - 1n—2)

After rearranging the terms we get J sec” xdx = I, =
sec”’ x tan x .n -2

n—1 n—-1 "7

These formulas ,[ tan" xdx and ,f sec” xdx are valid forn>2. Forn=0, 1

and 2, the integral | tan" xdx and [ sec” xdx can be easily evaluated.

. n/4 5 . n/4 6
Example 3: Let’s calculate (i) Io tan” xdx and (i) IO sec’ xdx

4 /4
(1) J:M tan’xdx = tar; X:|O - J.OHM tan’xdx
) /4

:l_tan X +F/4tanxdx

4 x |, 7

11 sin x 1 o 1

n/4

:———+J. dx :——ln(cosx)} =——In—=+Inl

4 2  cosx 4 0 4 V2

:—llnﬁ
4

4 n/4
(i1) J:M sec®  xdx = See tanx tanx} +g '[Omsecz de}
5 0 3
=% % s Omsec2 xdx
8 n/4 28
=—+—tan x} =—
15 0 15



2.5 Integrals Involving products of trigonometric functions

In this section we have seen the reduction formulas for the case where
integrands were powers of a single trigonometric function. Here we shall
consider some integrands involving products of powers of trigonometric
functions. The technique of finding a reduction formulas basically
involves integration by parts. Since there can be more than one way of
writing the integrand as a product of two functions, we will see that we
can have many reduction formulas for the same integrals.

2.5.1 Integrand of the Type sin™ xcos" X

The function sin™ xcos" x depends on two parameters m and n. To find a

reduction formula for f sin™ x cos"dx, let us first write Iy, = I sin" x cos"
xdx

Since we have two parameters here, we shall take a reduction formula
mean a formula connecting Iy, and I, 4, where either p <m, or q <n, or
both p <m, q <n hold. In other words, the value of at least one parameter
should be reduced.

sin”” x +c¢,whenm # -1
Ifn=1,1In,= [ sin™x cos x dx m+1 ’

In|sinx |+c,whenm =1
Hence we assume that n > 1. Now,

Im,HZI sin"x cos"x dx = I cos™'x (sin™x cos x) dx

Integrating by parts we get

m+l

-1 s m+l .
cos",X,.sin . ) sin ,
[ = > —[(n=1)cos"*(~sinx) dx, ifm=-1
’ m+1 m+1
1.
-1 s m+l
cos" x.sin""x n-1; . )
= + [ sin™ x cos™x (1 - cos’x) dx

m+1 n+1

cos" ' x.sin""'x n-1
= + [1

— 1., 1. Therefore,

m+1 m+1 ™
I n+1 _m+n I _cos“’lxsinm”x+n—1
™ m+1 "™ m+1 ™ m+1 n+1 ™7
o cos"' xsin""x n-1
This givesus, [ = + L.
’ m+ In m+n
. 3)

UGMM-103/49



UGMM-103/50

But, surely this formula will not work if m+n =0. So, what do we do if m
+n = 07?7 Actually we have a simple way out. If m+n =0, then since, n is
positive, we write m = -n.

Hence I_n,HZI sin™ xcos" x xdx = ,f cot" xdx, which is easy to evaluate
using the reduction formula.

To obtain = | sin™ x cos” xdx = | sin™ x (cos" x sin x) dx. Integrating

this by parts we get
s m-1 n+1 n+l
—Sin X COS . me —COS X
[ = —(m-1)[ sin 2xcosxgxdorn
’ n+1 n+1
#- 1.
s m-1 n+l
—sin™ xcos""x m-1;. )
= + J sin™2x cos™ x cos" x (I - sin’x) dx
n+1 n+1
s . m+l n+l
sin"” xcos""x m-—1 ) )
=— + (I ,. 1. ).Form this we obtain
n+1 n+1 C
. m-1 n+l
—sin™" X Ccos m—1
I..= + (T o) e 4)
m-+n m-+n

If m or n is a positive odd integer, we can proceed as follows:

2p+1

Suppose m =2p + 1, p> 0, then Iy, = Isinrn x cos™ xdx

= Jsin™ x (1 - sin®x)P cos x dx = J ¢ (1-t%)° dt we put t = sin x

Expanding (1 — %) by binomial theorem and integrating term by term, we
get

m+1 m+3 m+5 __1\P 4 m+2p+l1
o= et ot EET
T om+1 m+3 m+35 m+2p+1
s . m+l s m+3 s m+5
= O, ) T 4 O(p,2) T et
m+1 m+3 m+5
1\ g3 m+2p+]
(=1)" sin L
m+2p+1

If m and n are positive integers, by repeated applications of formula (3) or
formula (4), we keep reducing n or m by 2 at each step. Thus, eventually,
we come integral of the form Iy or Iy or Ijy or Ip,. In the previous
section we have seen how these can be evaluated. This means we should
be able to evaluate I, , in a finite number of steps.

Example4: Let us evaluate



. n/2
02 L, ] —sin’ x cos’ x 3
J'O sin” xcos” xdx =

+—_[msin2 x cos’ xdx
10 ST

o 7 n/2
:i n/zsinzxcosé wdx :i SIN X COS' X +ljn/2c086 de}
10 10 84 87

. . 3 2 6 3 151 31
Using formula (4) again = —I cos" xdx=—x—— = ——
80" 80 96 512

Check your progress

(3) Derive the following reduction formulas for [ cot” x dx and | cosec”
xdx

@ Jeoot'xdx=1 = Lot x—1

n-2
n-—1

—cosec" ’x cotx 0= 2

(b) [ cosec™ xdx = I =

n—1 n—-1 "7

(4) Evaluate (@) [ cosec’xdx  (b) [ sin*xdx (o) [sec’0do

(5) In deriving formula (4) we had assumed that m > 1. How would you
evaluate, Iy, if m =1?

(6) Formulas (3) and (4) fail when m +n = 0. We have seen how to
evaluate I, if m+n=0 and n is a positive integer. How would we evaluate
it if m+n=0 and n is negative integer.

n/2 . n/2 .
(7) Evaluate (a) IO sin’ x cos’ xdx (b) IO sin® x cos” xdx

2.5.2 Integrand of the Type e sin" x

In this sub-section we will conside the evaluation of those integrals, where
the integrand is a product of a power of a trigonometric function and an
exponential function. That is, we will consider integrands of the type ™
sinx. Let us denote

[ e sin® xdx by L,, and integrate it by parts, taking sin"x as the first
function and €™ as the second function. This gives us
e"sn"x ng; . . .
L =——————Je"sin"" xcosxdx
a a
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We shall now evaluate the integral on the right hand side, again by parts,
with

sin™! cosx as the first function and e™* as the second one. Thus,

n

a a

e“sin"x n|a“sin""' xcosx lf
L = _2 2
a

e {(n—-1)sin"* x cos’ x —sin" X}dx}

ax _* ax _*_.n-1
e“sinx n|a“sin" xcosx 1 ) )
= ——{ —=Je*{(n-1sin"? x —nsin" x}dx}
a

a a a
This means
e”sin"x ne”sin"' xcosx n(n-1) n’
L = — + L ,——L
2 2 n-2 2 n
a a a a
Rearranging the terms we get
ae™sin"x ne™sin"" x cosx ‘
Ln = - Ln—2

n’+a’ n’+a’
Given any L, we use this reduction formulas repeatedly, till we get L; or
Ly (depending on whether n is odd or even). Since L, and L, are easy to

evaluate, we are sure we can evaluate them (see E8). This means that L,
can be evaluated for any positive integer n.

Remark 1 If we put a = 0 in L,, it reduce to the integral J sin” xdx. This

suggest that the reduction formula for I sin" xdx which we have derived is
a special case of the reduction formula for I,.

Check your progress

ax

C
(8Prove that (a) L, =—+c¢ (b)
a

ax

L, =Je™ sinxdx = ©
1+

~(asinx —cosx)+c
a
(9) Prove : If C, = J e cos® xdx, then

_ae™cos" X N ne™ cos"' xsinx n(n-1) C

C
2
" n°+a’ n’+a’ n°+a*> "

(10) Verity that the reduction formula for j cos"xdx
(10) Verify that the reduction formula for I cos'xdx
(11) Prove the following reductioin formula:

sinh"™" x cosh x _n- IJ

| sinh® xdx = sinh"? xdx

n n

(12) Derive a reduction formula for _[ cosh” xdx




2.6 Integrals Involving Hyperbolic Functions

In this section we shall discuss the evaluation of integrals of the type

I sinh"xdx, I cosh” xdx, etc. If I, = tanh" xdx, we can write

I, = | tanh™xtanh’xdx = | tan h™2 x( 1- sec h’) dx ,
d
—tanh x =sech’x
dx
tanh"™ x
=[ tan"? xdx - [ tanh™ x sech’ xdx = I, - il
n J—

2.7 Summary

A reduction formula is one which links an integral dependent on a
parameter with a similar integral with a lower value of the parameter.

In this unit we have derived a number of reduction formulas.
1. Ixnexdxzxnex—nj X" e* dx

—sin"'xcosx n-1; .,
+ Ism xdx, n>2
n n

2. f sin” xdx =

4cos" " xsinx

n n-— 1 n-2
3. f cos xdx = + ,[ cos - xdx, n>2

n n
—tan""
4. ftann xdx=———— ftann'zxdx, n>?2
n-—1
n-2
sec" "xtanx n-—2
5. I sec” xdx = + J sec™ xdx, n>2
n—1 n—1
24 n-1.. .
, , —— ,ifnisodd,n >3
6. _[ sin” xdx :_[ cos” xdx =4 39 n
0 0 13 n-1.. .
— ,f niseven,n > 2
24 n
cos"'xsin™x n-1
7. I sin™ x cos" xdx = + j sin™ xcos™? xdx,
m-+n m+n
n>1

s . m-—1 n-1
—sin™ xcos" x m-—1 .
+ j51nm2xcosnxdx,m>1
m-+n m-+n

UGMM-103/53



UGMM-103/54

8. I e sin" xdx

— ae™sin" x ne™sin"' xcosx n(n-1 . .
+ ( Z)Iea sin"* dx
n—1 n’a’ n’+a
—tanh™"

9. Jtanh" xdx = + [tanh™? xdx

n-—1
We have noted that the primary technique of deriving reduction formulas
involved integration by parts. We have also observed that many more
reduction formulas involving other trigonometric and hyperbolic functions
can be derived using the same technique.

Solution and Answers of check your progress

(1) we have
-l . n/2
jmcos“ xdx = 05 *XSmX +n—1 " cos™ xdx,n>2
0 n . n 0
_n= 1mcos xdx=—n_1-n 3 " cos™™ xdx .
n °° n n-2%
n-ln=3n-5 E.ljmcosO xdx,if niseven
—_) n n-2n-4 42°%
n-In=3n-=>5 - izjmcosxdx,ifnnisodd
n n-2n-4 53
n—-1n-3n-5 3 1m.
..... —.——1f niseven
_)J n n-2n-4""422
n-ln-3n-5 ﬂ% if nisodd
n n-2n-4 53
42 8
2 cos’xdx =—=—=— b
@ @ [ S371s (b)
'[mcosﬁ xdx=>3 L m 5T
6422 32
(3)(a)I—Icot xdx = | cot™? x (cosec’x — 1) dx n>2
= I cot™? xcosec2xdx — I, . Therefore I = %Inz
n_

b) I, = J cosec” xdx = | cosec™ x cosec?xdx n > 2
—_cosec™ x cotx = | (n —2) cosec™” xcot® x dx
= - cosec™” x cot X — (n—2) [ cosec™ x cosec? xdx= - cosec™? xcot x — (n
)L+ (-2) Lhs
—cosec"’xcotx n-2

I = + I,
n—1 n-—1




n/4
m/4 - 1 n/2
@ @ [ cosec’xdx = COS@CXCOtX} L L
n/4 2 » 2 _
1 1 x n/2
=—+—Intan—
\/5 2 2:|7r/4
1 m 11
=—+ lnl lntan— :———_lntan_
V2 ( 8) V22
) [sin*xdx =222 LT
8 642 2 25
(c) IS€C39d9=M+%IseCOdG=MJr%ln (sec X + tan
X) tc
cos"'x .
G)Iftm=1,In,=Il,= I sin x cos" xdx = n+1 +cifnz~1

—In|cosx|+cifn=-1
(6) mtn =0 = n=-m = mis a positive integer.

sin™ x
dx = I tan™ xdx

Inn = J. sin” xcos ™" xdx = -
COS X

Now use the formulas for j tan™ xdx

n/2 . 3 5 n/2 5
(7) (a) IO SIn” xcos” xdx = +—I0 SIn x cos” xdx

8
—2 cos’ XTZ 1

) 6 n/2
—Sin XcCOoS X}

0

= —J.ﬂ/zsinxcos5 xdx = — —
g % g8 6 | 24

w2, 1 pn2 .
() | “sin’ xcos’ xdx = +—| “sin® xdx
0 0

. 2 6 n/2
—SIn XCOoS X
8

0

1 7531 n 7T=n
=—I sin’ xdx = —-—,>, >, —,—=——
10 86 422 512
(8) (a) Ly = Ieaxdx—e—+c(b)L1= feaxsinxdx=m—lfeax
a a a
cos xdx

_e"sinx e" cosx

ax *
— . ——zfe sin xdx

a a a
o ae” sinx e" cosx
| e sin xdx = T —+¢C
l+a l+a

C sin X

(asinx —cosXx)+c
l1+a’
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ax

c n .
9 C, =——cos"x +— [ e™ cos™! x sin xdx
a a

_ce"cos’x {e“ cos"™ xsinx

a a a

lfea" {(n—1)cos"* xsin’ x — cos" x}dx}
a

e¥cos"x n . . . n . . )
=————+—¢ Cos XSlnX+—ZIe {(b—-1) cos ™ x —n cos
a

a a
x} dx
e“cos"Xx n L. n(n-1 n’
=———+—¢" cos” 1xsmx+¥€n_2 -—C,
a a a a

ae™cos"x ne™cos" xsinx n(n-1)
. Ca + Cn—2

n’+a’ n’+a’ n’ +a’
(10) Put a = 0 in the formula for C,. .. C, = I cos" x dx =

,1 .
cos" xsinx n-1 )
+ ICOSn 2 xdx

n n
Which is the reduction formulas for I cos" xdx

(11) [ sinh® xdx = [ sinh™ x sinh x dx = sinh™' x x cosh x — (n—1) |
sinh™ x cosh” xdx

= sinh™" x cosh x — (n— 1) | sinh™ x (1+sinh’ x) dx

= sinh™ x coshx - m - DL, - n (@ - DL ,
sinh"' xcoshx n-1
In: - In—2
n n

(12) I, = cosh" xdx = | cosh™ x cosh xdx= cosh™' x sinh x — (n—1) |
cosh™ x sinh? x dx
= cosh™! x sinh x — (n — 1) | cosh™ x(cosh? x — 1) dx= cosh™ x sinh x —
(n_ 1) In + (n_ 1) In—2

cosh"'xsinx n-1
= + I

n n-2

n n

I

2.8 Terminal Questions

1. Evaluate

A

i. JZsin*x cos®x dx

ii. [psin*6 do




1il.

1v.

V1.

Vil.
Viid.

1X.

T
J2 sin®x.cos®xdx

3
J) x2(1 = x?)z. dx (put x=sinf)

2a 2 3 )
Jy x2(2a —x)z.dx (put x=2a sin?0)

If m & n are integers, prove that

2n

T .
fo cosmx.sinnx dx = or 0

n2-m?2

according as n-m is odd or even.

fa 2 25 d
o (@ +x%)2.dx.
0 543cos8’

f dx

1+cos?x

dx . x
/ (5+4 cosx)? (Hint: put t = tan - then cos

1-t?2 _dx 2
= =)

1+t2 dt 1+t2
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UNIT-3

INTEGRATION OF RATIONAL AND
IRRATIONAL FUNCTIONS

Structure
3.1  Introduction
Objective
3.2 Integration of Rational Function
3.3 Some simple Rational Function
3.4 Partial Fraction Decomposition
3.5 Method of Substitution
3.6  Integration of Rational Trigonometric Functions
3.7 Integration of Irrational Functions
3.8 Summary

3.9 Terminal Questions

3.1 Introduction

In the previous unit we have come across various methods of
integration. In this block, we will complete the discussion of methods of
integration in this course. Here we shall deal with the integration of
rational functions in detail.

Later on we shall consider some simple types of irrational functions.
While going through this unit you will need to recall several standard
forms like.

J‘ dX
Jx*+a’

Objective:

I x’+a’ dx etc,

After reading this unit you should be able to :
. Recognise proper and improper rational functions

o Integrate rational functions of a variable by using the method of
partial fractions

e Integrate certain types of rational functions of sinx and cosx UGMM-103/59
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o Evaluate the integrals of some specified types of irrational
functions

e  Decide upon the method of integration to be used for integrating
any given function.

3.2 Integration of Rational Functions

W know by now that it is easy to integrate any polynomial
function, that is, a function f given by f(x) = a, X"+ a,. X + .....+ ao.

Definition1: A function R is called a rational function if it is given by
R(x) = Q(x)/ P(x), where Q(x) and P(x) are polynomials. It is defined for
all x for which P(x)=0.

If the degree of Q(x) is less than the degree of P(x), we say the R(x) is a
proper rational function. Otherwise, it is called an improper rational
function, thus,

x+1

f(x) = ————— is a proper rational function, and

X +x+2

x> +x+5 ,
g(x) = ———— is an improper one. But g(x) can also be written as

17
g(x)= (X +2x +6) +
X—2

Here we have expressed g(x), which is an improper rational function, as
the sum of a polynomial and a proper rational function. This can be done
for any improper rational function. Thus, we can always write

An improper _ A + A proper
rational polynomial rational
function function

As we have already observed, a polynomial can be easily integrated. This
means that the problem of integrating an improper rational function is
reduced to that of integrating a proper rational function. Therefore, it is
enough to study the techniques of integrating proper rational functions.

3.3 Some Simple Rational Function

Now we shall consider some simple types of proper rational

1 1 X—m
, and ———— .
x—a (a—b)" ax’ +bx +c¢

functions, like



Examplel: The simplest proper rational function is of the type

(x—a)
1
We already know that I dx =1In [x —a| +c
(x—a)
: . 1
Example 2: Consider the functioin f(x) = ——
(x+2)
To integrate this function we shall use the method of substitutions. Thus, if
du :
we put u=x+2—=1 and we can write
dx
1 1
J———dx=[—du=]u"du
(x+2) u
u’ 1

+c= +c
3 3(x +2)

) ) 2x+3
Example 3: Consider the function f(Xx)=————+c¢
3x2-4x+5
2x+3 .
Now ——— dx can be written
X 4x+5
2x —4 7
S S SN S
X —4x+5 X —4x+5
2x -4 5
Thus, | —————— dx=In [x* - 4x+5| > ¢,
X —4x+5

To evaluate the second integral on the right we write

1 1 1

—dx = X=)—"—7 U
x> —4x+5 (x* —4x +4) (x=2)"+1

u
Now, if we put x — 2 =u, —=1 and

dx
f———l———dx=f du=tan'u+c, =tan" (x=2)+c,
x’—4x+5 u’+1 ?
. 2x+3 5 I
This simples, ,fz—dxz In[x"—4x + 5|+ 7tan” (x —2) +c
X —4x+5
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Check your progress

(1) Which of the following function are proper rational function? Write
the improper ones as a sum of a polynomial and a proper rational function.

x +1 x’+x-3
(@ — b)) —— (c)
X +X X" +1
X +8
X’ +5x+8
(2) Evaluate:
dx dt
@ | 23 ()'[(t+5)2
2x +1 4x +1
d d d
© '[ X +8x+1 ()J.X2+X+2 )

3.4 Partial Fraction Decomposition

In School you must have studied the factorisatin of polynomials.
For example, we know that x*—5x+6 =(x—-2)(x-3)

Here (x — 2) and (x — 3) are two linear factors of x* — 5x + 6.

The polynomials like x* + x + 1, which cannot be factorised into real
linear factors. Thus, it is not always possible to factorise a given
polynomial into linear factors. But any polynomial can, in principle, be
factored into linear and quadratic factors. We shall not prove this
statement here. It is a consequence of the Fundamental theorem of
Algebra. The actual factorization of a polynomial may not be very easy to
carry out. But, whenever we can factorise the denominator of a proper
rational function we can integrate it by employing the method of partial
fractions.

x—1 S5x -1,

5
Example4: Let us evaluate J- dx . Here the integrand > is a
x —1 x -1

proper rational function. Its denominator x> — 1 can be factored into linear
factors as:




x* - 1= (x - 1)(x +1). This suggests that we can write the decomposition

S5x -1 , : .
of > into partial fractions as:
x -1
5x-1_ 5x-1 A B

o1 (x=Dx+D)  (x=D  (x+D
If we multiply both sides by (x — 1) x + 1), we get
S5x-1=A(x+1)+B(x—-1). Thatis,5x—-1=(A+B)x+A-B
By equating the coefficients of x we get A+ B =15
Equating the constant terms on both sides we get A—B =-1.
Solving these two equations inA and B we get A=2 and B=3
Sx—1 _ 2 N 3

x—-xXx x-1 x+1

Thus

Integrating both sides of this equations, we obtain,

S5x -1 2 3
[ S5—dx=] —=—dx+[ ——dx=2Injx~1[+3In|x+1|+c
x =1 X — x+1
: . . S5x—1
The most important step in the evaluation of J. > dx was the
X p—

decomposition of the integrand into a partial fractions. The procedure for
finding the values of the two unknowns A and B. involved two simple
simultaneous equations in two unknows. But the higher the degree of the
denominator, the more will be the number of unknowns, and it might be
very tedious to find them.

In the equation 5x — 1 = A (x + 1)+B(x-1), if we put x = -1, we get — 6 = -
2B, or B=3. Similarly, if we putx =1,se gt4 =2A or A =2.

2x*+x—4

X —x*-2x

Example 5: Suppose we want to integrate
We first observe that the denominator factors as x(x+1) (x — 2).

We first observe that the denominator factors as x(x + 1) (x —2)

2x*+x-4 A B c
: a8, b

x’—x"=-2x x x+1 x-2

This means we can write

Multiplying by x* — x* — 2x we get
2% +x—4=x+1)(x-2)A+Bx (x—2)+Cx (x + 1)
Now, it we put x = 0 in this equations, we get—4=-2 Aor A=2

Puttingx =-1 givesis—3=+B,orB=-1.
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Putting x =2, we get 6 =6C,or C=1

hus, [ 250X g L |

x+1
=2Inx/-In|x+1]+In|x-2]|+c.

Example6: Take a look at the denominator of the integrand

X
J. 3—dX. In factors into (x — 1)*(x + 2). The linear factor (x —
X —3x+2
1) is repeated twice in the decomposition of x* — 3x+ 2.
. . X A B C
In this case we write = + +

X*=3x+2 x+2 x-1 (x-1)
From this pont we proceed as before to find A, B and C. We get
x=AX-1+Bx+2)(x-1)+Cx+2)
Weputx=1andx=-2and get C=1/3 and A =-2/9

Then to find B, let us put any other convenient value, say x = 0

. -2 2
ThnglVGUSO=A—2B+2COI',027—2B+§.Th181mpheSB=

2/9

X -2 1
e Ll B Lt j

x+lj- 1 -d
(x— 1) 37 (x-1)

X_

:_—21n|x+2|+31n|x—1|—1[LJ+c
9 9 3

|X 1| 1
\x+2\ 3(x — 1)

6x’ —11x° +5x—4

Example 7: To evaluate J. " dx

x'=2x'+x*=2x

We factorise x* — 2x” + x> — 2x ax x (x — 2) (x* — 1). Then we write

6 —11x*+5x -4 A B +CX+D
2P 4+xP-2x X X—2 x> +1

Thus, 6x° — 11x° + 5x —4 = A(x — 2) (x> + 1) + Bx (x> + 1) + (Cx + D) x(x
_2)

Next, we substitute x =0 and x =2 to get A=2and B=1.

Then we substitute x =0 and x =2 to get A=2 and B=1.



Then we put x = 1 and x = - 1 (some convenient values ) to get C = 3 and
D=-1

Thus

3_ 2 _ _
j6f 113X +25X 4dX=2IldX+I ! dX+I 3)2( 1dx
X =2X"+X —2X X X—2 X +1
3 2X dx

=2Infx|+In[x-2[+ = dx —
x|+ o e =21 2'[x2+1 Ix2+1

3
=21n|x|+1n|x—2\+E In|x*+1|-tan™ x +c.

X’ +2x
Example 8: let us evaluate I ———dx
X —x—-2
Since the integrand is an improper rational function, we shall first write it
as the sum of polynomial and a proper rational functions.

x’ +2x 5x+2
Thus, ———— =X +1+—"——
X —x—2 X —x—-2
x> +2X 5x+2
Therefore, Iz—dXIXd+jz—
X —x-2 X —x-2
2
X 5x+2
:—+X+I2—dx
2 X —x-2
5x+2 . , ,
Now let us decompose —; into partial fraction as
X —x-2
5x+2 5x+2 A B

= — +
x’—x-1 (x=-2)(x+1) x-2 x+1
Sx+2=A(x +1)+B(x —2) Ifx =- 1, we get — 3 = -3 = -3B, that is, B=1
Ifx=+2, we get 12 =+3A, thatis A=4

5x+2 dx dx
Therefore J.z—dX=4J. —|—.[ =4Injx-2|+In|x+
X —x-2 X—2 x+1
I|+c¢
X’ +2x x’
Hence I2—dx=—+x+4ln|x—2|+1n|x+1|+c
X —x-2 2

3.5 Method of Substitution

The method of partial fraction decomposition which we studied in
the last sub section can be applied all rational functions. We can say this
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because as we have mentioned earlier, the fundamental theorem of
Algebra guarantees the factorization of any polynomial into linear and
quadratic factors. But the actual process of factorizing a polynomial is
sometimes not quite simple. In such cases it would be a good idea to
critically examine the integrand to check if the method of substitution can
be applied.

Example 9: Suppose we want to integrate with respect to X.

x(x’ +1)

x'dx 1 dt
(x> +1) 57 t(t+1)

For this we write x° = t. _[

1,1 t 1 :
:—I [———] In|—(+c¢ =—In|——+c
STt t+1 5 t S |x'+1

x* —
Example 10; Let us integrate —————W.r.t.x
X' +x"+1

2_
J‘X—ldxz'[ (1- I/X) dX(lelSlOl’lbe)

x'+x*+1 x*+1+1/x°
_ 2
:I L 1/X2) dx =I - ifweputt:x+l
(x+1/x)" -1 t -1 X
2
:—j (———}d :—lnt 1+c=lX2—X+1+e
-1 t+1 2 |t+1 2|x"+x+1

Check your progress

2 xdx
3) Evaluate: d b) [ ————
©) Vauae(a)‘|.)(2+2x * ()J.X—2X 3
X+3X 10

6x’ +22x —23 3x°
@ | 7 x @5
2x-D)(x"+x-6) X +x-2
x> +x-1 dx
(x-DEx*—-x+1)

® |

(4) Integrate the following function w.r.t.x.

()x2—1 b) 1+x*
a —_—
1+x* 1+x*+x*




3.6 Integration of Rational Trigonometric Functions

A polynomial in sinx and cosx is an expression of the form

k p
p(sinx,cosx )= » > a_ sin"xcos"x,a,  €R.

n=0 m=0

The integratin of f(sinx, cosx ) can be carried out easily as we have
already integrated sin™ x cos" x. An expression, which is the ratio of two
polynomials, P(sinx, cosx) and Q(sinx, cosx) is called a rational function
of sinx and cosx. In this section we shall discuss the integration of some
simple rational functions in sinx and cosx. We shall first indicate a general
method for integrating these functions. Let f(sinx, cos x) be a rational

1 .x 1+t

function in sin x and cosx.Thus, Ift= tan% them — = —SecC . Since sinx =
dx 2 2
X
2tan —
. X X 7 2t
2sin—CO0S — = = >
2 2 X I+t
S€C —
2

1—tan® >

andcosxzcoszi—sinziz = .
2 2 X 1+t
sec” —
2
2t 1-t) 2
eget, | f(sinx,cosx)dx=| f ,
wes -[ ( ) I (1+t2 1+t2j1+t2
2t 1-t7) 2
= | F(t)dt,Where F(t)=f ,
I © ®© [1+t2 1+t2j1+t2

is a rational function of t. Now we can use the method of partial fraction
decomposition to integrate F(t). In principle then, we can integrate any
rational function is sinx and cosx.

1
Example 11 : Let us integrate
a+bcosx

X X X . X
Now a + bcosx = a (sin®> =+ cos’ —) + b(cos” = —sin’ =)
2 2 2 2

=(a+b) cos2£ +(a—b) sinzi
2 2
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X

dx sec’ —dx

Therefore, I b = 2
a+b+cosx

(a+b)+(a—b)tan2’2‘

X
sec’ —dx
2

J

a+b

X
+tan’ —

X
. If we put tan E:t,we get
a—b }

(a—b)+[

d dt 2 dt
| - 2

a Ca-— b
a+bcosx (a—b) a+b+t2 a a+
a—b a—b

+1t’

a+b
Ifa>b >0, then
a—b

>0, and we get

J‘ dx _ 2 tan”| t a—-b
a+bcosx +a’—-b? a+b

—Ltanz(t a-b|_ 2 tan™ a_btani
a’—b’ k a+b ) +a’-b’ a+b 2

a+b
If 0 <a<b, then

<0, and
a—-b
dx 2 Jb+a++/b-at
j = In
a+bcosx +/b’-a’ +b+a—+b—at
1 \/b+a+\/b—atan)2(

= In
Vb —a \/b+a—\/b—atan§

1+sinx :
Example 12 : To evaluate I - dx, we write
sin x(1+ cos x)
j 1+sinx dx = j dx J. dx
sin X(1 +cos x) sin X(1+ cos x) 1+cosx



1+t
t

=— 2dx+%j seczgdlej

5 dt+J‘dt (tan§=t)

=l[j 1dt+j tdt:‘-l—j dt :l{ln|t|+t—}+t+c
207t 2 2

Thus,f . L+simnx dx:lln|tanx/2+ltan2§+tan§+c
sin X(1 + cos x) 4 2 2

sin X cos X t(1—t*)dt
j = 4,[ 2 2 4
(d+tH)A+6t" +t")

X
— dt (puttan —=t)
I+sin” x 2

Not 1+ 68 +t* = 2 + /8 +£) (3 - /8 +t%)

> dx .if we make the substitution 1 + sin’x = t, we get

I1+sin” x

sinxcosxdx 1.dt 1 1 5
I — =—| —=—=In|t|+c =—=In(I+sin’x) +c.
l+sin” x 2°t 2 2

sin X Cos X
In [ SImXC0SX

3.7 Integration of Irrational Functions

The task of integrating functions gets toughe if the given function

Qx)

P(x)

is an irrational one, that is, it is not of the form . In this section we

shall give you some tips for evaluating some particular types of irrational
functions. In most cases our endeavour will be to arrive at a rational
function through an appropriate substitution. This rational function can
then be easily evaluated.

(1) Integration of functions containing only fractional powers of x:

In this case we put x = t", when n is the lowest common multiple (1cm) of
the denominators of powers of x. This substitution reduces the function to
a rational function of't.

2X1/2+3X1/2
Example 13: Let us evaluate I ——dx
I+x

We put x = t°, as 6 is the l.c.m. of 2 and 3. We get

t/2 1/3 3 2
2X +3j{ d=6j 2t +32~t Sdt
I+x 1+t
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8 7 _
=6[ %dt:q {2t6 P30t -3 420 432 ﬂdt
+

1+t

_ 6[&7 +lt6 _%tS _Et“ +2t3 +§t2 —2t—§ln(l+t2)+2tan‘1 t}+c
7 2 5 4 3 2 2

12 e 12 0 9

+3x—?x 2xm+4x +9x"7 —12x" -9In |1+ x"" |

+12tan” x4+

(11) Integral of the type I

dx
Jax’+bx+¢

Here we shall have to consider two case (1) >0 and (ii) a <0.

In each cae we will try to put the given integrand in a form which we have
already seen have to integrate.

(a>0] Lj & =y &
Vax'+bx+c \/> VX +bx/a+c/a) “a J(@+b/2a) +c/a-b*/4a’
If we put t = X + b/2a, we get

J‘ dX . 1 J. dt
Jax’ +bc+c  +a \/t2+(c/a—b2/4a2)
(i)a<0;Ifweput—a=d,thend. 0, and we cane write

J- _ 1 I dX
Va® +bx+c Vd7 \J(c/d+b*/4d*)—(x—b/d)

_ 1 | dt
Jd*? f(c/d+b*/4d*) -t

,ift=x-b/2d

(11D Integration of

1
dx
(fx +e)vax® +bx +¢

dx
(x+1) V=+4x+2

Example 14: Suppose we want to to evaluate I

. Let us put
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-1
x =1/y. Then —Zd—y=1.Now we will try to express x” + 4x+2 in terms
y© dx
of y. For this we write x> + 4x + 2 (x + 1)> + 2(x + 1) — 1
1 2 1+2y-y’
:_2+__1:#

y |y y

. Therefore

L

dx _ ¥ _ dy
I(X+1)\/X2+4X+2_J.1 N+2y-y’ '[1/1+2y—y2
y2

y
- _I &y =cos™ (y_—lj =cos’ {_—X} +c
J2-(y-1y 2 (x + 12

1

This example suggests that in integrating ,
(fx + e)Wax® + bx + ¢

we should make the substitution fx +¢ = —, and then simplify the

y

expression.

(Ax +b)

Jax’+bx +¢

We break Ax + B into two parts such that the first part is a constant
multiple of the differential coefficient of ax® + bx +c, that is, 2ax + b,
and the second part is independent of x. thus,

AXZBZA(ZaX+b)+B—A—band
2a 2a

(1V) integration of

j (Ax+B)dx A J (2ax +b)dx N (2aB - Ab) dx

\/ax2+bx+c_£ Jax’+bx+c 2a Jax’+bx+c

A\/z— (2aB—-Ab dx
=—+ax"+bx+c+
a 2a I\/ax2+bx+c

(v) integration of (Ax + B) vax’ +bx +c¢
[ (Ax+B)vax’bx +cdx = 2ﬁ [ (2ax +Db)vax® + bx +cdx +
a
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B2az——AbI vax® +bx + cdx

a

:3é(em2 +bx +c¢)*"? +2a]32——AbI vax® +bx +cdx.
a a

X+2

VX 4+2x+43

Example 15: To evaluate j

We note that x+2:%(2x+2)+1

(x+2)dx

VX 4+2x+43
dx
=X’ +2x+3+
I VX 4+2x+3

=A/X>+2x+3 +sinh1(XTJ;lj+c

(2x +2)dx J~ dx

VX +2x+43 VX +2x+3

=1/2

and write J-

1 1
X 42x 43 J(x+1) +2

x> +2x+3

VX 4+x+1

Example 16: To evaluate I

1
we note that x*+2x+3=x"+x+1+x+2=x>+x+1+ 5 (2x+1)+=

(x* +2x+3) (2x+1)
h dx =| Vx*+x+1dx+— dx
encef AxXT+x+1 ‘[ J.\/X +x+1

+= (x+—) + dx+ X" +x+1dx
J\/— I I
(x+

+§ln%(x+%+\/xz +x+1+c

_(X+2)

NXP+x+1+> lnT(x+ +1/x +x+1)



+4/x’ +x+1+—ln—(x+ 1 +4/xX +x+1) +c

:—(2x+5)\/x +x+1+—1n

7

(X+1+\/x +x+1+c
V32

Check your progress

dx

(5) Evaluate I -
a+bsinx
1 Ccos X
(6) Integrate (a) —— (b) ————— w.r.tx.
4+5cosx 2 —cosx
X
(7) Integrate the following (a) (b)
1+4/x

1
(2 - x)V1-2x +3x°

3.8 Summary

In this unit we have covered the following points:

1.

A rational function f of x is given by f(x) = P(x)/Q(x), where P(X)
and Q(x) are polynomials called improper.

A proper rational expression can be resolved into partial fractions
with linear or quadratic denominators.

A rational function can be integrated by the metho of partial
fractions.

Integration of rational function of sinx and cosx can be done b

. X
putting t=tan 5 .

Integration of irrational function of the following types is
discussed.

1

1
(i) (ii)
vax® +bx +c¢ (fx +e)vax’ +bx +c¢

Ax+B
(iii) ) (Ax+B)Vax’ +bx +c¢
vax® +bx+c¢
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A check list of points to be considered while evaluating any integral is
given.

Note: When we are faced with a new integrand, the following
suggestion are required:

Check the integrand to see if it fits one of the patterns

du o [ 48
J.uduorf .

(1) See if the integrand fits any one of the patterns obtained by the
reversal of differentiation formulas (We have considered these in
Unit 3)

(2) If none of these patterns is appropriate, and if the integrand is a
rational functions, then our theory of partial fraction enables us to
integrate it.

(3) If the integrand is a rational function of sinx and cosx, and
simpler methods of previous units fail, the substitution

X . : : . .
t = tan — will make the integrand into a rational function of t,

which can then be evaluated.

(4) If the integrand is a radical of one of the form

\/a2 —Xz,\/a2 +X2,\/X2 —a’ . then the trigonometric
substitution x = asinf, x = acosO or x = asecO will reduce the
integrand to a rational functions of sin and cos0. If the radical is

of the form +ax’+bx+c as square  completion

\/a(x +b2a)’ +c—b’/4a will reduce it essentially to one of

the above radicals.

(5) If the integrand is an irrational function of x, try to express it as a
rational function or an integrable radical through appropriate
substitution.

(6) Inspect the integrand to see if it will yield to integration by parts.

Finally we would like to remind you again that a log of practice
is essential if you want to master the various techniques of
integration. We have already mentioned that a proper choice of
the method of integration is the key to the correct evaluation of
any integral. Now let us briefly recall what we have covered in
this limit.




Solution and Answers of check your progress

x’+x-3 x—4
(1) (a) and (c) are proper (b) S =1+—
X +1 X +1

4 3
X" +Xx =5
d) =343 6+ 12+
x—2 Xx—2

_ L 2 =—1n|2x 3[+c (b)
3 27 2x-3 2

[ _—1+C
(t+5)° t+5

(C)J. 2x +1 dX:J- 2x +8 dX—7J. dx

X’ +8x+1 X’ +8x+1 X’ +8x+1
5 dx du
=In [+ 8xH|-7 [ ——S—— =[x +dx+1]-7 [
(x+4)" -15 u’—15’
ifu=x+4
—In x>+ 8x + 1] - |u \/—|+C=ln|x2+dx+l|-
\u+J—\
|X+4 \/—
ZJ—_‘X+4+JP_
4x +1 22x+1)-1
(d) J'—d :j¥
X +Xx+2 X +Xx+2
2x+1 dx
—of 2T gx [ —
IX2+X+2 J.X2+X+1
=2 Inx* +x +2| - jd—x=21n|x2+x+2|-
X+-)+-
( 2) 4
2 1(x+1/2)
J7 712
2 2x +1
=2In|x*+x+2 ——tanl( J+c
| | 77 77
2 2 A B
(3) (@) — = =—+ =2=A(x+2)+BX

X" +2x x(x+2) x x+2
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x=0=2=2A=A=1,x=-2==-2B=B=-1

JRE TS SO P I N
X +2X X X+2 X~ +2Xx dx X+2
=lnx/-lu|x+2|+c =In +cC
X+2
X X A B

(®) — = = +
X —=2x+3 (x-3)(x+1) x-3 x+1

3
x=A(x+1)+B(x—3),x=3:>3=4A:>A=Z

1
x=-1:>-1=-4B:>B=Z

X 3x dx
L B P
X —2x-3 4(x —3) 4(x+1)
éln|x—3|+lln|x+1|+c

4 4

3x-13 3x-13 A N B
x’+3x-10 (x+5)(x-2) x+5 x-2

(©)

23x—13=A(x-2) B(x+5)
x=2=-7=TB=>B=-1,x-5=-28=-TA=B=-1

3x—13 d dx
:>J- X2+3X—10dx_4'[ X+5_J- Xx—2

:)I 3x—13 d 4J~ dx —j dx

A = — 4 1n [x+5| - Injx — 2 | +
x +3x-10 X+5 Xx—2

C

(d)
6> +22x —23 6x’> +22x —23 A B (

2x—D(x +x-6) (2x—D)(x+3)(x-2) 2x—-1 x+3 x
6x% +22x — 23 = A(x+3) (x = 2) (2x — 1) + C(2 = 1)(x+3)

x=2=45-15C=>C=3,x=-3=-35=35B=B=-1

x=1/z:>_—21=_—21A:>A=2
2 4

1T




J- 6x° +22x —23
T 2x-Dx*+x-6)

1
dx =§ln|2x— 1] - In| x + 3| +3In| x — 1[+C

.S S S Sl O
X +x-2 X +x-2
2 2
.-.j3—dx [ 3x-3)dx+3| B S L S
X +x-2 X +x-2 2
8In|x+2| + In| x — 1]+¢
x*+x-1 A Bx+c

(H

= +
x-D*-x+1) x-1 x*—-x+1
X Hx—1=AK—x+ D) +Bx+c)(x-1).x=1=1= A

we have x> +x— 1 =x* —x+1 +Bx*+(C=B)x - Cthus—1=1-C +C
=2

L o] R IR
h (X—l)(Xz—X+1) x> —x+1
4 2x-1

—tan

V3 V3
x—4x AX+B Cx+D
( +1)  x*+1 (x +1)°

~x’—4x =(Ax +B) (x2 + 1) + (Cx + D)

+C

“X° —4x = AX’+Bx* + (A+C)x + (B+D) ~A=1,B=0,C=-5,D=0

_ X3—4X B
- (x2+1) =l

dx 5[ dx

x*+1 (x* +1)
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2
(b) I Hl;%dx :J- 1X dx =J. —X12 dx

21+x (x——)"+3
:J.i f —X_l £:1+i2
t°+3 x dx X

—Ltan'l{i(x—l)}+c —ltan‘l(X2 _1)+c
B V3Uox 3 V3x

(5) I dx = I 2dt Jft=tanx/2

a+bsinx * a(1+1%)+2bt
o 2
2, 4 —
at” +2bt+a (\/E+ ) +( )
Ja a

2 4 at+bJ
=—tan | —— |+¢C

Jai—-b’ Ja'+b’

tan - +
2 aan2 C

—_— —z  |+c
Ja’-b’ JJal b’

4+6c0sx { (

A aeesose
COS X _ ( j
(b)j2 —dx 2j{[ j}(l“)

Y USSR L T Y U el
20+t*) =1+t (t* +D)(3Bt* +1)

© @ [ ——

s

3+t
3 t

_—1

1-t? At+B Ct+D
2 2 = 2 + 2 )
t+DH3@Bt"+1) t°+1 3t +1

If we write




then 1 —t*=9At + B) (3t + 1) + (Ct + D) (t*+1)

~1=B+D, 0=A+C, -1=3B+D, 0=3A+C +~A=CO0,B
=-1,D=2

= —ZI dt + 4J. 3t§1t =-2tan’ (t) +i tan'l(\/ﬁ)ch

t*+1 +1 J3
x 4 X
=22+ T tan'(W3tan D) +c
2 3 ( 2)
4 4 X
=—X+—tan \/gtan— +cC
7 ( 2)
Jx £ t’
dx = [ —4tdtift=%/x =4 dt
1+4/x J1+t 1 J‘1+t
1
_4I{ t+——}dt
t+1
5 4 3 2
=4 t——t—+t——t—+t—ln|t+1| +c
5 4 3 2
5/4 3/4 1/2
T S 1) UL P
5 4 3 2
(b) InI dx put2 —=x = l.Thend—le2
(2x — x)/1-2x +3x° t dt t

dx

dx
I (3= x)V1—-2x +3x J (2-x)4/3(2-x)* =102 —x)+9

ot ta
3 10 _t
———+9
t t

| dt
Jor —10t+3 \/(3t

_7+7

“f \/(_7)(\/5) 1 h(t\/_S//;)
9
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W | =

2\2-x 9

sinli( ! —§j+c——sin —_—
3 V2(2-x)

j+c

3.9 Terminal Questions

1. Evaluate

i I xdx
) (x-1)2.(x+2)
dx
11.
Ix(x+1)2)
1 dx
11 fO 1-x+x2
. (x+2)
1v. —— —dx
I(2x2+4x+8)2
1
V.
Ix(x4+1)
. dx
vi. I i
vii [
) (x—3)Vx+1.
1
1+x2
Vviil. [—=dx
1+x3

dx

- 1
1X. ) (x—1)Vx2Z+x+1. (put X_l_t)

dx :£
X. ) (x2+1)Vx2-1. (put x-1 t)




UNIT-4

TANGENT AND NORMAL OF THE
CURVES

Structure

4.1  Introduction
Objectives

4.2  Equations of tangents and normal
4.2.1 Equation of a Tangent Line
4.2.2 Equation of a Normal Line
4.2.3 Vertical Tangents

4.3  Angles of intersection of two curves

4.4  Polar Coordinate System

4.4.1 Transformations between Polar and Rectangular
Coordinates

45  Tangents at the origin
4.6  Summary

4.7  Terminal Questions

4.1 Introduction

In this unit, our aim is to re-acquaint with some essential elements
of two dimensional geometry. The French philosopher mathematician
Rene Descartes (1596--1650) was the first to realize that geometrical
ideas can be translated into algebraic relations. The combination of
Algebra and Plane Geometry came to be known as Coordinate Geometry
or Analytical Geometry. A basic necessity for the study of Coordinate
Geometry is thus, the introduction of a coordinate system and to define
coordinates in the concerned space. We will briefly touch upon the
distance formula and various ways of representing a straight line
algebraically. Then we shall look at the polar representation of a point in
the plane. Next, we will talk about symmetry with respect to origin or a
coordinate axis. Finally, we shall consider some ways in which a
coordinate system can be transformed.This collection of topics may seem
random to us .
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Objectives:

After studying this section, the students should be able to

Determine the equations of tangent, normal and angle between the
curves

Locate the tangent at the origin and singular points of the given
equation of the curve.

Determine the asymptotes parallel to X-axis, Y-axis and oblique
asymptotes.

Draw the curve for the equation by using these properties.
Relate the polar coordinates and cartesian coordinates of a point.

Obtain the polar form of an equation.

4.2

Equations of tangent and normal

In this section we study, how differentiation can be used to

calculate the equations of tangent and normal to the curve.

‘The tangent is a straight line which just touches the curve at a given point
without intersecting it’. If the curve is of sceond degree.

‘The normal is a straight line which is perpendicular to the tangent at the
point of tangency’.

To calculate the equations of tangent and normal lines, we make use of the
fact that equation of a straight line passing through the point with co-
ordinates (x,, y,) or (a, f(a))having the slope (or gradient) given by

m= dy or f'(a) at the point X=4a. Where fl(a) 1s the instantaneous

dx

rate of change at that point.

4.2.1 Equation of a Tangent Line

It is given by

y_yl

=m Or (y_y]):m(x_xl)‘
1

Equivalently,

TO=1@ _ 414 or f(x) - f(@)= f'(@)(x~2)
X—a



Y f(x)

f(x) = f(a) = f'(a)(x — a)

/ Tangent line
< >

4.2.2 Equation of a Normal Line

We can find the equation of the normal line at the point X=4a by taking
the negative inverse of the slope of the tangent line equation.If the slope
(or gradient) of the tangent is m zj_y or f'(a) at the point X=4a. The
X
1 dx 1 -1

negative inverse is —— =——— 0F
m

- or :
dy dy/dx  f'(a)

As such the equation of the normal line is given by

It is given by i:){j Z_Fl Or (y_Y1)=%(X_X1)'
Equivalently,
f(x)—f -1 -1
9 (a): — Or f(x)-f(@)=——(x-2a)
X—-a f'(a) f'(a)
Y
A

Normal line

/ Tangent line
x
< / - >
v

Example 1: Find the equations of tangent and normal lines to the curve

given by the equation Y =+/2X-1 at (5, 3).
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Solution: We have Y =+/2X-1

B I .

Cdx o 24/2x-1 V2x-1

(d_yJ = ;:l: Slope
dx ),_s 2(5)-1 3

Now, Equation of the tangent line is given by
(y- yl) = m(X_X])
S(y=3) =%(X—5) Or x-3y+4=0

And equation of the normal line is given by

-1
(y- y1) :_(X_X1)
m
S (y=3)=-3(x-5) Or 3x+y-12=0
Example 2: Find the equations of tangent and normal lines to the curve

given by the equation Y = xe* at (0, 0).

Solution: We have Y = Xe"*

.'.Ol—y:xex +e*=e*(1+x)
dx

(ﬂj = 1= Slope
dx /,_,

Now, Equation of the tangent line is given by

(y_yl):m(x_xl)
S (y-0)=1(x-0) Or x—y=0

And equation of the normal line is given by
-1
(y- y1) :_(X_Xl)
m
S (y=0)=-1(x-0) Or x+y=0

Example 3: Find the equations of tangent and normal lines to the curve

given by the equations x = acos® and y =bsin@ at the point 0 = %.

Solution: We have x =acos@ and y =bsiné



‘_'d_y:dy/dé’: bco§9 :—Ecoté’
dx dx/d¢ —asind a

(QJ _h_ Slope
dX O=r/4 a

Now, Equation of the tangent line is given by

(y_yl):m(x_xl)
a . b
Where x, =acosz/4=— and v, :bsmﬂM:f

. (y_ij__b(x—i\/ij Or +/2ay —ab = —/2bx + ab
" 5) s 72

Or \/E(ay+ bx)—2ab =0
And equation of the normal line is given by
-1
(Y-Yy)=—(x=X)
m
-. (y_i}i(x_i] O 3by ~b* = 2ax -’

V2) bl V2
Or +2(ax-by)—a>+b*>=0

Example 4: Find the equations of tangent and normal lines to the curve

given by the equations X* +Y* =25 at (-3, 4).

Solution: We have X’ +Y* =25

Differentiate w. r. t. ‘X’, we obtain

dy
2 2y — =
X+ ydX 0
dy _-x
dx vy
(ﬂ) = g:Slope
dx 3.4)

Now, Equation of the tangent line is given by
(y- y1) =m(X—X,)
S(y—4) =%(x+3) Or 3x—-4y+25=0

And equation of the normal line is given by
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(=) = (x-x)
m
(y—4)=_74(x+3) Or 4x+3y=0

Exercise Problems:

Find the equations of tangent and normal lines of the following equations
of the curves;

) y=2/ax at (x,,y,) 2)y=x"+2x+1at (1,4) 3)
y=e"at (0,1)

4) x =acos’@ and y =asin’ 0 at the point 6’=% 5)
x> +y' —6xy=0at (a, b)
4.2.3 Vertical Tangents

A vertical tangent to the graph of a function f occurs at a point
(a, f(a)) if f is continuous but not differentiable at 'a’'. i.e., derivative

of f(x) denoted by f’(x) Or g_ymay not exists at some points. At such
X

points either tangent does not exists or else it is parallel to the Y-axis (i.e.,
vertical tangent). To examine the existence of vertical tangents at

(a, f(a)), we examine f’(x) Or j_y at X=2a must tend to infinity from
X
both left and right side.

The normal corresponding to a vertical tangent will obviously be
horizontal or parallel to X-axis. This means we can write its equation as
y = f(a) as it passes through (a, f(a))

Equivalently,
The curve y = f(x) has a vertical tangent line at the point (a, f(a)) if
1)  f(x)iscontinuous at X=4a.

1

2)  lim|f’ (x)‘ = oo Or equivalently, lim/—‘ =0. (When @ is an end
X—a Xx—a f (X)
point of the domain of f(x), the limit should be an appropriate
side limit.

When both the conditions are satisfied, the vertical line X =4 is a tangent
line of the curve y = f(x)at the point (a, f(a)).

For Example: Consider the function, f(X)=X"" at the point x=0.



Solution: We have, Y = f(X)=x"" at the point x=0

ﬂ :lX_2/3

dx 3

-(%).-
dX x=0

Graphically, this means that the tangent is vertical. In this case the vertical
tangent coincides with the Y-axis, as it is attained at the point 0.

LR} 3

-1.0 -0.3 0.5 i

1ok

Example 1: Find all the points on the graph Yy = Xxv4 - x> where the
tangent is parallel to either axis.

Solution:We first observe the domain of the given function Yy = Xy/4 - x’

is [-2, 2].
Since the horizontal tangent occur when g_y =0
X
= y_ (4-x)"?+ x-l(4—x2)’”2 -(=2X%)
dx 2
_(4-x%) x> 4-2x

T @-x)"T 4-x)"? T d—xH)"?
5 4-2x1 =0 Or x=+2.
For x =+/2 then y=2 and For x=-+/2 then y=-2
Therefore, y = Xm has the tangent parallel to X-axis (Horizontal
tangent) at (—\/5 , f(—\/E)) and (\/E, f(\/z))
And,

i) y = x/4—x* is right continuous at X = —2 and left continuous at X = 2
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4-2x>
(4_X2)1/2

4 -2x>

m =0 and lim

X—>-2

i1) lim

X—2

Therefore, Yy = X\/4 —Xx* has the tangent parallel to Y-axis (vertical
tangent) at (2, f(2)) and (-2, f(-2)).

Example 2: Find all the points on the graph Y = x> =X’ —2X where the
tangent is parallel to either axis.

Solution:We first observe the domain of the given function
Y =X —X*=2X is [-o0, o0].

Since the horizontal tangent occur when dy =0.

dx
L ST N
dx
L 2EV4+24 242417 1417
6 6 3

Therefore, Y = X* = X* = 2X has the tangent parallel to X-axis (Horizontal

14417, 14417 1-17 , 1-417
,f( ) | and , T( ) |.

3 3 3 3

tangent) at (

And,
) y= X’ —X* = 2Xis discontinuous at X =—00 and X =

ii) lim3x*> =2x—2 =00 and lim 3x? —2X—2 = —©

X—»00 X—>—00

Therefore, Y = X> =X’ —2X has the no tangent parallel to Y-axis (vertical
tangent).

Example 3:

flx) = x13

The graph of f(x} = x1/3 has a vertical tangent at the point (0,0)
since 1
i (x) = Ex'zf‘; — 00 asx—0D.



Example 4:

-

glx) = (2 - x)1F

The graph of g(x) = (2 — x}l"'lf' has a wvertical tangent at the point
(2,0) since

1
g'(x) = —E{E—}x_us — —oo as x — 2,

Example 5:

fx) = x<'=

The graph of f(x) = x*/3 has a vertical cusp at the point (0, 0)
since f'(x) = £x /3 and

fi(x) =+ —ocasx — 0, and f'(x)—ocasx—0".

Check Your Progress

Find all the points on the following graphs, where the tangent lines is
either horizontal or vertical.

X
Hy= - Hint: Domain is [-1, 1] 2) ¥y= x'"? —x*" Hint:
V1-x

Domain is [0,00]
3) Y= X’ =x*=2X  Hint: Domain is [-00, 0] 4) y = sin x Hint:
Domain is [-0, o©].
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Some More illustrations on Tangents and Normals:

Example 1: Find the equations of the tangents to the curve Y = X’ , which
are parallel to the line 12x -~y -3 =0.

Solution: Here, we should observe that the slope of any line parallel to the

given line 12x — y —3 = 01s equal to 12_ﬂ:0 or ﬂ:u
dx dx

Slope of the tangent to the curve Y = X s given by j—y =3x> -
X
()

From equations (1) and (2), we obtain 3x*=12 Or x* =4 Or x=42.

Now, for X=2 then y =(2)’ =8 and for X=-2 then y=(-2)" =-8.

Therefore, the points at which the tangents are required are (2, 8) and (-2, -
8)

The equations of the tangents are given by

y—8=12(x—-2) Or 12x—y+32=0and
y+8=12(x+2) Or 12x—y+16 = Orespectively.

Example 2: Find the equations of the tangent and normal to thecurve given
by the equations x = at* and y = 2at at the point ‘t’.

Solution: Wehave x = at” and y = 2at .

dy dy/dt 2a 1

.. Slope =— = ===
dx dx/dt 2at t

Therefore, the equation of the tangent at the point ‘t’ is given by
(y —2at) :%(x—atz) Or yt=x+at?

And the equation of the normal at the point ‘t’ is given by
(y-2at)=-t(x-at’) Or y+tx=at(t’+2)

Example 3: Find the equation of the tangent to the curve
X*+y* +4X+6y—1=0 at the point (a. b).

Solution:Wehave X* + y2 +4X+6Yy—1=0. Then, it’s slope is given by



2x+2yd—y+4+6ﬂ=0 Or (2y+6)d—y=—(2x+4)
dx dx dx

or I _—(x+2) :(ﬂj _—(@a+2)
dx (y+3) dX ) o) (b+3)
Therefore, the equation of the tangent to the curve at the point (a, b)is
given by
-(a+2)
B W Cb .
(y-b) 0+3) (x-a)

. -2
Example 4: Prove that the line 2x + 3y =1 touches the curve 3y =€ "
at a point whose X-coordinate is zero.

Solution:We have, the equation of the curve as 3y = e Its slope is
given by

ﬂ:_2e72>( — (ﬂ} :__2
dx ax /),., 3

-2X
. 1
The point on the curve is given by ; at X=0, y = = gives y = 3

. 1
.. The point is | 0, 3
Therefore, the equation of the tangent is given by
(y —%) = _Tz(x —0) Or 3y—1=-2x Or 2x+3y=1.Hence proved.

Example 5: Prove that the equation of the normal to the hyperbola
2 2

X
a—2—g—2=1 at a point (ax/z, b) is ax+bﬁy =(a’ +b2)\/5.
X2 y2
Solution: We have, the equation of the curve as a_2_b_2 =1. To find the
slope,
2 2
2x_2ydy _ . (ﬂ]=_zxxb_= b2x
a’ b? dx dx a’ 2y a’y
_ (d_yj _b*@av2) b
AN a’b a

Therefore, equation of the normal at the point (aﬁ , b) is given by
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(y—b)=J_TZ(x—a\/§) Or by2(y—b) = —ax+a’2

Or (bv2)y —b’v2 =—ax+a*y2 Or ax+(bv2)y =(a* +b*)V2.

Hence Proved.

Check Your Progress

1.  Find the equations of the tangent andnormal to thecurve given
by the equations x = a(t +sint) and x = a(l —cost) at the point
o’.t"

2. Find the equation of the tangent to the curve Xy = a at the point
(a, b).

4.3 Angles of intersection of two curves

When two curves intersect at a point, their angle of intersection at that
point is defined with the help of their tangents at that point.

i.e., the angle of intersection of two curves is the angle between their
tangents at their point of intersection.

A
¥

TE[H- %} T‘p

Here two curves y = f(x) and y = g(x) are intersecting at the point
P(x,, y,)- The angle of intersection of these two curves at the point P is
an angle between the tangents T, and T, to these curves at P such that

V4
0<gp<—.
¢ 2

In other words,



In order to measure the angle between two curves, we measure the angle
between the tangents to the curves at that point. It is obtained by the
formula, tan ¢ = tan(y, —y,) (From the figure).

tany, —tany,

Now, by trigonometry, tan¢ = . Where tany, and tany,

1+ tany, tany,
are slopes of the tangent lines T, and T, to thecurves y= f(x) and

y = g(x) at their point of intersection P(x,, y,).

Note:
1) The above figure shows that y,, —y/, to be an acute angle. Then

angle ® = 7 — (v, —y,) , since we take angle of intersection as an
acute angle.

2)  Butin the following figure, it is difficult to decide about whether
we should take tan ¢ = tan(y, —y,) or

tan¢g = 7 — tan(y, —y,) = —tan(y, —y,) . Therefore , we decide
to take tan¢ = tan(y, —y,) if 0< ¢ < %

¥ Fa(7)

0 0| x
3) Two curvesy = f(x) and y = g(x) touch each other at the point
P(x,, y,), then they will have a common tangent at P(x,, y,).

This is possible iff @ =0 and tany, = tany, .

4) Two curves y = f(x) and y=g(x) intersect each other at the
point P(x,,y,) at right angles or orthogonally iff
tany, -tany, =—1.

Example 1:Find the angle of intersection of the parabola y2 =2X and the
circle X + y2 =8.
Solution: Let’s find the points of intersection of the given curves.

Consider, X’ + Y’ =8 put ¥* =2X then X’ +2X-8=0 = x=2, -4,
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For X=2, y2 =2X Qives y =12 and For
X=-4,y> =2x gives y = +2i2 (Imaginary values).

Therefore, the considerable values of points of intersection are only (2, 2)
and (2, -2).

Now, differentiate both equations of curves y2 =2X and X’ +y2 =3

dy 20r d_y:l

with respect to * X, we obtain, y© =2X = 2y—>=
dx dx vy

23 (2,
dX ), 2 dx /), 2

And, X*+y>=8 :>2x+2yﬂ:00r
dx dx vy

(d_yj =—-1 and [ﬂj =1.
dx @2 dx @ -2)

At the point (2, 2), let tany, = % and tany, = -1

ﬂ__

The angle of intersection of the given two curves at the point (2, 2) is;

1

——(-1
tan g = tany, —tany, 2 =D _3/2

1+ tany, tany, 1+l_(_1) 12
2
o ¢g=tan"'3
Similarly,

At the point (2, -2), let tany, = _% and tany, =1.

The angle of intersection of the given two curves at the point (2, -2) is;

1
-—-1
tan ¢ = tany, —tany, _ 2 _—3/2 _ 3

1+ tany, tany, 1+(—l)-(l) 1/2
2

. ¢ =tan"' (=3).
Example 2:Find the angle of intersection of the parabolas y2 =4X and
the circle X” = 4y .

Solution: Let’s find the points of intersection of the given curves.
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Consider, x> = 4y put X= y2 /4 then

) 2
[yTJ =4y Or y* —64y=00r y(y’ -64)=0 = y=0, 4.

For =0, X’ =4y gives x=0 and y=4, x* =4y gives x=14.
Therefore, the points of intersection are (0, 0) and (4, 4)

Now, differentiate both equations of curves y2 =4X and X* = 4y with

d dy 2
respect to ¢ X’, we obtain, y =4x = 2y—y=4 Or —y——_

dx dx y
(d_yj — o and [ﬂj L
dx J 0. o) X s 2

X

And, x? =4y —oox=aY _gor W _
dx dx 2

(d_yj =0 and (ﬂj =2.
dX ) 0.0, dX J 4. 4

At the point (0, 0), let tany, = oo and tany, =0
The angle of intersection of the given two curves at the point (0, 0) is;

tan ¢ = tany, —tany, = -0 —w
l+tany, tany, 14 (00).(0)

. ¢=tan" (o) =2
¢ (c0) >
Similarly,
At the point (4, 4), let tany, :% and tany, = 2.

The angle of intersection of the given two curves at the point (4, 4) is;

1
tany, —tany, 5_(2) -3/2 -3
tan g = = = ==
I+tany, tany, | (l) (2) 2 4
2

R |
S ¢ =tan (4)

Example 3: Show that the curves X +4Y” =8 (Ellipse) and X -2y’ =4
(Hyperbola) cut each other orthogonally at four points.

Solution: Let’s find the points of intersection of the given curves. UGMM-103/95
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Consider, X +4y’ =8 put X’ =442y then
4+2y° +4y* =80r 6y*=4 Or y“%% or V=i\E.

For

Now, the condition for two curves y = f(x) and y = g(x) to intersect each
other at the point P(x,, y,) at right angles or orthogonally is
tany, -tany, =—1.

Where, tany, :% of the curve X’ +4y2 =%.
X

CoaxesyW g or WooX :[d_y) L
dx dx 4y dx [1@ V2
3

Py

And, tany, :3—y0fthe curve X’ = 4+2y2
X

dy dy  x (dyj 2
soox=4y—2 or L= o[22 ==\
Vi dx 2y dx [iﬁ] V2
3

NE]

-1
Thus, tany, -tany, :E\/_ =—1 . Therefore, the curves intersect

orthogonally.

Similarly, it can be shown in remaining three points also.

Example 4: Show that the curves xy:a2 and X+ y2 =2a’ touch each
other at two points.

Solution: Let’s find the points of intersection of the given curves.



a
Consider, X+ y2 =2a’ put y= 7 then

) 2
x2+(a—j =2a’ Or x*-2a’x*+a*=00r (x’-a’)*=0 Or x=+a
X

(Twice).
2 2
a . a .
ForX=a, y=— gives y=a and For x=-a, y=— gives y=-a
X X
Therefore, the four points of intersection are (a, a) and (-a, -a).

Now, the condition for two curves y = f(x) and y = g(x) totouch each
other at the point P(x,, y,) at right angles or orthogonally is
tany, =tany, -

Where, tany, = % of the curve Xy = a’.
X

y+xd—y:0 or ¥_=Y :(d_yj =—1.
dx dx X dX ) s )

And, tany, = %ofthe curve X+ y2 =2a’

2x+2yﬂ:0 or ¥_=X :(ﬂj =1
dx dx vy dX ) e a

Thus, tany, = tany, = —1. Therefore, the curves touch each other.

Similarly, it can be shown at another point.

4.4. Polar Coordinate System

We already know that, for a given pair of axes in a plane, the
position of a point in the plane (known as Cartesian plane or Cartesian
coordinate system) can be determined if we know its distances from the X-
axis and Y-axis. The coordinates (x, y) are also known as rectangular
coordinates. There is one more way in which we can determine the
position of the point by its initial line OX in a plane known as polar plane
or polar coordinate system.

A coordinate system in which the position of a point P(r, 0) called as polar
coordinates of the position of the point P (known as polar coordinate
system or polar plane) is given by its radial distance ‘r’ from the origin ‘O’
and the angle ‘0” measured counter clockwise from a horizontal line OX
called the polar axis to the line OP as shown in the figure. The line OP
from the origin to the point is called the radius vector, the angle 0 is called
the polar angle, and the origin O is called the pole.
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Polar Coordinate System

Y A /P | ?T

Polar coordinate system

4.4.1 Transformations between Polar and Rectangular
Coordinates

The formulae for conversion from rectangular to polar coordinates Or vice
versa are given by X =rcosé and y =rsin@.

These relations gives r =4/x* +y* and 6 = tan ' (%J

The equation of a curve in polar form is expressed as r = f (9).

For example: The equation of the circle having Centre at origin O and
radius ris given by I'=4d

Remarks:
1) The slope of the polar coordinates is given by

. dr
ﬂ:dy/d9:s1n0@+rcosﬁ
dx dx/d@ c

oseﬁ—rsinﬁ
de



2)

3)

4)
5)

The angle between the radius vector and the tangent to the curve
(measured counterclockwise) is an important angle that plays a

role in polar coordinates somewhat similar to that of the slope in

rectangular coordinates. It is given by tany = r?j_Q. It is show in
r

the following figure.

0

The angle of intersectiong between two curves C; and C, meeting
tany, —tany,

at a point P, is given by tan¢ = where y, and y,

1+ tany, tany,

are the angles from the radius vector OP to the respective tangents
to the curves at the point P. ¢ is the angle measured
counterclockwise from the tangent of the curve C, to the tangent of
the curve C, as shown in the following figure.

0

The angle ¢ is also given by ¢ = ‘l,//2 - l//l‘

If tany, tany, = —1, then the curves cut orthogonally.

Example 1: Find the angle between the radius vector and tangent to the

curve r? =a’cos26

Solution: Theangle between the radius vector and tangent to the curve is

given

2
tany = r% = tany =M-2a«/c032 =2ac—0829:—cot26’
r

by

2

—2a°sin26 —2a’sin260
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o tany =—cot20 = tam//:tan[(2n+1)%+29} Or y/:(2n+1)%+2¢9

Example 2: Find the angle between the radius vector and tangent to the

curve L (1+ecosf)
r

Solution: Theangle between the radius vector and tangent to the curve is
1

1+ecosd -1 _(-esin6)
(1+ecosB)

_ (I+ecos®)’  (1+ecosb)

esin (1 +ecosh) esin 0

1+ ECOSQ):|
esin @

do
tany =r— = tany =
dr

given by
Ory= tan_l[

Example 3: Find the angle between the radius vector and tangent to the
curve r =a™ cosmé@

Solution: Theangle between the radius vector and tangent to the curve is
given by

do m 1 1
tany =r— = tany =a" cosmf-———————=——cotmd
dr —ma" sinmé m

Or mtan(//:tan{(2n+l)%+m9} = l//={(2ﬂ+l)%+m9}

Example 4: Find the angle between the radius vector and tangent to the
curve I =a" (cosmé@ —sinmé)
Solution: Theangle between the radius vector and tangent to the curve is
given by

1
—a" (msinmé + mcosmé)

__ (cosm@-sinmf) _ (I-tanmb)
m(cosm@+sinmd)  m(1+tanmé)

pia
1 tan — —tanmé@ 1 . 1 T
S S :—tan[z— mej = —tan(m@—zj

pis
m l—tanztanmﬁ m

tany = r((ij_@ = tany =a" (cosm@ —sinmé)-
r

Or mtany = tan(m@—%j =Sy = [m&—%}

or mtany/:tan[(2n+l)%+m0} - z//:{(zn+1)%+m9}



lHlustrations on Angle of intersection of polar curves:

Example 1: Find the angle of intersection of the curves r = acos26 and
r =asin26.

Solution:We havethe equations of the curves; r=acos26 and
r =asin 26

Solving both we a cos 26 = asin 260 = cos 26 = obtain,
sin 26 0r tan 20= 1.

Now,

Let y, be the angle beteween the radius vector and tangent to th curve

r=acos26 . Then,
d@ acos26 acos26 -1 -1

tany, =r—= = - =—tan20 = —
dr dr/d@ —2asin260 2 2

and let y, be the angle beteween the radius vector and tangent to th curve
r =asin260. Then,

dg acos260 asin 260 1 1
— = = =—tan260 = —
dr dr/d@ 2acos28 2 2

Therefore the angle of intersection of given two polar curves is;
_ tany, —tany,

tany, =r

tang =
1+ tany, tany,

1_(—1)
" tan¢= 2 2 = 1 :i Or ¢:[//1_W2:tan71 i
1 (-1 I 3 3
l+—| —| I—-
2 2 4
Example 2: Find the angle of intersection of the curves r =ae’ and
re’ =b.

Solution:We havethe equations of the curves; r = ae’ and re’ =b.

Solving both we obtain,
ae’ =be? =e” _b Or 26 = log(EJ Or 6 =llog(9j

a a 2 a
Now,

Let y be the angle beteween the radius vector and tangent to th curve

do  ae’ ae’

dr dr/dd ae’
and let y, be the angle beteween the radius vector and tangent to th curve
r =be ?. Then,

r=ae’. Then,tany, =T

tan —rd—— be‘a = be‘(’
VT Tdr/de _be”
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Therefore the angle of intersection of given two polar curves is;

tan ¢ = tany, —tany,
1+ tany, tany,
-1-1 4 T
an :—:ooOr = — =tan oo =—
¢ T =y, -V, 5
Note: Here it is observed that tany/, tany/, = —1 this implies

that the curves cut orthogonally.

Example 3: Find the angle of intersection of the curves r = a(l + sin 6)
and r = a(l-sin@).

Solution:We havethe equations of the curves; r=a(l+sind) and
r =a(l—sin@)

Solving both we obtain, a(1+sin#) = a(l —sin@d) = 2sin@=0 Or & =0.
Now,

Let y, be the angle beteween the radius vector and tangent to th curve

r=a(l+siné) ) Then,
tany, = rd_6'= a(l+sinf) _a(ld+sing) (1+sinb) _1
dr dr/deo acosd cos 6

and let y, be the angle beteween the radius vector and tangent to th curve
r =a(l —sin@). Then,

dé a(l-sin®) _ a(l—sin @) :_(l—sinﬁ) _

Y = e T T dar/de | —acoso cos6 !
Therefore the angle of intersection of given two polar curves is;
tany, —tan
ang = 1+ tal//n2 v, tanZI2
an¢:%:oo Or ¢=y, ~v, :tanloo:%
Note: Here it is observed that tan y/, tany , = —1 this implies that the

curves cut orthogonally.

4.5 Tangents at the origin

To find the nature of the multiple points it is required to find the
tangent or tangents at that point. The following rule is very helpful in this
case:




Rule: If a curve passing though the origin and is given by a rational,
integral, algebraic equation then the equation of the tangent or tangent at the
origin is obtained by equating to zero the lowest degree times in the curve.

Let the equation of the curve be written as:

(ayx + ayy) + (byx?% + byxy + b3y?) + (c1x3 + c3xy? + ¢c,y3) + -
—0....(1)

Let p(x,y) be any point on the curve. The slope of curve is % Then the

equation of OP is

Equation of the tangent at O is given by

v ={limy o (2) X} (@

Here we exclude the case when the tangent is Y axis i.e. limxzo(%) =
+00) we now have:

Casel: Leta, $0 devided (1) by x and taking limit x — 0 we get
a3 + az (limy—o($)) =0 ..o (3)

Eliminating limxzo(%) between (2) & (3), we get

a1X + azy =0
Or written x,y for X and Y, the tangent at the origin to (1) is
a;x +b,y=0

which is obtained by equating to zero the terms of the lowest degree term
in (1) of a, = 0 then a; = 0 by (3) so we have the next case.

Case 2: when a; =0 ,a, =0 butb, & b; both are not zero, then
dividing (1) by x? & taking the limitx - 0 we get
2
bl + bz limx_,o (%) + b3 hmx_,o (%) =0
Orb, +b,m+bym?>=0 .................. 4)

So we get two value of m in general giving two tangents at the origin. The
equation of tangents is obtained by elimination of m between (2) and (4)
so we get by + byxy + byy? =

which is the same by equating to zero the terms of the lowest degree term
in equation of the curve.

Alsoif b, =0, b; = 0 then from (4) by =0
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Case 3: Ifa; = a, = by = b, = b3 = 0 we can show as above that the
Rule is true.

Hence by equating to zero the terms of the lowest degree term all the
tangents at origin are obtained including Y axis (if it is tangent ).

Example 1: Show that origin is a node for the curve
yZ(aZ + xZ) — xZ(aZ _ x2)

Solution: Equating to zero the lowest degree terms in the equation of the
curve the tangents at the origin are given by

a’y? —a’x*=0 ory = +x

=~ the tangents are real & distinct and so the origin is a node.

Example 2:  Show that origin is a conjugate point for the curve
x* —ax?y + axy? + a’y? =0

Solution: Equating to zero the lowest degree terms in the given
equation, the tangent at the origin is given by:

a’y?=0 ory*=0 ,ory=0,y=0
So the tangents are real & coincident at (0, 0)
Therefore origin is either a cusp or a conjugate point .
Now equation of the curv can be written as
ay’(x +a) —ax?’y +x*=0

ax?+ a2x*—4ax*(x+a)
2a(x+a)

.'.y:

_ax?+x?V-4ax—3a?
- 2a(x+a)

Since for very small value of x(# 0)

-—4ax —3a*<0
¥y is imaginary in the neighborhood of origin. Hence origin is a

conjugate points.

4.6 Summary

In this unit, we have discussed and studied the equation of tangent
and normal to a curve at given point in Cartesian form, parametric form,



tangent parallel to the X axis or a given, angle of intersection of two

curves and equation of tangent at origin.

4.7 Terminal Questions
1. Find the equation of the tangent at the point (p,q) on the curves.
xm ymz 1
am pm
. (2% +y?)?%=a?(x? — y?)
2 1
2. Find the point on the curve y=x3.(x + a)3 at which the tangent is
(a) parallel to x axin (b) parallel to y axis.
3. Find the equation of tangent at the point ’t’ on the curve
x= a(t+sint), y=a(1-cost).
4.  Show that the condition that the curves ax?+by?=1 &
a1x24b;y%=1 should cut orthogonally is Ioi=1 2
a b aq bl
5. Find the equation of the normal to the curve y(x-2)(x-3)-x+7= 0 at
the point where it cuts the axis of X .
6.  Show that the normal at any point on the curve x=a cosf+a 0 sing,

y=a sinf — af cosf is at a constant distance from the origin.

UGMM-103/105



UGMM-103/106



UGMM-103

Integral Calculus

||mw:tqmmn
Uttar Pradesh Rajarshi Tandon
Open University

BLOCK

INEGRAL CALCULUS

UNIT 5 109-132

Tracing of Curves

UNIT 6 133-158

Area Under a Curve

UNIT 7 159-172

Volume of a solid of Revolution

UGMM-103/107



UGMM-103/108

Curriculum Design Committee

Dr. Ashutosh Gupta, Coordinator
Director, School of Science, UPRTOU, Prayagraj

Prof. Sudhir Kumar Srivastava Member
Dept. of Mathematics,
Pt. Deen Dayal Upadhyay University, Gorakhpur

Prof. P.K. Singh Member
Dept. of Mathematics, University of Allahabad, Prayagraj

Prof. Himanshu Pandey Member
Dept. of Mathematics,
Pt. Deen Dayal Upadhyay University, Gorakhpur

Dr. Vikash Singh Member Secretary
Academic Consultant- Mathematics,
School of Science, UPRTOU, Prayagraj.

Dr. Sankar Saran Tripathi Spl. Invited Member
Academic Consultant- Mathematics,
School of Science, UPRTOU, Prayagraj

Course Design Committee

Faculty Members, School of Sciences
Dr. Ashutosh Gupta, Director, School of Science, UPRTOU, Prayagraj.
Dr. Shruti, Asst. Prof. (Statistics), School of Science, UPRTOU, Prayagraj
Dr. Marisha Asst. Prof. (Computer Science), School of Science, UPRTOU, Prayagraj
Mr. Manoj K Balwant Asst. Prof. (Computer Science), School of Science, UPRTOU, Prayagraj
Dr. Dinesh K Gupta Academic Consultant (Chemistry), School of Science, UPRTOU, Prayagraj
Dr. S.S. Tripathi, Academic Consultant (Maths), School of Science, UPRTOU, Prayagraj
Dr. Dharamveer Singh, Academic Consultant (Bio-Chemistry),

School of Science, UPRTOU, Prayagraj
Dr. R.P. Singh, Academic Consultant (Bio-Chemistry), School of Science, UPRTOU, Prayagraj
Dr. Susma Chauhan, Academic Consultant (Botany), School of Science, UPRTOU, Prayagraj
Dr. Deepa Chaubey, Academic Consultant (Zoology), School of Science, UPRTOU, Prayagraj

Course Preparation Committee

Dr. Vikas Singh Author
Dept. of Mathematics (Block-1; Unit-1,2,3,4, and Block-2; Unit-5,6 & 7)
Academic Consultant-Mathematics,

School of Science, UPRTOU, Prayagraj

Dr. S.S. Tripathi Editor
Academic Consultant-Mathematics,

School of Science, JPRTOU, Prayagraj.

Dr. S.S. Tripathi SLM Coordinator
Acadmic Consultant-Mathematics,

School of Science, UPRTOU, Prayagraj

© UPRTOU, Prayagraj. 2020
ISBN : 978-93-83328-50-5

All Rights are reserved. No part of this work may be reproduced in any form, by
mimeograph or any other means, without permission in writing from the Uttar Pradesh
Rajarshi Tondon Open University, Prayagraj.



UNIT-5

TRACING OF CURVES

Structure

5.1 Introduction
Objectives

5.2  Singular points

5.3 Double points and its classification

5.4 Nature of the cusp at the origin

55  Anecessary condition for the existence of the double points on a
curve

5.6  Asymptotes
5.6.1 The (oblique) asymptotes of the general algebraic curves
5.6.2 Simple method to find the asymptotes of a given curve
5.6.3 Two parallel asymptotes

5.7  Curve Tracing
5.7.1 Procedure

5.8 Summary

5.9  Terminal Questions

5.1 Introduction

In this unit, the concept of regular points, singularity points and

multiple points are explained. The double point and its classification, types
of cusps and its explanation of nature at the origin is explained which is
very essential to trace the curve. Whether double points exist in a curve is
explained and what is the necessary condition for the existence is
discussed. A detailed study of asymptotes for general algebraic curve is
provided along with the simple steps to find the asymptotes of a given

curve.

At last, we will see the procedure t tace the curve using the

concepts studied in the unit.

Objectives
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After reading this unit you should be able to :

Understand the concept of singular points and regular points
Knows Double points and its classification

Understand the different types of cusp and nature of cusp at origin
Understand the concept of asymtotes

Able to trace the curve for given algebraic expression.

5.2 Singular points

A singular point of an algebraic curve is a point where the curve

has "nasty" behavior such as a cusp or a point of self-intersection or more
specifically, a point on the curve at which the curve behaves an unusual
behavior is called singular points. A cusp is a point at which two branches
of a curve meet such that the tangents of each branch are equal. The plot
shown in Figure 1 is the semi cubical parabola curve x° =3 =0, which
has a cusp at the origin.

Figure 1: semi cubical parabola curve x* =y =0, which has a cusp at

the origin.

There are two types of singular points:

(1) Point of inflection: Inflexion is a point on a continuous plane

curve at which the curve changes from being concave (concave
downward) to convex (concave upward), or vice versa. Simply,
Inflection points are the points of the curve where
the curvature changes its sign. Figure 2 shows a point of inflection
for the curve y = x° .
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Figure 2: Plot of y = x? with an inflection point at (0,0), which is also
a stationary point.

(2) Multiple points: A Point on the curve through which more than one
branch of the curve pass is called Multiple Point. A point on the curve
through which two branches of the curve pass is called Double Point. A
Point on the curve through three branches of the curve pass is called Triple
Point. Similarly, if a point on the curve through which n branch of the
curve passes is called Multiple Point of ™ order.

v
v

4. Node

In simple words; a double point P on a curve is called a Node if two real
branches of a curve pass through P and two tangents at which are real and
different. Thus the point P shown in Figure 6. is a Node.

UGMM-103/111


https://en.wikipedia.org/wiki/Stationary_point

v

Figure 5

Example 1: Find the nature of the origin of the curve
a4y2 — x4(x2 _ aZ)
Solution: We observe that the curve pass though the origin and

2

%,/xz — a2

y==

Therefore the value of y are imaginary whether x > or x < 0 & when x
is small then origin is a conjugate point on the curve. Further

dy 2x x?2  x
— = +|=Vx2 —a? +——]
dx — la? a?Vx2-a?

Therefore Z—z = 0 at (0, 0), and so the tangent at (0, 0) is

y—0=0(x—-0) or y=0whichisreal. Then the tangent may be
real at a conjugate point.

5.5 Species of cusps

If the curve lies entirely on one side of the normal than the cusp is called
a single cusp and if the curve lies on both the side of the normal it is
called double cusp (Figure 7). Therefore, we have following types of
cusps:

(@) Single cusp of first species
(b) Single cusp of second species
(c) Double cusp of first species

(d) Double cusp of second species
UGMM-103/112
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Figure 7

If the two branches of the curve at cusp lie on opposite sides of the
common tangent then cusp is of first species, also known as keratoid cusp
(Figure 8).

X
O | single Cusp of the first species 0 Double cusp of the first species

(Single keratiod cusp) {Double keratiod cusp)

Figure 8: First species of cusp

X

Q| Single Cusp of the second spacies

(Single ham poid) Double cusp of the second spacies

{Double rhampoid)

Figure 9: Seccond species of cusp
If the two branches of the curve at cusp lie on same sides of the common
tangent then cusp is of second species, also known as rhampoid cusp
(Figure 9).
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X

0

Figure 10: double cusp with change of species

At a double cusp, if species change for the two sides of the cusp, then
double cusp is called a point of osculinflexion (Figure 10).

5.6 Nature of the cusp at the origin

If the origin is a cusp i.e. the two branches through the double point are
real and have coincident tangents. Then the equation of the curve must be
of the form:

(ax + by)? + terms of third degree and higher degree = 0

Therefore the common tangent at the origin is
ax+by=0 (2)

Let p be the length of perpendicular from any point (x,y) on (1) to the
line ax + by = 0 Then

__ ax+by

~ VaZip?
which is proportional to ax + by

p—ax

Sowetake p=ax+by ory=

Putting y in curve we get a relation between p and x. Since p is small so
the terms having power of p above second degree will be neglected and
SO we get a quadratic equation.

Ap* +Bp+C =0where A,B,C ..................(3)
are function of x

if p;&p, be the roots of equation (3)

C



So we have the following cases:

Case 1: If for all values of x such that x < p where p is given by (3). The
values of p are imaginary so the origin will be a conjugate point.

Case 2: If the values of p in case 1 are real then there will be double cusp
at the origin.

Case 3: If the values of p depend on the sign of x there will be single cusp
at the origin.

Case 4: If p is real for numerically small values of x, p;p, > 0 then
p1,p2 Will be of the same sign and so there will be a cusp of second
species. And if p;p, < 0 and p,, p, are of opposite sign and therefore
there will be a cusp of first species.

Example 1: Show that the curve x3 + x?y = ay? has a single cusp of the
first species .

Solution: The curve may be written as
ay? —x?y—x3=0 TN ()

Equating to zero the terms of lowest degree in (1), the tangents at the
origin are givenby y2 =0 or y=0&y =0

Therefore origin is either a cusp or a conjugate point .
x%Vxt+4ax3

2a

From (1) y =

For smaller value of x (x = 0); x* + 4ax3 has the same sign as of
4ax® which is positive

when x > 0 and negative when x < 0. Therefore when x > 0 then y has
two

real values which are positive and negative and when x < 0 then y is
imaginary.

Hence there is a single cusp of the first species at the origin.

5.7 A necessary condition for the existence of the
double points on a curve

Let f(x,y) = 0 be the equation of the curve. On transferring the origin
to the point (h, k) the equation of the curve becomes

fx+h,y+k)=0
Expanding by Taylor’s theorem
— or o
fOc+h,y+k)=fhk)+{x +yay}(h,k) +

1(,29%f o%f 2 0°f
2!{x ax2+2xyax2y+y ayz}(hlk) .....

.......... 1)

+
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Now in order that the new origin may be a double point the constant term
and the terms of the first degree must be absent in equation (1) & so we
must have.

of _ 6_f_ _
J—O,ay—O,f(x,y)—O

If these conditions are satisfied then tangents at new origin are given by

0% f 0* 0% f
2_ 2—:
X .ax2+2xy.ax y+y 3y 0 at(h,k)

Therefore in general a double point will be a node , cusp or conjugate
point according as

(2) >= <))
Example 1:  Show that the curve
x3+2x%+2xy —y2+5x—2y =0
has a single cusp & first species at the point (-1 , -2)

Solution: let f(x,y) =x3+2x*+2xy —y?+5x—2y =0

Then 2L =3x2 4+ 4x+2y +5 oo (1)
f _ ol o
F 2X =2V = 2 i e, (2

intt & = of _
For double point; Pl 0 & 3y 0

3x24+ 4x+2y+5=0
&2x—-2y—-2=0 ory=x-1

Solving these equationwe get x = —1,—1 & y = -2 & s0 (-1, -2) in the
double point. Because this point also satisfy the equation of the given
curse we new shift the origin to the point (-1 , -2) and therefore putting
x =X —1&Y — 2 the equation of the curse because

X =13 +2( 12X - DX =2) = (Y =22 +5X —1) =2 (Y

—2)=0
Or X3—X242XY—-Y2=0 or (Y —X)? = X3

Equating to zero the lowest degree terms in equation and the tangents at
the new origin (-1, -2) are givenby (Y —X)? =0e.i Y—-X=0,Y —
X = 0 which are coincident tangents at the new origin (-1 , -2) and
therefore at point (-1, -2) may be a cusp or a conjugate point.

Now considering the tangent Y — X = 0, putting Y — X = p in (3) we get
p?=X3 TR (/)



Then for very small value of the X > 0 the value of p are real and of
opposite sign and for X < 0 the value of p are imaginary & so the point (-
1, -2) is asingle cusp of first species for the given curve.

Example 2: Show that the point (2, 1) is a node for the curve
(x=2?=y(y-1)7?

Solution: Let f(x,y)=(x—-2)2—y(y—-1)%2=0

=2t =2) . (1) and =
—(y—-1D?=2y(y—1.....(2)
For the double point g—i =0 & Z_£ =0

from (1) we get x = 2 & from (2)
—-DIG-D+2y}=0

1

Or y=1 '3

The double point may be (2, 1) & (2,&)

But only (2, 1) lies on the given curve and so (2, 1) is the only double
point.

We now shift the origin to the point (2,1) & so puttingx + X +2 &y =
Y+1 in the curve we get

X2= Y +D2Y%2 e (3)

Equating to zero the lowest degree terms in equation (2) the tangents at the
new origin (2, 1) are given by

Y=X? orY = +X

So the two tangents are real and distinct hence double point is a node .

Check Your progress

Write down the equation of the tangents at origin for the
following curse

(1) x*+3x3y+2xy—y?=
(2) x3+3xy+7x2=0

2. show that the origin is a node , a cusp or a configate
point on the curse

y?2—ax?—bx3 =0
Accordingora >0 ,a=0 ora<?0

3. Find the position and nature of double points in the UGMM-103/117
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curse
x*+4y3+ 12y —-8x2+16=0

4. find the position and nature of double points on the
curse

a*y? = x*(2x? — 3a?)

5.8 Asymptotes

Consider the curves which are extended to infinity and consider a tangent
to some point on the curve. If the point of contact is allowed to tend to
infinity than tangent may tends to a definite straight line. This straight line
is called asymptotes of the curves.

“Thus an asymptote is a straight line at a finite distance from the origin to
which the tangent to the curve tends when the points of contact tends to
infinity”
5.8.1 The (oblique) asymptotes of the general algebraic
curves

Let equation of the curve be

ay" +ay I X+a,y X e, +a_yx""+a X"
+o Y 0, Y X A+ e, +b, yx"?+b x"*
CY" s =0 . 1)
Or
X" f [l} X [l} TR =0 2)
X X

y
where fr {; is an expression of the r™ degree is {%}
Dividing by x" we get

f| P}l £ P}iz - P} ................. =0 3)
X X X X X

Now excluding the case in (3) in which is Iiml is infinite, equation (3)

x> X
gives f,(M)=0 (4)



X—>00 X

Where M= “m{l}

From equation (4) we get the value of m in the asymptote y = mx +c.

Note: - Since equation (4) is of degree n in m so there will be n values of
m corresponding to the n branch of the curve (1). Some value of m may be
imaginary or coincident.

Now differentiating (3), we get

(2] v 2o (225)
X|] X X X

_7 fos [;} _F f I:;:l ................. =0

Now multiplying this by x*and taking limit x - oo and lim,_, o (y'x —
y)=—c

Weget cf ' (m)+f ,(m)=0 (5)

(since if y= = mx + c is an asymptote to the curve y = f(x) thenm =

lim,,_, oo (%) and ¢ = lim,_, o (y —mx))

where lim(y'x—y)=—c

From (5) we get value of c for different value of m obtaining from (4).

Hence the asymptotes are y=mx+c where m is a root of (4) and the
corresponding value of c is obtained from (5).

5.82. Simple methods to find the asymptotes of a given
curve

Method 1:

1.  Put mx+ c for y in the equation of the curve and arrange it in the
descending power of x.

2.  Equating the coefficient of two highest power of x to zero find m
and c (i.e. the coefficient of x" and x"™)

3. Put these values of m and c in y = mx + c to get the equation of the
asymptotes

UGMM-103/119



UGMM-103/120

4.  If for some value of m the coefficient of x"™ is zero then we find
¢ from the equation obtained by equating to zero the coefficient of

the next highest power i.e. the coefficient of x"*.

OR

Method 2:

1.  Putx=1andy=minthe n” degree term and get f_(m) . Put
f.(m)=0 and solve it for m. Let m; m, m3 . m, be its roots

2. Find f_;(m) by putting x =1 and y = m in the terms of degree
(n = 1) and find the value of ¢ by puttingm =m; m; ms . m, in

foa(M)

f',(m)

Then the asymptotes are y =mx+c,, Y =m,X+¢C, etc.

the formula c=-

Example 1: Find the asymptotes of the curve
x*+y*—3axy =0

Putting x = 1 and y = m in the third degree terms and second degree terms
separately we get, f;(m) = 1+ m3 andf,(m) = —3am

We solve

f =0ie 1+m*=0

or A+m)(A-m+m?)=0

Which gives m = -1 as the only real root next to find c we use the formule
f,(m) —3am _a

C=- = —
f'.(m) 3m* m

Now puttingm =-1 we get, c = -a
~equation of the asymptotes is
y=mx+C Or y=-x-a

or x+y+a=0

Example 2: Find the asymptotes of
4% —x*y —4xy* +y* +3x° +2xy —y* -7=0

Putting x = 1 and y = m in the third degree terms and second degree terms
separately, we get



f,(m)=4-m-4m’ +m’
and f,(m)=3+2m-m?

f,(m)=4-m—-4m’ +m° -0

We now solve
(4-m)1-m?)=0

or m=1-14

Also | 3(M=-1-8 m+3m?

f,(m)  3+2m-m’
f'.(m) 1+8m-3m?

Now putting m =1 we get, c =

w| N

And whenem =-1we get,c=0
1
And m =4 we get, c = 3
Thus the asymptotes are y = mx + ¢

2 1
=X+— ,y=-X, and y=4x+=
y 3 y y 3

Example 3: Find the asymptotes of
y? —3x°y + xy? —3x° +2y* + 2xy + 4x+5y+6=0

Putting x = 1 and y = m in the third degree terms and second degree terms
separately, we get

f,(m)=m*+m’-3m-3
o fu(m)y=3m*+2m-3
and f,(m)=2(m+m?)

fa(m) =0

Now putting we get

m®+m’-3m-3=0
(m+1D(m*-3)=0
m=-1m=+/3

Next to find ¢ ,we get
UGMM-103/121
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f,(m)  —2(m+m?)
f'.(m) 3m’+2m-3

Now putting m =-1 we get, ¢ = -2

And whene m = /3 we get,c=-1

And m =-~/3 we get,c=-1

Thus the asymptotes arey = mx + ¢
y=x-2 ,y:\/§x—1, and y=—\/§x—1
Example 4: Show that the curve

y® = x* +3x has no asymptotes

The curve is y® —x*—3x=0

Putting x = 1 and y = m in the third degree terms and second degree terms
separately, we get

f,(m)=m’
and f,(m)=-1 so f',(m)=3m?

We now solve fy(m) =0

mi=0 = m=0,0,0,1

_ f(m) -1
f'.(m) 3m?

which is infinity for m = 0.
Therefore the given curve has no asymptotes.
5.8.3 Two parallel asymptotes

Suppose that the equation f (m)=0 gives two equal values of m. These
valuess of m  makes f.(m)=0 and f,,(m)=0 then
fu(m) = 0and fr_1(m) # 0

fos(m)
f(m)
and so we get the value of c to be infinity so the asymptotes does not exist.

Therefore for the existence of the asymptotes for this value of m it is
necessary that



f.,(m) =0 then the equation
cf' (m)+f _,(m=0
from which ¢ reduces to identity
0c+0=0

and so we can not find the value of c. To find the value of ¢ in the case we

equate to zero the efficient of x"2 in the equation (3) of section 5.8.1 of
topic. And we get on differenciating it twice and multiplying by suitable
power of x and taking the limit

%czf "(m)+cf' (m)+f _,(m)=0

which quadratic in ¢ and so we get two values of c. Let them be ¢, and c,

corresponding to the repeated value of m. Therefore the asymptotes will
be y=mx+c, and y=mx+c, which are parallel.

Example 1: Find the asymptotes of
Y+ X2y +2xy° —y+1=0

Putting x=1and y=m in the third degree term and second degree term
separately. We get,

f,(m)=m®+2m*+m
and f,(M) = 0. 1
o f(m)=3m’+4m+1
We now solve
f,(m=0 ie. m*+2m’+m=0
ie. m(m*+2m+1)=0 =>m(m+1)°>=0
Soweget m=0,-1,-1

oo f(m) _
The value of cis givenby ™ ¢ . (m) ~ 7 (since fa(m) = 0)

and when m=0 we get c=0 therefore the asymptotes is ( y = mx+c) ~ y=0
when m = -1 we get ¢ =-0/0
(from ¢ = - f,(m)/f(m))

which is inderminate form. In this case is c is obtained from the equation
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2

C n 1

> f,"(m)+cf',(m)+ f,(m)=0 ....... 2

Putting x = 1 and y = m in the first degree term of the equation of the
curve, we get

f,(m)=-mand also f ",(m) =6m+4

From (1) and f7,(m)=0

therefore form = -1, c is given by

%(Gm +4)+¢c.0-m=0 from(2)

or 3m+2)c*~m=0

Puttingm =-1, we get

—c*+1=00rc=+1

So the asymptotes are

y =-x +1 and y = -x -1 which are parallel asymtotes

5.8.4 Asymptotes Parallel to X-axis

The general equation of the curve of degree (equation (1) of 12.1 ) can be
arranged according to the power of x as

ax"+(@_y+b )X +(@ _,y*+b  y+c X" +.n=0 i (1)
Putting x =1 and y = m in the highest degree term of the equation, we get

a +a_m+a _m+..=0 ... (2)
therefore if a, =0 then m = 0 will be the root of the equation (2) and so
the corresponding asymptotesis y=c......... (3)

where c is obtained by putting y=0.x+c ory=c in (1) and equating to
zero the cofficient of x"™ and so the value of ¢ in (3) is obtained by

an_]_.C+ bn=0 T (4)

Now putting the value of ¢ form equation (4) in (3) we get the same as
eliminating ¢ from (4) and (3).

Hence asymptote is a, ,y+b, =0
Which is the same as equating to zero the coefficient of x"* in (1).

Note:-Hence the asymptotes parallel to the axis of X can be obtained by
equating to zero the coefficient of the highest power of x. (if it is not a
constant). Similarly the asymptotes parallel to the axis of Y are obtained



by equating to zero the coefficient of the highest power of y. (if it is not a
constant).

Example 1: - Find the asymptotes parallel to the coordinate axes of the
curve

X2 (x—y)’ +a’(x* —y*)—a’xy =0

equating to zero the coefficient of the highest power of y (i.e. if y* ) the
asymptotes parallel to y axis are given by

x*—a’=0 or x=+a

Since the coefficient of the highest power of x (i.e. if x* ) is a constant
and so there are no asymptotes parallel to X- axis .

5.9 Curve Tracing

The objective of curve tracing is to find the approximate shape of a curve
without the labor of plotting a large number of points.

Cartesian Equations: If the Cartesian Equation is given, you can
invariably solve it either for y, or for x, or for r (in terms of 6 in the last
case), otherwise the curve will be too difficult for you to trace.

Only curves in which we can solve for y need be considered here because,
if the equation cannot be solved for y, but can be solved for x, we have
only to regard y as the independent variable. If the equation can be solved
for r, the rules for tracing polar curves will apply.

5.9.1 Procedure

1.  Symmetry: Notice if the curve is symmetrical about any line, by
applying the following rules, whose truth is evident:

(i) If the powers of y which occur in the equation are all even,
the curve is symmetrical about the axis of x.

(if)  If the powers of x are all even, the curve is symmetrical about
the axis of y. A curve might, of course, be symmetrical about
both axes.

(iii) If x and y can be interchanged without altering the equation,
the curve is symmetrical about the line y = x.

(iv) If on changing the signs of x and y both, the equation to the
curve is not altered, the curve after being turned through two
right angles will coincide with its old trace. (This is generally
denoted by saying that there is symmetry in opposite
quadrants.)

2. At the Origin: Notice if the curve passes through the origin. If it
does, write down the equation of the tangent, or tangents, there. If
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the origin is a singular point, find its nature. Remember that the
higher powers of x in the expression for y can be neglected when
tracing the curve for (numerically) very small values of x.

3.  Solve for y: Solve for y (which, by supposition, is possible).
Choose any convenient value of x for which y is finite, and if
possible zero (generally x = 0 is convenient). Consider how y will
vary as x increases and then tends to infinity, paying particular
attention to those values of x for which 'y =0, or —oo.

If the curve is symmetrical about the x-axis, or if there is symmetry
in opposite quadrants, only positive values of y need be considered.
The curve for negative values of y can be drawn from symmetry.

4.  Consider All Values of x: Starting from the chosen valued of x,
repeat the above procedure as x decrease and then — —o.

Of course, if the curve is symmetrical about the y-axis, it can be
drawn for negative values of x by symmetry, so such values of x
need not be considered afresh.

5. Imaginary Values of y: In the above procedure, if y is found to be
imaginary for a certain range of valued of x, say for values of x
between a and b, it would mean that the curve does not exist in the
region bounded by the lines x = a,x = b.

6. Asymptotes: If the curve extends to infinity, and there is
approximately a linear relation between x and y for numerically
large values of x, there is an oblique asymptote. This should now
be found, and also, if necessary, it should be investigated on which
side of it the curve lines.

Note: When x and y are numerically very large, only the highest powers of
these may be retained to find the approximate shape of the curve. The
presence of asymptotes parallel to the axes and their positions can be
found as given in section asymptotes..

7. Special Points: Find the coordinates of a few points on the curve if
it appears necessary.

For example, if y is 0 at x =0, and against at x =b, and is positive
for the intermediate values, it might be desirable to find the
maximum (greatest) value of y between a and b. At the point for
which y is maximum, the tangent (as is evident from geometry)
will be horizontal and so dy/dx will be zero. Hence this points can
be easily found. Even if the maximum value is not found, it would

be desirable to find the value of y when x is equal to, say, 3 (a+Db).



Inflexion: If the curve as traced appears to possess a point of
inflexion, that point can be more accurately located by putting
d?y/dx? or d*x/dy* equal to zero and solving the equation thus
obtained.

One should remember that merely a knowledge of symmetry,
asymptotes, tangents at the origin, points of inflexion, double
points, and the coordinates of a few other points will never enable
him to trace a curve. His difficulties regarding curve-tracing will
vanish only if he realizes that we have solved for y and expressed
it as a function of x whose valued can be easily found for every
value of x, and that his task is to save time by picking out the most
important values of x (say those at which y is a minimum or a
maximum, or is zero or infinity, or just begins to be imaginary or
ceases to be so): then, by noticing how y varies (i.e. increases or
diminishes) as x is made to vary continuously from —co to oo, the
curve is easily traced. We need not begin from — oo (if that is
inconvenient) provided later we consider the remaining values also
of x.

NOTE: An equation of the second degree in x and y gives merely one of
the conic sections, and so can be traced.

Example 1: Trace the curve y? (a + x) = x* (3a - X)

Solution:

(i) This curve is symmetrical about the axis of x.

(i)  The curve passes through the origin. The tangents there are given
by y* = 3x?, which represents two non-coincident straight lines.
Hence we may expect a node at the origin.

(i)  Solving for y, and considering only the positive value,

3a-X

y=X

If x =0, then y = 0. When x is positive and small, y is real. We
notice also that as

3a-x 3a. . .
<—1.e.<3.yis less than X\/§. Hence the curve lies below
a+x a

the tangent y =x+/3 for small positive value of x. As x goes on
increasing, y next becomes zero at x = 3a. When x is greater than
3a.the expression under the radical sign is negative and so y is
imaginary. To trace the curve more exactly we find the following
also:
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When x =a, y =a; and when x = 2a, y = 2a/\/§ = 1.2a nearly.

Also, if we transfer the origin to (3a,0) the equation to the curve

will become y*(4a+x) = (x+3a)°(~X), and the tangent at the new

origin will be x =0, obtained by equating to zero the terms of the
lowest degree.

Hence the curve must be of the shape shown in fig.1

(iv)  If(x) is negative and numerically small, (1) shows that y is real.
Also, for values of x under consideration, 3a—x > 3(a+ x),. Hence

y is numerically greater than —(\/§)x, i.e. the curve lies above the

tangent y= — (\/5) X, in the second quadrant. As we move still
more to the left a +x gets still smaller and so y gets larger. In fact
as X — — a from the right of the point x = —a, the positive value of
y tends to + co. X + a = 0 is evidently as asymptote.

When x < — a, the quantity under the radial is negative and so y is
imaginary.

Therefore, taking symmetry into account, the curve is shown
below:

The curve of equation y? (a + x) = x* (3a — x)is shown next:

YA
P
Y (3a,0) _
MN X
Fig. 1

Example 2: Trace the curve y2(x?+y?) -4x(x*+2y?) + 16x* =0
Solution:
(i) The curve is symmetrical about the x—axis.

(i)  The curve passes through the origin, the tangents there being

x* =0, which represents two coincident straight lines. Hence we
UGMM-103/128 may expect a cusp there.



(iii)  The equation to the curve is a quadratic in y?, and can be written as
y*+y2(x* —8x) —4x® +16x* = 0. Hence

y? = 1{8x — X% £/x* —16X° +64x°1+16X° —64x°}
= %{SX ~x3z x2}= 4x or 4x—x2

Hence the curve consists of the parabola y? = 4x and the circle
x> +y? =4x.

Fig. 2
Example 3: Trace the curve x = (y -1) (y-2) (y - 3).
Solution:
(i)  The curve is not symmetrical about the axes or about x =y.
(it) It does not pass through the origin.

(iii) Itis difficult to solve it for y. But it is already solved for x. Hence
we take y as the independent variable. Wheny =0, x = -6.

Wheny =1, x = 0. Between y =0 and y =1, x is negative as then all
the three factors are negative.

When y lies between 1 and 2, x is positive as one factor is positive
and two are negative x next becomes zero at y = 2. Between y =2
and y = 3, X is negative.

X next becomes zero aty = 3.

When y >3, x is positive. Asy —w, X—o0. For very large valued of
y, X is approximately equal to y3. Hence there is no linear
asymptote for this branch.

(iv) Wheny is negative, x is negative. Asy —»— o, X —»—o0. As in the
last paragraph, we can see that there is no linear asymptote for this
branch also.
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(v) When y=11 x=2;wheny=21,x=-2. Hence the shape of the
curve is as shown in fig.3

(3,0)

(2, 0)

()
/ (1,0)

(-6, 0) 0

Fig. 3

If we like we can also find where the tangent is parallel to the y—axis. At
these points dx/dy=0, i.e. (y-1) (y-2)+(y-1) (y-3)+(y-2) (y—-3)=0

Or 3y?— 12y + 11 = 0 i.e. the tangent is parallel to the y —axis where

y_6ir«/36—33
3

=2++/3/3=26and 1.4, nearly.

We can now find the values of x for these values of y, and thus find the
shape of the curve a little more exactly.

5.10 Summary

In this Unit, we studied singular points and their types and regular
points. Also, double points and there classification is described for better
understanding. Cusp and their species are discussed in detail with several

examples. Nature of cusp and necessary condition for the existence of the

double points on a curve is described with examples. An important section
is devoted on asymptotes and method to find the asymptotes of a given
curve. The curve tracing procedure is also discussed in detail with many
examples.

5.11 Terminal Questions

1. Trace the curve



(i)  y%(a+x)=x%Ba-—x)

i) x=0-DHG-2)r-3)

(iii) ay?=x%(a—x)

(iv) ay?=x%*(x—a)

Prove that the curves

ay? = (x —a)?(x — b) has

(i) aconjugate pointat x=a if a<b

(i) anodeatx =a if a>b&

(iif) cusp at x=a if a=b.

. Trace the curve

I.  y=acos36
Il. y=06(0+sind)

. Trace the curve y?2(a®+ x2) = x?(a? —x?)and show that the
origin is a node.

. Trace the curve a*y? = x°. (2a — x)
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UNIT-6

AREA UNDER A CURVE

Structure

6.1  Introduction
Objective

6.2  Area in Cartesian form

6.3  Area in Polar form

6.4  Area Bounded by a closed curve

6.5  Length of a plane curve
6.5.1 Cartesian form
6.5.2 Parametric form
6.5.3 Polar form

6.6 Summary

6.7 Terminal Questions

6.1 Introduction

In this section we shall show how the area under a curve can be

calculated when the equation of the curve is given in the

(1)

Cartesian form

(ii) Polar form

(i11)) Parametric form

Some curves may have a simple equation in one form, but complicated
ones in others. So, once we have considered all these forms, we can
choose an appropriate form for a given curve, and then integrate it
accordingly. Let us consider these forms of equations one by one.

Objective:

After reading this unit you should be able to :

Recognize area of the curve in Cartesian form

Recognize area of the curve in Polar form and in parametric form
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6.2 Areain Cartesian form

We shall quickly recall what we studied in earlier. Let y = f(x)
define a continuous function of x on the closed interval [a, b]. For
simplicity, we make the assumption that f(x) is positive for x € [a, b]. Let
R be the plane region in Fig. 1(a) bounded by the graphs of the four
equations: y =f(x),y=0,x=aand x =b.

We divide the region R into n thin strips by lines perpendicular to the x-
axis through the end points x =a and x=b, and through many intermediate
points which we indicate by x, Xa,....... Xn.1. Such a subdivision, as we
have already seen a partition P, of the interval [a, b] is indicated briefly
by writing. P, = [a = Xo<x;< X< ....< X << X, = b]

YA Y a

y=f(x)

0

Fig. 1

We write AX; = X; — X fori=1, 2,....., n, and take the set of n
points on x-axis. T, = {t, t, ...... ta-1, tn},such that x; | <t<x; fori=1, 2,
...... , n. We now construct the n rectangles (Fig. 1 (b)) whose bases are
then n sub-intervals [x; 1, Xi],1=1, 2,...... , n induced by the partition P,
and whose altitudes are f(t), f(t),...... f(ty),....., f(ta_1), f(ts). The

sum)_f(t,)Ax, of the areas of these n rectangles will be an

i=l1
approximation to the “area of R”. Notice (Fig. 2(a) and (b)) that if we
increases the number of sub-intervals, and decrease the length of each sub-
interval, we obtained a closer approximation of the “area of R”
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(b)

Fig. 2
Thus, we have

Definition 1: Let f be a real valued function continuous on [a, b], and let

f(x) 20V x € [a, b]. I the limit of )_f(t,)AX, exists as the lengths of
i=1

the sub-intervals. Ax;— 0, then that limit is the area A of the region R.

A= Al)}rEO ;f(ti)AXi

i=1,2,....n

Compare this definition with that of a definite integral given in Block 3.
Over there we had seen that the definite integral.

b n n
J'f(X) dx is the common limit of Z‘:miAXi and Y M, A X, as the Ax;’g5.

i=1

Now since m;< f(t;) < M;V 1, we have

Zn:mi Ax, < Zn:f(ti)Axi Szn:Mi AX,
i=1 i=1 i=1
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Hence if the limit of each of these as Ax;” s—0 exists, then by the
Sandwich Theorem

— . 1 < . il < . n
A = lim ;mi A X, ‘_Alxlg%) ;f(ti) A x < A11r£10 Z:]:M A X,

Ax; =0
i=1,2,...n i=1.2,..n i=1.2,..n

b
Now, if J f(X) dx exists, then the first and the third limits here are equal,

b
and therefore we get A = _[f(X) dx. (1)

The equality in (1) is a consequence of the definitions of the area of R and
b
the definite integral A = jf(x) dx. Since f(x) is assumed to be

continuous on the interval [a, b], the integral in (1) exists, and hence yields
the area of the region R under consideration. From the Interval Union
Property of definite integrals, we have

J f[x:lﬂ’x=J fla)dx + Jf[x]la’x,a ZCeEDh i (2)
YA
0 a ¢ b ‘-:.

Fig. 3

This means if A,A’,A’ denote the areas under the graph of y = f(x)
above the x-axis from a to c, from c to b and from a to b, respectively,
(Fig. 3) then, if ¢ is in between a and b, then we have
Al+AN=A" 3)

If we define A® =0,A’ =0, then above equation is true for ¢ = a and ¢
=b too.

Till now, we have assumed the function f(x) to be positive in the interval
[a, b]. In general, function f(x) may assume both positive and negative
values in the interval [a, b]. To cover such a case, we introduce the
convention about signed areas.

The area is taken to be positive above the x-axis as we go from left to
right, and negative if we go from right to left. The function f(x) may be
defined beyond the interval [a, b] also. In that (3) is true even if c is



beyond b, Since according to our convention o signed areas, A'c’ will turn
out to be a negative quantity (Fig. 4).

Y|

ol @ b ¢ °X
Fig. 4
Thus, 452 = 45 + AP = 45 — 45, 0r AP+ A =A°¢

Not, if f(x) < 0 for all x in some interval [a, b] then by applying the
definition of “area of R” to the function — f(x), we get the area

A= —‘T f(x)dx

If we do not take the negative sign, the value of the areas will some out to
be negative, since f(x) is negative for all xe [a, b]. to avoid a “negative”
area, we follow this convection. Thus, if f(x) < 0 for x € [a, b] (Fig. 5),
then the area between the ordinates x = a and x = b will be

A= —j‘ f(x)dx

The following example will illustrate how our knowledge of evaluating
definite integral can be used to calculate certain areas.

Y

Fig. 5

Example 1: Suppose we want to find the area of the region bounded by
the curve y = 16 — x%, the x-axis and the ordinates x = 3, x = - 3. The
region R, whose area is to be found, is shown in Fig. 6.
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YA
(0,16)
(-3,7) (3,7
4 3 2 10 1 2 3 4°%
Fig.6

The area A of the region R is given by

A=—1(16-x)dx =16 —X—3 =78
fos—xes o= |

Example 2: Consider the region R in Fig. 7.

Y A
R, R,
(-2,0) o\ (1.0) X
Fig.7

R is composed of two parts, the region R; and the region R,. We have
Area R = Area Ri+ Area R,

The region R, is bonded above the x-axis by the graph of y=x>+ x* — 2x, x

0
=-2and x =0. Hence, Area R, = I(X3 +x” —2x)dx =
)
x* X L8
DX ==
4 3 L, 3
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The region R, is bounded below the x-axis by the graph of y = x> + x* —

1 x* X b5
2x,x =0and x = 1.Area R, =—I(X3+X2—2X)dx Z—{TJr?—XZ} =
0

12

0

8 5 37
Therefore, Area R=—+ —=—
3 12 12

1 1
Area R, = J.f(X)dX . If we calculate R, = If(x)dx , it will amount to
0 -2

calculating

1 1
If(x)dx + J.f(x)dX = area R| — area R,, which would be a wrong
-2 0

estimate of area R.

Example 3: Let us find the area of the smaller region lying above the x-
axis and included between the circle x*+ y*=2x and the parabola y*=x in
the first quadrant.

Solution: On solving the equation x*+y*=2x and y’>=x simultaneously, we
get (0, 0), (1, 1), (1,-1) as the points of intersection of the given curves.
We have to find the area of the region R bounded OAPBO (Fig. 8).

Y A

P(1,1)

o C (1,0) X

Fig. 8
From the figure we see that area of region OAPBO
= area of region OCPBO — area of region OCPAO

=J1.\/2x—x2 dx—j‘\/; dx

1 1 0

Now, j‘x/2x -x’dx = j 1-(1-x)*dx = Icos 0(—co0s0)d0, on
1 0 n/2

putting 1 —x =sin 6
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= .(f—cos2 0do =Tc0s29d9:£Also j&dx:
0 4 0

n/2

2
3

T 2
Therefore, the required area = (Z — gj

In this sub-section we have derived a formula (Formula (1)) to find the
area under a curve when the equation of the curve is given in the cartesian
from. With slight modifications we can use this formula to find the area
when the curve is described by a pair of parametric equations.

We shall take a look at curves given by parametric equation is little late.
But fist, let us consider the curve given by a polar equation.

6.3 Area in Polar form

Sometimes the cartesian equation of a curve is very complicated, but its
polar equation is not so. Cardioids and spirals are examples of such
curves. For these curves it is much simpler to work with their polar
equation rather than with the cartesian ones. In this sub section we shall
see how to find the area under a curve if the equation of the curve is given
in the polar form. Here we shall try to approximate the given area through
the areas of a series of circular sectors. These circular sectors will perform
the same function here as rectangles did in cartesian coordinates.

Let r = f(0) determine a continuous curve between the rays 6 = o and 6 =
B, (B - o< 2m). We want to find the area A(R) of the shaded region R in
Fig 9(a)

A

(a) (b)
Fig. 9

Imagine that the angle AOB is divided into n equal parts, each measuring
A8,

Then AO = B-
n

RiRy,...... Ry, as shown in Fig. 9(b), Then clearly

. This amounts to slicing R into n smaller regions,
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AR)=AR)) + AR + ...+ A(R,). = Z A(R))

Now let us take the i slice Ry, and try to approximate its area. Look at
Fig. 10. Suppose f attains its minimum and maximum values on [0;.;, 6;] at
U and Vi.

1 2 1 2
Then 5 [f(u;)]> AB< A(Ri)sE [f(v))]? AO.

n 1 n n
From this we get ZE [f(u;)]*A0< Z AR))<
g i1

i=l1

[f(v,)]’ A6

N | —

£ 1
The first and the third sums in this inequality are equal to IE [£(6)]° d6.

o4

Therefore, by applying the sandwich theorem as AB— 0, we get
AR) =L (T1@Tdo=Lrdo
(R) —El[ )] _Elr
We shall illustrate the use of this formula through some examples. Study

them carefully, so that you can do the exercises that follows late.

Example 4: Suppose we want to find the area enclosed by the cardioids
r=a(l—cos0). Wehaver=0 for =0 and r =2a for 6 = .

Since cose 0 = cos (- 0), the cardioids is symmetrical about the initial lines
AOX (Fig. 11).

\ 4

Fig.11
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Hence the requirement area A, which is twice the area of the shaded
il T . ,0

region in Fig. 11, is given by A = 2I5r2d9 = 4X2ISII14 5 do, since
0 0

o .,0

cos 0 = cos®>— - sin*—

n/2

. 0
=8a’ I sin* ¢d ¢, wherep =— =8a applying the reduction
0

RN

31
2 4 2
formula = —a’n
In the case of some Cartesian equations of higher degree it is often

convenient to change the equation into polar form. The following example
gives one such situation.

Example 5 : To find the area of the loop of the curve. X5+y5 = Saxzyz.
We change the given equation into a polar equation by the transofmration
5acos’ Osin’ 0

cos’ O +sin’ 0

x =1 cos0, and y=r sin0, then we obtain I =

Which yields r = 0 for 6 = 0 and 6 = n/2. Hence, area A of the loop is that
of a sectiorial area bounded by the curve and radius vectors 6 = 0 and 6 =

n/2, that is, the area swept out by the radius vector as it moves from 6 =0
to 6 = /2. See Fig. 12

Fig.12

1™?25a’cos*Osin*0® 25 ., tan’0Osec’ 0
Thus,A:_ . - . =—2a _[—5
2 % (cos’0+sin’ 0) 2 o (I+tan’0)

:éazjd—zt,wheret =1+tan’ 0 :éaz[—l/t]f _3,
2 9t 2 2
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Check your progress

(1)
(2)

€)

(4)

)
(6)
(7

(8)

Find the area under the curve y = sin x between x =0 and x = 7.

Find the area bounded by the x-axis, the curve y = €, and the
ordinate x = 1 and x = 2.

Find the area of the region bounded by the curve = 5x — x%, x = 0, x
= 5 and lying above the x-axis.

Find the area cut off from the parabola y* = 4ax by its latus rectum,
X=a.
Find the area between the parabola y*= 4ax and the chord y = mx.

Find the area of a loop of the curve r=a sin360.

Find the area enclosed by the curve r=a cos 20 and the radius
vectors

Find the area of the region outside the circle = 2 and inside the
lemniscates r*=8 cos 20. [hint: First find the points of intersection.
Then the required area = the area under the lemniscates — the area
under the circle].
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Check your progress

(9) Find the area of the curve x = a (3 sin 0 - sin’0), y = a cos’0, 0 <O<
2.

(10) Find the area enclosed by the curve x =acos 0 +bsin 0 +c¢
Y=a" cosO+Db'sinO+c', where 0 <0<2

(11) Find the area of one of the loops of the curve x =asin 2t,y=a
sint.
(Hint : first two values of t which give the same values of x an y,
and take these as the limits of integration)

6.4 Area Bounded by a Closed Curve

Now we shall turn our attention to closed curves whose equations are
given in the parametric from. Let the parametric equations. x = ¢ (t), y=¥
(1), t € [a, B,

Where ¢(a) = ¢(B), and ¥ (a0) =¥ (B), represent a plane closed curve
(Fig. 13).

Y

Fig. 13



This means that as the parameter t increases from a value a to a value f3,
the point P(x, y) describes the curve completely in the counter clockwise
sense. Since the curve is closed, the points on it corresponding to the value
B is the same as the point corresponding to the value o. This is reflected
by the conditions ¢p(a) = ¢(P) and ¥(a) = Y(P).

Suppose further that the curve is cut at most in two points of every line
drawn parallel to the x or y-axis. We also assume that the functions ¢ and
Y are differentiable, and that the derivatives ¢’ and ¥’ do not vanish o and
B i.e., at R we have ¢p(a) = dp(a) = ¢(B) and (o) = P(P).

Now suppose A is a point on the curve which has the least x-coordinate,
say a. Similarly, suppose B is a point on the curve which has the greatest
x-coordinate, say b. thus the lines x = a and x = b touch the curve in points
A and B, respectively. Further let t; and t, be the values of t that
correspond to A and B, respectively. Then. o <t, <t; <f}

Let a point Q correspond to t = t3 such that t;, < t; < t;. The area of the
region enclosed is S = S; — S, and S, are the areas under the arcs AQB and
ARB, respectively. The minus is because one is clockwise and other is
anti-clockwise (see Fig. 13). Hence.

S, = jiydx and Slj)‘y dx

Now, as a point P(x, y) moves from B to A along BQA the value of the

parameter increases from t, to t;. Therefore Iydx Iy—dt Hence
t

-t

:—Iy—dt

Now the movement of P form A to B along ARB, can be viewed in two
parts. From A to R and from R to B. As P moves from A to R, the value of
the parameter increases from t; to 3, and as P moves from R to B, t
increase from o to t.

b B (i d
Therefore, S, = —j ydx = jyccli—)t(dHJ. yd—)t(dt

b b
Thus, we have S, = —I ydx — I ydx =S, -S§,

(AQB) (ARB)

vod b odx . b odx b od
:_ij;dt_'[yd_)t(dt I d)t( _'[yd)t(
a a (i)
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Note that the negative sign is due to the direction in which we go round
the curve as marked by arrows in Fig. 13

Similarly, by drawing tangents to the curve that are parallel to the x-axis,

B
it can be shown that S = | X%dt. (i)

From (i) and (i1), we get

i d d
2S = J. x y e Hence, the area  enclosed s
dt dt

o

B
S= lj(xdy — ydx)
2% )

We can use any of the formulas (i), (ii) and (5) above for calculating S.
But in many cases you will find that formula (5) is more convenient
because of its symmetry.

Example 6: Let us find the area of the asteroid x = a cos3t, y = sin3t, 0<t
<2mn

The region bounded by the astroied is shown in Fig. 14.

The area A of the region is given by

2n 2n
A=L (xﬂ—yd—xjdt =l_|.ac053t
dt dt 25

ab ’f :
= (3b sin’t cos t) — b sin’ (- 3 a cos’tsin t)dt = 7 JCOSZ sin’ t dt
0
AY

B(ob) t=r/2

D(o, -b) t=3,2n/2

Fig.14

ff (x)dx = 2} f(x)dx, if f(2a — x )= f(x).



Here cos” (2 7 - t) sin® (27 - t) = cos” t sin’t. Hence
2n n
J-cos2 tsin’ tdt =2 I cos’ tsin’ t dt. Therefore, A=3ab
0 0
%2

J’cos2 tsin’t dt.
0

Now, by a similar argument we can say that

n/2

A =6ab jcosz tsin® t dt, = 3mab
0

, by using the reduction formula.

Check your progress

(12) Find the area of the curve x =a (3 sin 0 - sin’0), y =a cos’0, 0 < 0
<2m.

(13) Find the area enclosed by the curve x =acos 6 +bsin 0+ ¢
Y=acosO+b'sin0+c¢,where0<0<2x

(14) Find the area of one of the loops of the curve x =asin 2t,y=a
sint.

(Hint : first two values of t which give the same values of x an y,
and take these as the limits of integration)

6.5 Length of A Plane Curve

In this section we shall see how definite integrals can be used to
find the lengths of plane curves whose equations are given in the
Cartesian, polar or parametric from. A curve whose length can be found is
called a rectifiable curve and the process of finding the length of a curve is
called rectification. You will see here that to find the length of an arc of a
curve, we shall have to integrate an expression which involves not only
the given function, but also its derivative. Thereofore, to ensure the
existence which determines the arc length, we make an assumption that
the function defining the curve is derivable, and is derivative is also
continuous on the interval of integration.

Let’s first consider a curve whose equation is given in the Cartesian form.
6.5.1 Cartesian Form

Let y = f(x) be defined on the interval [a, b]. We assume that f is derivable
and its derivative f' is continuous. Let us consider a partition P, of [a, b],
given by P, =[a = x0< xi< X< ....<x, = b]

The ordinates x = a and x = b determine the extent of the arc AB of the
curve y = f(x). [Fig. 1(a)]. Let M; =1, 2, ....., n — 1, be the points in which
the lines x = x; meet the curve. Join the successive points A, M;, M,,
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Ms,...... , M, _1, B by straight line segments. Here we have approximated
the given curve by a series of line segments.

Y A

0 a : ; > X

(b)
Fig.1

If we can find the length of each line segment, the total length of this
series will give us an approximation to the length of the curve. But how do
we find the length of any of these line segments? Take M,, Ms, for
example (Fig. 1(b) shows an enlargement of the encircled portion in Fig.
1(a). Looking at it we find that

M2M3 = \/(AX3)2 + (Ay3 )2 . Where Ax;= M;Q is the length (x3 — x;),

and Ay; = M3Q = f(x3) — f(X2) = y3 — y2. In this way we can find the
lengths of the chords AM;, M|M,,....... , M1 B, and take their sum

S, =2 (ax) "+ (ay,).

S. gives an approximation to the length of the arc AB. When the number
of division points is increased indefinitely, and the length of each segment
tends to zero, we obtained the Ilength of the arc AB as

L =lim) \/(Ax )" +(Ay,)’ 1 provided this limit exists. Our
i=1



assumptions that f is derivable on [a, b], and that ' is continuous. Thus,
there exists a point P (X,y;) between the points Mi; and M; on the

curve, where the tanget to the curve is parallel to the chord M;.; M;. That
18,

Ay

f'(x)) = A_Xl or, Ay; = f' (x;' ) Ax;, Hence we can write (1) as

1

n * fim Y"1+ [F )
Ly =limY \(ax ) +[F'(xax = 778

b
This is nothing but the definite integral I (1+[f'(x)*]dx or,

b d 2
Li = J. 1+ (d—y] dX
. X
(¥
Remark 1: It is sometimes convenient to express x as a single valued

function of y. In this case we interchange the roles of x and y, and get the
length

2
d
L]Z = I 1+ (j—X] dx , where the limits of integration are with respect to
c Y

Y. 0

Note that the length of an arc of a curve is invariant since it does not
depend on the choice of coordinates, that is, on the frame of reference. Our
assumption that f' is continuous on [a, b] ensure that the integrals in (2)

and (3) exist, and their value L'Z is the length of the curve y = f(x)
between the ordinates x = a and x = b.
Example 1: Suppose we want to find the length of the arc of the curve y =

Inx intercepted by the ordinates x = 1 anx x = 2. We have drawn the curve
y = Inx in Fig.2

YA

y=Inx

Fig.2
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d
Using (2), the required length L,? is given by L j 1+ (dy )d
X

X dx x

2
J. (1 + szdx,sin ceg = 1

dx t
If we put 1 + x> = t2, we get — = —, and therefore,

X
N 1 IREE
L= j[1+ - —{t+llnt—l}
Nl (t - 2 t+1

N
Jdtzj'dt+

\/_1 J_1 2(\2 +1)
R ERe L e e e e RRCRRCAR e v

We can also use (3) to solve this example. For this we write the equation y
= Inx as x = ¢’. The limits x = 1 and x = 2, then correspond to the limits y
=0 and y = 1n 2, respectively. Hence, using (3), we obtain

In2

L) = jmdy I

& e 22 +1)
—J_L(1+ jdu,—\/g \/§+1n—\/§+1

du, on putting 1 +¢* = v’

u -1

Check your progress

(1) find the length of the line x = 3y between the points (3, 1) and (6,
2). Verify your answer by using the distance formula.

(2) find the length of the curve y = 1n sec x between x =0 and = /2.

(3) find the length of the arc of the catenary y = C cosh (x/c) measured
from the vertex (0, ¢) to any point (X, y) on the catenary.

(4) Find the length of the semi cubical parabola ay’= x> from the
vertex to the point (a, a).

(5) Show that the length of the arc of the parabola y* = 4ax cut off by
the line 3y = 8x is a(1n2+15/16).

6.5.2 Parametric Form

Sometimes the equation of a curve cannot be written either in the form y =
f(x) or in the form x=g(y). A common example is a circle x* + y* = a’. In
such cases, we try to write the equation of the curve in the parametric
form. For example, the above circle can be represented by the pair of
equations X = a cos t, y = a sin t. Here, we shall derive a formula to find
the length of a curve given by a pair of parametric equations. Let x = ¢(t),



y =Y (t), a< t <P be the equation of a curve in parametric form. As in the
previous sub section, we assume that the functions ¢ and ¥ are both
derivable and have continuous derivatives ¢’ and W' on the interval [a, B].

"E'. i/ I.! :_ %

We have ((11—1( = (I)'(t),andi—?[] = y'(t). Hence, ZT = o, -and

(we assume that ¢’ (t) # 0).

x=0(B)
Now, using (3) we obtain the length L = (1 + —) dx
x=h(a)

2 ig; dt. Thus, L = i\/[q)'(t)]z] +[y'(t)] dt

Example 2: Let us find the whole Ilength of the curve

2/3 2/3
X
(—) + (%) = 1. By substitutions, you can easily check that x = a

a
cos’t, y = b sin’t is the parametric form of the given curve. The curve lies
between the linesx =-taandy=+bsince— 1 <cost<1l,and—1<sint
< 1. The curve is symmetrical about both the axes since its equation
remain unchanged if we change the signs of x and y. The value t = 0. The

value t = 0 corresponds to the point (a, 0) and t = ©/2 corresponds to the
point (0, b). By applying the curve tracing methods discussed in Unit 9 we
can draw this curve (see Fig. 3).

B(o b) t=m/2

A(a, 0)X

C(-a, 0)

D(o, -b) =3, 2n/2

Fig.3
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Since the curve is symmetrical about both axes, the total length of the
curve 1s four times its length in the first quadrant.

d ) )
Now,—X = —3acos’ tsin t;g =3bsin’ tcost
dt dt

dxY (dyY
( ) + (_yj =9 gin?tcos’ t (azcoszt + b’ sinzt) Hence, the length of

dt dt
the curve is
n/3 n/2
L:4Isintcosta2coszt\/+ b’sin’t dt =12 .[sintcost
0 0

Ja*cos’t+b’sin’t dt
Putting u”= a’ cos t + b” sin” t, we obtain 2u = (2b” — 2a%) sin t cos t —
u

And the limits t = 0, t = /2 correspond to u = a, u = b, respectively. Thus,
we have

b uldu 12 {Lﬁ}"_ 12 b'-a’ 4(a’+b’ +ab)
_ =+ _

3 ‘—a’ 3 a+b

6.5.3 Polar Form

In this sub section we shall consider the case of a curve whose equation is
given in the polar form. Let r = f(0) determine a curve as 0 varies from 0 =
o to 0 = B3, i.e., the function f is defined in the interval [, B] (see Fig. 4).
As before, we assume that the function f is derivable and its derivative f is
continuous on [a, B]. This assumption ensures that the curve represented
by r = 1(0) is rectifiable.

%<V

Fig. 4



Transforming the given equation into Cartesian coordinates by taking x =r

cos 0, y =rsin 0, we obtain x = f(6) cos 0, y = f(0) sin 6.

Now we proceed as in the case of parametric equations, and

(&) (o)
(2] M)
’ dx dx/d6

Hence, the length of the arc of the curve r ={(0) from 6 =a to 06 = is
given by

x=f (B)cosP 2 B 2 2

L= j 1+ (gj dx = I (d_X) + (g) dO . Changing the
x=f(a)cosa dX o de de

variable x to

0= j‘\/[f'(e) cos0 —f(0)sin 0]’ +[f'(0)sin O + £(0)cos(0)’doO

- i\/[f(e)z +(0)]'do :i r’ +(%j de

Example 3: To find the perimeter of the cardioids r = a (1 + cos 0) we
note that the curve is symmetrical about the initial line (Fig. 5). Therefore
it perimeter is double the length of the arc of the curve lying above the x-

axis.
< 0 (2a,0)

Fig.5

T 2
Now, E =-asin 0. Hence, we have L = ZJ rz(gj do =
do do

0

2a

jf\/(l +c0s0)’ +sin’ 0 dO = 2af1/2(1 +c0s0)do = 4a'|TEcosgd9
0 0

=8a

=4al2sin—

0
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Table 1 : Length of an arc of a curve
Equation of the Curve Length L.
— b
y = fx) I 1+f'(x)’dx
_ b
_ _ p
X_d)(t)a y= Y (t) J.\/d)!(t)z + \V!(t)zdt
_ p
r=10) [Jf(6) +1'(8)°do

Check your progress

(6) Find the length of the cycloid x = a (0 - sin 0); y = a(1 — cos 0)
(7) Show that the length of the arc of the curve x =¢'sint, y =¢' cos t
fromt=0tot= m/2is \/E(e”/z -1)

(8) Find the length of the curve r =a cos® (6/3).

(9) Find the length of the circle of radius 2 which is given by the
equations x =2cost+3,y=2sint+4,0<t<2m.

(10) Show that the arc of the upper half of the curve r =a (1 —cos 0) is
bisected by 6 =2 1/3

(11) Find the length of the curver=a (8°— 1) from 0 =-1t0 0 = 1.

Solution and Answers of Check your Progress

()L = j1/1+[dx/dy]2dy = .2[1/1+(3)2dy = \/ﬁidy =410

By distance formula,
L=(x,-x) +(y,-y) =4/3-6) +(1-2)’

=J(=3)" + (=1 =10

(2)

b
L:I\/1+(dy/dx)2dx (ﬂ: ! .secxtanx=tanxj
” dx secx
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/3

= jx/1+tan X dx

n/
= fsecxdx—ln‘secx+tanx‘ " _1n secm/3+tan /3|
‘ secO+tan 0 ‘

=1n(2++/3)
3)

L= [|l+sinh’(x/c) dx = [cosh (x/c)dx

= csinh (x/c] = csinh(x / ¢)

@  y=.% - dy/dx :(3/20\/g
a a

L:i 1+9X Ix/4a+9x dx =

(4a+9x)"]

\/_

1
27+/a

8x
(5) 3y =dx => y = ? Substituting this in y’=4ax we get

133)3/2 _(43)372 :217(133/2 _8)

2
64x _ dax

9a 3a
ie., 64x* —36ax=0 =>x = Oorx—E:y Oory=

9a 3a
Hence (0, 0) and (E 7] are the points of intersection . Now 4ax =

dx _y

y= dy 2a
3a/2 3a/2

L= J. . J‘1/4a +y’dy
1|y

:l3a/2
0

=— B 4a’ +y* +2a’ 1n‘y+ 42’ +y’

_ 1 [1s +2a’1n2 =(1—5+1n)2
2a| 8 16
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(6) %:a(l—cose),%zasinﬁ

(dx ’ (d}’jz 2 2 . 2 2
S — 1| +| == | =al+cos0 -2 cosO +sin"0] =2 a"(1 — cos 0)
do do

2n

= 42 sin®(02)  ~L=2af sin
0
/2

(0/2)d6=4a[sin ¢ dp=8a [sinpdd = 8a
0 0
X _1 : dy | :
(7) —=e (cost+sint), —=e (cost—sint)
dt dt

2 2 n/2
(dX) +(g) _ 7™ .'.L=\/§J.e‘dt\/§el]g/2:\/E(e"”—l)
0

dt)  Ldt
3 dr , 0 .
(8) r=acos §:>—:—acos —SsIn —
2
ST+ (E) =a’cos’ 9 +a’ cos’ 9sin2 o _ a’ cos® 9
do 3 3 3 3
3n/2 n/2
~L=2a J coszgd9=6a Icoszd) do _3an
0 3 5 2
€))
d—X:—2sintg:2cost
dt dt

dx \’ dy ’ — >
Sl — |+ = =2\/s1n t+cos t=2
dt dt

2n
L=2 Idt = 41 Note that L =2 7r since, here, r =2
0

dr drY . 0
(10) r=a(l —cos0), —=asin0." |1’ +(—j = 2asin —
do do 2
The length of the curve in the upper half = .[ 2a sin (6/2)d6
0

The length from 6 =0 to 6 = 21/3
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(11) r=a®* 1), %zzae , T’ +(—j=a2 [6%-207 + 1 +40%] = a’

0+ 1)°%.

1 3 1
.-.L:aj (6°+1)°do=a 9—+9 =a(l+l+l+lj:8—a
S 3 L 3 3 3

6.6 Summary

In this Unit, area of a curve in Cartesian form, in polar form and in
parametric form is discussed. Area bounded by a closed curve, area
common to two given curves, length of a plane curves in Cartesian form,
in polar form and in parametric form from a given point to another given
point s discussed.

6.7 Terminal Questions

1. Find the whole area of the curve

a’y? =x% (2a—x) ( Answer: ma” )
2. Trace the curve a”v® = a’x” — x* and find the whole area within
it .

3.  Find the common area of the curves

vi=ax & x*4v?=4ax (Ans: - (a3 + 47 )a?

| =

4.  Find the area bounded by the curve

¥ = a(l+ cos8). (Ans: ?a:)

5.  Find the area bounded by the curve

r* = a’cos?f + bsin’ @ (Ans: = (a® + bY))
6. Find the length of the arc
of semicubical parabola av* = x~ from the vertex to the point (a,

a).
(Ans: ﬂi_ {13 V13— 8}-:1.

7. Find the length of the arc of the cycloid x=a(t-sin t), y=a(1-cos t)
(Ans: 8a)

8.  Find the length of the arc of equiangular spiral r= ae? <=

between the point for which the radii vectors are ry ¢ 5.
(Ans: (13- 7y)sec @) UGMM-103/157
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UNIT-7

VOLUME OF A SOLID OF REVOLUTION

Structure

7.1 Introduction
Objective

7.2 Volume of A solid of Revolution
7.2.1 Cartesian Form
7.2.2  Parametric Form
7.2.3 Polar form

7.3 Area of Surface of Revolution
7.3.1 Cartesian Form
7.3.2.1 Parametric Form
7.3.2.2 Polar form

7.4 Summary

7.5 Terminal Questions

7.1 Introduction

In the last unit we have seen how definite integrals can be used to
calculate areas. In fact, this application of definite integrals is not
surprising. Because, as we have seen earlier, the problem of finding areas
was the motivation behind the definition of integrals. In this unit we shall
see that the length of an arc of a curve, the volume of a cone and other
solids of revolution, the area of a sphere and other surfaces of revolution,
can all be expressed as definite integrals. This unit also brings us to the
end of this course on calculus.

Objective
. Find the volumes of some solids of revolution

. Find the areas of some surfaces of revolution

7.2 Volume of A solid of Revolution

In this unit, we were concerned with only plane curves and
regions. In this section we shall see how our knowledge of integration can
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be used to find the volume of certain solids. Look at the plane region in
Fig. 6(a). it is bounded by x = a, x = b, y =f(x) and the x-axis. If we rotate
this plane region about the x-axis, we get a solid. See Fig. 6(b) .

Y.ﬂ Y L
y=1(x) !
5 g b » X 5
@ Fig.6
YA Y A
A B
= X 5
ol ¢
{a) .
Fig.7

The solid in Fig. 7(a) is obtained by revolving the region ABCO around
the y-axis. The solid of revolution in Fig. 7(b) differs from the others in
that its axis of rotation does not form a part of the boundary of the plane
region of PQRS which is rotated. We see many examples of solids of
revolution in every day life. The various kinds of post made by a potter
using his wheel are solids of revolution. See Fig. 8(a). Some objects
manufactured with the help of lathe machine are also solids of revolution.

See Fig. 8 (b).
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Now, let us try to find the volume of solid of revolution. The method
which we are going to use is called the method of slicing. The reason for
this will be clear in a few moments.

vi v

(a) . (b) (©)

Fig.9

Let A x; denote the length of the ith sub-interval [x; _j, X; ]. Further, let P
and Q be the points on the curve, y =f(x) corresponding to the ordinates x
= x;j_; and x = x; respectively. Then, as the curve revolves about the x-axis,
the shaded strip PQNP (Fig. 9(a)) generates a disc of thickness Ax;. In
general, the ordinates PM and QN may not be of equal length. Hence, the
disc is actually the frustum of a cone with its volume Av;, lying between ©t
PM*MN and nQN*MN, that is between n[f(x; _1)]*A x; and T[f(x;)]*Ax;
[Fig. 9(b) and (¢)]

If we assume that f is a continuous function on [a,b], we can apply the
intermediate value theorem and express this volume as Av; = 1 {f(t))}*Ax;,
where t; is a suitable point in the interval [x; _;, X;]. Now summing up over
all the discs, we obtain

V., =) Av, => f(t)]’AX,  xi1<t<x;as an approximation

i=1 i
As we have observed earlier while defining a definite integral, the
approximation gets better as the partition P, gets finer and finer and Ax;
tends to zero. Thus, we get the volume of the solid of revolution as

n b b
V=lim V, =lim> a{f(t)F A x, V=m [[f )T dx = [ y*dx

n
n—o

..(6)

Example 1: Let us find the volume of the solid of revolution formed when
the arc of the revolution y* = 4ax between the ordinates x =0, and x = a is
revolved about its axis. The solid of the volume V of the cap is given by

5

a a 272
V= Jnyzdx = 71:_[4ax dx =4na {%} =2ma’
0 0

0
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vA

Fig. 10

Our next example illustrates a slight modification of Formula (6) to find
the volume of a solid obtained by revolving a plane region about the y-
axis.

XY .
Example2: Suppose the ellipse —- +—b2 =1,(a > b) is revolved about
a

the minor axis, AB (see Fig. 11). Let us find the volume of the solid
generated.

In this case the axis of rotation is the y-axis. The area revolved about the
y-axis is shown by the shaded region in Fig. 11. You will agree that we
need to consider only the area to the right of the y-axis.

Fig.11

To find the volume of this solid we interchange x and y in (6) and get



b b 2 2
V:J'nxzdy:'fna2 l—y—2 dy,since x* =a’ l—y—2
% % b b

b 2 2
=2ma’ I(l _Y jdy, (sincel — %is an even function of y)
0

b*

3 b
:2na{y— Y } :ﬂnazb.

3b’ 3

0

We can also modify formula (6) to apply to curves whose equations are
given in the parametric or polar forms. Let us tackle these one by one.

7.2.2 Parametric Form
If a curve is given by x = ¢(t), y = (1), a<t<p, then the volume of the

solid of revolution about the x-axis can be found by substituting x and y in

B
formula (6) by ¢(t) and P(t), respectively. Thus, V = TEI [w(t)] ((11—1( dt

B
or V=mf [y(D] ¢'(t)dt

we’ll now derive the formula for curves given by polar equations.
7.2.3 Polar Form

Suppose a curve is given by r = f(0), 6;<0<6,. The volume of the solid
generated by rotating the area bounded by x = a, x = b, the x-axis and r =

6,
f(6) about the axisis V = nj (rsin 0) % (rcos0)dO. Thus,

6,

0,
V = nt [ £(6) sin 01" [£ (6) cos O - f(0) sin 0] dO

0,

Let’s use this formula to find the volume of the solid generated by a
cardioid about its initial line.

Example 3: The cardioid shown in Fig. 12 is given by r=a (1 + cos 0).

y 4

[ P(r,0)
{//>{-\
. ,/a) ) \ A

Fig. 12

X"-
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The points A and O correspond to 6 = 0 and O = =, respectively. Here,
again, we need to consider only the part of the cardioids above the initial
line. Thus,

0
d

V = | n(rsin 0)° — (r cos 0)dO

{ ( ) de( )
= na3j (1+ cos 8)* sin’0 (1 + 2 cos 0) d6, since r =a (1 + cos 0)

0

= TE3.[SSi1’13 9cos3 94cosg(4cos2 o_ ljde

0 2 2 2 2

=128ma’ Isin3 90059 9de — 327:213_|.sin3 90037 QdO
7 2 2 0

/2 n/2

=256ma’ fsin3 dpcos’ pdp—32ma’ j'sin3 dcos” ddd, where ¢p=0/2.
0 0

64na’ 8ma’ . .
= - on applying a reduction formula.

15 5

In all the example that we have seen till now, the axis of rotation formed a
boundary of the region which was rotated. Now we take an example in
which the axis touches the region at only one point.

Example 4: Let us find the volume of the solid generated by revolving the
region bounded by the parabolas y = x* and y* = 8x about the x-axis. We
have shown the area rotated and the solid

Y A

“

ol
>y

() (b)

Fig. 13



Here, the required volume will be the difference between the volume of
the solid generated by the parabola y*= 8x and that of the solid generated
by the parabola

: 2 x* 1 48
y=x". Thus V = n“ 8x dx —J‘X“dx} = 7{4){2 - ?}

0 0

0

Check your progress

(1) Find the volume of the right circular cone of height h and radius
of the circular base t. (Hint.: The cone will be generated by
rotating the triangle bounded by the x-axis and the line y =
(t/h)x).

(2) Show that the volume of the solid generated by revolving the
curve x* 3+y2/ 3=a®? about the x-axis is 32na’/105.

(3) The arc of the cycloid x = a (t —sint), y=a (1 — cos t) in [0, 27]
is rotated about the y-axis. Find the volume generated. (Hint: the
rotation is about the y-axis).

(4) Find the volume of the solid obtained by revolving the limacon r
= atb cos 0 about the initial line.

(5) The semicircular region bounded by y —2 = 4/9 — x* and the
line y = 2 is rotated about the x-axis. Find the volume of the
solid generated.

7.3 Area of Surface of Revolution

Instead of rotating a plane region, if we rotate a curve about an x-axis, we
shall get a surface of revolution. In this section we shall find a formula for
the area of such a surface. Let us start with the case when the equation of

the curve is given in the Cartesian form.

7.3.1 Cartesian Form

Suppose that the curve y = f(x) [Fig. 14] is rotated about the x-axis. To
find the area of the area of the generated surface, we consider a partition
P, of the interval [a, b], namely, P, = {a = Xo< x;< Xp< ....<X,3 1< X,= b}

r 9
B

o a

5

Fig. 14
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Let the lines x = x; intersect the curve in points M, i =1, 2, ...... , n. If we
revolve the chord M; _Mi about the x-axis, we shall get the surface of the
frustum of a cone of thickness Ax; = X; Xj.; . Let As; be the area of the area
of the surface of this frustum. Then the total surface area of all the frusta is

Sn = Zn: ASi
i=1

This S, is approximation to the area of the surface of revolution. The area
of the surface of revolution generated by the curve y = f(x), is the limit of
S, (if it exist), as n —o0 and each Ax;— 0.

Fig. 15

To find the area A of the curved surface of a typical frustum, we use the
formula A = 1t (r; + ;) I, where 1 is that slant height of the frustum and r,
and r; are the radii of its bases (Fig. 15).

In the frustum under consideration the radii of the bases are the ordinates
f(xi.1) and f(xj). We assume that f is derivable on [a, b] and f ' is
continuous. Then by the mean value theorem we obtained Ay; = ' (t;) xi,

[f(XH )2+ f(Xl)] \/(AXi)z N (Ayi)z

for some tie [xi.1, xi]. AS, =27
where f(x;.1) + f(X;))/2 is the mean radius of revolution

- 2ny”T+yi T+[F(t)T Ax, and

S, = 2niyi-lT+yu/1+[f'(tl)]2 AX,

Proceeding to the limit as n —o0, and
each A x;—0, we have

S = 2chif(x) 1+[f'(x)]*dx



~sin the lim Ax;—0, v,—>f(x), — f(x), y;.y—~>f(xX)and f () —

b
f(x)= 2712_[ y/1+ (dy/dx)*dx

Example 5 : Let us find the area of the surface of revolution obtained by
revolving the parabola y* = 4ax from x = a to x = 3a, about the x-axis.

Y 4

y2=4ax

—
o X
Fig. 16
3a d 2
The area of the surface of revolution. S = 271'[ N2 11+ (d_y] dx.
a X
2 3a
where y*= 4ax, j—y =2 Hence, S=2mn Iy 1+4a’/y’dx
X y a

= 271:3J?1/y2 +4a’dx = ZnT\/ 4ax +4a’dx
= 47t\/gT\/X +adx = 4Tc\/5§ [(x + a)m]za
:%[ 3/2 _23—2]

Instead of revolving the given curve about the x-axis, if we revolve it
about the y-axis, we get another surface of revolution. The area of the
surface of revolution generated by the curve x = g(y), ¢ <y < d, as it

d
revolves about the y-axis is given by, S = 27TJ. x+/1+ (dx /dy)*dy
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7.3.2 Parametric Form

Suppose a curve is given by the parametric equations x = ¢ (t), y = V(t),

te [ao, B]. Then dy _y'(t)

dx  ¢'(t)

Substituting this in formula (10), we get the area of the surface of
revolution generated by the curve as it revolves about the x-axis, to be

B
S =27 [W(O{[O'(OF +[w'(t)] dt

7.3.3 Polar form

If r = h (0) is the polar equation of the curve, then the area of the surface
of revolution generated by the arc of the curve for 6,<6<6,, as it revolves

0,
about the initial line, is S =27 [rsin0)+/r” +(dr/d0)* dt
6,

Example 6: Suppose the asteroid x = a sin’t, y = a cos’t, is revolved
about the x-axis. Let us find the area of the surface of revolution. You will
agree that we need to consider only the portion of the curve above the x-
axis.

For this portion y > 0, and thus t varies from - ©/2 to m/2.

dx d
— =3a sin’t cost, &_. 3a cos’t sin t
dt
dx )’ dy ’ 2 .2 2
Therefore, | — | +| — | =9a” sin” t cos™ t. We therefore get,
dt dt
n/2
S=2m J‘acos3 ‘[\/9212 sin® tcos’ t dt
-n/2
n/2
=2n j‘acos3 t|3asintcost|dt
-/2

n/2
=6na’ Iacos3t|sint|dt
-n/2

/2 n/2

5
. cos t
=12ma’ Icos4 tsintdt=—12ma’
0

0

Example 7: suppose we want to find the area of the surface generated by
revolving the cardioid r = a (1 + cos 0) about its initial line.

Notice that the cardioid is symmetrical about the initial line , and extends
above this line from 0 = 0 to 0 = n. The surface generated by revolving the



whole curve about the initial line is the same as that generated by the
upper half of the curve. Hence.

S=2r[rsin@yr’ +(dr/d6)’do

= 2nj a(1+ cos 0)sin 0,/1* + (dr/d6)*do
0
: dr .
Sincer=a (1 + cos 0), and d_ =-asin 0, we have

2 drY 2 2., .2 2 > 28
r-+ @ =a"(1+cosB) +a sin"®=4a"cos” —

Therefore,

S= 2nj a(1+ cos 0)sin 02a cos 9 d0 =4mra’ I 4sin 9 cos” 9 do
0 2 0 2 2

n/2

=327a’ [sing  cos'¢ d ¢,  where o = 62
0

n/2

—cos’ _ 32ma’

5

=32ma’

Check your progress

(1) Find the area of the surface generated by revolving the circle r = a
about the x-axis thus verify that the surface area of a sphere of
radius a is4na’.

(2) The arc of the curve y = sin x, from x = 0 to x = 7« is revolved
about the x-axis. Find the area of the surface of the solid of
revolution generated.

(3) The ellipse x*/a*+y*/b*= 1 revolves about the x-axis. Find the area
of the surface of the solid of revolution thus obtained.

(4) Prove that the surface of the solid generated by the revolution

t3
about the x-axis of the loop of the curve x =t*, y — (t — ?j 1s

3.

(5) Find the surface area of the solid generated by revolving the
cycloid x =a (0 - sin 8), y =a (1 — cos 0), about the line y = 0.
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7.4 Summary

In this unit we have seen how to find
(1) The lengths of curves
(2) Volumes of solids of revolution and
(3) The areas of surfaces of revolution

In each case we have derived formulas when the equation of the curve is
given in either the cartesian or parametric or polar form. We give the
results here in the form of the following tables

Length of an arc of a curve

Equation Length
y =f(x)

j. 1+[f'(x)] dx

x=g(y) d
- JVT+E (T dy

C

X= B
y= i)’((tt)) I\/W(t)z] +[y'(t)]dy
r=1(0 B

v [NIf@F +[f'(0)1 do

[0}

Volume of the solid of revolution

Equation Volume
y = f(x) b
about x —axis n! y dx
x=g(y) <,
about y — axis n_!‘ y dx
= d(t), y = P(t b
Yoy A [y(OF (s
about x — axis !

r=h(©) i h(0) sin 0] [h'(0)cosO - h(0
T sin '(0)cosb -
about the initial line (;[1 [h(6) I ) ©)

sinc0]dO
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Area of the surface of revolutions

Equation Area

about x —axis

Y= 2njf(x) 1+ [ () dx

about y — axis

s 2 x(yWT+ g (3T dy

X= 40,y =¥ 2 WOV OF + v (O de

about x — axis

about the initial line

:h e 02
r=h© 27 [rsin 04/t +(dr/d)’do
6,

7.5 Terminal Questions
1. Find the volume of the paraboloid generated by the revolution
about X- axis of the parabola v* = 4ax from x=0 to x=h.
(Ans: 2wah®)
2. Find the volume of the spherical cap of height h cut off from a
sphere of radius a.
(Ans Th? (a—~h)
3. Find the volume of the solid generated by revolving the ellipse
;; + ;:_ =1 about X-axes
( Ans Eirmb:)
4. Find the volume when part of the ellipse ;— + u— =1lcutofby a

latusrectum revolves about the tangent at the nearest vertex .

b 2 2 ——% 2 . —1b
(Ans— {Ea'b — b* —3abva® —b*—3a’. sin? —} )
=2 o
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