
Computer Architecture

Course Design Committee
Prof. Ashutosh Gupta Chairman
Director (In-charge)
School of Computer and Information Science, UPRTOU Allahabad

Prof. Suneeta Agarwal
Member
Department of CSE
MNNIT Allahabad, Prayagraj

Dr. Upendra Nath Tripathi
Member
Associate Professor, Department of Computer Science
Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur

Dr. Ashish Khare
Member
Associate Professor, Department of Computer Science
University of Allahabad, Prayagraj

Ms. Marisha Member
Assistant Professor (Computer Science)
School of Science, UPRTOU Allahabad

Mr. Manoj Kumar Balwant Member
Assistant Professor (Computer Science)
School of Science, UPRTOU Allahabad

Course Preparation Committee
Dr. Brajesh Kumar Author
Associate Professor
Departement of CS & IT
Mahatma Jyotiba Phule Rohilkhand University- Bareilly

Dr. Manu Pratap Singh Editor
Professor, Department of Computer Science Engineering
Dr. Bhimrao Ambedkar University, Agra

Mr.Manoj Kumar Balwant
Coordinator
Assistant Professor (computer science),
School of Sciences, UPRTOU Allahabad

 Bachelor of Computer
Application

Uttar Pradesh Rajarshi Tandon BCA-EC
 Open University

Block

1
PROCESSOR BASICS

Unit 1

CPU Organization

Unit 2
Data Representation

Unit 3
Instruction Sets

BLOCK INTRODUCTION

This block deals with the basic concepts of computer architecture. It provides the insight

into fundamentals of computer organization, data representation, and instructions. The

block is divided into three units: Unit 1, Unit 2, and Unit 3. The Unit 1 discusses the

evolution of computer systems with emphasis on technological development,

processing, storage, etc. The development of computers from the first generation to the

fifth generation is presented. The central processing unit and its major components are

explained. Unit 2 introduces the number systems and different number representations.

The methods of conversion from one number system to other number systems are

explained. Unit 3 explains how the computer system is given commands with the help of

computer instructions. The computer instruction formats and their memory

representation are discussed.

UNIT-1 CPU Organization

Structure
1.0 Introduction

1.1 Objectives

1.2 First Generation Computers

1.3 Second Generation Computers

1.4 Third Generation Computers

1.5 Fourth Generation Computers

1.6 Fifth Generation Computers

1.7 Central Processing Unit

1.8 Bus Organization

1.9 Summary

Review Questions

Unit 1: CPU Organization

1.0 Introduction
A computer is an electronic device that can perform a large range of computational

tasks by manipulating data or information. Modern computers are able to store,

retrieve, and process data according to the given set of instructions or program. The

first electronic computers were developed during late 1940s. The early computers were

able to perform mainly numerical computations. The modern computer systems are

based on binary number system. The numbers in binary system are represented by just

two types of digits: 0 and 1. The digits in binary system are called as bit and computers

that use binary number system are known as digital computers. Digital computers

represent the information in the form of a group of bits. The computer systems evolved

over the years witnessing a significant progress in technology.

The digital computer systems have three main modules: Central Processing
Unit (CPU), Memory, and Input/Output (I/O) systems. Each module contains their

internal components. Both memory and I/O systems are connected to CPU through

some communication interfaces. All components work collectively to provide the desired

results. The CPU acts like a brain of the computer, which carries out the most of

operations and data manipulation. The memory provides storage for the data and

instructions. The CPU can access the data and instruction from the memory. The I/O

system consists of various input and output devices including keyboards, printers,

mouse, and camera, etc. These devices are used provide data to and from the users.

The Computer Organization is concerned with how the different hardware components

or operational units in a computer system work and with the way they are linked

together. The Computer Architecture is concerned with the instruction sets,

representation of data types, techniques for memory addressing, methods for I/O

operations, etc. The programmers are concerned with the computer architecture, while

computer organization deals with low level designing.

The computer system executes a set of instructions to perform a particular task.

The instructions are grouped in the form of a program. The program performs a variety

of operations depending on the algorithm. It needs to process some data during the

course of execution. The data could take many different forms from simple to complex

structures. It is necessary to store the data in computer system for the processing. The

data storage is a highly important requirement for the computer system so that data

could be stored and subsequently retrieved when needed. The movement of data is

also equally important. Data may originate outside the computer system. It goes into

and moves out of the computer system through a set of I/O devices. The movement is

done through some communication lines. The various events in the system should be

controlled to manage and efficiently utilize the various resources.

1.1 Objectives
The major objectives of this unit are as follows.

1. To provide the knowledge on the evolution of computer systems.

2. To provide overview on the technological progress of the computers.

3. To understand the major modules of the computer system.

4. To discuss the basic organization and architecture of computer system.

1.2 First Generation Computers
World’s first electronic computer named as Electronic Numerical Integrator And
Computer (ENIAC) was developed at University of Pennsylvania by Professor John

Mauchly and his student John Eckert in 1946. It was a huge machine occupying 1500

square feet space, weighing around 30 tons, and consuming 140 kilowatts power to

operate. It was a decimal machine implemented using more than 18000 vacuum tubes.

It used 10-digits decimal number and each digit was represented by a group of 10

vacuum tubes. It was capable of performing 5000 additions in a second. ENIAC had to

be programmed manually by adjusting cables and switches, which was its major

drawback.

The programs of ENIAC were not stored memory. Therefore, it was a tedious job

to alter a program as it required to set switches on/off and plugging/unplugging cables.

Later, an idea of stored program concept was given by John von Neumann, who was

also involved with ENIAC project as a consultant. He proposed an idea of a machine

Electronic Discrete Variable Computer (EDVAC) based on stored program concept.

John von Neumann developed a new stored program computer named Institute for
Advanced Studies (IAS) computer in 1952, which can be considered as a prototype

for the modern general purpose computers. The architecture of IAS computer also

known as Von Neumann architecture is shown in Figure 1.1 It consists of a main

memory that stores both data and instructions, an Arithmetic and Logic Unit (ALU)
capable of performing arithmetic and logical operations, a Control Unit (CC)
responsible for the interpretation of instruction and causing them to execute, and Input
Output (I/O) equipment operating under the control unit. The contents of the memory

are addressable by location. The instructions are executed in sequential way. IAS

computer uses a binary system representing both data and instructions in binary form.

Its memory consists of 1000 storage locations called words. Each word contains 40

binary digits. The control unit fetches the instruction from memory causing them to

execute sequentially.

Main Memory I/O

Arithmetic
Logic Unit

Program
Control Unit

Central Processing Unit

Figure 1.1: von Neumann structure of computer system

Eckert-Mauchly Computer Corporation developed the first commercially

successful computer named Universal Automatic Computer I (UNIVAC I). It was

capable of performing matrix algebraic computations and solving statistical and

logistical problems. Later UNIVAC II, came into the market with larger memory capacity

and higher performance in 1950. The major success of the UNIVAC division its 1100

series of computers. However it was intended for scientific applications involving

complex and long calculations. IBM launched its first electronic stored-program

computer named 701 in 1953, which was also intended primarily for scientific

applications. Later IBM introduced 702 and other 700/7000 series computers. Major

highlights of the first generation computers are vacuum tubes, magnetic drum

memories, and machine language programs. These computers were highly sequential

able to solve only one problem at a time. The punch cards and paper tapes were used

for input and output was obtained through printouts. These computers were in trend till

1956, when transistor based computers evolved in late 1950s.

1.3 Second Generation Computers
Development of transistor in 1947 at Bell Labs was great invention that revolutionized

the computer world during late 1950s. The vacuum tubes were replaced by the

transistors in electronic computers leading to the rise of second generation of

computers. The transistor is a solid-state device, which is smaller in size, lower in cost,

and generate lesser amount of heat as compared to vacuum tubes. The use of

transistors was the major feature of the second generation computers, although the

input and output operations were still performed with the help of punch cards/tapes and

print outs respectively. The use of multiplexor is another important highlight of the

second generation. The multiplexor allows CPU and data channels to act

independently. The computers became much smaller called as mini-computers with

better processing speed, larger memory capacity, and more complex ALU and controls

units than previous generation computers. The computers moved from binary/machine

language to assembly language. Early versions of some high level languages also

came into existence in that era. The memory also moved from magnetic drum to

magnetic core technology. Digital Electronic Corporation (DEC) product PDP-1 and IBM
7094 are the examples of second generation computers.

1.4 Third Generation Computers
The era of third generation computers witnessed the emerging of microelectronics that

significantly reduced the size of the computers and drastically improved the processing

and efficiency of the computers. The development of Integrated Circuit (IC) was the

revolutionary achievement of that era that changed the electronic industry broadly. IC

allows to fabricate many components such as registers, transistors, logic gates, and

memory cells onto a thin silicon wafer. The keyboards and monitors interfaced with an

operating system replaced the punch cards and printouts. The cost of the computers

reduced so much that these machine became accessible to mass audience first time.

IBM System/360 and DEC PDP-8 are the examples of third generation computers.

1.5 Fourth Generation Computers
In year 1971, Intel developed a chip Intel 4004 that placed CPU, memory, and I/O

controls all onto a single chip leading to the birth of microprocessor. The next major

breakthrough was the development of Intel 8008 in 1972. It was the first 8-bit

microprocessor. Later in 1974 Intel introduced its first general purpose microprocessor

Intel 8080. Like Intel 8008, Intel 8080 was also a 8-bit processor but it was faster having

more rich instruction set, and larger addressing capabilities. By the end of 1970s, the

16-bit microprocessor also began to appear. One such processor was Intel 8086. The

journey continued and a number of 16-bit to 64-bit processors were developed in

subsequent years including Pentium, Pentium Pro, Pentium II, Pentium III, Pentium

IV, Core2Duo, and Core2Quad, etc. During that period the microprocessors came out

of the realm of computers and microprocessors began to use in home appliances and

other everyday products. Apple introduced the Macintosh operating system in 1984

that gained popularity with Apple devices. The increasing processing power of small

computers lead to the computer networks that ultimately gave birth to Internet. The use

of Graphical User Interface (GUI) based software, use of mouse, and development of

laptops and other hand-held devices were the major advances of this era.

1.6 Fifth Generation Computers
The research and development in the field of microprocessors, memory, I/O controls

and other related components of computing devices continues. In recent times Intel

produced another revolutionary microprocessors such i3, i5, i7, i9, and Xeon series

processors, etc. with more processing power. This era observed the production of

laptops and hand-held devices at economical cost. The machines with high processing

power, larger memories, and high storage capacity are now available at affordable

prices. The parallel processing with multi-core processors and Graphics Processing
Units (GPU) is thrust of modern computers. Computers have become household

commodities. Now computers with artificial intelligence are under development.

Quantum computing, Nano technology, and massive parallel processing are the

essence of future generation computers.

Check your progress 1
1. Define a computer system.

2. Write the names of three major modules of a digital computer system.

3. Differentiate computer organization and computer architecture.

4. Write the name of the first electronic computer.

5. Write the name of the first commercially successful electronic computer.

6. Differentiate UNIVAC I and UNIVAC II.

7. What are the major features of the second generation computers?

8. What is transistor?

9. How is a multiplexor works?

10.What is the revolutionary achievement of the era of third generation computers?

11.Write two examples of third generation computers.

12.Which microprocessor is the first 8-bit microprocessor?

13.When did GUI based software appear?

14.Write the current generation of the computers.

15.What is the thrust of the fifth generation computers?

Figure 1.2: Major components of CPU

1.7 Central Processing Unit
Virtually all contemporary computer design are based on von Neumann architecture as

shown in Figure 1.1. A computer consists of three main modules: CPU, memory, and

I/O components. Both data and instructions/programs are stored in a single memory. It

is a read-write memory whose data/instructions are addressable by their location. These

.

.

.
Control Unit

Register Set

ALU

three modules are interconnected in some way to achieve the program execution. The

instructions are executed sequentially unless explicitly specified otherwise. The

behaviour of a computer system can be described by explaining the behaviour of each

module. In this section, the functions of CPU are discussed. The program execution is

actually done by CPU, which reads instructions specified in a program from the memory

and executes them. A typical CPU consists of three major components: a set of

registers, ALU, and Control Unit (CU) as shown in Figure 1.2.

The main functions of CPU are to fetch instructions from memory, decode

instructions and execute, read-write data from/to memory, and data transfer from/to I/O

devices. Registers are used to hold instructions, memory addresses, and other kind of

data within the CPU. ALU is mainly concerned with the execution of arithmetic and

logical operations. CU is responsible for providing directions to ALU, memory, and I/O

systems to respond to the instructions. The CPU can be divided into two sections: data

section and control section. Data section contains registers and ALU. Control section

basically contain control unit only. Data section performs operations on data elements

and control section issues signals to control the flow of data.

1.7.1 Register Set
The registers are extremely fast memories within CPU that are used to temporarily hold

the data. The number and type of registers vary from computer to computer. During the

execution of an instruction, the CPU needs to read and store intermediate results into

memory. But the data transfer between CPU and memory is time consuming as

memory is too slow compared to processor. Therefore, it is convenient to store

intermediate results in processor registers during the operation. There are different

types of registers that are used for different purposes.

General Purpose Registers are multipurpose registers that can store both data

elements and memory addresses. Programmers can use general purpose registers in a

variety of ways. There are four general purpose registers in Intel 8086 microprocessor:

AX, BX, CX, and DX. The description of four general purpose registers is as follows.

AX: Known as accumulator register, it is preferred for the most of the operations.

BX: Known as base register, it is used to store memory address.

CX: Known as count register, it is used in looping.

DX: Known as data register, it is used for multiplication and division operations.

Each of these registers can be used as two 8-bit registers or a single 16-bit register.

Eight high-end bits (high-end byte) are referred as AH and eight low-end bits (low-end

byte) are referred as AL for register AX as shown in Figure 3. Other three registers are

also work in the same manner. Modern 32-bit Intel processors have eight general

purpose registers while there are 16 such registers in 64-bit Intel processors.

Memory Access Registers are needed for memory read/write operations.

These registers are used by CPU exclusively and are not directly available for the

programmers. For each memory read/write operation, two registers are required:

Memory Data Register (MDR) and Memory Address Register (MAR). MDR is used

to hold the data to store/fetch into/from memory and MAR keeps the address of the

memory location.

AX:

15 AH 8 AL 0

BX:

15 BH 8 BL 0

CX:

15 CH 8 CL 0

DX:

15 DH 8 DL 0

Figure 1.3: Use of single 16-bit register as two 8-bit registers

Instruction Fetching Registers are used in the instruction fetch operation.

There are two main registers namely Instruction Register (IR) and Program Counter
(PC) used to fetch the instructions from the memory. IR is used to store the fetched

instruction and PC contains the address of memory location of the next instruction to

fetch. PC is updated after each successful fetch operation. A special register known as

Program Status Word (PSW) is used to maintain status information of the executing

program. The bits of PSW are set by the CPU to indicate the current status. In addition

some Condition Registers and Control Bits/Flags are also used to maintain the

status of the program.

The flags are as follows.

Aux Carry: Set if there is a carry from bit 3 to bit 4

Carry: Set if the last unsigned arithmetic operation had a carry

Direction: Used for block transfer of data

Interrupt: Set to enable/disable interrupt

Overflow: Set if the last signed arithmetic operation overflowed

Parity: Used for a parity check

Sign: Set if the result of last arithmetic operation is negative

Trap: Set after each instruction if CPU should halt.

Zero: Set if the result of last arithmetic operation is zero

There are set of Special Purpose Registers that are used to load only specific

information. Index Register (IR) contains offset from a segment register for the operand

that need to fetch. The contents of IR are added to the segment register to obtain the

memory address of the operand. There are four Segment Pointers known as Code
Segment (CS), Data Segment (DS), Stack Segment (SS), and Extra Segment (ES)
that contain base locations for program instructions, data elements, or stack. CS is used

to hold base location of program code, DS contains base location for variables, base

location of the stack is loaded in SS, and ES is an additional register for the base

location of the variables. Stack is a data structure in which last element stored is

retrieved first. A register known as Stack Pointer is used to indicate the top of the

stack. When a data element is stored in the stack, the stack pointer is

incremented/decremented depending on whether stack grows up/low in memory.

1.7.2 Arithmetic Logic Unit
Arithmetic Logic Unit (ALU) is an electronic component that is implemented using logic

devices. The logic devices are capable of storing binary digits and perform Boolean

operations. It performs the arithmetic, logical, and related operations. The major

arithmetic operations are addition, subtraction, multiplication, and division. The major

logical operations are AND, OR, and NOT, etc. ALU is connected to other components

of the CPU that are supposed to provide the data to it, where desired operations are

performed and results are sent back. The data elements are sent to ALU by writing

values to its registers. All information is stored in binary form. The operations are

performed using transistor switches and by connecting multiple transistors. The results

are also provided by storing the data in registers. ALU may also provide the results by

setting the flags.

1.7.3 Control Unit
The actions of CPU are controlled by the Control Unit (CU), which issues micro-orders

to CPU and I/O systems. The micro-orders are sent in the form of control signals over

dedicated control lines. The flow of data between CPU and other units is controlled by

the CU. There are two different types of CU: hardwired and micro-programmed. In a

hardwired CU, the control signals are generated by fixed logic circuits. On the other

hand in micro-programmed CU, the controls signals are stored in a special memory

called control memory in the form of microinstructions. The control memory is not

accessible to the users or programmer. A sequence of microinstructions is called micro-

program that is stored in control memory. The hardwired CU is faster and economical

than micro-programmed CU. But micro-programmed CU can easily adapt to the

changes in the system.

1.8 Memory

Memory is another important component of the digital computer system. It is required to

store program and related data. The data and program instructions are transferred

between memory and processor during the operation. The memory is an expensive

component and often it is not large enough to accommodate the entire program and

data. But not all the information is required by the processor at the same time.

Therefore, a small memory can support a larger program with the help of a low-cost

backup storage. The programs and data are kept in backup storage. Only the currently

required programs or data are brought in memory from the backup storage as per need.

The low-cost storage are larger in capacity but slower in speed. It is important to make a

balance among speed, size, and cost of the memory. Therefore, a combination of

different types of memory devices are used in the computer system. Different memories

vary in their characteristics and several attributes. A relatively fast storage unit is known

as the primary or main memory of the system. The main memory is volatile in nature

that loses the entire data when there is no power. It cannot store the data permanently.

While the low-cost backup storage is known as the secondary memory. The secondary

memory is slow in speed but it can store the data permanently even in the absence of

the power. The technology used to access the data from the storage is also different in

different memories that will be discussed later in subsequent units.

1.9 I/O System
I/O devices in a computer system are required to perform fundamental input output

operations. The I/O devices are a medium of communication between computer system

and outside world. The I/O devices are also known as peripheral devices. The most

common devices are keyboard, mouse, printer, and display units, etc. The peripheral

devices communicate with CPU through communication lines. The peripheral devices

are too slow as compared to the CPU. Therefore, for the proper functioning of the

system a synchronous mechanism is required.

An interface unit is associated with each peripheral device that receives the

command and control signals from I/O bus. The I/O bus connects the processor to

interfaces of all the peripheral devices. The processor issues the commands to the

peripheral devices that are decoded and interpreted by the interface. There are different

types of commands such as control, status, data input, and data output commands that

can be issued to a device. A control command is used to activate the peripheral device

and inform it to perform the specific operation. The status command is issued to test the

device status condition. A device could be in various status conditions such as ready,

busy, and error, etc. In case of data input command, the data is transferred from the

device to the I/O bus. While, data output command causes the data transfer from I/O

bus to the device. The peripherals not only communicate with processor but they also

communicate with the main memory. A separate bus is used between memory and

peripherals.

Data transfer between peripherals and CPU could performed in different modes

including Programmed I/O, Interrupt-initiated I/O, and Direct Memory Access (DMA). In

programmed I/O, the data transfer is done with the help of a program and CPU takes

active part in the operation. It results in loss of useful CPU cycles. In interrupt based

approach, the CPU does not continuously involved in the data transfer, instead it

initiates the process and goes back to its normal work. In DMA, the data transfer takes

place between I/O devices and memory through memory bus.

1.10 Bus Organization
The data transfer and issuance of control signals between different components of the

computer system are performed with the help of system buses. A system bus is a group

of wires or printed circuits that permits bidirectional communication among the different

components of computer. A system bus may have 50 to 100 communication lines. The

system buses can broadly be divided into three categories: data buses, address buses,

and control buses. Data buses carry data elements, address buses provides memory

address to place the data, and control buses carry control signals between CU and

other components of CPU. There are three different types of bus organizations used in

computer systems: one-bus, two-bus, and three-bus organizations. The one-bus

organization makes use of one bus for the incoming and outgoing data between

registers. Single bus can carry only one operand or data element during a clock cycle.

Therefore, for the operations that need two operands, two clock cycles are required to

fetch the data. The one-bus organization is the most simple and the least expensive but

it slows down the performance of the system as it can transfer only one data element in

a cycle. In the two-bus organization, the general purpose registers are connected to two

buses. Whenever, there is a need of two operands, both operands can be transferred at

a time. The two-bus organization is faster but expensive also than one-bus organization.

The three-bus organization uses two buses to move data to the registers and one bus is

used for transferring the output from the registers. By using more buses, more data can

be transferred at a time, but it also increases the cost of the system.

Check your progress 2
1. List the main modules of a computer system.

2. What are the main functions of CPU?

3. Write the major components of CPU.

4. What is the role of ALU in CPU?

5. What is a register?

6. List the general purpose registers in Intel 8086.

7. What kind of information is stored in MDR and MAR?

8. What is program status word?

9. How many types of control unit are there? Write the names of different control units.

10.Differentiate primary memory and secondary memory.

11.What is the role of interface unit in I/O system?

12.List the different data transfer modes for I/O devices.

1.11 Summary
Modern computers evolved after the continuous technological advancements through

different generations. Each generation of computers has a hallmark technology from

vacuum tubes to multi-core processors that revolutionized the contemporary era.

However, the most of computer systems are based on von Neumann architecture

proposed by John von Neumann several decades ago. According to von Neumann

architecture, the computer systems have three main modules: CPU, memory, and I/O

systems. The CPU further has three main components: ALU, CU, and a set of registers.

The most of the arithmetic and logical operations are carried out by ALU and CU issues

instructions in the form of control signal to different components that act accordingly.

The registers are extremely fast memories that temporarily hold the small piece of data

during the operations. All components work collectively to complete the operations. The

communication with CPU or between CPU and other modules takes place through

systems buses.

Memory is another important component of the digital computer system. It is

required to store program and related data. The data and program instructions are

transferred between memory and processor during the operation. The programs and

data are kept in a backup storage. Only the currently required programs or data are

brought in memory from the backup storage as per need. A relatively fast storage unit is

known as the primary or main memory of the system. The main memory is volatile in

nature that loses the entire data when there is no power. While the low-cost backup

storage is known as the secondary memory. The secondary memory is slow in speed

but it can store the data permanently even in the absence of the power.

I/O devices in a computer system are required to perform fundamental input

output operations. The I/O devices are a medium of communication between computer

system and outside world. The I/O devices are also known as peripheral devices. The

peripheral devices are too slow as compared to the CPU. Therefore, for the proper

functioning of the system a synchronous mechanism is required. An interface unit is

associated with each peripheral device that receives the command and control signals

from I/O bus. The I/O bus connects the processor to interfaces of all the peripheral

devices. The processor issues the commands to the peripheral devices that are

decoded and interpreted by the interface. The peripherals not only communicate with

processor but they also communicate with the main memory. A separate bus is used

between memory and peripherals. Data transfer between peripherals and CPU could

performed in different modes including Programmed I/O, Interrupt-initiated I/O, and

DMA. The involvement of CPU in I/O operations is minimal in case of DMA.

The data transfer and issuance of control signals between different components

of the computer system are performed with the help of system buses. A system bus is a

group of wires or printed circuits that permits bidirectional communication among the

different components of computer. The system buses can broadly be divided into three

categories: data buses, address buses, and control buses. Data buses carry data

elements, address buses provides memory address to place the data, and control

buses carry control signals between CU and other components of CPU. By using more

buses, more data can be transferred at a time, but it also increases the cost of the

system.

Review Questions
Q1. Describe the development of computer systems through different generations

with emphasis on hallmark technology for each generation.

Q2. With the help of a suitable figure, explain the von Neumann architecture.

Q3. Write main components of CPU with their major functions and describe CPU

organization with the help of a figure.

Q4. How many types of registers are there in register set of CPU? Explain utility of

different registers.

Q5. What is system bus? Write different bus organization with their important

features.

Q6. A computer system consists of different kind of storages. Explain the reason.

Q7. Why is the I/O system required in a computers system? Explain how data

transfer takes place between I/O devices and CPU.

Unit 2: Data Representation

Structure

2.0 Introduction

2.1 Objectives

2.2 Number System

2.3 Negative Number Representation

2.4 Range Extension

2.5 Fixed-Point Numbers

2.6 Floating-Point Numbers

2.7 IEEE Floating-Point Standard

2.8 Summary

Review Questions

Unit 2: Data Representation

2.0 Introduction
The arithmetic logic unit (ALU) is an important component of the central processing unit

(CPU) that performs arithmetic and logic operations on data. The data elements are

transferred from memory or I/O devices to ALU for the processing. Data representation

refers to the form in which data can be stored, processed, and transmitted. The data

presented to ALU are stored in registers. The registers are made of flip-flops, which are

two-stage devices. Therefore, binary-coded representation of data is the most suitable

for digital computers. There are three major types of data elements used in computer

systems: numbers, alphabets, and special characters. All these data elements can be

represented in binary-coded form.

A number system with base r is a system that uses distinct symbols to represent

r distinct digits. The base is also known as radix. Other numbers are represented in

terms of those r digits. For example, the decimal number system having base 10, uses

10 distinct symbols for digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. All other numbers are the

combinations of these 10 digits. Similarly binary number system uses a base 2, octal

number system has a base 8, and base or radix for hexadecimal number system is 16.

An unsigned integer number N can be represented in a base r number system using n

digits as (an-1an-2...a1a0)r, 0⩽ai⩽r - 1. The binary number system is highly useful for

digital computers. Any data numeric or alphanumeric is internally represented in binary

form in a computer system. The software or programmers need to interpret the binary

pattern appropriately. The interpretation of binary pattern is called data representation.

Other number systems such as decimal number system are also important as users are

more convenient with this to perform different types of operations. Sometimes it is

necessary to convert a number from one representation to other representation. The

numbers in one system can be converted to other number systems with help of some

algorithms or methods.

2.1 Objectives
The major objectives of this unit are:

1. To acquire basic knowledge of number systems.

2. To learn conversion of numbers in one system to the numbers in another system.

3. To learn different representations of data.

2.2 Number Systems
The binary number system is the most suitable system for digital computers. There are

only two symbols 0 and 1 in binary number system. Each number is represented as

string of 0 and 1. There are other number systems such octal and hexadecimal. In octal

number system, eight different digits 0, 1, 2, 3, 4, 5, 6, 7 are used to represent the

numbers. On the other hand, in hexadecimal representation sixteen different digits 0, 1,

2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. The numbers in different number systems can be

converted to other number systems using Radix Conversion method. To convert a

number representation in base (or radix) b1 to another number system with base b2,

the number is successively divided by b2 and remainders are noted down until quotient

becomes zero. Similarly, a fractional part of the number can be converted to other

representation by successively multiplying the fractional part by b2 and noting down the

resulting integers. However, in case of fractional part conversion, the conversion may

not terminate after the finite number of multiplications.

2.2.1 Decimal to Binary Conversion and Vice Versa
Let us consider the conversion of decimal numbers to binary numbers for example

(67)10 is converted to binary representation as follows.

Division by 2 Quotient Remainder

67÷2 33 1

33÷2 16 1

16÷2 8 0

8÷2 4 0

4÷2 2 0

2÷2 1 0

1÷2 0 1

The resultant binary string is obtained by writing remainders bottom to up (in reverse

order). The equivalent binary string for 67 is therefore would be (1000011)2. The binary

string (1000011)2 can be converted to decimal number by writing binary numbers as

power of 2 as follows

1 × 26+ 0 × 25+ 0 × 24+ 0 × 23+ 0 × 22+ 1 × 21+ 1 × 20

= 64 + 0 + 0 + 0 + 0 + 2 + 1

= 67

The decimal fraction is converted to binary in a different way. The decimal fraction is

multiplied by the base (or radix) of the intended number system and digits so obtained

are accumulated. The process is repeated until fraction becomes zero. For example

(0.8125)10 is converted to binary number (0.1101)2 by multiplying the decimal fraction by

2 as follows.

Multiplication Result Integer Fraction

0.8125 × 2 1.625 1 0.625
0.625 × 2 1.25 1 0.25
0.25 × 2 0.50 0 0.50

0.50 × 2 1.00 1 0

Write all the integer parts from top to bottom and obtain the binary number (0.1101)2.

The fractional binary string (0.111)2 is converted to decimal fraction as follows

1 × 2-1+ 1 × 2-2+ 1 × 2-3

= 0.5 + 0.25 + 0.125

= 0.875

The power terms of 2 in fractional part always have negative powers.

2.2.2 Decimal to Octal Conversion and Vice Versa
The octal number system is a base 8 system that uses eight digits 0 to 7 to represent

any number. Let us consider the example of decimal representation to octal

representation conversion. The conversion is performed by successive division

operation. Here, the divisor would be 8 as it is base or radix for octal number system. If

(348)10 is a decimal number, it is converted to octal representation as follows.

Division by 8 Quotient Remainder

348÷8 43 4

43÷8 5 3

5÷8 0 5

The octal number is obtained by writing all remainders bottom to up leading to (534)8.

The octal representation to decimal number conversion is done with power terms of 8

as follows

 5 × 82+ 3 × 81+ 4 × 80

= 5 × 64 + 24 + 4
= 320 + 24 + 4
= (348)10

Similarly, we can work with fractional parts as discussed earlier for binary numbers. Let

us convert (0.45)10 to octal representation by multiplying it by 8 and noting the integer

part of the resultant number.

Multiplication Result Integer Fraction

0.45 × 8 3.6 3 0.6
0.6 × 8 4.8 4 0.8
0.8 × 8 6.4 6 0.4
0.4 × 8 3.2 3 0.2
0.2 × 8 1.6 1 0.6

It can be observed from the above table that it is not possible to terminate the

conversion process for (0.45)10 to octal representation in finite number of iteration.

Therefore, it is stopped after desired precision. From above table, the resultant octal

number for (0.45)10 is obtained as (0.34631)8 by noting down all integer parts from top to

bottom. The conversion of fractional octal number to decimal number is done using

negative power terms. For example, let us convert (534.28)8 to decimal representation.

5 × 82+ 3 × 81+ 4 × 80 +2 × 8-1 +8 × 8-2

= 5 × 64 + 24 + 4 + 0.25 + 0.125
= (348.375)10

2.2.3 Decimal to Hexadecimal Conversion and Vice Versa
In hexadecimal number system is a base 16 system. There are sixteen digits: 0, 1, 2, 3,

4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. The hexadecimal digit 'A' is equivalent to decimal

10 and digit 'F' is equivalent to decimal 15. The base 10 numbers or decimal numbers

can be converted to equivalent hexadecimal number by successively dividing it by 16.

Let us consider the example by converting (56356)10 to hexadecimal representation.

The calculations are given in the following table. After successive division operations,

the remainders are noted down from bottom to up. The resultant hexadecimal number is

obtained as (DC24)16.

Division by 16 Quotient Remainder

56356÷16 3522 4

3522÷16 220 2

220÷16 13 12=C

13÷16 0 13=D

The reverse conversion i.e. hexadecimal number to decimal can be performed by using

power terms of 16 in a similar manner as it is done in other number system. For

example, (DC24)16 can be converted to decimal number as follows.

D × 163+ C × 162+ 2 × 161 +4 × 160

= 13 × 163+ 12 × 162+ 2 × 161 +4 × 160

= 13 × 4096+ 12 × 256+ 2 × 16 +4 × 1
= 53248+ 3072+ 32 + 4
= 56356

We can work with fractional numbers in a similar way as we do in other number

systems. The fractional decimal number can be converted to hexadecimal by

successively multiplying by 16 and noting the integers in top-down manner. Let us

convert (0.06640625)10 to hexadecimal. The resultant hexadecimal number is (0.011)16.

Multiplication Result Integer Fraction

0.06640625 × 16 1.0625 1 0.0625
0.0625 × 16 1.0 1 0

0 × 16 0 0 0

2.2.4 BCD Representations
Computer users are more convenient with decimal number system as it is commonly

used in real life. The solution of this problem is that users are allowed to work with

decimal number system and the decimal numbers are converted to binary numbers

while processing them with computers. After completing the processing, the results are

converted back to decimal form. All the data is processed or stored with computers in

binary coded form. The decimal numbers are stored in registers using binary codes.

The conversion of a decimal number to binary coded form is different from converting it

to binary number. In binary coded form, each digit of the decimal number is

independently converted to binary representation. Each decimal digit is represented

with four binary digits. Such a representation is called binary coded decimal (BCD). For

example, the number (542)10 is represented in BCD form as follows

Decimal number BCD

542 0101 0100 0010

The alphanumeric character set used in computers contains alphabet, digits, and some

special characters. All the elements of alphanumeric character set are represented by

binary codes as registers can hold only binary information. American Standard Code for

Information Interchange (ASCII) provides a standard seven bits binary codes for

alphanumeric character set.

Check your progress 1
1. What is radix or base in number systems?

2. The value of radix in octal number system is:

3. Convert (10101)2 to equivalent decimal number.

4. Convert (A2)16 to binary.

5. Convert (A2)16 to decimal.

6. Convert (128)8 to decimal.

7. Convert (321)10 to octal.

8. Convert (45862)10 to hexadecimal.

9. What is BCD representation?

10.How the alphanumeric character set is represented in computer system?

11.Convert (0.00390625)10 to hexadecimal.

12.Convert (0.75)10 to binary.

2.3 Negative Number Representation
In conventional mathematics, the signed numbers are represented with the help of plus

(+) and minus (-) symbols. However, in digital computers everything including sign of a

number must be represented in binary form. All positive numbers and zero can be

considered as unsigned numbers but some mechanisms are required for negative

number representation. In a simple approach, the sign of a number is represented by a

single bit known as sign bit. If the value of the sign bit is 0, the number is a positive

number or a negative number otherwise. The positive numbers are represented in

signed-magnitude form i.e. the most significant bit of the binary string is the sign bit and

remaining bits provide the magnitude of the number. For example, +25 is stored in a 8-

bit register as follows

0 0 0 1 1 0 0 1

Sign bit Magnitude

However, a negative integer can be represented in three different ways:

1. Signed-magnitude representation

2. Signed-1’s complement representation

3. Signed-2’s complement representation

The signed-magnitude represented is same as discussed earlier with sign bit set to 1.

For example the number -25 is stored as follows

1 0 0 1 1 0 0 1

Sign bit Magnitude

The 1’s complement of a negative number is obtained from the signed-magnitude

representation of the positive number by complementing its every bit including the sign

bit. Therefore, 1’s complement of -25 is obtained from +25 as follows

Signed-magnitude representation of +25

0 0 0 1 1 0 0 1

Sign bit Magnitude

Complement each bit to get 1’s complement of -25

1 1 1 0 0 1 1 0

Sign bit Magnitude

The 2’s complement of a number is obtained by adding 1 to the 1’s complement

representation of the number. It is a two-step procedure given as follows.

1. Invert each bit of the binary string including the sign bit.

2. Treat the result of step 1 as an unsigned integer and add 1.

Usually 2’s complement is preferred for arithmetic operations. The 2’s complement of -

25 is obtained from its 1’s complement as follows.

1. First, obtain 1's complement of -25.

 Sign bit Magnitude

2. Add 1 to 1’s complement of -25 to get its 2’s complement

1 1 1 0 0 1 1 1

Sign bit Magnitude

2.4 Range Extension
Usually, the same amount of memory is used to store a particular type of data elements

irrespective of their values. Often n bits are used to store the number even though it

may need on m bits (n>m). In such case, the bit length is increased. The expansion of

bit length is referred to as range extension. For example, signed magnitude notation of

1 1 1 0 0 1 1 0

+25 is 11001 that actually involves only 5 bits. But if we have to store it in an 8-bit

register then we have to increase the length to 8 bits. In signed magnitude notation, the

range extension is simple. The additional bit positions are filled with 0's and the sign bit

is shifted to the new leftmost position. Let us consider the following example.

Number Signed Magnitude

Representation

Range Extension

(8-bit)

Resultant Number

+25 011001 00011001 +25

-25 111001 10011001 -25

Number Signed Magnitude

Representation

Range Extension

(16-bit)

Resultant Number

+25 011001 0000000000011001 +25

-25 111001 1000000000011001 -25

The signed magnitude representation of +25 or -25 requires 6 bits including sign

bit. In order to store it in an 8-bit register, two additional 0's are inserted and sign bit is

shifted to the new leftmost position. Similarly for 16-bit memory, 10 additional 0's are

inserted and sign bit is shifted accordingly. However, this approach does not work with

2's complement numbers. For such numbers, sign extension is used. In sign extension,

the additional bits are filled with sign bit. In other words, additional 0's are inserted for

positive numbers, while additional 1's are inserted for negative numbers as follows.

Number 2's Complement

Representation

Sign Extension

(16-bit)

Resultant Number

+25 011001 0000000000011001 +25

-25 11100111 1111111111100111 -25

2.5 Fixed-Point Numbers

A number may be integer, fraction, or mixed integer-fraction. Therefore, in addition to

the sign of the number, some mechanism is required to separate the integer and

fraction parts of a number. A base point or radix point is the mechanism used to

identify integer and fraction parts of the number. The position of the radix point is used

to decide whether a number is an integer, fraction, or mixed integer-fraction. For binary

numbers, the binary point is specified by a particular location in the register. If the

location of the binary point is fixed i.e. always a specific location to keep the binary

point, the representation is known as fixed-point numbers. The binary point is a kind of

divider between integer and fraction parts. The fixed-point numbers can be given by a

tuple <w, b>, where w is the width of the number i.e. the total number bits used for the

number and b is the position of binary point from the least significant bit. The notation

for a n-bit number is illustrated in Figure 2.1. As shown in the figure, the entire number

length is divided into two parts: Singed integer and Fraction. Each part has a fixed

length. In fact, a number in fixed-point data type is stored as an integer that is scaled by

a specific factor. The scaling factor for a number is an implicit value determined by its

type. For example, a given number 2.34 can be stored as 2340 with scaling factor

1/1000 or a number 2340000 can be also be represented as 2340 with scaling factor

1000.

n-1 0

Signed integer Fraction

 Binary Point

Figure 2.1: Fixed-point number representation

The fixed-point numbers are closely related to integer numbers. In fact, integer

numbers can be consider a special case of fixed-point numbers, where binary point is at

position 0. Therefore, all mathematical operations that a computer can perform with

integers can be applied on fixed-point numbers without any additional hardware. The

fixed-point representation of number is therefore simple and efficient. But the system

has to compromise with the range of numbers as fixed-point representation can

represent only a relatively limited range of numbers.

Check your progress 2
1. What is the value of sign bit for negative numbers?

2. What is the value of sign bit for positive numbers?

3. Determine 1's complement of -45.

4. Determine 1's complement of +45.

5. Obtain 2's complement of -45.

6. What is radix point?

7. How scale factor is determined for a number?

8. What is fixed-point number?

9. What would be radix point for integers?

10.What is range extension?

11.What is sign extension?

12.Perform range extension for +18 and -18.

13.Perform sign extension for +18 and -18.

14.What is the major limitation of fixed-point numbers?

15.How integer numbers are special case of fixed-point numbers?

2.6 Floating-Point Numbers
The fixed-point numbers can be processed at a faster rate with the available capabilities

of the system. But at the same time, only a small range of numbers can be provided

with this representation. To overcome the limitations of the fixed-point numbers, there is

another approach of representing signed numbers known as floating-point. It represents

a number in two parts: mantissa (m) and exponent (e). The mantissa is a fixed-point

number and exponent specifies the location of base/radix point. It is similar to scientific

notation, where a number with base b is written as m × be. For example, a decimal

number 589.621 is written as 0.589621 × 103 in scientific notation. It can be written in

floating-point representation as follows

Mantissa Exponent

+0.589621 +3

Both mantissa and exponent are stored in registers separately. A binary number is

written in the same way with base 2. Both mantissa and exponent use 2’s complement

format. For example, a binary number (+1011.01)2 is written as

Mantissa Exponent

00000101 000011

where mantissa and exponent are 8-bit and 6-bit components respectively. If the most

significant bit of the mantissa is nonzero then the number is called to be normalized.

2.7 IEEE Floating-Point Standard
A working committee of IEEE has developed three standards of floating-point

representations known as: single precision, double precision, and extended
precision. The single precision numbers require a 32-bit word whose representation is

shown in Figure 2.2.

31 30 23 22 0

S Exponent (exp) Mantissa (frac)

Figure 2.2: Single precision floating-point representation

 In the Figure 2.2, S represents the sign bit, exp is the exponent, and frac

represents the mantissa of the number. The mantissa part has 23 bits, exponent takes 8

bits, and remaining 1 bit is occupied by sign part. The sign bit is 0 for a positive number

and 1 if negative. The number is normalized so that the binary point is at right of the

leading 1 i.e. the mantissa is always 1.xxxxxx...xxx in the normalized form. Because

leading bit is always 1, there is no need to store it. It is an implied bit. Therefore,

effectively the mantissa part has 24 bits. For zero, a special representation is used with

all 0’s both for mantissa and exponent fields as well as sign bit. In IEEE standard

floating-point numbers, the exponent part does not use sign-magnitude, 1’s

complement, or 2’s complement format. It uses a biased representation, which is

simply the binary representation of E+127, where E is the actual exponent and the

number 127 is called the exponent bias. The actual exponent is obtained by subtracting

the exponent bias from the stored exponent. Mathematically, the above representation

gives

- 1S.2exp-127.1.frac
The dynamic range of single precision floating-point numbers goes from 1.175 × 10-38

to 3.4 × 1038.
Although single precision floating-point numbers are adequate for the most of the

applications, there is another commonly used alternative is double precision floating-

point numbers. The double precision numbers use 64-bit words. However, arrangement

is similar to the single precision floating point numbers. Only the width of the fields and

exponent bias are different. The arrangement of different fields in the double precision

floating-point representation is shown in Figure 2.3. It uses two 32-bit registers

designated as odd and even registers to make it 64-bit numbers.

 31 30 20 19 0 31 0

S Exp Frac Frac

 Odd Register Even Register

Figure 2.3: Double precision floating-point representation

Mathematically, the above representation gives

 - 1S.2exp-1023.1.frac

where S is the sign bit, exp is 11-bit exponent, and frac is 52-bit mantissa. The mantissa

takes 32 bits from even register and 20 bits from odd register. The dynamic range of

double precision numbers varies from 2.2 × 10-308 to 1.7 × 10308.
The third floating-point representation known as extended precision floating-point

numbers is not very different from the previous two representation but requires 80-bit

word. Like other two notations, it uses 1 bit as sign bit, 15 bits as exponent, and 64 bits

for mantissa. Unlike single and double precision, the leading bit in extended precision is

not generally hidden. As compared to fixed-point numbers, the arithmetic operations

with the floating-point numbers are complex to perform and require complex hardware

and longer execution time. However, the most of computing devices use floating-point

arithmetic as flexible base point is required in scientific operations.

Check your progress 3
1. Is mantissa a fixed-point number?

2. What is exponent in floating-point numbers?

3. Which number representation is used for mantissa and exponent?

4. How do you identify a normalized number?

5. List the standards defined by IEEE for floating-point numbers.

6. How many bits are required for single precision floating-point numbers?

7. What is biased representation?

8. How many bits are required for extended floating-point numbers?

2.8 Summary
Data representation refers to the form in which data can be stored, processed, and

transmitted. There are different number systems that are used to represent numbers in

different forms. For digital computers, the binary number system is the most useful. But

users are more convenient with decimal number system. Therefore, numbers are

needed to convert from one system to another. The numbers in different number

systems can be converted to other number systems using Radix Conversion method.

All the data is processed or stored with computers in binary coded form. The decimal

numbers are stored in registers using binary codes. The conversion of a decimal

number to binary coded form is different from converting it to binary number. In binary

coded form, each digit of the decimal number is independently converted to binary

representation. Each decimal digit is represented with four binary digits. Such a

representation is called binary coded decimal (BCD). American Standard Code for

Information Interchange (ASCII) provides a standard seven bits binary codes for

alphanumeric character set.

In conventional mathematics, the signed numbers are represented with the help of plus

(+) and minus (-) symbols. However, in digital computers everything including sign of a

number must be represented in binary form. All positive numbers and zero can be

considered as unsigned numbers but some mechanisms are required for negative

number representation. In a simple approach, the sign of a number is represented by a

single bit known as sign bit. If the value of the sign bit is 0, the number is a positive

number or a negative number otherwise. However, a negative integer can be

represented in three different ways: Signed-magnitude representation, Signed-1’s

complement representation, Signed-2’s complement representation.

The computers store the numbers in registers. All the information related to

numbers such as sign, base point, and magnitude, etc. is stored in binary form. Often n

bits are used to store the number even though it may need on m bits (n>m). In such

case, the bit length is increased. The expansion of bit length is referred to as range

extension. There are two prominent notations for numbers: fixed-point and floating-point

numbers. The floating-point arithmetic is preferred in digital computers despite the

higher complexity due to flexible base point. A number may be integer, fraction, or

mixed integer-fraction. Therefore, in addition to the sign of the number, some

mechanism is required to separate the integer and fraction parts of a number. A base

point or radix point is the mechanism used to identify integer and fraction parts of the

number. The position of the radix point is used to decide whether a number is an

integer, fraction, or mixed integer-fraction. If the location of the base point is fixed, the

representation is known as fixed-point numbers. The fixed-point numbers can be

processed at a faster rate with the available capabilities of the system. But at the same

time, only a small range of numbers can be provided with this representation. To

overcome the limitations of the fixed-point numbers, there is another approach of

representing signed numbers known as floating-point. A working committee of IEEE has

developed three standards of floating-point representations known as: single precision,

double precision, and extended precision.

Review Questions
Q.1 Convert following numbers to binary: (295)10, (5482)10, (763)10, and (4169)10.

Q.2 Convert following numbers to decimal: (1100)2, (101101)2, (10010)2, and

(101110)2.

Q.3 Convert following numbers to hexadecimal: (78956)10, (89645879)10,

(84845684)10, (24242424)10, and (1816181615)10.

Q.4 Convert following numbers to octal: (1100)2, (101101)2, (10010)2, and (101110)2.

Q.5 Write the following numbers in BCD form: (745)10, (8632)10, and (9100)10.

Q.6 Write following numbers in 1’s complement: +47, -95, +63, -81.

Q.7 Write following number in 2’s complement: +47, -95, +63, -81.

Q.8 Convert following numbers to binary: (5462)8, (2534)8, (163)8, and (15)8.

Q.9 With the help of suitable diagrams explain the single-precision and double-

precision floating-point number representation. Differentiate both representations.

Q.10 Why rage extension is required and how it is performed?

Q.11 Explain different representations for negative numbers with suitable examples.

Unit 3: Instruction Sets

Structure

3.0 Introduction

3.1 Objectives

3.2 Instruction Formats

3.3 Instruction Types

3.4 Addressing Modes

3.5 Programming Considerations

3.6 Summary

Review Questions

Unit 3: Instruction Sets

3.0 Introduction
The digital computers perform operations as directed with the set of instructions. The

instructions or machine instructions or computer instructions are the commands that

control the operations of a computer. A computer instruction is a binary code that

instructs the computer to execute specific operations. The instructions and data are

stored together in the computer memory. The CPU reads the instruction from the

memory, interprets it, and performs the desired operation on the relevant data fetched

from the memory. A set of instructions is used to control the sequence of operations.

Each processor has its own collection of instructions that it can recognize and execute.

Such a set is called processor’s instruction set.

An instruction is a group of bits that is divided into multiple fields. Each field

provides specific information such as operation type, operands, and references to the

next instructions, etc. Different fields of the instructions are loaded in registers. Each

instruction must contain at least two types of information, the operation to perform and

data elements required during the operation. The operation to be performed is provided

in a field known as op-code and addresses of operands are given in address field. The

op-code represents operations such as add, subtract, multiply, divide, read, and write,

etc. There may be two types of addresses, source and destination. The source

address field operands, while destination address field is used to write the result of the

operation. Sometimes, the field is used as source and destination. The instructions can

be divide into different categories depending on the number of operands involved. As

machine instruction are in binary format, it is difficult for programmers to work with

machine instructions. Therefore, it is a general practice to use symbolic representation

for the machine instructions. Although it is possible to write computer programs directly

in machine language, but the modern programmers rarely use the machine instructions

to write the programs. The most of the programmers work with high level languages.

3.1 Objectives
After the completion of this unit, the students will be able

1. To understand the instructions of computer systems.

2. To understand instruction formats.

3. To understand use of addresses and registers in instructions.

4. To learn different types of instructions.

3.2 Instruction Formats
In order to perform a given task, the digital computers are provided a sequence of

instructions. Each instruction specifies a particular operation to perform on one or more

data elements. A computer instruction is a binary string with codes for both operation

and data. For each microprocessor, there is a set of instructions. The most of the

instruction sets contain instructions in multiple formats. The simple form of instruction

has two fields, op-code and address as shown in Figure 3.1. The figure shows a 16-bit

instruction formats. The four most significant bits represent op-code and other bits

provide address for operands. The instruction set for such a processor can have at most

16 instructions as 4 bits are used for op-code field. When instructions are loaded from

the memory, the op-code and operands are stored in registers. The accumulator (AC)
is the most rigorously used register. There are some operations that do not need any

operands from memory. Clear the AC, complement the AC, and increment the AC, etc.

are some examples of such operations. The instructions for such operations do not

need address field.

Op-code Address
15 12 11 0

Figure 3.1: Instruction format having two fields

It is a general practice to use a symbolic representation for machine instructions. The

op-codes are given by abbreviations known as mnemonics. Some examples of mnemonics are

given here.

LOAD Load data from memory

ADD Add

SUB Subtract

MUL Multiply

DIV Division

STOR Store data to memory

MPY Multiply

Symbols are also used to represent the operands in an instruction. The symbols such

as R, A, X, and Y, etc. may represent the contents of registers, memory location, or

data elements. There are different types of arithmetic operations involving different

number of operands. The unary operations require only one operand, while binary

operations need two operands. These operands are called as source operands. In

addition to operands, one location (register or memory) is required to place the result of

the operation. It is called as destination operand. There are some other operations

mostly non-mathematical that can be performed without any operand. Therefore,

depending on the number of source operands and destination operands, the number of

addresses used in an instruction may vary from one to three. Based on the number of

addresses, the instructions can be classified as zero-address, one-address, two-
address, and three-address instructions. Some examples of instructions written with

symbolic representation are given in the Table 3.1.

The stack data structure loads and retrieves data elements in last-in-first-out

fashion. The location of the stack is usually known or at least top two elements are

stored in predefined registers. The pop operation retrieves top element from the stack.

Therefore, the pop operation do not need any operand as location of the top of stack is

available. As discussed earlier, clear AC and increment AC are other operations for

which no operands is required. Thus, the instructions for such operations are zero-

address instructions.

Table 3.1: Some Examples of Instructions

Instruction Type Comment
LOAD D One-address Load AC from location D
STOR Y One-address Load content of AC to location Y
SUB B One-address Subtract B from AC and store result to AC
ADD B One-address Add B and AC and store result to AC
MOVE B, A Two-address Load content of A to location B
SUB Y, B Two-address Subtract B from Y and store result to Y
ADD C, B Two-address Add B and C and store result to C
MPY Y, B Two-address Multiply B with Y and store result to Y
SUB Y, A, B Three-address Subtract B from A and store result to Y
ADD Y, C, B Three-address Add B and C and store result to Y
MPY Y, C, B Three-address Multiply B with C and store result to Y
DIV Y, C, B Three-address Divide C by B and store result to Y

There are different types of operands such as number, character, logical data,

and address. The second field in the instruction may not contain addresses but actual

operands. If second field provides the operands, it is an instruction with immediate
operands and it is called an immediate instruction. If the second field contains

address, there are further two possibilities. The address either specifies the location of

the operand itself or it provides the location that contains the address of the operand. If

address field provides the memory location of the operand itself, it is known as direct
address otherwise in case it specifies another address then it is called indirect
address. To indicate whether it is a direct or indirect address, the most significant bit of

the instruction designated as I is reserved as shown in Figure 3.2. The value of bit I is 0

for direct address and 1 for indirect address.

I Op-
code

Address

15 12 11 0

Figure 3.2: Instruction format having three fields

Check your progress 1
1. What are different fields in instruction format?

2. What is the use of opcode field of instruction format?

3. Classify the types of instructions based on number of addresses.

4. What is immediate instruction?

5. What is the difference between direct address instruction and indirect

address instruction?

3.3 Instruction Types
The basic instruction set of a computer contains three types of instructions: register-
reference instruction, input-output instruction and memory-reference instruction.

Register-reference instructions are recognized by I=0 and op-code 111. For input-output

instructions I=1 and op-code 111 are used. For memory-reference instructions I may be

0 or 1 and op-code varies 000 through 110. There are a number of instructions in the

instruction set that can be further divided into different categories depending on the kind

of operation they perform. There are some basic operations for which there should be

instructions in instruction set. If all such instructions are there in the instruction set, the

programmers may write programs to evaluate any function. Such an instruction set is

said to be complete. On this basis, the instructions can be divided into following

categories.

3.3.1 Data Transfer Instructions
The data transfer are the most fundamental instructions of any instruction set in a

computer system. The majority of operations need data elements to transfer from

memory to register, register to memory, or register to register. A data transfer instruction

must have a source location, a destination location, length of the data to transfer, and

addressing mode. There could be different variants of the data transfer instructions

depending on whether operand is a register or memory. The data length is usually 8,

16, 32, or 64 bits. The length of data to be transferred also lead to different variants of

instructions. If source and destination locations both registers, then data transfer

operations are simple as registers are internal to the processor. However, if operands

are memory locations then data transfer operations are comparatively complex. Some

examples of data transfer instructions are given in Table 3.2.

Table 3.2: Examples of logical instructions

Instruction Operation Description
LD Load Data transfer from memory to floating point

register
LDR Load Data transfer from floating point register to

floating point register
ST Store Data transfer from register to memory

STD Store Data transfer from floating point register to
memory

3.3.2 Arithmetic Instructions
The instructions for basic arithmetic operations such as addition, subtraction,

multiplication, and division are included in the instruction set of the most of the

computers. These instructions are available for both fixed point and floating point

numbers. All the basic arithmetic operations need two operands. Therefore, usually two-

address or three-address instructions are needed for such operations. Sometimes one-

address instructions may also be used for such operations, where one operand is

inherently available and second operand is explicitly given. In addition, there are other

arithmetic instructions that need single operand. Some of the single operand arithmetic

operations are as follows.

Increment: Add 1 to the operand

Decrement: Subtract 1 from the operand

Absolute: Take absolute value of the operand

Negate: Negate the operand

Some examples of arithmetic instructions are given in Table 3.3.

3.3.3 Logical Instructions
Logical instructions manipulate bits or binary numbers. A number of logical instructions

are part of the instruction set of the most of the computers. The operations that work on

individual bits of a binary number are called the bitwise logical operations. The widely

used bitwise logical instructions are AND, OR, NOT, and XOR, etc. The NOT operation

works with one operand, while AND, OR, and XOR operations require two operands.

Shift and rotation are other important logical operations. There are two types of logical

shift operations: logical left shift and logical right shift. The logical left shift operation

shifts the bits of a binary number from the least significant location towards the most

significant location. The vacated location is filled with the 0s and bit coming out of the

most significant location is just lost or discarded. The logical right shift operation shifts

the bits from the most significant location towards the least significant location. The new

0s are inserted at the most significant position and bit coming out of the least significant

location is discarded.

Table 3.3: Examples of logical instructions

Instruction Operation Description
ADD Addition One-address or Two-address instruction for

addition operation
SUB Subtraction One-address or Two-address instruction for

subtraction operation
INC Increment Increase AC by one
CMA Complement Complement AC
CLA Clear Clear AC

Like logical shift, there are two types of logical rotate operations: logical left rotate and

logical right rotate. The logical rotate is a kind of cyclic shift operation, where no new

bit is inserted and no bit is discarded. While shifting the bit from location to another

location, the bit that is coming out of one end is placed at the location vacated at other

end. In logical left rotate operation, a bit comes out of the most significant location and it

is placed at the least significant location. Similarly, in logical right rotation, the bit that is

coming out of the least significant location is placed at the most significant location. The

logical shift and logical rotate operations are shown with the help of pictorial

representation in Figure 3.3.

3.3.4 Transfer of Control Instructions
The instructions discussed so far manipulate data by performing some kind of

operations. There are some other type of instruction that do not do data manipulation

but change the sequence of instruction execution. These instructions are known as

transfer of control instructions that update the program counter of the processor.

Transfer of control instructions are further divided into different categories depending on

their purpose and usage. Branch instructions are those transfer of control instructions

are jump instructions that transfer flow of execution to a specified location. The jump

could be forward or backward in direction. Moving to higher location address is forward

jump and moving to a lower location address is backward jump as shown in Figure 3.4.

If jump in sequence is made only if certain conditions met, then it is called conditional

branch instruction. Otherwise, if there are no such conditions, then is an unconditional

branch instruction. Some branch instructions are given in Table 3.4.

 . . .

(a) Logical left shift

 . . .

(b) Logical right shift

 . . .

0

0

(c) Logical left rotate

Figure 3.3: Logical shift and logical rotate operations (continued)

 . . .

(d) Logical right rotation

Figure 3.3: Logical shift and logical rotate operations

Memory address Instruction

501 I1

Backward branch 502 I2

503 I3

504 I4

Forward branch 505 I5

506 I6

Figure 3.4: Forward and backward branch instructions

Table 3.4: Examples of branch instructions

Instruction Operation Description
BRP X Jump Branch to location X if result is positive
BRN X Jump Branch to location X if result is negative
BRZ X Jump Branch to location X if result is zero
BRO X Jump Branch to location X if overflow occurs

BRE R1, R2 Jump Branch to location X if contents of R1 and R2 are
equal

Skip instructions are another form of transfer of control instructions. Depending

on a condition, these instructions skip one memory location. These instructions do not

require destination location. The destination location is imperative in a skip instruction

as it always skips next one location if conditions met. Procedure call is an important

transfer of control instruction, which incorporate another piece of program into a larger

program. The procedure call transfers the control of execution to the procedure. The

control returns back at the location from which it was called upon completion of the

procedure. Some other instructions related to I/O system, memory management, and

system control are also the part of the instruction set of a computer.

Check your progress 2
1. What are different types of instructions?

2. Explain the difference between LOAD and STORE data transfer

instructions?

3. Explain arithmetic instructions?

4. Explain how shift right and shift left logical instruction works?

5. What are branch instructions?

3.4 Addressing Modes
An instruction's operation field indicates the operation to be done. This operation must

be performed on data stored in registers or memory words in a computer. The

addressing mode of the instruction determines how the operands are chosen during

programme execution. Before the operand is actually referenced, the addressing mode

sets a guideline for interpreting or altering the address field of the instruction. The

addressing modes are classified as follows:

1. Implied Mode

2. Immediate Mode

3. Register Mode

4. Register Indirect Mode

5. Autoincrement or Autodecrement Mode

6. Direct Address Mode

7. Indirect Address Mode

8. Relative Address Mode

9. Indexed Addressing Mode

10. Base Register Addressing Mode

3.4.1 Implied Mode
The operands are implicitly stated in the specification of the instruction in this mode.

Because the operand in the accumulator register is implied in the definition of the

instruction, the instruction "complement accumulator" is an implied-mode instruction. In

reality, all accumulator-based register reference instructions are implied-mode

instructions. In a stack-organized computer, zero-address instructions are implied-mode

instructions since the operands are assumed to be on top of the stack.

3.4.2 Immediate Mode
The operand is mentioned in the instruction itself in this mode. In other words, instead of

an address field, an immediate-mode instruction has an operand field. The actual

operand to be utilised in combination with the operation specified in the instruction is

stored in the operand field. Immediate-mode instructions are useful for setting constant

values in registers.

3.4.3 Register Mode
The address field of an instruction can specify either a memory word or a processor

register, as previously stated. The instruction is considered to be in register mode when

the address field specifies a processor register. The operands are stored in registers on

the CPU in this mode. A register field in the instruction is used to select the specific

register.

3.4.4 Register Indirect Mode
In this mode, the instruction provides a CPU register whose contents give the operand's

memory address. In other words, the operand's address is stored in the specified

register rather than the operand itself. The programmer must guarantee that the

operand's memory location is stored in the processor register with a preceding

instruction before executing a register indirect mode instruction. In this case, referring to

the register is the same as specifying a memory address. A register indirect mode

instruction has the advantage of using fewer bits in the address field to choose a

register than would be required if a memory address were specified directly.

3.4.5 Autoincrement or Autodecrement Mode
The register is incremented or decremented after (or before) its value is used to access

memory, similar to the register indirect mode. When the address contained in the

register refers to a memory table containing data, the register must be incremented or

decremented after each access to the table. The increment or decrement instruction

can be used to do this. Because this is such a common requirement, some computers

include a special mode that automatically increments or decrements the register content

on data access.

Effective Address: The control unit in the CPU uses the address field of an

instruction to retrieve the operand from memory. The value in the address field is

sometimes the operand's address, and other times it is only an address from which the

operand's address is calculated. To distinguish between the various addressing modes,

the address part of the instruction must be distinguished from the effective address

used by the control when executing the instruction. The memory address produced from

the computation specified by the given addressing mode is defined as the effective

address. In a computational type instruction, the effective address is the address of the

operand. Control branches at this address in response to a branch-type instruction.

3.4.6 Direct and Indirect Address Modes
The effective address is equal to the address part of the instruction in this mode. The

operand is in memory, and the instruction's address field directly specifies its location.

The address parameter in a branch-type instruction indicates the actual branch address.

In indirect address mode, the instruction's address field specifies the location in memory

where the effective address is kept. Control reads the effective address by retrieving the

instruction from memory and using its address component to visit memory again.

3.4.7 Relative Address Mode
To acquire the effective address, the content of the programme counter is added to the

address section of the instruction in this mode. The address portion of the instruction is

typically a signed number (in 2's complement representation) that might be positive or

negative. When this number is added to the contents of the programme counter, the

result is an effective address that is relative to the next instruction's address in memory.

3.4.8 Indexed Addressing Mode
To acquire the effective address, the contents of an index register are added to the

address component of the instruction in this mode. The index register is a specific CPU

register that stores the value of an index. The instruction's address field specifies the

start address of a data array in memory. Each array operand is stored in memory in

relation to the start address. The index value stored in the index register is the distance

between the beginning address and the address of the operand. If the index register

contains the correct index value, any operand in the array can be accessed with the

same instruction.

3.4.9 Base Register Addressing Mode
To acquire the effective address, the contents of a base register are added to the

address component of the instruction in this mode. This is identical to indexed

addressing, only the register is now referred to as a base register rather than an index

register. The distinction between the two modes is in how they are used rather than how

they are computed. An index register is supposed to contain an index number that is

relevant to the instruction's address component. The address field of the instruction

gives a displacement relative to the base address, which is expected to be held in a

base register.

The effect of the addressing modes on the instruction defined in Figure 3.5 are

shown to demonstrate the distinctions between the various modes. The two-word

instruction at address 100 and 101 is a "load to AC" instruction with an address field

equal to 400. The operation code and mode are specified in the first word of the

instruction, while the address component is specified in the second word. For fetching

this instruction, PC has the value 100. The contents of processor register R1 and an

index register XR are 251 and 100, respectively. After the instruction is executed, AC

receives the operand. The figure lists a few key addresses and displays the memory

content at each of them. The mode field of the instruction can specify any one of a

number of modes. For each possible mode we calculate the effective address and the

operand that must be loaded into AC.

In the direct address mode, the effective address is the address part of the

instruction 400 and the operand to be loaded into AC is 600. In the immediate mode

the second word of the instruction is taken as the operand rather than an address, so

400 is loaded into AC (The effective address in this case is 101). In the indirect mode,

the effective address is stored in memory at address 400. Therefore, the effective

address is 600 and the operand is 200. In the relative mode, the effective address is

400 + 102 = 502 and the operand is 150. (Note that the value in PC after the fetch

phase and during the execute phase is incremented to 102). In the index mode, the

effective address is XR + 400 = 100 + 400 = 500 and the operand is 1200. In the
register mode, the operand is in R1 and 251 is loaded into AC. (There is no effective

address in this case). In the register indirect mode, the effective address is 251, equal

to the content of R1 and the operand loaded into AC is 510. The autoincrement mode,

is the same as the register indirect mode except that R1 is incremented to 252 after the

execution of the instruction. The autodecrement mode, decrements R1 to 250 prior to

the execution of the instruction. The operand loaded into AC is now 300.

3.5 Programming Considerations
The data are stored in the memory and can be directly accessed from thereon. But

memory is too slow compare to the speed of microprocessor leading to slow execution.

Therefore, processors have a set of registers which are small internal memory

locations. The data elements are transferred from the memory to the registers to speed

up the execution. An assembly language programmer should be aware of the registers

available with the microprocessor and their purpose, capabilities, and limitations. A

program is a sequence of instructions. A programmer needs good understanding of the

instruction set, instruction types and their formats. However, for writing programs in a

high level language such as C, C++, or Java, these details are transparent to the

programmer.

Figure 3.5: Example for addressing modes

3.6 Summary
The computers operate under the commands issued by the user. The commands are

issued in the form of instructions. The instructions are binary code that specify a

particular action that computer is supposed to carry out upon receiving it. Each

instruction consists of a code and some operands. The code simply represents the

operation to carry. An operand could be a data element or address of a memory

location. Depending on the number and type of operands, the instructions have different

formats. Some instructions do not require any explicit operand as they use implicit

operands. There are unary and binary instructions. The unary instructions involve only

one operand, while binary instructions have two operands. An operand could be a

source providing data or address required for the operation or it could be a destination

operand where the result of the operation is placed.

There are different types of instructions in the instruction set of the computer.

The arithmetic instructions are involved in the most of the operations. The logical

instructions are used on binary numbers. There are transfer of control instructions that

are very useful in writing the programs. A program is a set of instructions that specifies

the sequence of operations to perform a particular task. The programmers need to have

a good understanding of the instruction set of the machine. However, for high level

languages, these details are almost transparent to the programmer.

Review Questions
Q.1 List the typical elements of a computer instruction.

Q.2 List different types of operands for an instruction.

Q.3 Differentiate between logical shift and logical rotate operation.

Q.4 What is use of transfer of control instructions? Give some examples of transfer of

control instructions.

Q.5 Differentiate between branch and skip instructions.

Q.6 Explain different types of instruction formats used in computer system.

Q.7 Why do data transfer instruction used? Write five examples of data transfer

instructions.

Q.8 What are addressing modes?

Q.9 Explain immediate addressing mode?

Q.10 What is effective address?

Q.11 Explain the difference between register addressing mode and register indirect

addressing mode.

Q.12 What is the difference between direct addressing mode and indirect addressing

mode?

 Bachelor of Computer
Application

Uttar Pradesh Rajarshi Tandon BCA-EC
 Open University Computer Architecture

Block

2
DATA PATH DESIGN

Unit 4

Fixed Point Arithmetic

Unit 5
Arithmetic Logic Unit

Unit 6
Advanced Topics

BLOCK INTRODUCTION

The block 2 deals with arithmetic operations in a computer system. Original

representation of the numbers may not be useful for performing operations in a

computer system. Therefore, a number if converted to appropriate form to carry out

arithmetic operations. In addition, a basic hardware support is also required for such

operations. This block is divided into Unit 4, Unit 5, and Unit 6. The major basic

mathematical operations such addition, subtraction, multiplication, and division are

discussed in Unit 4. Arithmetic Logic Unit (ALU) is primarily responsible for such

operations. It consists of different types of circuits. Different types of digital circuits and

digital electronic components are presented in Unit 5. On the other hand, several

advanced topics related to arithmetic operations are covered in Unit 6.

UNIT- 4 Fixed-Point Arithmetic

Structure
4.0 Introduction

4.1 Objectives

4.2 Representation of Fixed-Point Numbers

4.3 Fundamental Rules of Fixed-Point Arithmetic

4.4 Addition and Subtraction

4.5 Multiplication and Division

4.6 Division

4.7 Summary

Review Questions

Unit 4: Fixed-Point Arithmetic

4.0 Introduction
This unit introduces a number of techniques to perform arithmetic operations on fixed-

point representation of numbers. Data elements are stored in registers for the purpose

of processing. The registers are made up of flip-flops. A flip-flop can store only one bit

(1 or 0) of information. Therefore, all kind of data except binary numbers are store in

binary-coded form in the registers. Binary number system is the most appropriate

number system for the digital computers. In order to perform arithmetic or other kind of

mathematical operations, the numbers are converted to binary numbers. All kind of

information associated with a number is represented in binary form including the sign. A

number is an integer, fraction, or mixed integer-fraction number is identified with the

help of basis or radix point. The basis point is kept somewhere in the register itself

along with the number. If the location of the basis point in the register is fixed, it is called

fixed-point representation.

Sometimes, the original representation of the numbers may not be very useful for

performing the operation. Therefore, the numbers are converted to 1’s complement or

2’s complement form before carrying out the operations. The major operations

discussed in this unit are addition, subtraction, multiplication, and division. The

complements are mostly useful in the simplification of the subtraction operation. To

perform these operations, a basic hardware support is required. A basic circuit takes

three inputs including one bit from each number and one carry. It generates two output

bits representing sum and carry. This circuit is known as full-adder and it is used for

addition/subtraction operations. Multiple full adders are connected in an arrangement to

perform operations. The multiplication is carried out as a series of addition and shift

operations. The division is performed as series of subtraction and shift operations. A

number of other techniques and algorithms are also there for different operations. In

comparison to addition and subtraction, the multiplication and division are complex

operations. In particular, the division is the most complex operation among four basic

arithmetic operations.

4.1 Objectives
The major objectives of this unit are outlined here.

1. To discuss methods for addition of fixed-point numbers.

2. To discuss methods for subtraction of fixed-point numbers.

3. To discuss methods for multiplication of fixed-point numbers.

4. To discuss methods for division of fixed-point numbers.

4.2 Representation of Fixed-Point Numbers
As discussed earlier the computer users are comfortable working with decimal number

system as it is the system that we use in our daily routine works. On the other hand, the

binary number system suits to digital computers due to technological reasons.

Therefore, users are allowed to work on decimal numbers that are converted to binary

or binary coded numbers while processing with computer systems. The signed numbers

could be positive or negative. Some arrangement is required to include the sign

information with the binary representation. For this purpose a bit in the register is

designated as sign bit. Usually the left most bit of the binary string is designated as sign

bit. For a positive number, the sign bit is 0 and for negative number it is 1. This

arrangement is known as signed-magnitude form. Two other forms known as 1’s

complement and 2’s complement are also used to represent negative numbers. In 1’s

complement all the bits of a binary string are complemented individually. If 1 is added to

1’s complement of a number then it becomes 2’s complement of the number.

A number could be an integer, a fraction, or a mixed integer-fraction number. In

order to separate integer and fraction parts of a number, base point is used. The binary

point is identified at a particular location in the register. If a specific location is used

always for the base point, the numbers are known as fixed-point numbers. The fixed-

point numbers are closely related to integer numbers. In fact, integer numbers can be

considered as a special case of fixed-point numbers, where binary point is at position 0.

Therefore, all mathematical operations that a computer can perform with integers can

be applied on fixed-point numbers without any additional hardware. Some major

arithmetic operations on fixed-numbers are discussed here.

4.3 Fundamental Rules of Fixed-Point Arithmetic
It is important to know the word length i.e. the number of bits required to represent the

number. An unsigned number U(a,b) with a integer bits and b fractional bits needs a+b

bits for the representation. A signed number S(a,b) with same number of bits for integer

and fractional parts requires a+b+1 bits. There are some points of consideration for the

arithmetic operations as given here.

1. Addition: Two number are always added as two positive numbers.

2. Unsigned word length: The number of bits required to represent unsigned number

U(a,b) is a+b

3. Signed word length: The number of bits required to represent signed number S(a,b)

is a+b+1

4. Unsigned range: The range of unsigned numbers U(a,b) is 0⩽U(a,b)⩽2a - 2-b

5. Signed range: The range of signed numbers S(a,b) is - 2a⩽S(a,b)⩽2a - 2-b

6. Addition of numbers: Only those two numbers can be added that have same

format. If one operand is unsigned number and other one is signed number then both

operands need to be scaled to the same format before addition.

7. Subtraction of numbers: The same rule exists for the subtraction operation also. To

subtract one number from another, the 2’s complement or 1’s complement of

subtrahend is added to minuend.

8. Addition result: The result of the addition of two n-bit numbers requires n+1 bits.

9. Overflow: The result of addition operation may be larger than that can be held in the

intended register. This situation is called overflow. To handle this situation a special bit

known as overflow bit is used. If overflow occurs, the ALU must indicate it by setting

the overflow bit.

10. Carry: If there is a carry in extreme left then it is discarded in case of 1’s

complement or it is added to the result in case of 2’s complement.

11. Unsigned multiplication: The result of the multiplication of two unsigned numbers

U(a1,b1) and U(a2,b2) would be an unsigned number U(a1 + a2,b1 + b2).
12. Signed multiplication: The result of the multiplication of two signed numbers

S(a1,b1) and S(a2,b2) would be a signed number S(a1 + a2 + 1,b1 + b2).

13. Unsigned division: The result of the division of an unsigned number U(a1,b1) by

an unsigned number U(a2,b2) would be an unsigned number

U(a1 + b2,⌈log(2a2+b1 + 2b1-b2)⌉).
14. Signed division: The result of the division of a signed number S(a1,b1) by an

unsigned number S(a2,b2) would be a signed number S(a1 + b2 + 1,a2 + b1).

Check your progress 1
1. How many ways are there to represent negative numbers?

2. What is sign bit?

3. Write range of the unsigned integers.

4. What is overflow bit?

5. What is base point?

4.4 Addition and Subtraction
In signed-magnitude form, the addition follows the conventional mathematical rules. The

signs of two numbers are compared. If both signs are same, the two magnitudes are

added and common sign is given to the result. In case two signs are different, the

smaller magnitude is subtracted from the larger one and sign of the larger magnitude is

given to the result. The 2’s complement provides a simple approach for performing

addition operation, where no comparison of signs and subtraction are required. The two

numbers including sign bits are added and any carry out of the sign bit is discarded. The

negative numbers must be in 2’s complement form before addition. Some examples are

given here. Addition of two positive numbers:

+13 0 0 0 0 1 1 0 1

 +19 0 0 0 1 0 0 1 1

 ------ --------------------

 +32 0 0 1 0 0 0 0 0

Addition of a positive and a negative numbers:

 - 13 1 1 1 1 0 0 1 1 (2’s complement)

 +19 0 0 0 1 0 0 1 1

 ----- --------------------

 +6 0 0 0 0 0 1 1 0

Addition of two negative numbers:

-13 1 1 1 1 0 0 1 1 (2’s complement)

-19 1 1 1 0 1 1 0 1 (2’s complement)

 ----- --------------------

-32 1 1 1 0 0 0 0 0 (2’s complement)

Sometimes, the result of addition of two positive numbers may result in a number that is

larger than size of the registers. For example, if 8-bit registers are being used, the

addition of two 8-bit positive integers may produce a 9-bit number. In such a case, it is

not possible to place the result in a 8-bit register. This situation is known as overflow. If

there is an overflow, it is indicated to the user. When two positive or two negative

numbers are added and the result has opposite sign i.e. for positive numbers, the result

is negative or for negative numbers, the result is positive then this situation indicates the

overflow. In the following example, the addition of two positive numbers gives a

negative result, therefore its overflow.

+71 0 1 0 0 0 1 1 1

+78 0 1 0 0 1 1 1 0

 ----- --------------------

 +149 1 0 0 1 0 1 0 1 Overflow

Similarly, in the following example, the addition of two negative numbers gives a

positive result discarding the extra bit.

-95 1 0 1 0 0 0 0 1 (2’s complement)

-67 1 0 1 1 1 1 0 1 (2’s complement)

 ----- -------------------

 -162 1 0 1 0 1 1 1 1 0 Overflow

 The subtraction can be easily carried out with 2’s complement. The 2’s

complement of subtrahend is taken including the sign bit and it is added to the minuend.

The carry out of sign bit position is discarded. For example

 +19 0 0 0 1 0 0 1 1

 -13 1 1 1 1 0 0 1 1 (2’s complement)

 ---- -------------------

 + 6 0 0 0 0 0 1 1 0

Both addition and subtraction operations can be performed with the help of the

same circuit. The main element of the circuit as shown in Figure 4.1 is a binary adder. In

case of an overflow, the adder indicates the situation with the help of a designated bit.

There are two registers in the circuit, which are used to provide input. The result is also

placed in a register, which could be any one of these two registers. There is a

complementer to take 2’s complement of negative numbers. A switch is used to select

addition or subtraction operation whatever is required.

Figure 4.1: Circuit for addition and subtraction operations

Register B Register A

Complementer

Switch

Register BOverflow bit

4.5 Multiplication and Division
The multiplication operation is more complex than addition and subtraction operations.

There are various ways and different algorithms for carrying out multiplication of two

numbers. For different types of numbers.

4.5.1 Multiplication of unsigned numbers
The multiplication of two unsigned numbers can be performed by using a simple

procedure similar to the paper-pencil method. In this method every bit of the multiplier is

multiplied with the multiplicand in a shift and add manner. On the multiplication of two n-

bit numbers, a 2n-bit result is produced. The procedure is explained with the help of an

example as follows. In this example two numbers 14 {=(1110)2} and 13 {=(1101)2} are

multiplied.

This is a simple method that produces partial products. The partial products are padded

out to the left or right as needed with binary 0’s. All the partial products are added to get

the final result. The result of the multiplication is (10110110)2 = 182. It can be observed

that when a bit of the multiplier is 1, the partial product is multiplicand itself and it is

simply copied. While if the multiplier bit is 0, the partial product is all zero. The partial

products are shifted to one position to left from the previous partial product. The sum of

the partial products gives the result. Therefore, this method can be implemented in

circuit simply with the help of adders and shift registers.

4.5.2 Multiplication of signed numbers
The simple method that works well for the unsigned number does not go well with

signed numbers. Like other operations, the negative numbers are represented in 2’s

complement form. If any of the multiplier and multiplicand to both are negative than the

simple multiplication method does not work. If multiplicand is a negative number then

problem is that all the partial products should also be negative. It could be accomplished

by padding out the partial products to the left with binary 1’s. If the multiplier is a

negative number and it is represented in 2’s complement form, there are issues related

to the actual bit position during multiplication and shift operations. Thus, for signed

numbers some different ways of multiplications are adopted.

There are many different methods for performing multiplication of signed numbers.

One of the most popular methods is known as Booth’s algorithm. It works on the

numbers in 2’s complement form. The algorithm uses following rules:

1. For a binary bit 0 in the multiplier, no addition but only shifting is required.

2. Based on the bit positions, a string of 1’s can be considered as 2n+1 - 2m,
where m and n are the lowest and highest bit positions respectively in the string

or substring such thatn > m. For such a multiplier, the multiplication with a

multiplicand Q is equivalent to Q × 2n+1 -Q × 2m. Let us consider5 × 30. The

binary representation of multiplicand 30 is (00011110)2. Here m=1 and n=4, thus

 30 = 24+1 - 21,
Therefore, 5 × 30 = 5 × (24+1 - 21) = 5 × (32 - 2) = (160 - 10) = 150.

3. Like simple multiplication method, the Booth’s algorithm also uses the shifted

partial products. It examines the multiplier’s two least significant bits to decide

whether the partial product should be added or subtracted to the previous partial

product or left unchanged as per following criteria.

(i) If 00: no operation

(ii) If 01: add the multiplicand to partial product

(iii) If 10: subtract the multiplicand from partial product

(iv) If 11: no operation

Figure 4.2: Booth’s algorithm for multiplication

The method is depicted with the help of a flow chart in Figure 4.2. The multiplier and

multiplicand are placed in the registers Q and M respectively. A flip-flop Q-1 is appended

to register Q to facilitate double bit examination of the multiplier. A register QR is used

along with Q to hold the result. The algorithm works as follows.

Step 1: Place the multiplicand and multiplier in registers M and Q

respectively.

Step 2: Initialize both QR and Q-1 to 0.

Step 3: Examine two bits Q0, Q-1

If (Q0Q-1 is 00 or 11) Then Shift QR, Q, and Q-1 to right one

bit

Else If (Q0Q-1 is 01) Then (QR←QR + M) & (Shift QR, Q, and Q-1

to right one bit)

Else If (Q0Q-1 is 10) Then (QR←QR - M) & (Shift QR, Q, and Q-1

to right one bit)

Step 4: If (All the bits of Q are examined) Then GOTO Step 3 Otherwise

GOTO Step 5

Step 5: STOP

Table 4.1: Multiplication of 3 and -7 using Booth’s Algorithm

Multiply: 3 × (-7)
Iteration Operation Multiplicand

(M)
QR Multiplier

 (Q)
Q-1

Initialize 0011 0000 1001 0
1 Q0Q-1 = 10, QR = QR – M - 1101 1001 0

AShift QR, Q, Q-1 - 1110 1100 1

2 Q0Q-1 = 01, QR = QR + M - 0001 1100 1

AShift QR, Q, Q-1 - 0000 1110 0

3 Q0Q-1 = 00, No operation - 0000 1110 0

AShift QR, Q, Q-1 - 0000 0111 0

4 Q0Q-1 = 10, QR = QR – M - 1101 0111 0

AShift QR, Q, Q-1 - 1110 1011 1

Result (QR,Q) = 11101011 (2’s complement) = -21

The right operation used in Booth’s algorithm is an arithmetic shift (Ashift), which is

performed in such a way that sign bit is preserved during the shift. Some examples of

multiplication of signed numbers using Booth’s algorithm are given in Table 4.1 and

Table 4.2. In these examples 4-bit numbers (including sign bit) are used, therefore,

algorithm runs for four iterations. It should be noted that in these tables, if QR, Q, and Q-

1 are 1xxx, yyyy, and z respectively then after Ashift operation QR, Q, and Q-1 become

11xx, xyyy, and y respectively. On the other hand, if QR, Q, and Q-1 are 0xxx, yyyy, and

z respectively then after Ashift operation QR, Q, and Q-1 become 00xx, xyyy, and y

respectively.

Table 4.2: Multiplication of -3 and 5 using Booth’s Algorithm

Multiply: -3 × (5)
Iteration Operation Multiplicand

(M)
QR Multiplier

 (Q)
Q-1

Initialize 1101 0000 0101 0
1 Q0Q-1 = 10, QR = QR – M - 0011 0101 0

AShift QR, Q, Q-1 - 0001 1010 1

2 Q0Q-1 = 01, QR = QR + M - 1110 1010 1

AShift QR, Q, Q-1 - 1111 0101 0

3 Q0Q-1 = 10, QR = QR – M - 0010 0101 0

AShift QR, Q, Q-1 - 0001 0010 1

4 Q0Q-1 = 01, QR = QR + M - 1110 0010 1

AShift QR, Q, Q-1 - 1111 0001 0

Result (QR, Q): 11110001 (2’s complement) = -15

Table 4.3: Multiplication of -4 and -6 using Booth’s Algorithm

Multiply: -4 × (-6)
Iteration Operation Multiplicand

(M)
QR Multiplier

 (Q)
Q-1

Initialize 1100 0000 1010 0
1 Q0Q-1 = 00, No operation - 0000 1010 0

AShift QR, Q, Q-1 - 0000 0101 0

2 Q0Q-1 = 10, QR = QR – M - 0100 0101 0

AShift QR, Q, Q-1 - 0010 0010 1

3 Q0Q-1 = 01, QR = QR + M - 1110 0010 1

AShift QR, Q, Q-1 - 1111 0001 0

4 Q0Q-1 = 10, QR = QR – M - 0011 0001 0

AShift QR, Q, Q-1 - 0001 1000 1

Result (QR, Q) = 00011000 = 24

Check your progress 2
1. How addition of negative numbers is performed?

2. How do you identify overflow during addition?

3. How the same circuit is used for both addition and subtraction operations?

4. Which operations are performed with Booth's algorithm?

5. Which form of numbers is used in Booth's algorithm?

4.6 Division
The division operation is little complex than multiplication. The computer method for

division is also inspired by the paper-pencil method, where digits of the dividend are

repeatedly shifted and divisor is subtracted to produce intermediate reminders. The

digits of the dividend are inspected from left to right until the inspected digits form a

number greater than or equal to divisor. This number is divided by divisor and reminder

(if any) is clubbed with next digits to form another number that is again divided by

divisor. The process goes on until all the digits of the dividend are exhausted. The

process is illustrated for binary number as follows.

Example of unsigned binary division (paper-pencil method): 51/7

Dividend: 51 = (110011)2

Divisor: 7 = (111)2

Based on this simple method, a machine algorithm can be designed for unsigned

numbers using shift, addition, and subtraction operations. The divisor is placed in

register M and dividend is stored in register Q. Another register QR is also used in the

process, which is set to zero initially. At each step the register QR and Q are left shifted

by one bit and M is subtracted from QR. If QR divides the partial remainder, QR

contains a non-negative number and Q0 is set to 1. Otherwise Q0 is reset to 0 and M is

added back to QR. After processing all the bits of dividend, the quotient and remainder

are available in registers Q and QR respectively. The algorithm is illustrated with the

help of a flowchart in Figure 4.3.

Figure 4.3: Unsigned division operation

The step by step algorithm for n-bit numbers is given as follows.

Step 1: Place the dividend and divisor in registers M and Q respectively.

Step 2: Initialize both QR and a counter C to 0.

Step 3: Shift left QR and Q

Step 4: QR←QR – M

Step 5: If (QR<0) then Q0←0, QR←QR + M Else Q0←1

Step 6: C = C + 1

Step 7: If (C<n) then GOTO Step 3 Else STOP

Table 4.3: Unsigned division

Divide: 29 ÷ 3
Iteration
(C) n=6

Operation Divisor
(M)

QR Dividend
 (Q)

Initialize 000011 000000 011101

0 Left shift QR, Q 000000 111010

QR = QR – M 111101 111010

QR<0 000000 111010

1 Left shift QR, Q 000001 110100

QR = QR – M 111110 110100

QR<0 000001 110100

2 Left shift QR, Q 000011 101000

QR = QR – M 000000 101000

QR>0 000000 101001

3 Left shift QR, Q 000001 010010

QR = QR – M 111110 010010

QR<0 000001 010010

4 Left shift QR, Q 000010 100100

QR = QR – M 111111 100100

QR<0 000010 100100

5 Left shift QR, Q 000101 001000

QR = QR – M 000010 001000

QR>0 000010 001001

Result: Quotient (Q) = (001001)2 = 7, Remainder (QR) = (000010)2 = 2

4.7 Summary
The mathematical operations by the machine are performed on binary numbers. All the

operands are therefore converted to binary numbers during the operations. The addition

and subtraction operations are comparatively simple mathematical operations. In case

of addition, the signs of two operands are compared. If two signs are same, both

numbers are simply added and common sign is assigned to the result. However, if two

numbers have different signs, the 2’s complement of the negative number is added to

the other number. Any carry out of the sign bit is discarded. No comparison of

magnitudes is required with this approach. Both addition and subtraction operations can

be performed using the same hardware circuit that needs some adders and shift

registers.

 Multiplication and division operations are complex operations as compared to

addition and subtraction operations. The multiplication operation can be performed in

many different ways. Booth’s algorithm is one of the most widely used algorithm for

multiplication. It is executed using some shift, addition, and subtraction operations. The

division operation is also carried out with the help of shift, addition, and subtraction.

Review Questions
Q.1 Perform following operations with binary numbers. For negative numbers use 2’s

complement form.

(i) (+25) + (–39)

(ii) (–19) + (+37)

(iii) (–17) + (–23)

(iv) (–34) – (+19)

(v) (+26) – (+15)

Q.2 Apply Booth’s algorithm to multiply following numbers. Show step-by-step

process.

(i) 14 × (-11)
(ii) -14 × (-11)
(iii) -13 × (14)
Use 5-bit binary numbers including sign bit.

Q.3 Divide 145 by 13 using the machine algorithm on binary numbers. Show step by

step process.

Q.4 Divide (–45) by 7 using the machine algorithm on binary numbers. Show step by

step process.

Q.5 Divide 45 by (–7) using the machine algorithm on binary numbers. Show step by

step process.

Q.6 Find the difference:

(i) 11010 – 01110

(ii) 01111 – 00111

(iii) 11100 – 10111

(iv) 11110 – 11011

UNIT- 5 Arithmetic Logic Unit

Structure
5.0 Introduction

5.1 Objectives

5.2 Logic Gates

5.3 Combinational Circuits

5.4 Sequential Circuits

5.5 Summary

Review Questions

Unit 5: Arithmetic Logic Unit

5.0 Introduction
The computer system consists of many interconnected parts including control unit,
arithmetic logic unit (ALU), I/O devices, and memory, etc. ALU is that component of

the system that performs the arithmetic and logical operations on data. It is a digital

circuit that is the fundamental building block of the central processing unit (CPU). In

some processors, the ALU is divided into two parts: arithmetic unit (AU) and logic unit
(LU). The AU performs arithmetic operations such as addition, subtraction,

multiplication, and division. The LU performs different logic operations. There may be

more than one AUs in some processors for fixed-point operations and floating-point

operations separately. Some processors have multiple and complex ALUs.

A typical ALU has direct access to memory, controller, and I/O system. The data

transfer between these components takes place through a bus. ALU receives an

instruction word that contains an op-code, operands, and format code. The op-code is

used to tell the ALU about the operation that it is supposed to carry out. The operands

are the data elements on which operation is performed. The format code tells whether it

is a fixed-point or floating-point operation. It is not necessary to include format code

separately, instead it may be combined with the op-code. The result of the operation is

stored in a register called accumulator and completion of the result is indicated with the

help of machine status word. The ALU performs its operations with the help of a circuit

of logic gates. The logic gates are tiny digital devices that can perform simple Boolean

operations. A typical ALU can symbolically be represented as shown in Figure 5.1.

The control lines A and B in Figure 5.1, provide the operands to perform

operation on them. The operation is specified with the help of op-code that is provided

by control line F. The completion of the operation is indicated through control line D and

results are provided by R. The status D provides information on carry-in, carry-out,

overflow, and division-by-zero, etc. Overflow indicates integer overflow of add and

subtract operations on unsigned integers, carry-out line indicates unsigned integer

overflow. ALU is the most important component of CPU. It can be considered as the

heart of CPU since all other components in CPU are there to provide support to ALU.

Basically ALUs are digital circuits that can be divided into two broad categories:

combinational circuits and sequential circuits. The output in combinational circuits

depends on present input only. With the same input, each time, exactly the same output

is generated. On the other hand, the sequential circuits consists of some memory

elements and their output is influenced by the previous results. The output depends on

input values as well as the current state of the circuit. Therefore, with same set of

inputs, the output may differ during different executions.

Figure 5.1: Schematic symbol of an ALU

5.1 Objectives
The major objectives of this unit are as follows:

1. To have knowledge of different types of logic gates.

2. To learn to construct and simplify the digital circuits using logic gates.

3. To have knowledge of different types of latches and flip flops.

4. To study the combinational and sequential circuits used in ALUs.

5. To study the implementation of digital circuits to perform addition, subtraction,

multiplication, and division operations.

6. To study the implementation of registers and counters.

A: Operand

B: Operand

F: Op-code

D: Status

R: Output

A B

R

A D

Table 5.1: Graphical symbols, algebraic functions, and truth tables for logic gates

5.2 Logic Gates
The binary information in digital computers is presented in the form of electric signals.

The two different levels of voltage represent binary value 0 or 1. For example 5 volt and

0.5 volt may represent 1 and 0 respectively. A gate is a tiny device that performs some

basic operation on electric signals. The gates can be combined into circuits to perform

more complex tasks. Logic gates are the basic building blocks in the microprocessor.

The circuits can be implemented with the help of logic gates to perform logical AND,

NOT, OR, XOR and other Boolean operations. The logic gates can be implemented

using transistors. A transistor is a semiconductor device that acts like a switch that

either conducts electricity or blocks the flow of electricity depending on the level of

voltage. The behaviour of logic gates and circuits can be described with the help of a

logic diagram. The logic diagram is one of the most popular methods to represent the

logic gates and circuits with the help of graphical symbols. Each gate type is

represented by a specific graphical symbol. Another important method to describe the

function of a circuit is truth table, which defines the circuit behaviour by listing all

possible input combinations and corresponding output in the form of a table. Another

method to describe the function of a logic gate or circuit is Boolean expression. The

Boolean expressions use algebraic notations to demonstrate the activity of electric

circuits. There are four fundamental logic gates: NOT, OR, AND, and XOR that can be

used to construct other logic gates and logic circuits.

The NOT gate is also known as the inverter. It produces the logic complement of

the binary number. It accepts one input value and produces one output. If input to NOT

gate is 0 then output is 1 and if input is 1 then output is 0. AND, OR, and XOR all accept

two input values and produce one output value. If two input values to AND gate are both

1, the output is 1 otherwise the output is 0. The output of OR gate is 0 only if both input

values are 0, otherwise it is 1. The XOR is also known as exclusive OR gate. It

produces an output 0 when both input values are same, otherwise, the output is 1.

Some other gates can be designed with the combinations of fundamental gates. A

NAND gate is developed if a NOT gate is placed in front of the AND gate. It is

essentially the opposite of the AND gate. Similarly, a NOR gate is obtained by placing

NOT gate in front of OR gate, which is opposite of the OR gate. The graphical symbols

or logic diagrams, and truth tables for the six gates are given in Table 5.1.

Apart from the above discussed basic gates, some more gates can be developed

with multiple input lines (three or more). For example a three input AND gate produces

an output 1 only when all the three input lines receive a binary value 1. Different gates

can be combined to form digital circuits. It could be a combinational or sequential circuit.

A digital circuit can also be described with the help of a logic diagram, Boolean

expression, or truth table. Multiple NAND or NOR gates can be interconnected in such a

way that any of the basic gates can be constructed. Therefore, both NAND and NOR

gates are called universal gates as other gates can be developed using solely NAND or

solely NOR gates.

Figure 5.2: An example of combinational circuit

Table 5.2: Truth table for the circuit given in Figure 5.2

A B C D E X
0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
1 0 0 0 0 0
1 0 1 0 1 1
1 1 0 1 0 1
1 1 1 1 1 1

5.3 Combinational Circuits
The combinational circuits are made of logic gates with no memory elements.

Therefore, the combinational circuits cannot store any information. The present output

solely depends on the present input. The output of one logic gate is connected to the

input of other logic gate to form a combinational circuit. An example of combinational

circuit is given in Figure 5.2. In this circuit output ports of two AND gates are connected

to an OR gate. There are three input lines A, B, and C and one output line X.

The truth table of the circuit is given in Table 5.2. Since there are three input lines

to the circuit, eight input combinations are possible. Therefore, there are eight rows in

the given truth table to describe all possible input combinations. There could be several

other alternative realizations of any circuit. The given circuit can be described with the

help of a Boolean expression given as follows

X = (AB + AC)
However, it can be observed from the truth table that there are three combinations of

inputs A, B, and C that lead to output 1. If any of these combinations takes place, the

output is 1. Therefore, considering the truth table the same circuit can also be

represented by following Boolean expression

X = ABC + ABC + ABC
The above form of expressions is known as Sum of Products (SOP). For a given truth

table, the corresponding circuit can be implemented with the help of SOP using the

AND, OR, and NOT gates only. The SOP implementation of truth table given by Table

5.2 is provided in Figure 5.3. In the given circuit, corresponding to each algebraic term

of SOP expression, there is a AND gate. The output lines of all the AND gates are

connected to the same OR gate. If output of any AND gate is true, the output of the

circuit is 1.

 There is another alternative approach for the implementation of digital circuits

corresponding to given truth table. If none of the input combinations that produce 0 is

true then the output of the circuit would be 1. This approach is known as Product of
Sums (POS). It can be expressed in Boolean algebraic form as follows

X = (ABC).(ABC).(ABC).(ABC).(ABC)

Figure 5.3: SOP implementation of the truth table given in Table 5.2

The POS implementation of the truth table given in Table 5.2 is given in Figure 5.4. Any

truth table can be implemented in SOP or POS form. The choice depends on whether

the truth table has more number of 0s or 1s as output. SOP has an AND gate for each

term 1 and POS has an OR gate for each term 0. So if there are more number of 1s

than 0s as output in the truth table then POS form is preferred otherwise SOP form is

preferred leading to less number of gates in the circuit resulting in lower cost. However,

there may be other expression that lead to even lesser number of gates. Therefore, a

particular choice of the implementation depends on various factors. For example the

Boolean expression X=(AB + AC) can be simplified by algebraic method as follows

X=A(B+C)

The corresponding implementation is given in Figure 5.5, which has just two gates for

the same truth table given in Table 5.2.

Figure 5.4: POS implementation of the truth table given in Table 5.2

Figure 5.5: Implementation of the simplified Boolean expression

5.3.1 Karanugh Maps
The Boolean expression for a truth table should be simplified before the implementation

to reduce the number of logic gates and subsequently the cost of the circuit. There are

various other methods for Boolean expression simplification. The Karnaugh Maps or K-
maps is one of the most popular method for Boolean expression simplification. It

represents the truth table in pictorial way that contains an array of 2n squares for n

variable binary data. Each square represents a possible combination of variables in

SOP form called minterm. Each square in the array or map is representing a minterm.

The squares corresponding to minterms that produce 1 are marked by a 1, while others

are marked by a 0 or left blank. For easy reference in the map, each minterm is

assigned a minterm reference binary number. The adjacent squares are assigned

numbers that differ only by one digit. Thus, the combinations are listed in the following

order 00, 01, 11, and 10.

Once K-map for a function is created, the corresponding Boolean expression can be

simplified by considering position of 1s in the map. The process of simplification

involves identification of two adjacent squares such that both have entry of 1s. The

minterms for these squares can be merged. The adjacent squares differ in only one

variable and that variable can be eliminated while merging the two terms.

5.3.2 Half Adder
Addition is the most basic arithmetic operation. A combinational circuit can be designed

using logic gates to perform the addition of binary digits. Half adder is a combinational

circuit that can perform addition of two binary digits. Half adder takes two digits called

as augend (A) and addend (B) as inputs and generates two output variables known as

sum (S) and carry (C). The circuit of half adder is shown in Figure 5.7 and its truth table

is given in Table 5.3. It uses an XOR gate and an AND gate. There are two output ports

because addition of 1 and 1 gives 10, which has two digits. S provides the least

significant bit of the result. The S and C can be provided by the following expressions

S = A ⊕ B
C = AB

Figure 5.7: Combinational circuit for half adder

Table 5.3: Truth table for half adder

A B C S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

5.3.3 Full Adder
A full adder performs addition of three binary digits. It is also implemented as

combinational circuit by using two half adders as shown in Figure 5.8 and truth table is

given by Table 5.4. It takes three binary digits A, B, and D as input and provides two

binary output variables S and C. Two input variables A and B are two significant bits,

while third input variable D is the carry (also called input carry) from previous least bit

position. The output variable S gives the least bit of the sum and C is the output carry.

The Boolean expression for sum and carry can be written as follows

S = A ⊕ B ⊕ D

C = AB + (A ⊕ B)D

Figure 5.8: Combinational circuit for full adder

Table 5.4: Truth table for full adder

A B D C S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

5.3.4 Multiplexers
A multiplexer is a combinational circuit that connects multiple input lines to a single

output. It selects a particular input line to connect to output based on the signals from

control lines. Figure 5.9 shows a block diagram of an eight-to-one multiplexer with eight

input lines markes as D0 through D7 and three control lines S0, S1, and S2. A 3-bit

signal is used to select a particular input line to provide the output F. The truth table for

the multiplexer is given in Table 5.5.

Figure 5.9: Block diagram of 8-to-1 multiplexer
(Source: University of Loyola Chicago, anh.cs.luc.edu)

Table 5.5: Truth table for 8-to-1 multiplexer

S0 S1 S2 F
0 0 0 D0
0 0 1 D1
0 1 0 D2
0 1 1 D3
1 0 0 D4
1 0 1 D5

1 1 0 D6
1 1 1 D7

The implementation of 8-to-1 multiplexer is shown in Figure 5.10. It is implemented with

the help of eight AND gates and an OR gate. The signal lines S0, S1, and S2 are

connected to AND gates in such a way that at a time seven AND generate 0, while the

remaining one AND produces the value of the selected line, which could be 0 or 1.

5.3.5 Decoders
Another example of combinational circuits is a decoder, which generally has n inputs

and 2n output lines. At any time only a particular output line is asserted depending on

the pattern of input. Decoders are many applications in digital computers such address

decoding. With some minor changes, the decoder can be converted to demultiplexer.

Demultiplexer connects single input line to multiple output lines. It performs inverse

function of a multiplexer. It can also be implemented with the combination of AND and

OR gates. A circuit for a decoder with two inputs and four outputs is shown in Figure

5.11 and its truth table is given in Table 5.6.

Figure 5.10: Implementation of 8-to-1 multiplexer

5.3.6 Read Only Memory
The read only memory (ROM) is a kind of memory whose contents cannot be changed.

The output of ROM depends on the selected memory cell i.e. input address only.

Therefore, it can be implemented as a combinational circuit. Although, combinational

circuits themselves do not have any memory. This is special case of combinational

circuit otherwise, they do not provide memory as a combinational circuit ROM is

implemented using decoder and OR gates. However, not all kind of ROMs are

implemented as combinational circuit.

Figure 5.11: Implementation of decoder with 2 inputs and 4 outputs

Table 5.6: Truth table for 2-to-4 decoder

A B D0 D1 D2 D3
0 0 1 0 0 0
0 1 0 1 0 0
0 1 0 0 1 0
1 1 0 0 0 1

Check your progress 1
1. What is truth table?

2. Which logic gates are known as universal gates?

3. What is combinational circuits?

4. What do you understand by SOP and POS?

5. How Boolean expressions are simplified?

6. How many outputs are generated by a half adder?

7. How many half adders are required to make a full adder?

8. How many inputs are taken by a full adder?

9. What is multiplexer?

10. Can you convert a decoder into demultiplexer?

Figure 5.12: Block diagram of sequential circuit

5.4 Sequential Circuits
The sequential circuit is capable of storing the information. The output of sequential

circuits not only depends on the current input but on the present state also. A

combinational circuit when included with a memory element, the overall circuit is called

sequential circuit. It is illustrated with the help of a block diagram in Figure 5.12. The

memory element defines the present state of the circuit at any time. The memory

element in sequential circuit is connected to combinational circuit through a feedback

connection. As compared to the combinational circuits, the sequential circuits are

complex to implement. The present state and current input determines the output of the

circuit and its next state. The behaviour of a sequential circuit is described by inputs,

Combinational
Circuit Memory

Elements

Input Output

outputs, and its states. It is specified with the help of a table known as state table,

which provides output and next state of the circuit as a function of corresponding input

and present state.

5.4.1 Latches and Flip Flops
Latches and flip flops are the basic sequential circuits, which can store a bit of

information. The primary function of these circuits is storage and they are capable of

storing 1-bit of binary data (0 or 1). The latches or flip flops are controlled by an

enabling signal. The major difference between latches and flip flops is that the output of

a latch changes according to input immediately as control signal is enabled. On the

other hand output of a flip flop changes only at the rise or fall of the enabling signal.

After the rise or fall of the enabling signal, the output of the flip flop remains stable even

if the input changes. A flip flop has two stable states, which can be treated as 0 or 1

depending on the absence/presence of signals. The flip flop can change its state only

during the clock transitions. There are many different types of flip flops. The behaviour

of a latch or flip flop can be described with the help of a characteristics table, which is

also known as function table. The characteristics table is similar to truth table.

S-R Latch also known as set-reset latch is a sequential logic circuit that can be

constructed with the help of NAND or NOR gates. It has two inputs called set (S) and

reset (R). There are two output ports Q and Q’. In fact, Q’ is the complement of Q.

Figure 5.13 shows implementation of S-R latch using two NOR gates and its state table

is given in Table 5.7. The two gates are connected using feedback connections. There

are four states of S-R latch as given in its characteristics table. If S=1 and R=0, the

output Q=1 and the latch is in SET state. When S=0 and R=0 the output Q is still 1 as

circuit remembers the previous state and it works as a memory element. If S=0 and

R=1, the output Q=0 and the latch is in RESET state. When S=1 and R=1, the circuit

enters to an invalid state as Q=0 and Q’= 0 but both Q and Q’ must complement each

other. Therefore, both S and R are not allowed to have input value as 1 at the same

time.

S-R latch can also be implemented by connecting two NAND gates in a feedback

arrangement as shown in Figure 5.14. The arrangement is similar to the circuit shown in

Figure 5.13 but NOR gates are replaced by NAND gates. The characteristics table is

given in Table 5.8. The NAND gate implementation works in the similar way with slightly

different states. As it can be observed from the characteristics table, the inputs S=1 and

R=1 representing a memory state, when S=0 and R=0 it is an invalid state.

Figure 5.13: S-R latch implementation using two NOR gates

Table 5.7: Characteristics table for S-R latch using NOR

S R Q Q’
1 0 1 0
0 0 1 0
0 1 0 1
0 0 0 1
1 1 0 0

Figure 5.14: S-R latch implementation using two NAND gates

Table 5.8: Characteristics table for S-R latch using NAND

S R Q Q’
1 0 0 1
1 1 0 1
0 1 1 0
1 1 1 0
0 0 1 1

The S-R latch with NAND or NOR gates has a problem of invalid states. Apart

from that output changes in response to input after some delay. This type of operation is

called as asynchronous operation. The circuit can be made more stable and

synchronous by adding a clock as another input to the circuit. This type of circuit is

known as flip flop. Flip flop allows to change state in response to the change in S and R

values only during clock transitions.

Clocked S-R Flip Flop: A clocked S-R flip flop is designed to overcome

limitations of S-R latch. It is also known as gated S-R flip flop. It has the ability to

change the output when certain invalid state is reached irrespective of the inputs. The

clocked S-R flip flop can be developed by adding two AND gates and a clock to the

basic NOR latch circuit as shown in Figure 5.15. The outputs of the two AND gates

remain 0 regardless the values of S and R as long as clock pulse is 0. When clock pulse

becomes 1, the input from S and R passes through to the NOR gates in the circuit.

CP: Clock pulse

Figure 5.15: Clocked S-R flip flop

Table 5.9: Characteristics table for clocked S-R flip flop

Qn S R Qn+1

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 Intermediate
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 Intermediate

The characteristics table for clocked S-R flip flop is given in Table 5.9. If S=1 and R=1,

both outputs go to 0 for a short time as clock pulse occurs. When clock pulse is

removed, the flip flop state is intermediate. The intermediate state could result in either

0 or 1 depending on the transition.

D Flip Flop: A minor modification is made to the circuit of clocked S-R flip flop to

avoid intermediate state problem. The modified circuit is shown in Figure 5.16. It is

known as D flip flop. The D input directly takes the S input and its complement goes to

R input. The D flip flop is considered a data flip flop as it provides storage for 1 bit. It

always produces the last input. The characteristics table of D flip flop is given in Table

5.10.

Figure 5.14: D flip flop

Table 5.10: Characteristics table for D flip flop

Qn D Qn+1

0 0 0
0 1 1
1 0 0
1 1 1

J-K Flip Flop: The major problem with S-R flip flop is its intermediate states. J-K flip

flop is an important modification of S-R flip flop whose all states are valid. It is the most

commonly used flip flop. Similar to S-R flip flop, J-K flip flop also consists of two input

ports designated as J (SET) and K (RESET) and a clock pulse input. The fundamental

difference between two flip flops is the feedback connections to AND gates of the

inputs. The circuit diagram is shown in Figure 5.17 and the characteristics table is given

by Table 5.11.

Figure 5.17: J-K Flip flop

Table 5.11: Characteristics table for clocked J-K flip flop

Qn S R Qn+1

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

T Flip Flop The T flip flop is a simplified version of the J-K flip flop, It is

constructed by connecting inputs of J-K flip flop together as shown in Figure 5.18. It is

also known as single input J-K flip flop. The output of T flip flop simply toggles after

each pulse. The characteristics table of the T flip flop is given by Table 5.12.

Figure 5.18: T flip flop

Table 5.12: Characteristics table for T flip flop

Qn T Qn+1

0 0 0
0 1 1
1 0 1
1 1 0

5.4.2 Registers
Registers are the essential elements of a CPU. The primary function of registers is data

storage. A register can be implemented as a chain of n flip flops with common control

signals. Each flip flop stores 1 bit information, therefore a register can store n bits of

binary data. In addition to the flip flops, some combinational gates may also be used in

a register to perform some kind of data processing. The logic gates in the register

control transfer of data. The data transfer to a register is called loading the register.

Figure 5.19: 4-bit parallel register using D flip flops

There are two basic types of registers namely parallel registers and shift
registers. In parallel register, all 1-bit memories can be loaded simultaneously. The

circuit diagram for an 8-bit parallel register is shown in Figure 5.19. It uses a clock to

supply clock pulses continuously to the system. The clock pulse determines the next of

the output. A control signal is also used in the register to decide the impact of clock

pulse on a particular register. With a single clock pulse, all the bits of a parallel register

can be loaded simultaneously.

The shift register has the ability to transfer its data bits to left or right or both

directions. The flip flops in a shift register are connected in a cascade. The output of

one flip flop is connected to the input of the next flip flop in the chain. The common clock

pulse is used to initiate the shift operation in the register. The circuit diagram of a shift

register implemented using D flip flops is shown in Figure 5.20. In this register, the input

goes into the leftmost flip flop and the output is taken from the rightmost flip flop. The

shift registers have a range of applications in ALUs, I/O devices, and interfaces, etc.

Figure 5.20: Implementation of a 5-bit shift register using D flip flops

Check your progress 2
1. Differential combinational and sequential circuits.

2. Write some examples of sequential circuits.

3. How many stable states a flip flop can have?

4. Differentiate S-R flip flop and Clocked S-R flip flop.

5. Which logic gates can be used implement S-R flip flop?

6. Which flip flop is known as data flip flop?

5.4.3 Counters
Counters are another example of sequential circuit, which are used in many digital

circuits to count the occurrence of an event in the system. An n-bit counter is a kind of

register constructed with the help of n flip flops and associated logic gates. An n-bit

counter can be used to count from 0 to 2n-1. The program counter in CPU is a good

example of counter. A counter is usually implemented with complementing flip flops

such as T flip flop or J-K flip flop. There could be two types of counters: synchronous

or asynchronous. In a synchronous counter, all the flip flops can change their states

simultaneously. On the other hand, in an asynchronous counter, the output of one flip

flop triggers the change in the state of next flip flop. Therefore, asynchronous counters

are relatively slower than the synchronous counters.

The asynchronous counters are also known as ripple counter as change at one

end ripples through to the other end when there is an increment in the counter. An

implementation 4-bit asynchronous counter is shown in Figure 5.21 using 4 J-K flip

flops. The output of the leftmost flip flop provides the least significant bit. The counter is

incremented with each clock pulse. The concept can be generalized to n-bit counter by

using n J-K flip flops.

Figure 5.21: 4-bit Asynchronous counter

Figure 5.22: 4-bit synchronous counter

The asynchronous counter introduce a delay in changing the value, which is

proportional to the counter length. To overcome the problem of delay, usually

synchronous counters are preferred over the asynchronous counters. The C inputs of all

flip flops in a synchronous counter receive a common clock pulse as shown in Figure

5.22 and all flip flops change at the same time.

5.5 Summary
ALU is one of the most important component of the microprocessor, which performs

arithmetic and logic operations. The logic gates are the basic building blocks of the

ALU. The logic gates can carry out Boolean operations. Different computing elements

can be constructed with the help of a circuit of logic gates to perform different arithmetic

operations. There are two different types of digital circuits: combinational and

sequential. The output of a combinational circuit is the function of its inputs only at a

particular time. Any change in the inputs, immediately reflected to its output. Half adder,

full adder, multiplexer, decoder, and ROM are the examples of combinational circuits.

On the other hand, the sequential circuits are capable of keeping track of its previous

state and the output depends not only on the inputs but also on the previous state.

Therefore, the sequential circuits have a memory component to store the information.

Flip flops, registers, and counters are the examples of the sequential circuits. A system

may have different types of ALUs that perform their operations with the help of

combinational or sequential or both kind of circuits.

Review Questions
Q.1 Construct truth table for the following Boolean expressions:

(a) ABC + ABC + ABC
(b) ABC + ABC + ABC
(c) ABC + ABC +ABC

Q.2 Construct digital circuit diagram for the following Boolean expressions:

(a) ABC + ABC + ABC
(b) ABC + ABC + ABC
(c) ABC + ABC +ABC

Q.3 Draw logic diagram with AND-OR gates for following Boolean expressions:

(a) ABCD + ABCD + ABCD + ABCD
(b) ABCD + ABCD + ABCD + ABCD
(c) ABCD + ABCD + ABCD + ABCD + ABCD +ABCD +ABCD +ABCD

Q.4 Simplify following Boolean expressions using K-maps and draw logic diagram

with AND- OR gates for the simplified expressions

(a) ABCD + ABCD + ABCD + ABCD
(b) ABCD + ABCD + ABCD + ABCD
(c) ABCD + ABCD + ABCD + ABCD + ABCD +ABCD +ABCD +ABCD

Q.5 Highlight the major differences between synchronous and asynchronous

counters.

Q.6 Draw a logic diagram for an 8-bit parallel shift register using D flip flops.

Q.7 What are the major differences between a latch and a flip flop?

Q.8 Compare the characteristics of S-R flip flop and J-K flip flop.

UNIT- 6 Advanced Topics

Structure
6.0 Introduction

6.1 Objectives

6.2 Pipeline Processing

6.3 Floating-Point Arithmetic

6.4 Summary

Review Questions

Unit 6: Advanced Topics

6.0 Introduction
The fixed-point numbers can be processed efficiently but only a small range of numbers

can be provided with fixed-point representation. The arithmetic operations on fixed-point

numbers can be performed in a faster and simpler way. However, it is not possible to

represent very large numbers and very small fractions with this notation. The floating-

point notation can represent a large range of negative and positive numbers. A number

is represented in three parts: sign, mantissa (or significand), and exponent. All parts are

stored in two different registers.

IEEE has developed three standards of floating-point representations known as:

single precision, double precision, and extended precision. In single precision notation,

mantissa has 23 bits, exponent takes 8 bits, and remaining 1 bit is used for the sign of

the number. The number is normalized so that the mantissa is always 1.xxxxxx...xxx in

the normalized form. Because leading bit is always 1, it is not stored but it is an implied

bit. Effectively the mantissa part has 24 bits. For zero, a special representation is used

with all 0’s both for mantissa and exponent fields as well as sign bit. IEEE standard for

floating-point numbers uses a biased representation, which is simply the binary

representation of E+127, where E is the actual exponent and 127 is the exponent bias.

The actual exponent is obtained by subtracting the exponent bias from the stored

exponent. Mathematically, single precision representation gives (−1S .2exp−127 .1. frac),

where S is sign, exp is exponent, and frac is mantissa. The dynamic range of single

precision floating-point numbers goes from 1.175 ×10− 38 to 3.4 × 1038. The double

precision numbers use 64-bit words but arrangement is similar to the single precision

floating point numbers. The mantissa takes 52 bits, 11 bits are used for exponent, and

remaining 1 bit is used as sign bit. The dynamic range of double precision numbers

varies from 2.2 ×10−308 to 1.7 ×10308. The extended precision floating point notation

uses 80-bit word out of which, 15 bits are used as exponent, 64 bits are reserved for

mantissa, and 1-bit is used as sign bit.

 For large numbers floating-point representation is used. However, it is more

complex to perform arithmetic operations on floating-point numbers. These operations

require more complex hardware and take longer execution time. The two operands may

have different exponents that causes problem especially for addition and subtraction

operations. On the other hand, there may arise some kind of overflow and underflow

conditions that need to handle in such operations.

The complex operations can be divided into several sub-operations that can be

executed in separate hardware segments. The pipelining is a technique that executes

sub-operations belonging to the same operation in concurrently operating segments

simultaneously. Each segment performs partial processing and output is transferred to

the next segment for further processing. The final result is obtained through the last

segment in the cascade. The overlapping of computation leads to the faster execution.

6.1 Objectives
The objectives of this unit are as follows:

1. To introduce the concept of computational pipelining.

2. To study the techniques for floating-point addition/subtraction.

3. To study the techniques for floating-point multiplication/division.

Figure 6.1: A k-stage linear pipeline structure

6.2 Pipeline Processing
Pipeline processing is similar to the assembly line in manufacturing plant, where

computational processing goes through different phases and each phase is carried out

by different computing segments. In computational pipeline, the operands are

processed by one segment and the intermediate result so obtained is transferred to the

next segment in the pipeline. In this way, the data elements are processed by each

segment before the final result is obtained through the last segment of such pipeline.

The computations belonging to different data elements can be overlapped in a pipeline

processing leading to a faster execution. The structure of a basic linear pipeline

processor is shown in Figure 6.1. Each segment in the pipeline is separated by a latch

that works as an interface between the two stages. Different segments may introduce

different amount of delay as each of them performs a different type of sub-operation.

The latch helps to manage the delay to avoid any kind of data conflicts at a segment.

The overlapping of computations at different segments can be illustrated with the

help of a space-time diagram for a four-segment pipeline as shown in the Figure 6.2.

Each marked cell in the diagram represents the utilization of corresponding segment in

a particular clock cycle. During the first clock cycle, only the first segment S1 is busy

with task T1. After the first clock cycle, the output of segment S1 for task T1 is transferred

to second segment S2 and a new task T2 is assigned to segment S1 in second clock

cycle. In this way the computation makes progress and the first result is obtained after

four clock cycles. But after that once the pipeline is filled up with tasks, it produces the

results per clock cycle. In general, a k-segment pipeline takes k clock cycles for the first

result. If a total number of n tasks are processed with the pipeline processor, it takes Tp

= k+n-1 clock cycles to complete the tasks. On the other hand a non-pipeline processor

takes Tnp = k.n clock cycles to complete the same number of tasks. Therefore the speed

up provided by a k-segment is

S = Tnp
Tp

= k.n
k + n - 1

If n ≫ k, the speed up for a k-segment pipeline is approximately k times. The pipeline

organization can be applied to perform arithmetic operations.

 Time

1 2 3 4 5 6 7 8 9
S1 T1 T2 T3 T4 T5 T6

S2 T1 T2 T3 T4 T5 T6

S3 T1 T2 T3 T4 T5 T6

S4 T1 T2 T3 T4 T5 T6

Space

Figure 6.2: Space-Time diagram for a four-segment pipeline

The other parameters that can be used to analyse the performance of a pipeline are

throughput and efficiency. The efficiency (E) of k-stage pipeline can be defined as

follows.

E = n
k + n - 1

On the other hand, the throughput (T) is defined as follows.

T = E
τ

where τ is the clock period.

Check your progress 1
1. Which three standards are developed by IEEE for floating-point numbers?

2. Write the dynamic range of single precision floating-point numbers.

3. How many bits are used for mantissa in double precision floating-point numbers?

4. What is the role of latch in pipelining?

5. How much speed up can be achieved by a k-stage pipeline?

6. Write equation to determine efficiency of a pipeline.

7. How throughput is related to the efficiency of a pipeline?

6.3 Floating-Point Arithmetic
The floating-point arithmetic operations are more complex to perform than fixed-point

arithmetic operations. There are certain issues that arise during floating-point arithmetic

operations as discussed here.

Overflow conditions: As discussed earlier, exponent and mantissa are two

major parts in the floating-point number representation. As a result of an operation, the

exponent of the resultant number may exceed the maximum possible positive value.

Similarly, when the two mantissas of the same sign are added, it may exceed the

maximum allowed value. The overflow conditions need to be fixed in such operations.

Underflow conditions: If two negative exponents are added, it may result in a

negative exponent that is lower than the minimum allowed exponent. Such numbers are

not possible to represent. In the same way, the mantissa may also result in the

underflow condition. Usually the underflow conditions are handled by some kind of

rounding.

6.3.1 Floating-point Addition and Subtraction
The floating-point addition or subtraction operation takes two normalized floating-point

numbers P and Q as input. The numbers P and Q can be written as follows

P = A × 2p and Q = B × 2q

In the above notation, A and B are the mantissas and p and q are exponents. The

addition/subtraction operations are performed as four sub-operations. The four sub-

operations are as follows

1. Compare the exponents

2. Align the mantissa of the operand with smaller exponent value. If two exponent

values are equal then no alignment required

3. Add or subtract the mantissas

4. Normalize the result by shifting the resulting mantissa and adjusting resulting

exponent

The main difficulty with the addition/subtraction operation is that the exponents of the

two operands may be different i.e.p ≠ q. The larger exponent is the exponent of the

result. Therefore, both exponents are compared and if p and q are found different then

the mantissa of the operand with lower exponent value is adjusted to make both the

exponents equal. In order to adjust the mantissa, it is shifted right by(p - q)places. After

the addition of the two mantissas, the overflow/underflow conditions are handled and

result is normalized.

The sequence of four sub-operations in an addition operation can be illustrated

with the help of an example. To keep it simple, the base 10 scientific notation is used in

the example. Let us consider the addition of 997.6 and 4.3. The two operands can be

written as normalized numbers as follows

P = 0.9976 × 103 and Q = 0.4300 × 101

As a first sub-operation, the two exponents are compared and it is found that the

difference in two exponents is 2. Both exponents are made equal by shifting the base

point of the mantissa of the operand with smaller exponent. It is shifted by 2 places to

right to align the two mantissas under the same exponents

 P = 0.9976 × 103 and Q = 0.0043 × 103

Now the two aligned mantissas are added to produce the sum

S = 1.0019 × 103

The sum is normalized to obtain the final result

S = 0.10019 × 104

Suppose that the mantissa can have maximum four digits. In that case, the result in the

above example leads to the overflow condition as there are five digits in the resultant

mantissa. To handle the overflow condition, the least significant digit is dropped by

rounding off as follows

S = 0.1002 × 104

Another example is given here for subtraction operation. The procedure for the

subtraction operation is exactly same. Let us carry out (857.64 – 697.58). The two

operands can be written as

 P = 0.85764 × 103 and Q = 0.69758 × 103

On comparison, both exponents are found equal. Therefore no alignment is required.

Subtract the smaller mantissa from the larger one to obtain the following result

S = 0.16006 × 103

Here no issue related to overflow or underflow occurs. Therefore, it is the final result.

6.3.2 Hardware Implementation for Floating-Point Addition and Subtraction
The floating-point operations can be implemented both in software and hardware. For

software implementation the compiler is designed with subroutines for such operations.

The hardware implementation is expensive on the other hand, but it is more efficient

than software implementation. The most of the computer systems have hardware for

floating-point arithmetic operations in their ALUs. A set of registers and adders are

required in ALU for floating-point operations. The algorithm for addition/subtraction

operation can be written as follows

1. Check for zeros

2. Compare and align mantissas

3. Add or subtract the mantissas

4. Normalize the result

The zero value of the operands may cause problem during the computation. Therefore,

it is a good practice to check for zeros in the beginning. The zero cannot be normalized.

If only one operand is zero then the other one is provided as the result. In case of

subtraction operation, the sign of the subtrahend is changed. In some situations the

result is zero and it is better to terminate the process in the beginning at appropriate

stage. The two operands are aligned to make exponents equal. It is achieved by

repeatedly shifting the mantissa to right and incrementing the exponent until both

exponents become equal. If mantissa becomes zero during this process, the other

operand is reported as a result. For larger numbers, the shifting could lead to the loss of

bits. Since it is the least significant bit that is discarded, the loss is small. After the

addition/subtraction the result is normalized by shifting the bits before transferring the

result to the memory. The result could be un-normalized before providing it to the user.

The shift operation may lead to overflow or underflow conditions that should be handled

effectively. The complete procedure is shown with the help of a flow chart in Figure 6.3.

Figure 6.3: Floating-point addition and subtraction

The procedure of floating-point addition/subtraction operations can be divided

into four sub-operations. Each sub-operation can be carried out by a separate segment.

Therefore, it is possible to implement a pipeline to perform these operations. A pipelined

implementation for floating-point addition and subtraction operations is shown in Figure

6.4. In the figure, letters A and B denote the mantissas of two operands and a and b are

corresponding exponents respectively. There are four segments in the pipeline. The first

segment named Segment1 compares the two exponents. The second segment

(Segment2) choses the larger exponent, addition/subtraction of mantissas is performed

by third segment (Segment3), and finally result is normalized in forth segment

(Segment4). The addition/subtraction of two mantissas is equivalent to the

addition/subtraction of fixed-point numbers. The overflow and underflow conditions are

handled by right and left shift operations respectively. All the segments are separated

by a register R, which is used to hold any intermediate results.

Figure 6.4: Floating-point addition and subtraction by pipeline

6.3.3 Floating-point multiplication
The floating-point multiplication and division operations are simpler than floating-point

addition and subtraction operations as no comparison of exponents and alignment of

mantissas are necessary. To perform the multiplication of two floating-point numbers,

the mantissas are simply multiplied and exponents are added. The multiplication of

mantissas is carried out in the same way as the multiplication if two fixed-point

numbers.

Figure 6.5: Flow chart for floating-point multiplication

The multiplication operation can be carried out as sequence of four sub-operations as

follows:

1. Check for zeros

2. Add the exponents

3. Check for overflow/underflow

4. Multiply the mantissas

5. Normalize the result

First of all, the two numbers suppose P and Q are checked for zeros. If any one of the

two numbers is found zero then result is zero and no further processing is required.

Otherwise the remaining three steps of the algorithm are also executed. The step 2 and

step 3 can be performed simultaneously if required hardware support is available. The

representation of the number is an important concern as the length of the result would

be double of the word length of the multiplier/multiplicand. If exponents are in biased

form then addition of exponents would result in double bias. Therefore, bias value is

subtracted from the sum to maintain the proper bias (Refer Unit 2, Section 2.4). Any

overflow or underflow conditions would be reported. Any extra bits would be lost during

the rounding process. The floating-point multiplication process if illustrated with the help

of a flow chart in Figure 6.5.

6.3.4 Floating-point division
The floating-point division operation has many similarities with floating-point

multiplication. Here, the two exponents are subtracted instead of addition and mantissas

are divided. The division is carried out as a fixed-point operation. The step-by-step

procedure is given as follows:

1. Check for zeros

2. Subtract the exponents

3. Check for overflow/underflow

4. Divide the mantissas

5. Normalize the result

The process is illustrated in Figure 6.6. As in case of multiplication operation, the two

operands are checked for zero. If dividend is zero, the result is also zero and procedure

terminates here itself. If divisor is zero, it leads to undetermined condition, which is

reported as infinity or as an error condition.

Figure 6.6: Flow chart for floating-point division

After testing the operands for zero value, exponents are subtracted if operands

found non-zero. In case of bias representation, subtraction operation removes the bias.

Therefore, it is added back in. After that overflow/underflow conditions are tested. The

next step is to divide the mantissas followed by the normalization and rounding of the

result.

Check your progress 2
1. What is overflow in floating-point arithmetic?

2. What is underflow in floating-point arithmetic?

3. What types of problems can be caused by zero operand value?

4. Which shift type is used to handle overflow condition?

5. Which shift type is used to handle underflow condition?

6. How undetermined condition is reported?

6.4 Summary
Floating-point representation is used for the large numbers. There are two major parts

of the number in this representation: mantissa and exponent. The arithmetic operations

on floating-point numbers are more complex to perform. These operations can be

divided into multiple sub-operations, which could be implemented either in software or in

hardware. The hardware implementation takes more cost but it is more efficient than

software implementation. Each sub-operation can be performed by a separate segment

in a pipeline approach. The output of one segment is provided as input to the next

segment in the pipeline and the result is obtained through the last segment. Different

segments can work in an overlapped fashion that speeds up the overall execution if

there are large number of same operations.

The operands with different exponents have to be handled carefully in the

floating-point addition/subtraction operations. This issue is handled by normalizing the

operands. The normalization is done by making both the exponents equal to the larger

exponent and shifting the mantissa of the smaller operand to right by the number of

places equal to the difference of the exponents. Thus larger exponent is the exponent of

the result. Later, the mantissas are added and result is normalized. The floating-point

multiplication/division operations are little simpler as normalization is not required for

these operations. The exponent of the result is obtained adding both exponents in

multiplication operation. In division operation, the exponents are subtracted to get

exponent of the result. The mantissa for floating-point multiplication/division is obtained

by multiplying/dividing the mantissas of operands. The multiplication/division of the

mantissas is simply a fixed-point operation. During the normalization and rounding

process, some least significant bits may be lost. Losing a few least significant bits does

not make large impact on the result.

Review Questions
Q.1 What do you understand by pipeline processing? With the help of diagram,

explain the pipeline processing technique and its impact on the speed up of the

execution.

Q.2 Write an algorithm to perform floating-point addition/subtraction algorithm and

illustrate it with the help of a flow chart. Discuss the major issues that arise during

these operations.

Q.3 With the help of a diagram, discuss the pipeline implementation for performing

the floating-point addition/subtraction operation.

Q.4 Write an algorithm to perform floating-point multiplication operation and explain it

with the help of a flow chart. Discuss the major issues with the operation.

Q.5 Write an algorithm to perform floating-point division operation and explain it with

the help of a flow chart. Discuss the major issues with the operation.

Q.6 Perform the following floating-point addition operations. Use 7-bit word including

sign bit for to accommodate the operands and the result. Find out if there is any

overflow/underflow condition and explain how to handle it.

(a) (+49) + (+25)

(b) (+26) + (+37)

(c) (+49) + (-25)

(d) (-49) + (-25)

Q.7 Perform the following floating-point subtraction operations. Use 7-bit word

including sign bit for to accommodate the operands and the result. Find out if

there is any overflow/underflow condition and explain how to handle it.

(a) (+49) - (+25)

(b) (+26) - (+37)

(c) (-49) - (+25)

(d) (-49) - (-25)

Q.8 Show the step-by-step procedure with flow-chart to perform following operations:

(a) 485 × 254
(b) 485 ÷ 26

Q.9 Perform floating-point addition and show the results in normalized form.

(a) 4.5257 × 102 +7.8148 × 103

(b) 2.6842 × 102 +9.5247 × 102

(c) 3.7246 × 102 +5.2354 × 104

(d) 3.4568 × 102 +2.5246 × 10-1

Q.10 Perform floating-point subtraction and show the results in normalized form.

(a) 4.5257 × 103 -7.8148 × 102

(b) 9.5247 × 102 -2.6842 × 102

(c) 5.2354 × 10-3 -3.7246 × 10-2

(d) 5.2354 × 103 -3.7246 × 10-2

Q.11 Show step-by-step procedure to perform floating-point multiplication:

(a) (1.5000 × 102) × (2.5000 × 102)
(b) (2.5577 × 102) × (4.2222 × 100)
(c) (3.9999 × 102) × (1.5555 × 103)

Q.12 Show step-by-step procedure to perform floating-point division

(a) (8.5684 × 103) ÷ (2.5000 × 102)
(b) (9.8645 × 102) ÷ (3.4224 × 103)

 Bachelor of Computer
Application

Uttar Pradesh Rajarshi Tandon BCA-EC
 Open University Computer Architecture

Block

3
CONTROL DESIGN

Unit 7

Basic Concepts

Unit 8
Micro-programmed Control

Unit 9
Pipeline Control

BLOCK INTRODUCTION

Arithmetic logic unit (ALU) and a control unit (CU) are two major components of the

central processing. ALU deals with the arithmetic operations, while the primary function

of the CU is to generate relevant timing and control signals. Block 3 deals with the

organization of the CU and some advanced hardware design issues in a computer

system. This block consists of Unit 7, Unit 8, and Unit 9. The Unit 7 provides insight into

the major functions and organization of CU. Different approaches for CU

implementation are discussed in Unit 8. It also discusses sequencing and execution of

micro-operations and micro-instructions. The conventional computing systems perform

operations in a sequential way. Parallel processing is the modern approach to

simultaneously perform data processing to speed up the computational speed of the

computer system. It is an efficient form of data processing that takes advantage of

concurrent exploitation of resources. An economical realizing of the parallelism is the

pipelining technique, which is discussed in Unit 9.

UNIT- 7 Control Design Basic Concepts

Structure
7.0 Introduction

7.1 Objectives

7.2 Micro-operations

7.3 Functional Requirements of Control Unit

7.4 Hardwired Control Unit

7.5 Control Unit Logic

7.6 Summary

Review Questions

Unit 7: Control Design Basic Concepts

7.0 Introduction
As it was discussed in Unit 1, the central processing unit (CPU) of the computer system

has two major components: an arithmetic logic unit (ALU) and a control unit. ALU deals

with the arithmetic operations, while the primary function of the control unit is to

generate relevant timing and control signals for all kind of operations performed by the

system. The computer performs operations by executing a program that is a sequence

of instructions. However, the sequence of the instruction cycles executed by the

computer is not exactly the same as written in the program due to branch and loop

instructions. The instruction cycle is made up of a number of smaller steps involving the

CPU registers. These steps are known as the micro-operations. A micro-operation

performs a simple operation amounting to a little contribution. The responsibility of the

control unit is ensure the execution of the proper sequence of the micro-operations

based on the program under execution. The control unit also controls the flow of data

between CPU and memory and I/O system. It issues the control signals to ALU,

memory, storage devices, and peripherals. The control unit is responsible for data

transfer to and from registers, ALU operations, and opening/closing of logic gates by

issuing relevant control signals. Overall, the control unit coordinates the activities of

different components in the computer system.

There are two major organizations for control unit to generate control signals:

hardwired control unit and micro-programmed control unit. A hardwired control unit

generates control signals with hardware implementation using logic circuits. The micro-

programmed control unit uses a sequence of micro-operations to control the operations

in a digital computer. The desired sequence of micro-operations is provided in the form

of a micro-program. A control function of a micro-operation is specified by a binary

variable. The execution of the micro-operation depends on the state of the associated

binary variable. The control binary variables are stored in a control memory. Each word

of the control memory contains micro-instructions. A micro-instructions specifies one or

more micro-operations. The sequence of micro-instructions is in fact makes a micro-

program for the system. Usually the micro-programs are not required to change for an

operation control unit. Therefore, control memory could be a read-only-memory (ROM).

All micro-instructions and control variables are placed in the ROM. Each type of

implementation of the control unit has some merits and demerits. The hardwired control

unit is complex and difficult to implement but at the same time it is faster as control

signals are generated by logic circuits. The micro-programmed control unit is less

complex, flexible, easy to implement but slower.

7.1 Objectives
The major objectives of this unit are listed as follows:

1. To have an insight of the major functions and responsibilities of the control unit.

2. To have an overview of the different approaches for control unit implementations.

3. To understand the organization of the hardwired control unit.

4. To learn the major features of hardwired control unit.

7.2 Micro-operations
The major tasks in a digital computer system are carried out with the help of computer

programs. A computer program is a sequence of instructions. The primary job of the

CPU is to execute instructions or a sequence of instructions. Each instruction is made

up of a number of sub-operations such as instruction fetch, operands fetch, decode,

execute, and interrupt, etc. It is possible to further decompose the sub-operations as a

sequence of smaller steps, which are known as micro-operations. A micro-operation

performs an elementary job that makes a little contribution towards the accomplishment

of a larger task. The relation among program, instructions, and micro-operations can be

depicted with the help of a hierarchical structure as shown in Figure 7.1.

Figure 7.1: Program execution and its elements

An instruction is executed during one instruction cycle. Each instruction cycle is

divided into a number of subcycles. During a subcycle usually only one micro-operation

(sometimes more) is executed. Micro-operations involve some registers whose contents

may be modified during the execution. The contents of one register may be transferred

to another register replacing its previous contents. The CPU uses a sequence of micro-

operations on the data stored in registers to carry out a specific function. The micro-

operations are the functional operations of a processor. There are different types of

micro-operations that perform different types of elementary jobs. The micro-operations

can classified into four broad categories: register transfer micro-operations, arithmetic

micro-operations, logic micro-operations, and shift micro-operations.

7.2.1 Register Transfer Micro-Operations
The CPU of the computer system consists of a set of registers in addition to ALU and

control unit. The registers are the fast memory elements that can store a small amount

of data. Some elementary operations can be carried out on data contents of the

registers with the help of available logic circuits. The most prominent register operations

include data transfer operations that do transfer from one register to another. These

operations are carried out through micro-operations that are usually performed through

hardware logic circuits. The information is not modified by these operations but it is

transferred from one location to another. The symbolic notation used to express micro-

operations for register transfer is called register transfer language. Symbolically,

information transfer from one register to another is represented as follows

R1←R2
The above statement denotes the data transfer from register R2 to register R1. The

symbol ←represents the data transfer, R2 is the source register, and R1 is the

destination register. The existing contents of R1 are overwritten during this operation.

The contents of the source register remain unchanged in transfer operation. All the

statements written in the same line are executed simultaneously provided there is no

conflict. The statement written in the same line are separated by a comma. For

example, let us consider the following statements.

R1←R2, R1←R0
Here, both R2 and R0 are attempting to transfer data to register R1 leading to conflict.

Therefore, these two micro-operations cannot carried out simultaneously. On the other

hand the following statements have no conflict.

R1←R2, R3←R0
Such micro-operations can be carried out at the same time as destination registers are

different in both statements.

It is a standard notation to represent the processor registers by uppercase

letters. The program counter register is designated as PC, address register is AR,

instruction register is written as IR, and R1, R2, etc. are the general purpose registers.

The individual bits of an n-bit register are designated 0 (rightmost) to n-1 (leftmost). The

register IR is a 16-bit register that can be divided into two 8-bit sub fields IR(L) and

IR(H). The symbol IR(L) refers to bits 0 through 7 and bits 8 through 15 are assigned to

IR(H). The register formats are shown in Figure 7.2. It is a general practice denote a

register with uppercase letters and to represent it with the help of a rectangular box

having register name

written inside.

Figure 7.2: Register formats (a) 8-bit register (b) 16-bit register

In the statements discussed so far there is control information included but

normally the register transfer operations take place under some predetermined control.

The control function is specified with the help of a Boolean variable P placed in front of

the actual statement as follows

P: R1←R2
The Boolean variable P can have a value 0 or 1. The associated statement is executed

only if P=1. The clock is not mentioned explicitly in any forms of the statements but the

register transfers are normally assumed to occur only at the transition of the clock edge

as shown in Figure 7.3.

Figure 7.3: Timing diagram for register transfer
(Source: Computer System Architecture, 3/e, M. Morris Mano, 1993)

The hardware implementation of logic circuit for the register transfer micro-operation is

depicted in the Figure 7.4. R1 is the n-bit source register and R2 is the n-bit destination

register. Both registers have n inputs and n outputs. The outputs of R1 are connected to

the inputs of R2. The register R2 has a load function P. Both P and the register are

synchronized by the same clock. As shown in Figure 7.3, P is activated (P=1) at rising

edge of the clock at time t. The next transition of the clock at time t+1 finds the load

active and all the bits of R2 are loaded in parallel. The data transfer takes place at every

clock transition until P becomes 0.

Figure 7.4: Block diagram for data transfer from R1 to R2 when P=1
(Source: Computer System Architecture, 3/e, M. Morris Mano, 1993)

7.2.2 Bus Transfer Micro-Operations
There are many registers in a digital computer system where frequent data transfer

takes place during the operations. It is not an economical and efficient solution to have

dedicated wired connections among the registers. Instead a common bus is used for

connecting the registers for data transfer. A bus is a group of wires commonly used for

data/signal transfer between different components. One separate wire is needed for

each bit of the register. The control signal or multiplexers are used to select registers for

data transfer through the bus. The bus lines are connected to the inputs of the

destination register to transfer the information. Symbolically the data transfer from

register R1 to register R2 through a bus can be expressed as follows

BUS←R1, R2←BUS
Firstly, contents of R1 are placed onto the bus and later contents of the bus are written

to the register R2 by activating its load control input.

Control
Circuit R2

R1

P

n

Load
Clock

7.2.3 Memory Transfer Micro-Operations
The read and write operations are the major memory operations in a computer system.

In a memory read operation the information is transferred from the memory to the other

devices or components. While, memory write operation transfers the data from some

outside source to the memory locations. The destination memory location is specified by

the memory address. The memory address is provided for each type of memory

operations. The read operation can be expressed as follows

R1←M
where M is the address of the memory location that is the source of data in this

operation and R1 is the destination register. Similarly, the memory write operation is

specified as follows

M←R1

7.2.4 Arithmetic Micro-Operations
The arithmetic micro-operations are related to basic arithmetic operations: addition,

subtraction, increment, decrement, and shift, etc. The micro-operations perform these

operations on numeric data loaded into registers. The operations are not carried out

directly on the individual registers. Instead, data contents of the processor registers are

transferred to the registers directly to the ALU. The desired operation is performed by

ALU and the result is transferred to the destination register. A micro-operation for the

addition operation can be expressed as follows

R2←R1 + R0
The contents of registers R0 and R1 are added and the result is loaded to register R2.

This operation involves three registers. In ALU, the arithmetic operations are carried out

with the help of accumulator register. The micro-operation for the subtraction operation

is expressed as follows

R2←R1 - R0
The subtraction is usually implemented with the help of 2’s complement representation.

The increment simply adds 1 to the contents of the source register

R2←R1 + 1

Similarly the decrement micro-operation subtracts 1 from the contents of the source

register

R2←R1 - 1
The micro-operations for increment and decrement operations are performed with

hardware implementation using logic gates. There could be micro-operations for the

multiplication and division operations if these are carried out with the help of

combinational circuits.

7.2.5 Logic Micro-Operations
Logic operations are binary operation that consider each individual bit of a register as

an individual binary number. If logic operation is carried out between two registers then

individual bits of one register are operated with the corresponding bits of the other

register involved in the micro-operation. For example the following micro-operation

performs logic OR operation between the bits of the register R1 and R2 and result is

stored in register R3.

R3←R2 + R1
The symbol + represents the logic OR operation in the logic micro-operation. If the

contents of R1 are 10110110 and the contents of R2 are 11011001, then result is

obtained as follows

1 1 0 1 1 0 0 1 R2

1 0 1 1 0 1 1 0 R1

1 1 1 1 1 1 1 1 R3

The logic AND micro-operation is stated and performed as follows

R3←R2 ⋅ R1

1 1 0 1 1 0 0 1 R2

1 0 1 1 0 1 1 0 R1

1 0 0 1 0 0 0 0 R3

The logic XOR micro-operation is stated and performed as follows

R3←R2 ⊕ R1

1 1 0 1 1 0 0 1 R2

1 0 1 1 0 1 1 0 R1

0 1 1 0 1 1 1 1 R3

Similarly other logic micro-operations such as NOT, NOR, and NAND can be

carried out on the register contents. However the symbol used in the expressions so far

are also used in Boolean expressions. Therefore some different symbols are used for

logic micro-operations to distinguish them from Boolean operations. The logic micro-

operations with their special symbols are listed in Table 7.1. The registers R1 and R2

are used to store the data and the result is stored in register F in all the micro-

operations given in the table. The logic micro-operations can be easily implemented in

the hardware with logic gates. There are fourteen logic micro-operations listed in the

Table 7.1 but only four operations AND, NOT, OR, and XOR are implemented and rest

other operations are derived from these four basic logic micro-operations. The logic

micro-operations have range of applications involving manipulation of individual bits in

the registers. In some operations only a subset of the register bits is need to

manipulate. Logic micro-operations are highly useful for such operations.

Table 7.1: List of logic micro-operations

Micro-operation Name
F←0 Clear

F←R2 ∧ R1 AND
F←R2 ∨ R1 OR
F←R2 ∧ R1 NAND
F←R2 ∨ R1 NOR

F←R1 NOT
F←R1 ⊕ R2 XOR
F←R1 ⊕ R2 XNOR

F← all 1’s Set to all 1’s
F←A Transfer A

F←R2 ∧ R1
F←R2 ∧ R1
F←R2 ∨ R1
F←R2 ∨ R1

7.2.6 Shift Micro-Operations
Shift micro-operations are very useful for serial transfer of data as well as they are used

to implement various arithmetic and logic operations such as multiplication and division.

The shift micro-operation could be used to shift contents of a register either towards left

or right. Therefore, there are two kind of shift micro-operations: left shift and right shift.

In case of a left shift micro-operation, all the existing bits are shifted one place to the

left. As a result new bit enters at the vacant leftmost location and a bit comes out of the

rightmost location. Similarly in case of a right shift micro-operation, a new enters at the

vacant rightmost position and one bit comes out of the leftmost bit position. Shift micro-

operations can be divided into three categories depending on what bit enters at one end

and where the bit shift out of the other end goes. The three categories of shift micro-

operations are:

a) Logical shift micro-operation

b) Arithmetic shift micro-operation

c) Circular or rotate shift micro-operation

In a logical shift operation, the bit that enters through one end (left or right depending on

the type of shift) is always assumed to be 0. The logical shift micro-operation is

represented by a symbol shl (left shift) or shr (right shift). The statement for a shift

micro-operation is written as follows

R1←shl R1 or R1←shr R1

In case of a circular shift, the bit shift out of the register enters back to the register

through other end. The circular shift micro-operation is represented by a symbol cil (left

shift) or cir (right shift). The statement for a circular shift micro-operation is written as

follows

R1←cil R1 or R1←cir R1

An arithmetic shift multiplies or divides the binary number by 2 depending whether it is

left shift or right shift. Description of the major shift micro-operations is given in Table

7.2.

Table 7.2: List shift micro-operations

Shift Micro-operation Description
R1←shl R1 Shift left register R1

R1←shr R1 Shift right register R1

R1←cil R1 Circular shift left register R1

R1←cir R1 Circular shift right register R1

R1←ashl R1 Arithmetic shift left register R1

R1←ashr R1 Arithmetic shift right register R1

Check your progress 1
1. What is micro-operation?

2. Differentiate hardwired control unit and micro-programmed control unit.

3. Write different categories of micro-operations.

4. Perform single circular shift operation on string 101010.

5. How control function is specified in a statement?

7.3 Functional Requirements of Control Unit

The basic functional elements of a processor are ALU, registers, data paths, and control

unit. As already discussed, the ALU carries out the most of fundamental operations in

CPU, registers are used to store the different types of data, the information stored at

different memory location (registers or main memory) is transferred through data paths,

and control unit is responsible to cause the operations to happen. Two major functions

of the control unit are sequencing and execution. A task can be accomplished through

a sequence of instructions. An instruction is executed as series of micro-operations. It is

the responsibility of the control unit to ensure the proper sequence of micro-operations.

Although control unit does not directly perform any micro-operation but it causes the

micro-operations to execute by the processor through control signals. The generation of

the appropriate control signal is key feature of the control unit. The sequencing and

execution is performed with help of required logic. It controls the data flow in the

processor. A general model of the control unit is shown in Figure 7.5. The major

components in the model of control unit are: clock, a set of flags, instruction register,

and control bus.

Figure 7.5: General model of control unit

The control unit receives input from the following sources: clock, flags, instruction

register, and control bus. The output of the control unit i.e. control signals are issued

through control bus only. The sources of input to control unit are described here.

a) Clock: Control unit uses a clock to cause micro-operations to be performed. One

micro-operation is performed per clock pulse. The clock pulse is also referred to as

clock cycle or clock time. The micro-operations are allowed at the edge of clock pulse

transition.

b) Flags: Flags are used to determine current state of the processor and operations of

ALU in the computer system. Flags are designated bits of a flag register. Before

performing any micro-operation, the control unit checks the associated status of flags.

c) Instruction Register: In order to determine which micro-operation to perform, the

control unit needs opcode and addressing mode. The opcode and addressing mode of

the current instruction are available in the instruction register.

d) Control Bus: The control unit receives signals through control bus.

The control unit determines the micro-operation to perform and generates signals for

processor and other components of the processor. There two types of the outputs:

a) Control Signals to Processor: The control signals that are sent to the processor itself

can cause register transfer operation or activate ALU operations.

b) Control Signals to Bus: The control signals that are sent through the control bus

cause operations related to memory or I/O devices.

7.4 Hardwired Control Unit
A number of techniques are there to implement the control unit. However, two

techniques are more prominent for control unit implementation: hardwired and micro-

programmed. The hardwired control unit is a state machine implemented with logic

circuits hardware that cannot be modified without physically changing the circuit

structure. A model of hardwired control unit is shown in Figure 7.6. The control unit

receives input from an instruction register, flags, a clock, and control bus. The

Instruction Register contains two information fields: opcode and address field. The

opcode of the instruction provides the basic information for control signal generation.

The control unit does not access the instruction directly. Instead it is accessed through a

decoder, which decodes the opcode of the instruction. The encoded input is provided to

control unit, which takes different actions for different instructions depending on opcode

and issues a combination of control signals. The timing unit generated clock pulses,

which are useful to organize the execution of the instruction. The duration of the clock

pulse should be long enough to execute a micro-operation. The timing unit may also

receive some kind of feedback that helps control unit to generate the control signal.

When a new instruction is received, it is important to have information about the present

state of the previous instruction and accordingly the new instruction is allowed to enter a

different state.

Figure 7.6: Hardwired control unit with decoded inputs

The design of the control unit becomes complex if more control signals are required by

the CPU. In a hardwired control unit, the modifications are very difficult as it requires

changes in the logic circuits. Therefore, incorporation of the new features in a hardwired

unit is difficult. Another architecture of a hardwired control unit is shown in Figure 7.7. It

uses two decoders and a 4-bit sequence counter. The instruction is obtained from a 16-

bit Instruction Register. The first twelve bits (0-11) provide the address, the next three

bits (12,13, and 14) specify the opcode, and the remaining last bit (the most significant

bit) specifies whether it is a direct or indirect addressing mode. The address field

directly goes to the logic circuits of the control unit, the opcode is processed by a 3x8

decoder. The output of the decoder (D0 to D7) then provided to the logic circuit unit, the

most significant bit is processed by a flip-flop represented by I before going to the logic

circuits. A 4-bit counter generates 16 timing pulses T0 through T15. It can be cleared or

incremented based on the inputs from CLR or INR respectively. For example timing

signals T0, T1, T2, and T3 are generated and counter is cleared at T3 if decoder output

D2 is found active. It can be written symbolically as follows

D2 T3: SC←0
where SC is the sequence counter. The relationship of control signals is shown in

Figure 7.8.

Figure 7.8: A hardwired control unit with two decoders and a sequence counter

Figure 7.9: Timing Diagram

In Figure 7.9, the top line represents the clock pulses. The next four lines represent the

states T0, T1, T2, and T3 generated by the sequence counter. Each state is asserted

for one clock period and then remain at logic 0 for the next three clock periods. When

decoder output D2 is detected, the change in state is triggered.

Check your progress 2
1. What are the major operations of Control Unit?

2. What are major components of Control Unit?

3. What is the use of Instruction register?

4. What are the major techniques to implement Control Unit?

5. Why decode is used in Control Unit?

7.5 Control Unit Logic
The control unit logic works on the input signals to generate output control signals. Let

us assume that there are four micro-operations named as mOP1, mOP2, mOP3, and

mOP4 performed in the four phases of the instruction cycle. Let us define two control

signals as P and Q with the following interpretation:

PQ = 00 mOP1

PQ = 01 mOP2

PQ = 10 mOP3

PQ = 11 mOP4

If micro-operations mOP1 and mOP2 are needed to perform during the same time unit

T1 then control signal C1 can be defined by the following Boolean expression

C1 = P.Q.T1 + P.Q.T1
Any control signal can defined in this way using Boolean expressions. A set of Boolean

expressions defines the behaviour of the control unit. The modern computer systems

use a large number of Boolean expressions to define the control unit. All input signals to

the Control Logic Gates section are combined to generate control signal. Suppose a

control signal ADD is needed to add the contents of memory location to a register. Let it

needs to perform micro-operation AM in time cycle T5 and a branch micro-operation BR

in time cycle T6. The Boolean expression for generating control signal can be given by

ADD = T1 + T5.AM + T6.BR

The logic function for ADD can be implementation as a combinational circuit using AND

and OR logic gates. The circuit diagram for ADD control signal is shown in Figure 7.10.

AM and BR are provided by Instruction Register through decoder. Consider another

example, where a control signal is described by the Boolean expression

END = T4.mOP1 + T5.mOP2 + T6.mOP3.BR + T7.mOP4.BR

The circuit diagram is given in Figure 7.11 that is implemented using AND and OR logic

gates.

Figure 7.10: Combinational circuit for generating ADD control signal

Figure 7.11: Combinational circuit for generating END control signal

Figure 7.12: Circuit diagram for synchronizing WFMC with RUN signal.

Let us consider that CPU does not do any works when it receives wait for MFC

(WMFC) signal and a delay is introduced while it is waiting for an MFC signal from

memory unit. Memory operations are independent of CPU cycles. MFC is an

asynchronous signal that is generated any time relative to CPU cycle. Therefore, it is

required to synchronize MFC with CPU clock. It could be achieved with the help of a D

flip flop as shown in Figure 7.12. The RUN signal with a master clock pulse through an

AND logic gate helps to synchronize the signal. When RUN signal is low, no progress is

allowed.

7.6 Summary
The control unit is an important component of the CPU, which plays a crucial role in the

sequencing and execution of the operations. Any task in the computer system is

performed by executing a sequence of instructions. The execution of an instruction is

done in different phases. Each phase is further divided into multiple micro-operations. A

micro-operation accomplishes a little fraction of the overall larger task. The

responsibility of the control unit is ensure the proper sequencing of the micro-operations

and to control the flow of data between CPU and memory and peripherals. It issues the

control signals to ALU, memory, storage devices, and peripherals. The control unit is

responsible for data transfer to and from registers, controlling ALU operations, and

opening/closing of logic gates by issuing relevant control signals.

There are two major organizations for control unit: hardwired and micro-

programmed. A hardwired control unit generates control signals using logic circuits. The

micro-programmed control unit uses a micro-program to control the operations in a

digital computer. A control function of a micro-operation is specified by a binary variable.

The execution of the micro-operation depends on the state of the associated binary

variable. Usually the micro-programs are not required to change for an operation control

unit. Therefore, control memory could be a read-only-memory (ROM).

The micro-operations are the functional operations of a processor. There are

different types of micro-operations that perform different types of elementary jobs. The

micro-operations can classified into four broad categories: register transfer micro-

operations, arithmetic micro-operations, logic micro-operations, and shift micro-

operations. Some elementary operations can be carried out on data contents of the

registers. The most prominent register operations include data transfer operations that

do transfer from one register to another. These micro-operations are known as register

transfer micro-operations. The symbolic notation used to express micro-operations for

register transfer is called register transfer language. The logic circuit for register transfer

micro-operations can be implemented with the help of logic gates and a clock that

controls the execution of the operations. The actual data transfer between registers and

other components of the computer takes place through data bus. A data bus is a group

of wires commonly used by different components for information transfer. The micro-

operations related to bus operations are known as bus transfer micro-operations, which

are implemented with the help of a multiplexer. The micro-operations related to the

memory read/write operations are known as memory transfer micro-operations. The

read operation means data transfer out of the memory, while write operation simply

means the data transfer into the memory. The arithmetic micro-operations are related to

basic arithmetic operations: addition, subtraction, increment, decrement, and shift, etc.

The micro-operations perform these operations on numeric data loaded into registers.

The operations are not carried out directly on the individual registers. Instead, data

contents of the processor registers are transferred to the registers directly to the ALU.

Logic operations are binary operation that consider each individual bit of a register as

an individual binary number. If logic operation is carried out between two registers then

individual bits of one register are operated with the corresponding bits of the other

register involved in the micro-operation. Shift micro-operations are very useful for serial

transfer of data as well as they are used to implement various arithmetic and logic

operations such as multiplication and division. There are two kind of shift micro-

operations: left shift and right shift depending on the direction of data movement. The

shift micro-operations are further divided into three categories: logical shift micro-

operation, arithmetic shift micro-operation, and circular or rotate shift micro-operation

Two major functions of the control unit are sequencing and execution. A task can

be accomplished through a sequence of instructions. An instruction is executed as

series of micro-operations. It is the responsibility of the control unit to ensure the proper

sequence of micro-operations. The major components in the model of control unit are:

clock, a set of flags, instruction register, and control bus. A clock is required to cause

micro-operations to be performed. Flags are used to determine current state of the

processor and operations of ALU in the computer system. The opcode and addressing

mode of the current instruction are available in the instruction register. The control unit

receives signals through control bus.

The hardwired control unit is a state machine implemented with logic circuits

hardware that cannot be modified without physically changing the circuit structure. The

control unit receives input from an instruction register, flags, a clock, and control bus.

The control unit does not access the instruction directly. Instead it is accessed through a

decoder, which decodes the opcode of the instruction. The action is taken according to

the encoded input. The design of the control unit becomes complex if more control

signals are required by the CPU. In a hardwired control unit, the modifications are very

difficult as it requires changes in the logic circuits. Therefore, incorporation of the new

features in a hardwired unit is difficult.

Review Questions
Q.1 What are the major responsibilities of a control unit in a digital computer system?

Q.2 What are the major organizations of a control unit? Make a comparison between

different organizations.

Q.3 What is micro-operation? Explain different types of microperations with suitable

examples.

Q.4 What is the role of a clock in control unit? Give a simple organization involving a

clock and explain the utility of a clock with the help of a timing diagram.

Q.5 Perform AND, OR, and XOR micro-operations on the following data:

(a) 11010011 and 10011001

(b) 10101010 and 11000011

(c) 01010110 and 10010111

(d) 11110111 and 11001101

Q.6 Draw a block diagram for the general model of a control unit and explain its

functional requirements.

Q.7 Draw a block diagram for a control unit with two decoders and explain the role of

various components.

Q.8 Implement logic circuit to generate control signal expressed by the following

Boolean expressions.

(a) C1 = P.Q.T1 + P.Q.T2
(b) C2 = P.Q.T1 + P.Q.T2 + P.Q.T3
(c) C3 = P.Q.T1 + R.Q.T3 + Q.T4 + P.R.T5
(d) C4 = T1 + Q.R.T5 + R.Q.R.T6

UNIT- 8 Micro-programmed Control

Structure
8.0 Introduction

8.1 Objectives

8.2 Basic Organization of Micro-programmed Unit

8.3 Micro-instruction Sequencing

8.4 Micro-instruction Execution

8.5 CPU Control Unit Organization

8.6 Summary

Review Questions

Unit 8: Micro-programmed Control

8.0 Introduction
A considerable discussion has already been made on control unit in Unit 7. The primary

responsibility of the control unit is to do sequencing of micro-operations and to

generate control signals that cause opening and closing of the logic gates leading to the

data transfer between registers and ALU or peripherals in a digital computer system.

There are two major approaches for implementing control unit: hardwired and micro-
programming. When control unit is implemented in hardware with the help of logic

circuits, it is called hardwired control unit. There are many different types of micro-

operations that are needed to carry out various computational tasks. As the number of

micro-operations increases, the complexity of the implementation of the hardwired

control unit also increases and so the cost of implementation. The micro-programmed

control unit is another alternative implementation which uses a micro-program to

specify the logic of the control unit. A micro-program consists of a sequence of

instructions that specify the micro-operations. The instructions of micro-program are

written in a micro-programming language. A micro-program is a sequence of binary

strings. The concept of micro-program is similar to the computer program. As a

computer program is formed by a set of statements written in some programming

language, a micro-program is also a set of statements written in micro-programming

language. The computer program is stored in main memory and its instructions are

fetched in a sequence with the help of program counter to execute. In the same way,

the micro-program is stored into a micro-program memory and the micro-instructions

are fetched from the micro-program memory during the execution. The sequencing of

the instructions during the execution is maintained with the help of a micro-program

counter. Since the micro-program is usually not changed often, the micro-program

memory is a read only memory (ROM). The memory that is the part of control unit is

known as control memory. The micro-programmed control unit is slower than the

hardwired control unit. The advantage of micro-program control unit is that its design is

simple and it is easy to implement.

The micro-programmed control unit uses a relatively simple logic circuit that is

capable of sequencing and executing micro-instructions to generate the control signals.

The contents of micro-memory specify the micro-instructions that are strings of 0’s and

1’s. A particular memory cell provides the state of a micro-instruction. If it is a binary

state 0, it simply means that no control signal to generate. If it is a binary 1, the

corresponding micro-instruction is executed and the output corresponds to a control

signal. Some advanced micro-programmed control units use dynamic micro-
programming that allows to initially load the micro-program from the auxiliary memory.

The control units with dynamic micro-programming use the writable control memory.

8.1 Objectives
After the completion of this unit the readers should be able to:

1. Understand different implementations of control unit with their merits and

demerits.

2. Understand the sequencing of micro-operations.

3. Learn addressing techniques.

4. Understand the execution of the micro-instructions.

8.2 Basic Organization of Micro-programmed Unit
The basic organization of a micro-programmed control unit is shown in Figure 8.1. The

computer program and related data are kept in main memory of the computer. The

program instructions are read from the main memory through instruction register and

corresponding to each instruction a series of micro-instructions is initiated. Each micro-

instruction is defined by a unique sequence of 0’s and 1’s in control word (CW). The

individual bits of a control word represent various control signals. The sequence of CWs

makes a micro-program and individual CW in a micro-program is a micro-instruction.

The control memory in the control unit is used to store fixed micro-program. The

contents of the control memory cannot be usually altered by the users. The micro-

program is a sequence of micro-instructions that initiate the micro-operations to fetch

instruction, to evaluate effective address, or to perform various arithmetic, logic, and

shift operations, etc. Once the execution of an instruction is completed, the address of

next address is determined. The fetch phase of all the instruction is same, therefore the

same micro-instruction is used to fetch the instruction from the memory. After the

completion of the fetch micro-instruction, the address of the instruction currently

available in instruction register is determined. The execution of micro-instructions is

controlled by micro-program counter in the same way as execution of instructions is

controlled by program counter. The micro-instructions are fetched from micro-program

memory and sequenced by micro-program counter to generate appropriate control

signals.

Figure 8.1: Basic organization of micro-programmed unit

When an instruction is fetched from the main memory, a micro-program

associated with that instruction is executed to execute that instruction. Overall, the

following elements are required in order to design a micro-programmed control unit:

a) Micro-programs: For each CPU instruction, a micro-program is written and stored

in control memory.

b) Micro-instructions: A micro-program is sequence of micro-instructions.

c) c) Control word: The micro-instructions are kept as a string of 0’s and 1’s known

as control word. A 0 in control word means low signal, while a 1 represents high

signal value.

d) Micro-program counter: A micro-program counter is required to maintain the

sequence and execution of micro-instructions of a micro-program.

e) Instruction register: An instruction register contains the starting address of a

micro-program.

f) In addition to above mentioned components, a branch address generation unit is

also required for branching micro-instructions in the micro-programs.

Micro-instruction sequencing and micro-instruction execution are the two important

basic tasks of a micro-programmed control unit. Both affect the type and format of the

micro-instructions. The size of micro-instructions, address generation, faster execution,

and cost are the major design concerns of the micro-programmed control unit.

Check Your Progress: 1
1. Compare the major features of hardwired and micro-programmed control units.

2. Identify the merit/demerits of a micro-programmed control unit.

3. Define the following terms: micro-instruction, micro-program, control word, and micro-
program counter.

8.3 Micro-instruction Sequencing
The design considerations of micro-instruction sequencing involve the micro-instruction

size and timing of address generation. The smaller size of control memory is desirable

that leads to lower cost. The faster execution of the micro-instructions is another

important concern. During the execution, address of the next micro-instruction is

needed. The address of the next micro-instruction could be: branch address, next

sequential address, or determined by instruction register. The sequential addresses are

more common but branch addresses are also frequently required. Therefore, it is

important to keep the instructions small and time efficient.

The address sequencing of the control memory must be capable of sequencing

the micro-instructions in a micro-program. The initial address is loaded into control

address register (CAR), which is usually the address of micro-instruction that initiates

the instruction fetch routine. The CAR is incremented to sequentially access the other

micro-instructions in the micro-program. At the end of the fetch micro-program routine,

the instruction register contains the next instruction. The next step is to determine the

address of the operand. There are different types of addressing techniques:

1. Immediate

2. Direct

3. Indirect

4. Register

5. Register Indirect

6. Displacement

These addressing techniques are also known as addressing modes. Different types of

operands use different addressing modes. The instruction format may have some

designated bits to represent the type of the addressing mode. These designated bits are

known as mode field. The control unit can use mode field to determine the addressing

mode. Immediate address is the simplest form of addressing in which actual operand is

available in the instruction itself. It is preferred to initialize the variables or to define

constants. It requires no additional memory reference but large numbers can be used

for operands due to the small size of address field as compared to word length. Figure

8.2 shows the instruction format for indirect address mode.

 Direct addressing is another simple form of addressing as shown in Figure 8.3 in

which the address field contains the effective address of the operand that requires no

additional calculations. There is only one memory reference required.

Opcode Operand

Figure 8.2: Instruction format for immediate addressing

Figure 8.3: General format for direct addressing

The direct addressing limits the addressing range because the address field is

smaller than word length. To overcome this limitation, the indirect addressing is used.

The address field refers to a memory word, which in turn provides the address of the

actual operand. The general format of indirect addressing is shown in Figure 8.4.

The register addressing is similar to direct addressing, where address field refers

to a register instead of memory location. The advantage of register addressing is that it

requires only a small address field but range of the addresses is very limited. The

general format of addressing is shown in Figure 8.5. The register indirect addressing as

shown in Figure 8.6 is similar to indirect addressing where address field refers to a

register instead of memory location. The register provides the address of the operand in

memory. Compared to indirect addressing, the register indirect approach needs only

one memory reference. The address field refers a register, which provides address of a

memory location that contains the operand. The major advantage of using registers is

that memory access is faster.

Figure 8.4: General format for direct addressing

Figure 8.5: General format for register addressing

The memory provide is a large capacity while the registers provide a faster

access. The displacement addressing combines the advantages of direct memory

addressing and indirect register addressing. The instructions with displacement

addressing use two address fields, at least one of which should be explicit. One address

field refers to a register whose contents are added with the value of the other address

field to determine the effective address as shown in Figure 8.7. Once effective address

of the operand is available in memory address register, it can be fetched from the

memory. The next step would be to determine the microoperation to execute the

instruction fetched from the memory. Once the execution of the instruction is over, the

control is returned to fetch micro-program routine.

Figure 8.6: General format for register indirect addressing

For sequencing of micro-instructions, the address of next micro-instruction is

required. The address of next micro-instruction can be generated based on the current

micro-instruction, contents of control memory, and contents of the instruction register. A

variety of sequencing techniques are available based on the format of address.

Considering the addressing techniques discussed so far, the address formats in micro-

instruction can be divided into three categories:

1. Two address fields

2. Single address field

3. Variable format.

Figure 8.7: General format for register displacement addressing

Figure 8.8 shows the logic for generating the address of the next micro-instruction using

the two address fields. The contents of instruction register and two address fields are

provided to a multiplexer. Based on the selection inputs, the multiplexer outputs the

opcode or one of the two addresses to CAR. The next micro-instruction address can be

obtained by decoding the CAR. The two address fields approach is simple but it

requires more bits in micro-instruction than other approaches. The number bits can be

reduced by using single address field as shown in Figure 8.9. Although, single address

filed micro-instruction approach involves some inefficiency. A different kind of approach

is shown in Figure 8.10 that provides two different kind of micro-instruction formats. One

bit in control buffer register designates the format type. In one format all the remaining

bits are used to activate control signal. In the second format, some of the remaining bits

are for branch logic and other bits give the address. The branch logic could be

conditional or unconditional.

Figure 8.8: Micro-instruction format with two address fields

Figure 8.9: Micro-instruction format with single address fields

Figure 8.10: Micro-instruction: variant format

There are various techniques to determine the address of the next micro-

instruction. These techniques could be implicit or explicit. The explicit techniques

provide the address explicitly with micro-instructions. On the other hand the implicit

techniques require additional logic to compute the address. The implementation of

branch micro-instructions uses information available from ALU flags, opcode, some

registers, and some status bits from the control unit.

Check Your Progress: 2
1. What is utility of control address register?

2. Compare direct and indirect addressing.

3. Identify the advantage of register addressing mode.

4. What is micro-instruction sequencing?

8.4 Micro-instruction Execution
The execution of a micro-instruction is the basic event in a processor with micro-

programmed control unit. The execution of micro-instruction generates the control signal

for processor as well as for the external units such as memory and peripherals. Fetch

and execute are two parts of the micro-instruction cycle. The fetch operation is related

to micro-instruction address generation. The micro-instruction sequencing is related to

next address generation. It generates next address using the information from ALU

flags, control status bits, opcode, CAR, and current micro-instruction. The bits in a

micro-instruction directly or indirectly produce control signals or next address. It is

important to keep the size of micro-instruction smaller. By using some

encoding/decoding schemes, the number of bits in the micro-instruction can be

reduced.

Let N number of control signals are driven by the control unit including internal

and external signals. If a separate bit is used to designate each different control signal

then a total number of N dedicated bits are required for a micro-instruction. By using

encoding techniques and later decoding it, the required number of bits can be reduced.

For an N bit micro-instruction, a total number of 2N combinations of control signals are

possible but not all of these combinations are used. Only a subset of possible

combinations are used. Suppose only M< 2N combinations of control signals are used

by a processor. These M combinations can be encoded with log2M bits, which is smaller

than N. But this approach also has some issues that need to be considered. Firstly, a

pure encoding scheme is difficult to program and on the other hand it requires a

complex control logic module. The complexity makes it a slow control logic module.

Therefore, some simplifications are made to a pure encoding scheme to alleviate these

issues. The simplification includes using more than log2M bits and considering that

physically allowable control signals are not possible encode. There are several

encoding techniques. The most of the micro-programmed control units use some

degree of encoding to simplify the micro-programming and to reduce the width of control

memory. Pure un-encoded micro-programmed control units are rarely designed. The

micro-instructions could be termed as vertical or horizontal depending on their width.

The micro-instructions with a width in the range between 6 to 40 bits are known as

vertical micro-instructions. While the micro-instructions with a width in the range 40 to

100 bits are called horizontal micro-instructions. The micro-programs are also divided

into two categories: hard and soft. The hard micro-programs are generally fixed and

cannot be changed. Hard micro-programs are stored in ROM. The soft micro-programs

provide some degree of flexibility and are changeable to some extent.

A basic encoding technique is illustrated in Figure 8.11 in which a micro-

instruction has multiple fields. Each field contains encoded information that activates

control signals after decoding. Every field is decoded during the execution of the micro-

instruction and control signals are generated. If micro-instruction has Q fields then Q

simultaneous actions can be specified. It is desirable that a control signal should not be

activated by more than one fields to minimize the width of the micro-instruction. If length

of a field is K bits then 2K codes are possible, which can be decoded into at least 2K

different control signals. But a particular field can contain only one code. Therefore,

codes and actions of all the fields belonging to a micro-instruction are mutually

exclusive.

Another encoding approach known as indirect encoding is illustrated in Figure

8.12. In indirect encoding, one filed of the micro-instruction is used to interpret the other

field. It is kind of two level decoding that is slower than the direct decoding. In this

approach, different bits of field are used for different purposes. Some bits are used to

indicate operation type, a set of bits is decoded to identify the operations, and the

remaining bits are used to select the registers. The implementation of encoding

techniques require a set of registers including program counter and other temporary

registers.

Figure 8.11: Direct encoding

Figure 8.12: Indirect encoding

Check Your Progress: 3
1. How are the control signals generated?

2. Why are the encoding techniques used for micro-instructions?

3. Compare the direct and indirect encoding.

8.5 CPU Control Unit Organization
The organization of a micro-programmed control unit is shown in Figure 8.13. The major

components of the organization include micro-instruction sequencing, CAR, control

buffer register, control logic, and control memory, etc. The micro-instruction sequencing

module generates the next address with the help of ALU, control flags, instruction

register, CAR, and control buffer register. The micro-instruction sequencing module can

be implemented as digital functions for a particular application. But a general purpose

micro-programmed control can be implemented with the help of a ROM. It generates

next address and sends it to control memory for the execution of the micro-instruction.

The next address logic determines the source of address that is loaded to the control

address register. If there are multiple sources, a particular source could be selected with

the help of a multiplexer. Another multiplexer could be used for selecting the status bit.

CAR provides the address for the control memory. There are different types of

operations that a micro-instruction sequencing module can perform including branch,

function call, function return, increment, address load, and push or pop the stack, etc.

There is a clock that determines the timing of the micro-instruction cycle. Various

combinational circuits can be designed to support these operations. The control signals

are generated by the control logic module. The complexity of the control module highly

depends on the contents and format of the micro-instructions.

Figur
e

8.13:

Micro-

progr

amme

d

Contr

ol Unit

Organ

izatio

n

8.6
Sum
mary
The

micro-

progr

amme

d

contro

l unit is an alternative approach for implementing the control unit of the computer

system. It uses micro-programs to specify the control logic. A micro-program consists of

a sequence of micro-instructions that specify the micro-operations. The micro-program

is stored into a micro-program memory and the micro-instructions are fetched from the

micro-program memory during the execution. The sequencing of the instructions during

the execution is maintained with the help of a micro-program counter. Since the micro-

program is usually not changed often, the micro-program memory is a ROM also known

as control memory. The micro-programmed control unit is slower than the hardwired

control unit. The advantage of micro-program control unit is that its design is simple and

it is easy to implement. The micro-programmed control unit uses a relatively simple

logic circuit that is capable of sequencing and executing micro-instructions to generate

the control signals. The contents of micro-memory specify the micro-instructions that

are strings of 0’s and 1’s. A particular memory cell provides the state of a micro-

instruction. The micro-programmed control unit is capable of sequencing and executing

micro-instructions to generate the control signals. The contents of micro-memory are

strings of 0’s and 1’s and a particular memory cell provides the state of a micro-

instruction.

The smaller size of control memory and faster execution of the micro-instructions

are highly desirable. The smaller control memory leads to lower cost. During the

execution, address of the next micro-instruction is needed, which could be a branch

address, next sequential address, or determined by instruction register. The micro-

instruction sequencing generates the address of next instruction. The initial address is

loaded into control address register. The initial micro-instruction initiates the instruction

fetch routine. At the end of the fetch micro-program routine, the instruction register

contains the next instruction. The next step is to determine the address of the operand.

There are different types of addressing techniques also known as addressing

modes. Different types of operands use different addressing modes. The instruction

format may have some designated bits to represent the type of the addressing mode.

These designated bits are known as mode field. The control unit can use mode field to

determine the addressing mode. The direct addressing limits the addressing range

because the address field is smaller than word length. To overcome this limitation, the

indirect addressing is used. The registers provide faster access to the information. A

variety of sequencing techniques are available based on the format of address. The

execution of a micro-instruction is the basic event in a processor with micro-

programmed control unit. The execution of micro-instruction generates the control signal

for processor as well as for the external units such as memory and peripherals. Fetch

and execute are two parts of the micro-instruction cycle. The fetch operation is related

to micro-instruction address generation. The micro-instruction sequencing is related to

next address generation. It generates next address using the information from ALU

flags, control status bits, opcode, CAR, and current micro-instruction.

The size of micro-instructions can be reduced by using the encoding techniques.

With smaller micro-instructions, size of control memory can be reduced. But encoding

also introduces some complexity that leads to the slow execution of the micro-

instruction. However, the most of the micro-programmed control units employ encoding

techniques with some simplification strategies.

A micro-programmed control unit consists of micro-instruction sequencing, CAR,

control buffer register, control logic, and control memory, etc. The micro-instruction

sequencing module generates the next address with the help of ALU, control flags,

instruction register, CAR, and control buffer register. The CAR provides the address for

the control memory and clock determines the timing of the micro-instruction cycle. The

control signals are generated by the control logic module. The complexity of the control

module highly depends on the contents and format of the micro-instructions.

Review Questions
Q.1 What are the major tasks performed by a micro-programmed control unit?

Q.2 With the help of suitable diagram, describe the basic organization of a micro-

programmed control unit. Explain all the important related terms.

Q.3 What is the utility of control memory?

Q.4 What is micro-instruction sequencing? Why is it required by the control unit?

Q.5 What is addressing mode? Explain different types of addressing modes with their

merits and demerits.

Q.6 How is the next address generated for micro-instruction sequencing? Explain

different types of address formats.

Q.7 What kind of measures can be taken to reduce the control memory size?

Q.8 Draw a logic diagram for the micro-programmed control unit and explain the role

of different components.

UNIT- 9 Pipelined Control

Structure
9.0 Introduction

9.1 Objectives

9.2 Principles of Pipelining

9.3 Pipeline Classification

9.4 Instruction Pipeline

9.5 Pipeline Performance

9.6 Handling Data Dependency

9.7 Super Scalar Processing

9.8 Summary

Review Questions

Unit 9: Pipelined Control

9.0 Introduction
The conventional computing systems perform operations in a sequential way. A task is

assigned to the processor at a time and it remain engaged until the task is over. After

the completion of the one task another task is allotted to processor. The approach is

simple but it makes inefficient use of resources and takes longer time to complete the

tasks. Parallel processing is the modern approach to simultaneously perform data

processing to speed up the computational speed of the computer system. It is an

efficient form of data processing that takes advantage of concurrent exploitation of

resources. Multiple resources can be accessed simultaneously in the same time

interval. In parallel processing environment, different events may occur simultaneously

or in an overlapped fashion at the same instant of time. In order to reduce the execution

time, the data elements or information is processed concurrently or simultaneously.

Parallel processing can take place at different levels. The highest level of parallel

processing takes place at program level. It allows multiple programs to execute

simultaneously by efficiently sharing the limited hardware resources. The next level

parallel processing occurs at program segment level within the same program. Multiple

independent segments belonging to the same program may be processed concurrently.

Parallel processing can further be exploited at instruction level, where multiple

instructions in a program segment can be considered for simultaneous execution.

Finally, the parallel processing can be applied to the different segments of an

instruction. Both hardware and software have to play an important role for achieving the

parallelism in computation. The role of hardware increases from highest to lowest level

of parallelism. On the other hand, algorithm or software implementation is more

prominent at highest level. With the increasing hardware and software requirements, the

cost of the system also increases. However, parallel processing systems are becoming

affordable with the advancement in the hardware technology. Uniprocessor systems

have certain limitations to promote concurrency due to single processor, single control

unit, and limited number of other processing elements.

An economical realizing of the parallelism is the pipelining technique, which is

inspired from the assembly line in manufacturing plants. The basic concept behind

pipeline techniques is to divide a larger task into several smaller sub-tasks. Each sub-

task can be assigned to a different stage operating concurrently with other stages in the

pipeline. The sub-tasks belonging to different tasks can be executed in an overlapped

fashion to stream out the result through the last stage in the pipeline. This approach can

provide significant improvements in system throughput and speed up the execution.

There could be different types of pipelines in modern computer systems designed for

specific tasks.

9.1 Objectives
After the completion of this unit, the readers will be to:

1. Understand the concept of parallel processing.

2. Understand the concept of pipeline in computing.

3. Learn the basic properties of pipeline processors.

4. Understand different segments of instruction pipeline.

5. Understand performance issues in the pipeline.

6. Understand concept of super scalar processing.

9.2 Principles of Pipelining
Pipelining is a technique that introduces some kind of parallelism by decomposing a

sequential process into sub-operations and executing them in overlapped manner

similar to industrial assembly lines. The individual sub-operations are assigned to

separate segments, where each segment is capable of operating concurrently with

other segments in the pipeline. A segment is a specialized hardware stage that partially

processes the task and the output goes to the next segment in the pipeline. The final

result is produced after processing the data through all the segments. Similar to

industrial assembly lines, the different segments are capable of performing several

computations at the same time. The segments of a pipeline can be implemented with

the help of latches and combinational circuits. In a uniform pipeline all the segments

have same delay. But in practice, all the segments do not operate at the same speed as

they perform different types of operations. Different operations need different amount of

computational work and thus different amount of time. Therefore, usually the most of the

pipelines are not uniform. The slowest segment could become a bottleneck for the pipe

causing other segments waiting for data. The latches are fast register that are used for

holding intermediate data. The output of the combinational circuit of one segment is

placed into the input register of the next segment. The combinational circuit takes data

from the input register of the segment and performs the specific operation. The latches

help to provide isolation between segments so that each can operate on distinct data

simultaneously. Figure 9.1 shows a linear pipeline structure (same as Figure 6.1). The

data flow through the pipeline according to the slowest stage to avoid the bottleneck.

The data flow is controlled by a common clock applied to all the latches as shown in

Figure 9.1. The overlapping among the sub-operations in a pipeline can be illustrated

with the help of a space-time diagram. A space-time diagram for a 4-stage pipeline is

given in Figure 9.2. The symbol ‘x’ represents the idle time-space span. The busy time-

space spans are marked by Tij, where i represents ith operation and j represents its jth

sub-operation. The first output is generated after 4 time units but once the pipe is filled

up, it produces an output per time unit as shown in the figure.

Figure 9.1: A k-stage pipeline controlled by common clock

Figure 9.2: Space-Time diagram for 4-stage pipeline

There are some important parameters related to pipeline processor as discussed here.

 Clock Period: The clock period can be defined as follows

t = max{ti}k
i=1 + tl

where tl is the delay of latch and ti is the delay of ith storage. The clock period is

an important parameter that indicates the frequency with which the input can be

provided to the pipeline.

 Frequency: The frequency f of the pipeline processor is the reciprocal of its

clock period given as

f = 1/t

 Speed-up: If an operation can be divided into k sub-operations and each sub-

operation takes one clock period to complete, a non-pipelined processor would take

k clock periods to complete the operation. It takes n.k clock periods to perform n

operations. A k-stage pipeline processor takes k clock periods for the first operation

but after that only one clock period is required for performing one operation.

Therefore, a pipeline processor takes n+k-1 clock periods to complete n operations.

The speed-up of a pipeline processor over a non-pipelined processor is given as

follows

S = n.k
n + k - 1

If there are a large number of operations of the same type then n ≫ k and S ≈ k.
Therefore, a k-stage pipeline can provide a speed up of at most k times.

 Efficiency: The efficiency of a pipeline is defined by the ratio of total time-space

spans over busy time-space spans. The total time-space spans include all busy and

idle spans. Thus, the efficiency of a pipeline is defined as follows

η = n.k
k(n + k - 1)

= n
n + k - 1

It can be observed from the above definition that if n ≫ kthen η ≈ 1. It simply indicates

that if there are large numbers of operations, the efficiency of the pipeline approaches to

1.

 Throughput: The number of results produced by the pipeline per unit time is

called its throughput defined as follows

T = η
t

Since maximum value of the efficiency can be approximately 1, the maximum

throughput can be given by

T = 1
t

Therefore, the maximum throughput of the pipeline is equal to its frequency.

Check Your Progress: 1
1. What is pipeline technique?

2. Why are the latches used in a pipeline?

3. How is the clock period defined for a pipeline?

4. How much speed up a pipeline can achieve over a non-pipelined processor?

5. Define efficiency and throughput of a pipeline.

9.3 Pipeline Classification
There are different types of pipeline processors, which can be classified according to

levels of processing and control strategies.

9.3.1 Arithmetic pipeline
The floating-point operations and multiplication operation on any kind of numbers are

well suited to the pipeline processing as these operations can be easily divided into sub-

operations. The arithmetic pipelines are designed to perform repeated arithmetic

operations. Several computers have separate pipelines for floating-point and fixed-point

arithmetic operations. The arithmetic pipelines work at data level.

9.3.2 Instruction Pipeline
The instruction execution in a computer system goes through several phases and the

entire process can be easily divided into sub-operations. The instruction pipeline helps

faster execution of a stream of instructions. The most of the high performance

computers are equipped with instruction pipelines. This instruction pipeline is also

known as instruction look ahead technique.

9.3.3 Processor Pipeline
In a processor pipeline, the multiple processors are in a cascade to process a stream of

data. A processor carries out a specific task on the data that is stored into a memory as

an intermediate result. The memory is also accessible to the next processor in the

cascade. The next processor takes the intermediate result to refine it. The process of

refinement goes on from one processor to another and final result is obtained through

the last processor. The processor pipelines are not so popular.

9.3.4 Multifunction Pipeline
In its simple form, a pipeline is designed to perform a specific task such as floating point

addition. Such a pipeline is known as unifunction pipeline dedicated to a single

operation. However, there are some other pipelines that are capable of performing

different operations at different times or even at the same time. These pipelines are

usually reconfigurable for a variety of operations. A particular subset of pipeline stages

can be used for a specific operation, while other subset may carry out some other

operation.

9.3.5 Dynamic pipeline
A unifunction or multifunction pipeline that assumes only one functional configuration at

time is called static pipeline. The static pipelines are suitable for the tasks that require

the same type of operations continuously. The function of a static multifunction pipeline

should not change frequently otherwise it may perform poorly. The dynamic pipelines

are essentially multifunctional and can be reconfigured frequently as there exists

several configurations simultaneously. These pipelines have complex sequencing and

control mechanism as compared to the static pipelines.

9.3.6 Vector Pipeline
The vector pipelines are specially designed for executing vector instructions over vector

operands. The computers having vector pipelines are referred to as vector processors.

Conventionally, the instructions operate of single data elements or scalars, whereas for

vector processors, an instruction set is implemented that operate on data vectors.

Vector processing can perform arithmetic operations on a large number of integers or

floating-point numbers. Vector pipelines were widely used in the early generation

supercomputers.

9.4 Instruction Pipeline
The processing of an instruction involves four major phases: instruction fetch,

instruction decode, operand fetch, and execute. The complex instructions may also

have more than four phases of instruction execution. In general, the instruction

processing in a computer system involves the following steps:

 Instruction Fetch (IF): to read the instruction from the memory

 Instruction Decode (ID): to interpret the instruction and identify the operation to

perform

 Address Generation (AG): to calculate the effective addresses

 Operand Fetch (OF): to read the operands from the memory

 Execute (EX) : to actually carry out the operation on the operands

 Store (ST): to write the result at appropriate location in the memory

It allows us to develop a pipelined instruction execution unit having multiple segments. It

can read consecutive instructions from the memory while previous instructions are still

being processed by other segments. However, an instruction causing a branch out of

sequence may create problems. In case of a branch instruction, it needs to flush the

subsequent instructions that have already been fetched. There are certain other

difficulties with the implementation of an instruction pipeline. Different phases listed

above take different amount of time. So that it could not be a uniform pipeline and

different amount of delay between segments need to be handled to avoid the bottleneck

in the pipe. Another issue is related to memory access. A single memory module is a

kind of resource that can be accessed by only one entity (process or segment) at a

time. Therefore, it causes memory conflict in case more than one segments of a

pipeline attempt to access the memory simultaneously. Multiple memory modules and

multiple data bus can be used to alleviate the memory conflicts some extent. With this

arrangement, different segments can simultaneously access the data in different

memory modules through different data bus.

Let us consider an example instruction pipeline with four segments. Here

instruction decode and address generation are combined into one segment. Similarly,

the execution and storing of the result are also combined into one segment. In this way,

the six phases of an instruction pipeline can be reduced to four segments. Figure 9.3

shows the instruction cycle for a four-segment pipeline. While Segment 4 is executing

one instruction, the Segment 3 is busy fetching the operands for the next instruction. At

the same time, Segment 2 decodes and generates address for the third instruction and

Segment 1 is fetching the fourth instruction. It can accommodate up to four instructions

simultaneously in the pipeline performing different sub-operations for each instruction

leading to the simultaneous progress of up to four instructions. If there is an instruction

causing a branch out of the normal sequence, the pending sub-operations in Segment 3

and Segment 4 are completed and information in the remaining pipe is deleted. The

pipeline is then restarted from a new address available in the program counter register.

Similar kind of action is taken if there occurs an interrupt. The information from the pipe

is removed and it restarts from a new address made available through the program

counter.

Figure 9.3: Four-Segment Instruction Pipeline

The instruction pipeline shown in Figure 9.3 is a uniform pipeline that is assumed

to have equal delay for each segment. There are different memory modules for holding

instructions and operands separately. It provides simultaneous access to Segment 1

and Segment 3. The operation of the pipeline is illustrated in Figure 9.4. It can be

observed from the space-time diagram given in the figure that segment 'IF' for the first is

performed in the first clock period. During the second clock period, segment 'ID' of the

first instruction and segment 'IF' of the second instruction are undergoing

simultaneously. The first output is generated after the fourth clock period. The first three

outputs are produced in three consecutive clock periods. But the fourth instruction is a

branch instruction, therefore the subsequent instructions are halted until the execution

of the previous instructions is over. After that control is transferred to the specified

instruction and subsequently other instructions are executed segment by segment and

corresponding outputs are produced by the pipeline in the consecutive clock periods

until another branch instruction is encountered.

Figure 9.4: Working of Instruction Pipeline

Check Your Progress 2

1. Find out difference between static and dynamic pipelines.

2. Find out difference between unifunction and multifunction pipelines.

3. What are the possible phases of an instruction pipeline?

9.5 Pipeline Performance
Ideally all the instructions in the instruction sequence for a pipeline should be

independent. But in a real scenario, some instructions may have certain dependency on

other instructions or they may have some kind of conflicts to access the resources. An

instruction pipeline may observe delay due to various reasons. The major factors that

cause delay and affect the pipeline performance are as follows:

 Resource conflicts

 Branch instructions

 Data dependency

The resource conflicts occur when two different stages in a pipeline attempt to access

the same resource during the same clock period. In such a situation, one of stage has

to wait until the resource is release by the other stage to avoid the collision. The waiting

period is reason of delay in the pipeline. The memory conflicts are major resource

conflicts as memory is accessed multiple times during the execution of an instruction.

For example both 'IF' and 'OF' segments read the data from the memory. The memory

conflicts can be avoided by having multiple memory modules and using separate

modules for instruction and data.

Occurrence of the branch instructions is a major issue that causes the delay. Use

of branch instructions in programs is common. There are two types of branch

instructions: conditional and unconditional. An unconditional branch instruction always

modifies the sequence of the instructions, while in case of conditional branch it depends

on the given condition. If condition is satisfied in the branch instruction only then the

sequence is altered. The change in the sequence is done by changing the contents of

the program counter with new address leading to the problems in the pipeline

operations. An approach to handle the branch is to fetch the target instruction in

advance as well as instruction following the branch. In case of successful condition, the

execution continues from the target instruction. Another approach generates two stream

of instructions from both places until the branch decision is reached. The flow of

program depends on the success or failure of the condition. Out of the two branches,

one is chosen if condition is successful and other one is taken in case of unsuccessful

condition.

Some hardware techniques can be employed to handle the branch instruction

related issues. One such approach uses a branch target buffer (BTB), which is a kind

of associative memory. BTB stores the previously executed branch and its target

instruction along with some instructions that follow the target instruction. Whenever a

branch instruction is encountered, the pipeline searches the BTB. If related information

is available there, it continues from the new path. If branch information is not available

in BTB, the pipeline finds the new stream and stores the target branch instruction and

subsequent instructions in BTB. A variation of BTB is loop buffer that uses a fast

register for the instruction fetch segment of the pipeline. When a loop in the program is

found, it is stored in the loop buffer including all the branches. The program loop is

directly executed from the loop buffer without accessing the memory.

Some computers use a concept known as branch prediction that uses a logic to

predict the outcome of branch condition before instruction is executed. Depending the

prediction, the instructions are pre-fetched that are useful in case a branch condition is

met. In this way a wait time is avoided. In another approach called delayed branch, the

compiler detects the branch instructions and rearranges the machine code by inserting

some useful instructions to ensure the uninterrupted flow of execution.

 Data dependency is another important factor that highly affects the pipeline

performance. Data dependency occurs when the availability of source operands of an

instruction depends on the results of the previous instructions. Although it is possible to

fetch the instruction but its operands cannot be fetched until the result of the previous

instructions are stored. In this case, an instruction cannot proceed if certain segments of

the previous instruction are still incomplete. Consider the following piece of code:

I1: R3⇐R1 + R2

I2: R4⇐R4 - R3
I3: R7⇐R5 + R6

There three instructions I1, I2, and I3 in the above piece of code. The first instruction I1

adds the contents of register R1 and register R2 and stores the result to register R3.

The second instruction I2 subtracts contents of R3 from the register R4 and stores the

result back to register R4. Instruction I3 performs same operation as I1 performs on

different registers. It can be observed that I2 has a data dependency on I1. The space-

time diagram for the above piece of code is shown in Figure 9.5. It can be observed

from the figure that all the three instructions are in the pipe during the second clock

period. Ideally in the next clock period, all the instructions should have moved to their

next segments. But I2 is unable to move to next segment OF because its operands are

not available yet to access. The operands of I2 are R3 and R4 out of which R3 would be

updated by the end of the execution of I1. The execution of I1 is over only after the

fourth clock period. Therefore, I2 moved to segment OF during fifth clock period instead

of fourth thus causing a delay of one clock period. It is necessary to allow I2 to be in

wait state to avoid wrong fetching of operands. The instruction I3 also suffers a delay of

one clock period due to data dependency between I1 and I2. The major design issues in

pipeline include to avoid fetching of wrong operands and reducing the delay due to data

dependency. The kind of dependency observed in the given example is called read-

after-write dependency. Other possible cases are write-after-write, write-after-read, and

read-after-read. An example of write-after-write dependency is given as follows

I1: R3⇐R1 + R2
I2: R3⇐SR(R3)
I3: R4⇐R1 + 2

Instruction I1 modifies the contents of register R3 (write operation) and subsequently I2

modifies R3 by shift right operation (write operation). The space-time diagram for the

example of write-after-write dependency would be same as given in Figure 9.5.

Figure 9.5: Space-Time diagram illustrating delay due to data dependency.

Apart from data dependency, there may be address dependency between the

instructions if operand address can be not be determined as required information for

addressing mode is not made available by other instruction. For example an instruction

with register indirect addressing mode cannot fetch the operand if the previous

instruction is still loading the address to the register. Therefore, operand fetch is

delayed until the source address is available.

9.6 Handling Data Dependency
Data dependency degrades the performance of the pipeline due to possible collision of

data or address. To avoid the collision, an instruction should wait till the previous

instruction is not completed. There are a variety of ways to handle the conflicts in the

pipeline. The most simple and a straightforward approach is hardware interlocks
which use a digital circuit to detect the data dependencies among the instructions.

When it is detected that availability of the operands of an instruction depends on the

execution of another instruction, the circuit causes delay by enough clock cycles to

handle the conflicts. The sequence of instructions in a program is maintained by

introducing the sufficient delay.

Another approach to resolve conflicts due to data dependencies is hardware

operand forwarding. It uses a special hardware to detect the instructions whose source

operands depend on the action of other instruction. If such dependency is found, the

hardware directly transfers the result to the ALU input bypassing the register. The

destination instruction gets the operand before the register write operation. Let us

consider the example

I1: R3⇐R1 + R2
I2: R4⇐SR(R3)

The above sequence of instructions cause a delay to instruction I2 after the decode

operation as the operand R3 is modified by I1. The correct value of R3 is available after

I1 writes the result to R3 in the last stage of pipeline. However, it is possible to forward

the result directly to the ALU before writing it to the register. In this way the delay or stall

time can be reduced. This kind of data forwarding requires special hardware and it is

expensive.

The data forwarding can also be achieved with software implementation. A

compiler can be developed, which is smart enough to detect the subsequent

instructions and their operand dependency to previous instructions. The compiler

quickly makes available the results as operands to subsequent instructions to reduce

the delay. The dependency can take three different forms: STORE-FETCH, FETCH-

FETCH, and STORE-STORE. Consider the following example for STORE-FETCH form:

I1: M[R2]⇐R1
I2: R3⇐M[R2]

In the example, the first instruction stores the contents of register R1 to a memory

location whose address is stored in register R2. The same memory location is

subsequently fetched by the second instruction. However, the data needed by I2 is

already available in the register R1. Therefore, there is no need to access the same

memory location again and a smart compiler can replace the given sequence of

instructions with the following sequence,

I1: M[R2]⇐R1
I2: R3⇐R1

The FETCH-FETCH form of dependency analysis is show by the following example,

where the same memory location is accessed by two consecutive instructions.

I1: R2⇐M[R1]
I2: R3⇐M[R1]

In this example operand needed by I1 is also needed by I2. After the execution of I1, the

operand needed by I2 is now available in register R2. Therefore, a smart compiler can

replace the sequence with the following code to reduce the delay.

I1: R2⇐M[R1]
I2: R3⇐R2

In case of STORE-STORE analysis, the memory location updated by one instruction is

overwritten subsequently by the next instruction. For example,

I1: M[R2]⇐R1
I2: M[R2]⇐R3

The memory location whose address is contained in register R2 is updated by

instruction I1, which is overwritten by the instruction I2. A smart compiler can replace

the above code with the following single statement.

I: M[R2]⇐R3

However, the above replacement is possible only if I1 does not influence the other

instructions in the program. Otherwise a number of modifications would be required in

the program or sometimes it is not possible at all to make such replacements.

Check Your Progress: 3
1. What kind of resource conflicts affect the performance of the pipeline?

2. Consider Figure 9.5 and determine the speed up of the pipeline.

3. Explain the utility of BTB.

4. What is hardware interlock?

5. Name the different forms of data dependency analysis.

9.7 Super Scalar Processing
A basic scalar processor issues one instruction per clock cycle, while a pipeline

processor can allow multiple instructions simultaneously at different stages of execution

during the same clock period. The super scalar processors on the other hand can have

multiple instructions at the same stage of execution in a clock cycle. A super scalar

processor implements a kind of parallel processing within the single processor. It

requires multiple instruction pipelines to issue multiple instructions per cycle and to

generate multiple results per cycle. They are designed to achieve more instruction level

of parallelism in programs. Although, only those instructions can be executed in parallel

which are independent of each other. In practice, the super scalar processor are

allowed to consist of 2-5 instruction pipelines. Figures 9.6 shows the functioning of a

super scalar processor with two instruction pipelines. It allows two instructions at the

same stage during each clock period. It generates two outputs per clock period. Ideally

in a super scalar processor with n-instruction pipelines, n instructions should be

processed per clock period. But in practice there are certain issues that cause break in

the flow of instructions. These issues include data dependency, address dependency,

branch control, and structural hazards, etc.

Figure 9.6: Space-time diagram for super scalar processor with two instruction pipeline

The implementation of the super scalar processing involves some challenges. The fetch

operation requires advanced techniques to perform multiple cache line lookups. Since it

is not possible to provide parallel access to a single memory module, therefore memory

interleaving is used to provide parallel access. The memory interleaving is a technique

that uses multiple smaller memory modules instead of a large memory block. With

memory interleaving, consecutive instructions or programs can be stored in different

memory modules that can be accessed simultaneously. The branch operations become

more complicated that require fast prediction so that a proper flow of the program can

be decided to keep consecutive instructions together. For improving the performance of

the system, a specialized instruction cache is used that is known as trace cache or

execution trace cache. The trace cache stores the instructions that are already fetched

and decoded to increase the instruction fetch bandwidth. Traces are dynamically

created as instructions are fetched and branches are resolved. Traces can be start with

any static instruction and a trace is identified by the starting instruction. When a trace is

encountered again, the instructions can be obtained directly from the trace cache. The

additional hardware support and logic are required to fetch those branch instructions

that are not available in contiguous memory locations.

As discussed earlier that a branch can deviate the flow of the instructions, which

affects the performance of the pipeline. If information about the branch is available in

advance then performance of the pipeline can be improved. A digital circuit known as

branch predictor is used to predict the direction of the branch before it is definitely

known. The branch predictors are very useful in super scalar processors that are highly

crucial to improve the flow in instruction pipeline. But sometimes, the prediction of the

branch predictor is wrong leading to more delays in the pipeline. Therefore, advanced

branch predictors are required for such processors to avoid the mispredictions.

Other issues in super scalar processing are related to instruction decoding,

instruction issue rate, and instruction execution. Instruction decoding in scalar processor

is a complex task as multiple instructions are decoded in parallel. The higher instruction

issue rate makes it more complex as decoding cycle becomes lengthy. A higher

instruction issue rate is good for the better performance of the system but it gives rise to

other issues related to control and data dependencies. Prerecording can alleviate the

problem to some extent. The instructions can be partially decoded while loading the

instructions into instruction cache. Parallel execution of instructions also creates some

issues such as some instructions may get completed out of order because of unequal

execution times. So special measures are needed to preserve the logical sequential

consistency.

9.8 Summary
The efficient use of resources is highly important for the desirable performance of a

computer system. Conventionally, the instructions of a program are executed in a given

sequence. An instruction starts executing only after the execution of the previous

instruction is completed. The conventional approach is simple with easy implementation

but it makes inefficient use of resources as a number of resources remain idle till the

instruction under execution is not finished. It is highly desirable to fully exploit the

available resources for a better throughput. Parallel processing techniques allow

multiple instructions or programs to run simultaneously/concurrently to reduce the idle

time of the computing resources. Parallel processing can be achieved at different levels

of the programming. Pipeline is an economical approach of the parallel processing that

allows multiple instructions to execute simultaneously in an overlapped fashion.

The operation of an instruction can be divided into multiple sub-operations. The

sub-operations of different instructions can be performed in an overlapped way similar

to the industrial assembly lines. The pipeline processor consists of different segments

capable of performing specific sub-operations. The output of one segment is input to the

next segment in the pipeline. During a particular clock period, different sub-operations

belonging to different instructions are in the pipeline. The pipeline segments are

implemented as a combinational circuits. All the segments are interconnected with help

of latches. A latch works as an interface between the segments that holds the

intermediate results before transferring it to the next segment. The latches are

controlled by the same clock. Each segment has its own delay. The delay of all the

segments is not uniform. Therefore, clock period is decided according the slowest

segment in the pipeline to avoid any kind of data collision and bottlenecks. A pipeline

having k-stages can provide a speed up of at most k times. The maximum speed up can

be achieved if there are a large of operations of the same type to perform. There are

different types of pipelines such as arithmetic pipeline, instruction pipeline,

unifunction/multifunction pipeline, static/dynamic pipeline, and scalar/vector pipeline,

etc.

The processing of an instruction involves six major steps: instruction fetch,

instruction decode, address generation, operand fetch, execute, and store. Some of

these steps such as instruction decode and address generation can be combined and

accordingly an instruction pipeline can be developed with four or more segments. The

working of the pipeline processor can be illustrated with the help of space-time diagram.

For the best performance of the pipeline, all the instructions should be independent but

in reality some kind of dependences exist among the instructions. The data dependency

and branch instructions degrade the pipeline performance. Therefore, special measures

are required to handle the dependencies for a better performance.

A pipeline processor can have only one instruction at a stage/segment in a clock

period. The super scalar processors have multiple pipelines and allow multiple

instructions at the same stage in the same clock period. They are designed to achieve

more instruction level of parallelism in programs. Although, only those instructions can

be executed in parallel which are independent of each other. In practice, the super

scalar processor are allowed to consist of 2-5 instruction pipelines. Ideally in a super

scalar processor with n-instruction pipelines, n instructions should be processed per

clock period. But in practice there are certain issues that cause break in the flow of

instructions. These issues include data dependency, address dependency, branch

control, and structural hazards, etc. Special measures are required to handle these

issues.

Review Questions
Q.1 What could be reasons of bottleneck on pipeline? Define and derive various

performance parameters for a pipeline processor.

Q.2 Briefly describe different types of pipeline processors.

Q.3 With the help of a flow chart, explain the working of an instruction pipeline.

Q4. How do branch instructions affect the pipeline performance? Explain with the

help of a suitable example.

Q.5 What are the important measures to handle the branch instruction related

issues? Explain.

Q.6 What do understand by data dependency between instructions? How are these

issues resolved in the pipeline?

Q.7 What is super scalar processing? What are major challenges with super scalar

processing?

 Bachelor of Computer
Application

Uttar Pradesh Rajarshi Tandon BCA-EC
 Open University Computer Architecture

Block

4
MEMORY ORGANIZATION

Unit 10

Memory Technology

Unit 11
Memory Systems

Unit 12
Caches

BLOCK INTRODUCTION

The memory is essential component of any computer system. It provides the storage for

instructions and data. Both instructions and data are transferred between memory and

processor as and when required in the system. There are different types of memories

based on different technologies. Each memory possesses different characteristics

related to data accessing speed, storage, and cost, etc. The role of memory in a

computer system and various memory technologies are discussed in Block 4. It is

divided into Unit 10, Unit 11, and Unit 12. The concepts of memory, memory devices,

and technologies are discussed in Unit 10. The memory management is the main focus

of the Unit 11. The Unit 12 primarily deals with the cache memory and related issues

like placement, replacement, and updating policies, etc.

UNIT- 10 Memory Technology

Structure
10.0 Introduction

10.1 Objectives

10.2 Memory Device Characteristics

10.3 Random Access Memory

10.4 Read Only Memory

10.5 Magnetic Disk

10.6 Optical Disk

10.7 Magnetic Tape

10.8 Flash Memory

10.9 Associative Memory

10.10 Cache Memory

10.11 Memory Hierarchy

10.12 Summary

Review Questions

Unit 10: Memory Technology

10.0 Introduction
The memory provides the storage for instructions and data for the processor. Both

instructions and data are transferred between memory and processor as and when

required. It is essential component of any computer system. The instructions that are

required for processing are stored in the memory. The memory is divided into small

cells, each cell is identified by unique address varying from zero to some maximum

number depending on the size of the memory. The memory should be large enough to

hold all the programs used in a computer. The programs like operating system, data

processing software, and user programs, etc. all reside in the memory. It is desirable

that memory size should be larger than the space required for accommodating all such

programs for the better performance of the system. There are different types of

memories based on different technologies. Each memory possesses different

characteristics related to data accessing speed, storage, and cost, etc. Some memories

are volatile as they can store data or instructions as long as power supply is available

and contents are lost if power is off. Such memories usually provide faster data access.

Other memories are slower but can accommodate data permanently irrespective of

power is available or not. Since, the processor receives data or instructions through the

memory, the data processing speed of the two should be compatible. A slower memory

is a kind of bottleneck in the system that greatly reduces the processor efficiency. But

the faster memories are higher in cost and it is not possible to afford larger memories

for an economical system. On the other hand, the users need to store their programs

and data permanently in system. Therefore, a computer system does not use one type

of memory, but different types of multiple memories are used due to their different

characteristics and cost factor. There is a complete sub-system of memories in the

computer system having different types of memories of different sizes to make a

balance in the cost and accessing speed to fulfil the different needs of storage in the

system. A detailed description of different types of memories and their technologies is

provided in this unit. Depending on the characteristics and usage, there are four types

of computer memories:

 Primary memory

 Secondary memory

 Tertiary memory

 Off-line memory

The primary memory is also known as main memory of the computer. It is directly or

indirectly connected to the processor of the computer through memory bus. The

processor continuously reads and writes data and instructions to the primary memory as

required during the execution. The primary memory is faster, volatile, and usually

smaller in size. It cannot provide permanent storage to the data. The secondary
memory is not directly connected to the processor and it is accessed through some

input/output channels to access or transfer the data. It is usually non-volatile memory

that provides a permanent storage. The secondary memory is larger in size but much

slower than primary memory. The secondary memory is not accessed directly by the

processor during the execution, instead data or programs are transferred to primary

memory. The tertiary memory is very slow and large size removable mass storage

devices that are robotically mounted/uncounted to the computer to provide the storage.

It is used to archive the data that is not frequently required. It is useful to store

extraordinarily large data. The off-line memory is also known as removable storage is

the memory that is not under the control of the processing unit. It requires human

intervention to be connected before a computer can access it. It can be

connected/disconnected as and when desired by the user.

10.1 Objectives
 After the completion of this unit, the students would:

1. Have a better understanding on the role of memory in program execution.

2. Understand different types of computer memory devices and their

characteristics.

3. Know the technologies used in different types of memories.

10.2 Memory Device Characteristics
Computer memory is the storage space of a computer system, where data and

instructions required for processing are stored. It is an essential part of the computer,

which plays an important role in the processing, saving, and retrieving data or

instructions. The performance of the system highly depends on the memory. There are

many types of memory devices available for modern computer systems. These devices

took several decades to be developed and they significantly differ in characteristics and

technology. Some memory devices are low cost and can be used for data backup. The

devices that provide backup storage are called auxiliary memory, which are usually

magnetic disks. The backup devices are used to store large data files, programs, and

other information. Other memory devices provide faster access rate and therefore such

devices are more suitable for directly communicating with the CPU. The memory that

directly communicates with the CPU is known as main memory of the system. Only

those programs, data, or instructions that are currently needed by the processor reside

in the main memory. The data or programs are transferred between auxiliary memory

and main memory as and when required as main memory is smaller in size and cannot

store all the programs and data. The memory devices are characterized by the following

major features:

 Access method

 Volatility

 Portability

 Cost

 Speed

Any type of memory is characterized by the smallest addressable unit, which could

be a byte or a word. The byte addressable memory uses an 8-bit unit as the smallest

addressable unit. In word addressable memory, the smallest word could be usually 16

bits to 64 bits in length. The memory can be viewed as a collection of a large number

memory locations. Each location is identified by a unique address. In order to access

data from the memory, first its location should be identified and only then it could be

read from that location. There are four major methods to access the memory: sequential

access, direct access, random access, and associative access.

10.2.1 Sequential Access Method
The sequential access method assumes that memory locations can be accessed

sequentially only. The storage device must be searched from the beginning until it finds

the required data. The method starts from the beginning and reads through in order to

the desired location. The access time depends on the data location and previous

location. The data are read or written in a sequential manner. If a new data element is to

be stored, it is written after the previously read/written location. Some early memory

devices such as tapes could have been accessed only in a linearly sequential.

10.2.2 Random Access Method
In the memory devices that uses random access method, each memory location is

identified by a unique address. Any memory location can be accessed by using its

address. All the memory locations can be reached in any order in the same amount of

time. The address of the desired location is provided by a decoder. It provided the faster

access to the data compared to sequential as well as direct access method.

10.2.3 Direct Access Method
This approach is a compromise between sequential access and random access

methods. Here, the memory is divided into blocks and each block has a unique identity.

The access is provided by directly jumping to the vicinity and then performing sequential

search. The access time depends on the location within the block and previous

accessed location. The memory device is implemented as a rotating disk that is divided

into information tracks and each track having its own read/write head. To read/write

data elements, the heads are positioned at appropriate track and then read/write

operation is performed at appropriate place.

10.2.4 Associative Access Method

It is also known as content addressable access method. In this method, the memory

location is identified by its contents instead of its physical location. The memory is

implemented as a chip in which each bit can be compared. The contents are compared

with each bit allowing a very fast memory access. If a new data element is needed to

store in the memory, it is randomly stored as the entire memory can be compared at

once.

10.2.5 Volatility
The volatile memory requires power to maintain the stored data but when power is off or

interrupted the entire data or information is lost. Non-volatile memory can maintain the

stored data even in the absence of power. The volatile memories are usually faster than

non-volatile memories and good for the security of the data is quickly lost as soon as

power is off. But it cannot be used as storage or backup device. The mass devices are

non-volatile, which are slower but good for data storage.

10.2.6 Portability
The portable memory devices provide an option for additional storage backup. These

devices are not integral part of the computer and serve as external memory devices.

They are like plug and play devices that can be used to carry data from one place to

another or to transfer data from one computer to another. The portable memory devices

are mostly non-volatile. Nowadays a number of portable storage devices are available

such as flash drives, external hard drives, USB drives, and CD/DVD, etc.

10.2.7 Cost and Speed
The cost and speed of the memory are important factors for any computer system.

Keeping the cost affordable for the masses is important for making the system available

for a large section of the society as well as from business point of view. On the other

hand, memory speed is important for the desirable performance of the computers.

However, both cost and speed are proportional to each other. Higher speed leads to the

higher cost. The size is another factor that is highly influenced by the cost. A sizable

memory is required for accommodating the data and instructions for the processing. But

increasing the size increases the cost. So it is a challenging task to make a balance

among cost, size, and speed of the memory.

Check Your Progress 1

1. What is computer memory?

2. Describe auxiliary memory and main memory.

3. Differentiate primary memory and secondary memory.

4. What is offline memory?

5. What is the use of tertiary memory?

6. Arrange different accessing methods in increasing order of access time.

7. How are cost, size, and speed of the memory related?

8. What is volatile memory?

9. How does the associative memory work?

10.3 Random Access Memory
Random access memory or popularly known as RAM has a distinguish quality that data

can be read or written rapidly irrespective of the location in the memory. It is also called

read-write memory. The access time does not depend on the location. The data is read

or written directly from a given address regardless of location. The same amount of time

is required to access any location. Since access time is location independent, it is easy

to reach each location inside the memory. It is a volatile memory that needs a constant

power supply. If power is interrupted, the entire data is lost. Therefore, RAM only

provides a temporary storage. Therefore, an uninterrupted power backup is always

required for smooth functioning of the computer. RAM provides a fast and random

access but it bears a higher cost. The semiconductor integrated circuit based

technology is principally used for RAM. Usually RAM is used as a primary memory of

the computer due to its read/write capabilities and faster and easy access. There are

two conventional variations of RAM available: dynamic RAM and static RAM. The

primary difference between the two RAMs is the lifetime of stored data.

10.3.1 Dynamic Random Access Memory
The dynamic random access memory (DRAM) is implemented as memory cells and

each memory cell composed of one transistor and one capacitor. The memory cells

store data as electric charge on capacitors. Since capacitors have a characteristic to

discharge, DRAM must be continually refreshed to maintain the data. DRAM consists of

a refresh circuit known as controller that periodically rewrites data thousands of times

per second. By refreshing the memory before data expire, the memory contents can be

kept alive as long as they are needed. The term dynamic refers this tendency of losing

charge even with continuous power supply. DRAMs are high density as only one

transistor is required for one memory cell and therefore, DRAMs are less expensive.

There are several types of DRAMs such as synchronous DRAM (SDRAM), which uses

a clock signal to synchronize all read/write operations. Double data rate (DDR) memory

is a kind of DRAM that performs two memory operations per clock cycle, one operation

on rising and another on the falling off the clock signal. Another type of DRAM is quad

data rate (QDR) memory that is twice as fast as DDR. It performs four operations per

clock cycle.

10.3.2 Static Random Access Memory
The static random access memory (SRAM) retains the data as long as electrical power

remains applied or not interrupted. When power gets turned off, the data is lost due to

volatile nature. In SRAM chip, each bit is implemented with the help of six transistors.

Since transistors do not require power to prevent leakage and there are no capacitors in

SRAM chip, it is not required to refresh the memory periodically. The memory density of

SRAM is lower than DRAM. The cell size is larger and it causes more power

consumption. Due to lower density, SRAM needs more chips leading to higher

manufacturing cost. However, SRAM is much faster than DRAM. Therefore, DRAM is

preferred for larger memory requirements and SRAM is used for faster memory.

10.4 Read Only Memory
The read only memory (ROM) is a non-volatile memory that stores the data

permanently. The memory cells in ROM can be accessed randomly irrespective of their

locations. In that sense, it is also random access but it is not RAM. Only the access

method is similar for ROM and RAM. Once data is stored, no power supply is required

to maintain it. Data stored in ROM can be read but it cannot be modified or new data

cannot be written. ROM is used to permanently store those programs or information that

do not need any change once the manufacturing of the computer is completed. Initial

programs such as bootstrap loader are kept in ROM. The bootstrap loader is a

program that is required to imitate the operating system when the computer is powered

on. Some other small programs known as firmware are also stored in ROM, which are

used devices like BIOS. These programs are used by the computer system to perform

some basic operations. ROM is also implemented like an integrated chip with programs

or data fabricated into it. The data/programs are actually burned into circuitry. A very

careful process of manufacturing is required as an error even in a single bit results in a

useless device. There are various types of ROMs including PROM, EPROM, and

EEPROM.

10.4.1 Programmable Read Only Memory
Programmable read only memory (PROM) is also a non-volatile memory and the

contents are fixed once they are written just as in case of ROM. The stored data can be

read electrically any number of times. But unlike a ROM, the contents in PROM are not

written at the time of manufacturing. Instead, the user can store the programs or data

later when it is needed to do so. The information is stored electrically through a writing

or programming process with the help of a special device. However, it can be written

only once and contents cannot be modified later. PROM provides the users a kind of

flexibility and convenience to write the memory.

10.4.2 Erasable Programmable Read Only Memory
Erasable programmable read only memory (EPROM) is a kind of PROM that can be

written multiple times. It is also a non-volatile memory whose contents are read or

written electrically just like a PROM. But it can be erased if required. Therefore, its

contents can be modified unlike a ROM or PROM. However, each time an EPROM is

erased to restore to its initial state before writing or programming. A special device can

erase the EPROM with the help of ultra-violet light passed through a quartz crystal

window. The process of erasing takes a lot of time up to several tens of minutes. It is

more expensive than PROM but it can be erased multiple times and new data can be

stored.

10.4.3 Electrically Erasable Programmable Read Only Memory
Electrically erasable programmable read only memory (EEPROM) provides the flexibility

of writing the memory again without erasing the previous contents. It is a non-volatile

memory that combines the characteristics of non-volatility with the option to reuse with

updated contents. It is erased or programmed electrically. Only one byte can be erased

at time instead of the entire chip. Therefore, process of erasing and re-programming is

slow. It is more expensive than EPROM and stores less amount of data per chip.

10.5 Magnetic Disk
A magnetic disk is a circular plate of metal coated with magnetized material just like a

gramophone record. The magnetic disk used in computer consists of a collection of

platters stacked on a spindle as shown in Figure 10.1, which rotates at 5400 to 15000

revolutions per minute. Each platter is covered with a magnetized material similar to a

material used in cassettes or video tapes on both sides. Each platter is divided into

concentric circles known as tracks. Each track is further divided into small sections

called sectors as shown in Figure 10.2. There are spots on the magnetized surface

along the tracks and sectors. The data bits are stored in these spots. A read/write head

is available on each surface. A read/write head is an electromagnetic coil mounted on a

movable arm. The tracks that are exactly above or below each other form a cylinder. All

the tracks in a cylinder can be read without moving the read/write arm. The entire

arrangement is permanently sealed for smooth functioning of the drive.

The tracks near the circumference of the disk are longer than the tracks closer to

the centre. So, some tracks may have more recorded bits than other tracks if bit are

recorded with equal density. The sector is a minimum addressable unit in a magnetic

disk. Whenever a particular byte is needed for an operation, the operating system

locates the platter, track, and sector containing that byte and the read/write head is

positioned in the identified sector. When the read/write head reaches the specified

sector, the entire sector is read into main memory. Therefore, instead of storing a file in

several tracks on the same platter, it should be stored in a cylinder i.e. in multiple tracks

belonging to different platters above/below each other. The disk may use multiple heads

to simultaneously transfer data from multiple tracks for providing a faster access.

Figure 10.1: Mechanism of a magnetic disk
(Source: https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/10_MassStorage.html, accessed

on 16-07-2020)

https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/10_MassStorage.html

Figure 10.2: Division of platter surface in tracks and sectors
(Source: Computer System Architecture, 3/e, M. Morris Mano, 1993)

Some important parameters related to magnetic disk can be defined as follows:

 Number of cylinders: the number of cylinders is equal to number of tracks in a

platter as a cylinder contains vertically aligned tracks from all the platters.

 Track capacity: it is defined as the number of sectors in a track multiplied by the

number of bytes per sector.

 Cylinder capacity: the cylinder capacity is obtained by multiplying number of

platters by the track capacity.

 Drive capacity: the drive capacity is given by the number of cylinders multiplied

by the cylinder capacity.

 Seek time: the time it takes to move the read/write arm to the correct cylinder.

 Rotation time: the time it takes to move the desired sector under the read/write

head.

 Access time: it is obtained as an addition of seek time and rotation time.

 Transfer time: the time it takes to transfer the data once the read/write head is

placed at desired data.

The sectors are typically 512 to 4096 bytes in size. Some overhead information is

stored at the beginning of the sector such as sector address, track address, gap

between sectors, and status (defective or not). The disk tracks may also be divided into

blocks instead of sectors. The number of blocks is defined by the user. The blocks are

further divided into sub-blocks. The amount of data transferred in an I/O operation

depends on the software design. Such a disk is called a block organized disk and disks

with sectors is known as sector addressable disk.

Check Your Progress 2

1. Which of SRAM and DRAM has higher density?

2. Which of SRAM and DRAM is faster?

3. What are different types of DRAM?

4, Differentiate RAM and ROM.

5. What is utility of ROM in a computer system?

6. What are different types of ROM?

7. Define track, sector, and cylinder in a magnetic disk.

8. What is role of read/write arm and read/write head in a magnetic disk?

9. Define seek time, rotation time, and access time for a magnetic disk.

10. What is the minimum addressable unit in a magnetic disk?

10.6 Optical Disk
Optical disk storage devices store data bits as variations in light reflections. The data

bits are accessed using a laser assembly. The storage medium is in the form of a

rotating disk. The disks are usually pre-formatted for positioning the optical head. The

information is recorded on the media as a change in the material characteristics using a

thermally induced effect. Optical radiation is used as a thermal source. Optical disks

have higher density than magnetic storage and provide a reliable and removable

storage medium. Unlike a magnetic storage, the optical recording and reading can be

done by positioning the optical head far away from the storage medium. It helps the

medium to be removable without head crash making it a reliable removable storage

medium. However, longer distance between optical head and storage medium leads to

higher access time. There are various types of optical disks such as compact disk,

digital video disk, and blue-ray disk.

Compact disk (CD) is a read only storage made of clear polycarbonate plastic

covered with a very thin layer of aluminium. For the protection of the disk another thin

layer of acrylic is sprayed over the aluminium layer. CD has single track starting from

the inside of disk near centre to the outside. The data bits are recorded in digital form as

a series of pits and lands. A pit is a little depression forming a lower level in the track

and the land is a flat part or upper level between pits. The data recording and reading is

done by shining a laser beam at the disk and detecting changing reflection patterns.

The speed of reading is relatively higher such as 24X, while writing the disk is much

slower often 2X, where X represents a speed of 150 KBps (also known as CD audio

speed). The data on the CD cannot be modified or erased once it is burned. The early

version CDs had to burn in a single session, wasting the unused space of the CD if any.

These drives are known as single-session CDs. Later, multi-session CDs were evolved

that allow the burring of the disk in multiple sessions until it is full. A special burner

software is provided with the CD for burning the disk. The data storage capacity of a CD

is around 0.7 GB. A rewritable version of the CD called CD-RW was developed using

amorphous material. A laser beam is used to heat up the amorphous substance, which

becomes crystalline when cooled slowly. The crystal areas are reflective of light but

amorphous area are not. Using the reflective properties of crystalline substance data

are recorded and read using a universal data format.

Digital video disk (DVD) or digital versatile disk is based on the CD technology

but uses smaller pits than CD media. DVDs are packed more densely and therefore,

they can store larger amount of data than CDs. Both single sided and double sided

formats are available. It can store around two hours of video or 4.7 GB data on one side

of the disk. The total data storage capacity of the DVD could be up to 20GB. It uses a

universal disc format (UDF) for writing data. A sector is the minimum addressable unit in

UDF and a sector address space forms the volume.

Blue-ray disk (BD) was developed by Blue-Ray Association, which uses blue-

violet laser to read or write data. The blue wavelength allows very compact tracks on

the disk and therefore, a huge amount of data can be stored. A BD can store five times

data than a single sided DVD close to 25 GB. Like a DVD, the BD can also be recorded

in dual-layer format allowing a storage capacity of around 50GB. BD is available both in

read only and rewritable formats. With doubling the rotation rate of CD/DVD, the BD

provides a 5X higher data rate.

10.7 Magnetic Tape
 A tape storage is a plastic strip coated with magnetic recording material. For storage

purpose, the tap is wound on a reel. To access or write the data, the tape is unwound

and passes through a read/write head. As tape crosses the read/write head, the data

are read or written onto the tape as magnetic spots along several tracks. Typically

seven or nine bits are used along with a parity bit to form a character. The parity bit is

used for error checking. There are read/write heads one for each track. The information

is recorded in blocks, each data block is a sequence of contiguous records. A record is

a data unit that a user program deals with. The tape can start, stop, and rewound. There

are gaps between the blocks where tape can be stopped. The read/write head can read

the entire block of records at once. The major disadvantage of the tapes is that they are

accessed sequentially and cannot directly access a given location. The access time

depends on the data location and previous location. But tapes provide an inexpensive

storage option, which can store a large amount of data. Tapes are a good choice for

archival storage where we want to store data for a long time and we do not need to

access it very often.

10.8 Flash Memory
Flash memory is a mix of EPROM and EEPROM technologies. Flash memory devices

are high density, low cost, non-volatile, fast, and electrically reprogrammable. Like

EEPROM, it is electrically erasable and it uses one register per cell like an EPROM.

Instead of a byte-by-byte operation, a large chunk of the memory could be erased at

once that gives it a name “flash memory”. Each memory cell consists of a transistor and

a floating gate similar to EPROM but oxide between floating gate and silicon is thinner

that allows it to be electrically programmed and erased. The information in an array of

memory cells made from floating-gate transistors. Traditionally each cell stores only one

bit of information but some modern flash memory devices can store multiple bits in a

single cell. The entire memory or some blocks can be erased in a few seconds. Flash

memory storage is commonly used in electronic devices such as digital mobile phones,

digital cameras, music players, and other portable devices, etc.

10.9 Associative Memory
The conventional memories in computers are address based memories. A number of

applications require the search of data elements stored in the memory. There are

various search algorithms that access a set of memory locations to find out the data.

The number of access to depends on the location of the data element. Various efforts

have been made to reduce the search time. The search time can be significantly

reduced if the memory location could be identified by its contents instead of location

address. A memory that is accessed by its contents is known as content addressable
memory (CAM) or associative memory. In this type of memory, locations are

accessed simultaneously in parallel based on their contents. Whenever some data are

required to store in the memory, no memory address is specified. The memory finds a

vacant location and writes the data. In order to read a word from the memory, contents

of the word or part of it is specified. The memory locates all the matching words and

marks them to read. All the memory cells have storage capabilities as well as logic

circuit for matching that makes CAM more expensive than random access memory.

CAM is highly suitable for the parallel processing due to its searching abilities and faster

access.

Check Your Progress 3

1. How does optical disk store data?

2. What are the reading and writing speeds of CD?

3. What is maximum storage capacity of a DVD?

4. How is the BD different from a CD or DVD?

5. Describe the reading/writing approach of a magnetic tape.

6. What is the main usage of a magnetic tape?

7. How is the data stored in CAM?

8. What are merits and demerits of a CAM?

9. What is flash memory?

10.10 Cache Memory
Cache is a high speed memory, which is 10 to 50 times faster than RAM. It is divided

into equal sized blocks and with each block a tag is associated, which is used as an

identifier to search the data. The searching ability of cache based on contents makes it

a kind of CAM. Generally cache is implemented to consist of two parts: cache directory

and storage memory. The cache directory is usually implemented with CAM and it

stores the block address tags and some control bits. The control bits are used for cache

management. The memory part is implemented using static RAM. Cache is very fast but

expensive also, therefore a large sized cache is not affordable for the most computers.

Generally a small cache is used that keeps the recently used data and instructions. It

has been observed that usually some instructions and data are referenced repeatedly

over a short interval of time in a computing environment. This phenomenon is known as

locality of reference. Therefore, due to locality of reference, the recently accessed

information is kept both in cache and main memory so that access time can be reduced

as cache is faster than main memory. Whenever, some data or instructions are

referenced by the processor, it is searched in the cache memory. If required

data/instructions are available in cache, the entire block containing the data is made

available to the processor immediately otherwise data/instructions are transferred from

the main memory to the cache and to the processor. If the same data/instructions are

referenced by the processor again, it is available in cache, thus providing a faster

access. When the required information is available in cache, it is called a hit. Since, the

size of cache is small, the required information is not available always. In case the

required information is not available in cache but in memory, a miss occurs. In case of

miss, the data items are transferred from other memory devices to the cache. The

performance of the cache is measured in terms of hit ratio, which is defined as ratio of

hits to the total memory references.

10.11 Memory Hierarchy
Many different types of memory devices have been discussed so far. Different memory

devices are based on different technologies and possess different characteristics such

as storage capacity, access speed, volatility, and portability, etc. A single memory is

sufficient to fulfil all the requirements of a computer system. Therefore, multiple memory

devices of different types are used in a computer system due to various factors

including application, cost, and speed, etc. Main memory is the central storage that

directly communicates with the processor. It is responsible to keep the data and

programs required by the processor. The main memory is therefore should be fast and

large enough to keep the required data. Generally, RAM is used as a main memory of

the computer as it is fast and could be sufficiently large is size and affordable. Although,

RAM is fast but still there is a huge gap between the speeds of a processor and RAM.

So, it is desirable to have faster memory devices to match the processor speed. The

cache is a very fast but expensive memory and a large cache memory is not affordable

for a general purpose computer. Usually, a small cache memory is used between main

memory of the computer and its processor that helps to reduce access time as

discussed earlier. There are some data or small programs required in a computer that

do not change. Such data and programs are stored in ROM. All these memory devices

including RAM, cache, and ROM all together form the primary memory the system.

The memory devices used as main memory are volatile and there cannot store

data permanently. For a permanent storage, a non-volatile memory with large size is

required. The magnetic disks are a good choice for this purpose. The magnetic disks

used for storage in the computer are popularly known as hard disks. Hard disks are the

major storage devices of the computer for storing user data and programs permanently.

The storage memory devices are known as secondary memory of the system. Although,

the hard disks can store a large amount of data usually of the order of 1TB or more, it

may get exhausted after some time. Therefore, user data that are not required very

often are achieved to another device to free up the space in secondary storage or for

security reasons. The storage used for data achieving are known as tertiary memory.

Magnetic tapes are primarily use as tertiary memory but optical disks can also be used

for this purpose.

There are three desirable key characteristics of memory large size, high speed,

and low cost. As discussed, no single memory can fulfil all the storage requirements of

a computer system. Therefore, a combination of multiple memory devices is used in a

system to achieve all memory design goals. This arrangement is known as memory

hierarchy that combines small sized fast, expensive memory and large sized slow,

inexpensive memory. The purpose of memory hierarchy is to balance the three

desirable characteristics of the memory. It takes the advantage of locality of reference,

which is of two types: temporal locality and spatial locality. According to temporal

locality, if some information is referenced, it is supposed to be referenced again soon.

All the instructions of program and related data items are usually kept at contiguous

memory locations. It leads to the spatial locality. The spatial locality suggests that if

some data items are referenced then data items whose address are close to the

reference data will be referenced sooner or later. Memory hierarchy is a kind of

abstraction that gives an illusion that a large and fast memory is available to the

processor.

A structure of memory hierarchy having seven levels is shown in Figure 10.3. The

registers are the smallest and fastest memory closest to the processor. The processor

searches the registers for the required information. If information is not available in the

registers, the next level memory i.e. the cache is verified for the information. There are

multiple levels of cache, L1 cache is on chip memory also known as primary cache that

is built-in with processor chip itself. There can be one or more off-chip cache memory

levels i.e. L2, and L3, etc. The L1 cache is faster than other cache levels. Each level is

searched one after another until information is found. If information is not available in

cache at any level then main memory is searched for the data. Main memory is slower

and much larger than cache. If information is found in main memory, it is transferred to

the cache and then to the processor. If not, the secondary memory i.e. hard disk is

access and information is transferred to the upper level memories. At the bottom of the

hierarchy is tertiary memory, which is not often required. It can be observed from Figure

10.3 that memory closer to the processor or CPU in hierarchy are more expensive,

faster, and smaller. The memory size and access time increase from top to the bottom.

While, cost and speed grow from bottom to the top of the hierarchy.

Check Your Progress 4
1. What is cache memory?

2. Define locality of reference.

3. Which type of RAM is used in cache?

4. Define hit ratio of cache memory.

5. What is memory hierarchy?

6. What is the purpose of memory hierarchy?

7. Arrange memory devices in increasing order of access time.

8. Arrange memory devices in increases order of storage size.

9. Define temporal and spatial locality.

Figure 10.3: Memory hierarchy
(Source: http://www.cs.princeton.edu/~jrex)

10.12 Summary
Memory is an essential and important component of a computer system, which provides

the space for data storage. A number of different types of memory technologies are

available having different types of characteristics such as speed, access method,

volatility, portability, and cost. The smallest unit in a memory is a bit. A bit can be

implemented with the help of transistors, and capacitors, etc. The number of

transistors/capacitors required to implement a bit decides the cost of the memory,

volatility, and other characteristics. RAM is a read-write volatile memory whose access

time does not depend on the location. Any location can be accessed randomly with

same amount of time. There are two types of RAM namely DRAM and SRAM. The

DRAM is implemented using transistors and capacitors both and it is needs to be

refreshed periodically to maintain the data. SRAM is implemented using transistors only

that allows it to retain data as long as power supply is maintained without any

refreshments. SRAM is faster as well as expensive than DRAM.

ROM is a non-volatile memory that maintains the data permanently once it is

stored irrespective of the power supply continued or not. The access method of ROM is

similar to RAM i.e. the same amount of time is required to access any location. There

are different variations of ROM such as PROM, EPROM, and EEPROM. Data in a ROM

can be written at the time of manufacturing only, while PROM can be programmed

when user needs to do so. EPROM and EEPROM both can be written multiple times.

Flash memory is a mix of EPROM and EEPROM technologies. Flash memory devices

are high density, low cost, non-volatile, fast, and electrically reprogrammable. The entire

memory or some blocks can be erased in a few seconds. Flash memory storage is

commonly used in electronic devices.

A magnetic disk provides the permanent storage that maintains data even in the

absence of the continuous power supply. The data are recorded on circular plastic

platters coated with magnetic material. Each platter is divided into tracks and sectors. A

sectors is the minimum addressable unit in the disk. Multiple platters are stacked on a

spindle. The data can be accessed or stored with the help of a read/write arm and

read/write heads. In another arrangement, the tracks are divided into blocks instead of

sectors, where the number of blocks is defined by the user. Optical disks are another

medium that stores the data permanently. An optical disk records the information as a

change in the material characteristics using a thermally induced effect with the help of a

laser assembly. Optical disks have higher density than magnetic storage and provide a

reliable and removable storage medium. Unlike a magnetic storage, the optical

recording and reading can be done by positioning the optical head far away from the

storage medium. It helps to make it a reliable removable storage medium. Various

products based on optical disks with different characteristics are available such as CD,

DVD, and BD, etc.

A tape storage is a plastic strip coated with magnetic recording material, which is

accessed sequentially. Unlike random access memory, the access time in a tape

depends on the location of data and previously accessed location. The information is

recorded in blocks, each data block is a sequence of contiguous records. A record is a

data unit that a user program deals with. The tape can start, stop, and rewound. Tapes

are a good choice for archival storage where we want to store data for a long time and

we do not need to access it very often.

Associative memory is a different kind of memory that is accessed by its contents.

It is also known as CAM. In this type of memory, locations are accessed simultaneously

in parallel based on their contents. In order to read a word from the memory, contents of

the word or part of it is specified. The memory locates all the matching words and marks

them to read. All the memory cells have storage capabilities as well as logic circuit for

matching that makes CAM more expensive than random access memory. Cache is a

high speed memory that is implemented to consist of two parts: cache directory and

storage memory. The cache directory is usually implemented with CAM and it stores the

block address tags and some control bits. The memory part is implemented using static

RAM. Cache is very fast but expensive. Generally a small cache is used that keeps the

recently used data and instructions according to locality of reference.

It is desirable to have a large and fast memory for the computer. However, the

faster memory devices are more expensive and huge amount of faster memory is not

affordable for a general computer system. On the other hand, some memory devices

are volatile that cannot permanently store the data. The most of the faster devices are

volatile and therefore, only having faster memory cannot fulfil all the desirable goals. In

order to achieve all the goals related to storage, a combination of different memory

devices used in a hierarchical way. At the top of the hierarchy are registers, which are

built-in on the same chip with the processors. The registers are the fastest tiny memory

devices that can hold a very small piece of information. The registers are followed by

the multiple levels of cache. Then there is main memory of the computer in the

hierarchy. Main memory is larger than cache in size. After the main memory, there are

various secondary memory devices in the system. The size of the memory increases

from top to the bottom, while speed and cost increase from bottom to the top of the

hierarchy. Whenever, the processor needs some information it is searched in the

registers. If information is not found in registers, the cache is verified for it. The memory

hierarchy gives an illusion that there is a high speed memory of the large size in the

system.

Review Questions
Q.1 What are the major general characteristics of the memory devices? Briefly

describe.

Q.2 What are major access methods for memory? Describe each of them.

Q.3 What are the differences in SRAM and DRAM in terms of characteristics and

application?

Q.4 What are the major applications of ROM?

Q.5 Find out the key difference among EPROM, EEPROM, and flash memory.

Q.6 Define primary, secondary, and tertiary memory. Which memory devices can be

used as primary, secondary, and tertiary memory?

Q.7 How is a magnetic disk implemented? Explain the procedure to read/write the

magnetic disk.

Q.8 Compare magnetic disk and magnetic tape.

Q.9 How optical disks are different than a magnetic disk?

Q.10 Describe different types of optical disks available in market and make

comparison among them.

Q.11 What is cache memory? Why is it required?

Q.12 What is the role of main memory in the system?

Q.13 What is memory hierarchy? What are different memory levels in memory

hierarchy?

Q.14 What is purpose of memory hierarchy?

Q.15 Suppose there are two levels in memory hierarchy L1 and L2. Size of L1 and L2

is 1000 words and 10,000 words respectively. Hit ratio of L1 is 0.95. If

access time of L1 and L2 is 0.01ms and 0.1ms respectively, find out the

average access time of the memory.

Q.16 Consider a magnetic disk with following parameters:

No. of cylinders: 1331

No. of tracks per cylinder: 11

No. of sectors per track: 40

No. of bytes per sector: 256

Suppose a file with 2048 records needs to be stored. Find out following:

a) Total capacity of the disk.

b) No. of cylinders required for the file if each data record takes 128 bytes.

UNIT- 11 Memory Systems

Structure
11.0 Introduction

11.1 Objectives

11.2 Evolution of Memory Technology

11.3 Advanced DRAMs

11.4 Static Random Access Memory

11.5 Multilevel Memories

11.6 Virtual Memory

11.7 Address Translation

11.8 Memory Allocation

11.9 Summary

Review Questions

Unit 11: Memory Systems

11.0 Introduction
As it was discussed in previous unit that there is a big gap between the processor cycle

time and memory access time. Due to the speed gap, the processor cannot work to its

full potential. A variety of memory technologies have been used over the generations.

With the advancing technology, the memories have become faster. But interestingly, the

processors have become even faster and the speed gap between main memory and

processor has become wider. Mostly, the dynamic random access memory (DRAM) is

used as the main memory in computers. Figure 11.1 shows the progress of memory

and processor performance starting in 1980. It can be observed from the figure that

speeds of memory and processor were compatible in 1980. Although both technologies

progressed significantly thereafter but processor technology observed more progress

leading to a huge gap between the speeds of two components. The primary reason

behind this gap is that the memory and processor industries headed in two different

directions. The emphasis of research was to increase the speed of processor while the

focus of the research in case of memory was to increase the capacity. As a result the

speed gap grew exponentially as shown in the figure. This performance gap is the main

obstacle in the overall performance of the computer system. This disparity is expected

to increase further in coming years.

Figure 11.1: Processor-memory performance gap starting in 1980.

(Source: Mengjia Yan, MIT, 2020)

It is highly desirable to reduce the speed gap between processor and memory.

The performance of the computers is limited by the memory bandwidth and latency. The

bandwidth is the rate at which information can be transferred between memory and

processor or other devices. The time duration from the memory request initiated by the

processor to its completion is known as the latency. Ideally the zero latency and infinite

bandwidth are desirable which is practically impossible. A cache memory was

introduced between main memory and processor. The cache memory is formed by

static random access memory (SRAM), which is faster and more expensive than

DRAM. Cache memory helps to reduce the latency that improves the system

performance. In recent time, the researchers are working to reduce the latency and

increase the memory bandwidth to bridge the performance gap between processor and

memory. In this unit, the modern memory technologies will be discussed.

11.1 Objectives
The objectives of this unit are outlined as follows.

1. To learn different types of computer memory and their characteristics.

2. To understand the memory management in a computer system.

3. To learn how memory is allocated to the user programs and process.

11.2 Evolution of Memory Technology
A number of things have been already discussed about memory and storage

technologies in unit 10. This section specifically presents evolution of main memory

technologies. In early days, von Neumann suggested that a memory would be required

for multiple reasons including:

 To hold the intermediate results during the complex operations

 To store the instructions for complex operations

 To store initial as well as boundary conditions for partial differential equations

 To avoid repeated complex calculations

The commercial systems in late 1950s had a drum memory. In drum memory, a metal

cylinder coated with magnetic material is used for recording the data. The access time

of drum memories was around 2.5ms. The drum memories have a high rotational delay,

therefore, drums were soon became obsolete as a main memory. Although, drum

technology was in use for a longer time as a secondary memory. During 1960s, the core

magnetic memories evolved, which had no moving parts and any memory word could

have been accessed randomly. A core is a doughnut shaped ferromagnetic loop that

can hold one bit. Core magnetic memories were around 1000 times faster than drum

memories with cycle time around 6 µs, which was improved to 1 µs. The core magnetic

memories were far superior to drum memories both in terms of latency and reliability.

Figure 11.2: Structure of a DRAM cell
(Source: Computer Organization and Architecture, 9th Edition, William Stalings, 2012, Pearson Education)

In 1970s, the semiconductor memory was evolved and replaced core magnetic

memory. Robert Dennard invented the DRAM that revolutionized the computer industry.

It stores each bit of data on a small capacitor within the memory cell. The structure of

Address Line

Transistor

Capacitor

Bit Line Ground

DRAM is shown in Figure 11.2. It contains one capacitor and one transistor. The

capacitor may be either in a charged or discharged state. These states can represent

"1" or "0" for the cell. The transistor just acts as a switch, which is open if address line is

having voltage and closed if no voltage is present at address line. A voltage signal is

applied to the bit line for the write operation. The bit value ‘1’is represented by a high

voltage and a low voltage represents the bit value 0. When address line receives a write

signal, the charge is transferred to the capacitor. When address line receives a read

signal, the transistor turns on and the charge stored on the capacitor is released onto a

bit line and to a sense amplifier. The sense amplifier determines whether the cell

contains a 1 or 0 by comparing the capacitor voltage to a reference value. The read

operation discharges the capacitor, therefore it must be restored to complete the

operation.

Figure 11.3: Memory cell operations (a) Write (b) Read

The operation of a memory cell is shown in Figure 11.3. The cell mostly has three

functional terminals: select, control, and data-in/sense. The terminals are capable of

carrying electrical signals. The select terminal is used to select a memory cell for a read

or write operation. The control terminal indicates read or write operation. The third

terminal provides an electrical signal to set the state as 1 or 0 in case of write operation.

In case of read operation, the same terminal is used to provide the cell’s state as output.

Since the characteristics of the capacitor is to leak charge, it is necessary to refresh

each memory cell periodically. This refresh requirement gives rise to the term dynamic.

DRAM provides better density than core magnetic memory but with some

disadvantages such as volatility, more power consumption, need of power refreshment

periodically, etc. But despite several disadvantages, DRAM replaced core magnetic

memory as the main memory of the system due to its higher density and lesser cost.

The capacity of an early single DRAM chip was 1 kb and its access time was 400 ns.

Later, the capacity of a single DRAM chip was increased to 64 kb with access time 100

ns. In early 1980s, the capacity of DRAM chip was increased to 1 MB. In 1981, Bill

Gates claimed that 640 KB would be good enough for any future application. Therefore,

DOS does not support memory more than 640 KB.

The capacity of DRAM chip has grown up to 8 Gb today from 1kb in its first

edition. The modern memories are composed of dual inline memory modules (DIMMs).

The DIMM is a module in which DRAM chips are typically packaged. The main memory

consists of several DIMMs that allows system memory to be as large as 16 TB. DRAM

chips are large rectangular arrays of memory cells. Memory arrays are arranged in rows

and columns of memory cells. These rows and columns are known as wordlines and

bitlines, respectively. Each memory cell has a unique location identified by an address,

which is defined by the intersection of a row and a column. To read or write a memory

cell, it must be selected by its row and column coordinates. At the selected memory cell,

the charge is sensed and amplified. As long as the capacitors are refreshed to keep

charge decay low enough, the data is maintained in the memory cells. The access time

is same irrespective of the cell location. Semiconductor memory is manufactured as a

packaged chips and each chip contains an array of memory cells. Figure 11.4 shows a

printed circuit board containing DRAM chips. It is designed only to store the data. The

allowed operations are read, write, and refresh.

Figure 11.4: Printed circuit board containing DRAM chips

11.3 Advanced DRAMs
DRAMs are the basic building blocks of main memory for several decades. Over the

years some enhancements have been done to the DRAM architecture. Based on these

enhancements, there are several different products are available in the market.

11.3.1 Synchronous DRAM
The traditional DRAM architecture is asynchronous, which is not synchronized with the

system clock signal. A comparatively newer form of DRAM is synchronous DRAM

(SDRAM) that uses system clock signal to coordinate the memory access. The

read/write operations in SDRAM are performed in synchronous to the system clock

signal. The read/write instructions are issued by the processor or some other master

along with address information. The SDRAM then responds after a set number of clock

cycles. This tends to increase the number of instructions that the processor can perform

in a given time. In the meantime, the processor can safely perform other tasks. In

addition, it also uses a mode register and a kind of on-chip parallelism to provide

improved performance. SDRAM technology observed a huge amount of development

resulting in several generations with improved performance.

11.3.2 Double Data Rate SDRAM
The basic version of SDRAM is known as single data rate (SDR) SDRAM, which was

later replaced by an enhanced version double data rate (DDR) SDRAM family. As the

name suggests, the DDR SDRAM provides data transfer at twice the speed of the

traditional type of SDRAM memory. The double data rate is achieved by transferring

data twice per cycle, once on the rising edge of the clock pulse and once on the falling

edge. DDR SDRAM is also known as DDR1. The transfer rate of DDR1 is between 266-

400 MT/s. The DDR2 further improved the data transfer rate by increasing the

operational frequency. DDR2 memory uses the same internal clock speed as DDR1 but

provides better performance with improved bus. The DDR2 can provide data transfer

rate between 533-800 MT/s. The DDR2 was superseded by DDR3 with increased bus

speed and other new features such as Automatic Self-Refresh (ASR) and Self-Refresh

Temperature (SRT), which helps to control refresh rate according to temperature. DDR3

reduces power consumption by 40% to the DDR2. The transfer rate offered by DDR3 is

800-1600 MT/s. DDR3 is superseded by DDR4 having significant architectural changes.

DDR4 operates at lower voltage and provide higher data rate of 2133-3200 MT/s. DDR4

can process 4 data within a clock cycle. DDR4 also provides some new features such

as Data Bus Inversion (DBI), Cyclic Redundancy Check (CRC), and CA parity to offer

better integrity and stability in data transmission. The next generation of DDR SDRAM is

DDR5 that provides data transfer rate of 3200-6400 MT/s at reduced power

consumption along with some new features. The different DDR generations are not

backward or forward compatible and therefore, the same motherboard cannot be used

with different generation DDR SDRAMs.

11.3.3 Rambus DRAM
Rambus DRAM popularly known as RDRAM is a kind of synchronous dynamic random

access memory that uses a special bus to deliver address and control information with

the help of an asynchronous block-oriented protocol. The bus defines impedances,

clocking, and signals very precisely to achieve data rate upto 1.6 Gbps. The RDRAM

chips were used in Intel Pentium and Itanium processors. RDRAM was an expensive

alternative of SDRAM. Therefore, subsequently the most of the manufacturers did not

preferred RDRAM.

Check Your Progress 1
1. Highlight the major differences between magnetic core memory and

semiconductor memory.

2. How is a bit stored in DRAM?

3. What is the role of transistor in the DRAM cell?

4. Why does the DRAM cell need to refresh periodically?

5. How does DDR SDRAM achieve double data rate?

6. How is the synchronous DRAM different than traditional DRAM?

7. Write the transfer rates of different generations of DDR SDRAMs?

8. What is RDRAM?

11.4 Static Random Access Memory
The DRAM cell is an analog device although it is used to store logic 0 and 1 values. The

static random access memory (SRAM) on the other hand is a digital device that uses

flip-flops to store binary values. The data remain maintained in the memory as long as

power supply is available and unlike DRAM, the memory cell is not required to refresh.

The structure of a SRAM cell is shown in Figure 11.5, which uses an arrangement of six

transistors to provide two stable operating points. Depending on the stable state of the

circuit the data is interpreted either as 0 or 1. Therefore, SRAM cell is more expensive

and more area on the chip than a DRAM cell. But SRAM does not require any voltage

refresh circuitry. SRAM are faster and expensive, therefore they are preferred for

implementing cache memories. While DRAM is preferred for implementing larger main

memory.

11.5 Multilevel Memories
It is highly desirable that a computer memory should be large enough to contain large

programs and that could work at a speed that is comparable to the processor. However,

there is no such memory technology available that could fulfil all these requirements

related to size and speed. Therefore, multiple memories having different characteristics

are used in a computer system to meet all the requirements. Usually a large size DRAM

works as the main memory of the system that is capable of containing large programs

and data. But DRAM is not a good match to speed of the processor. Therefore, a cache

memory is used between the main memory and processor to hide slow speed of the

memory from the processor. This two-level memory arrangement of a fast, small

memory and a slow, large memory builds a composite memory system that behaves

like a large fast memory overall. The two-level memory arrangement is further extended

to memory hierarchy that includes several levels including main memory, cache

memory, and secondary memory, etc.

Figure 11.5: Structure of a SRAM cell

As mentioned earlier, a cache memory is inserted between main memory and

processor to reduce the access time. The cache memory is manufactured with the help

of SRAM. It consists of SRAM array of memory cells. The speed (or access time) of a

cache is a function of its size, organization technology. As the size of SRAM array

increases, the length of access wires also increases accordingly. The larger length of

access wires leads to higher access time of cache. Therefore, if we wish to keep the

access time under certain threshold, the size of the cache is also limited accordingly.

Therefore, we use multiple cache memories at different levels. The size, organization,

and technology of the cache at different levels may be different. Although, the

arrangement of multiple cache memories also has its own overhead.

There are several design consideration of multilevel memories. The cache at

level 2 should be same or larger than level 2 cache. Otherwise, a miss at level 1 would

also cause a miss at level 2. The size of the memory increase from lower level to higher

level. Usually level 1 cache (L1 cache) is less than 64KB, level 2 cache (L2 cache) is

less than 512KB, and level 3 (L3 cache) uses multiple arrays of 256KB to create large

size. A multilevel system is called inclusive if all the contents of lower level cache are

also available at the next higher level. It is possible only if the higher level cache is

significantly higher than the lower level caches. The performance of a memory system

can be evaluated in terms of miss ratio and access time. Several miss rates can be

defined in a multilevel memory system as follows:

 A solo miss rate for a memory at any level is defined as the miss rate if it would

have been the only memory in the system.

 A local miss rate is the number of misses experienced by the memory divided by

the number of references to it.

 A global miss rate is the number misses experienced by the highest level

memory divided by the number of references made by the processor.

Figure 11.6: Multilevel cache organization

If the L2 cache is significantly larger than the L1 cache, its miss rate is compatible with

its solo miss rate. A larger L2 cache can retain all the data available in L1 cache. But a

primary concern with this kind of inclusive cache organization is that the copies of the

same data at different levels should be exactly same. Otherwise, it may lead to wrong

results. Figure 11.6 shows a multilevel cache organization up to levels. L1 cache is

usually on chip cache memory. L2 cache is off-chip cache, which is larger and slower

than L1. The L3 cache is built on the motherboard and it is slower and much larger than

L2 cache. The L1 cache needs to be faster to provide the fastest possible access time.

Therefore, it is manufactured with larger transistors and wider metal tracks. The L2 and

L3 caches should be larger in capacity but they can afford to be little slower. Therefore,

L2 and L3 are built with smaller transistors.

11.6 Virtual Memory
A virtual memory system intends to optimize the use of the main memory using the

lower speed secondary memory. It is a technique that extends the physical memory

beyond its physical size. The virtual memory allows to accommodate the programs

larger than the available physical memory with the help of secondary memory. It is

based on the fact that usually not all the parts of a given program are active at a time.

Therefore, only the active parts of a program are brought to the main memory keeping

the remaining non-active parts in the secondary storage. During the execution, if the

segment of a program requested by the processor is not available in the primary

memory, it is brought from the disk to the primary memory. If adequate space is not

available in the primary memory to accommodate the requested segment, some

existing segments/data are replaced. It employs the same principles as those used in

the case of cache memory. In other words, the most relevant segments are kept in the

high-speed main memory and transferring less relevant or inactive segments in the

secondary memory.

The virtual memory is divided into pages and corresponding unit on the main

memory is known as page-frame. The size of pages and page-frames is same. The

data transfer between disk and main memory is performed in the form of pages. In fact,

a page is a group of memory words. The size of a page typically ranges from 2K to 16

bytes. When a particular word is requested by a processor, the corresponding page is

searched. If it is not available in the memory, a page fault occurs. In this case, the entire

page containing the requested word is transferred from secondary memory to the main

memory. All this arrangement is completely transparent to the application developer.

The addresses issued by a processor are therefore not actual physical addresses.

Instead, such addresses are called virtual addresses. The virtual addresses issued by

the processor are mapped to some physical addresses in order to access the data. The

mapping or translation of virtual to physical address is performed by the memory

management unit.

Check your progress 2
1. Differentiate DRAM and SRAM.

2. Which of DRAM and SRAM is a faster memory?

3. Why multilevel memories are used in a computer system?

4. Which memory technology is used for the main memory of the computer system?

5. Which memory technology is to manufacture cache memory?

6. How is the performance of the memory system evaluated?

7. Differentiate local cache miss rate and global cache miss rate?

8. Cache at which level is usually the on chip memory?

9. Which cache is built on motherboard?

10.Which cache memories are built with small registers?

11.What is virtual memory?

12.Define page and page frames?

13.What is the typical size of a page?

14.What is page fault?

15.What is virtual address?

11.7 Address Translation
As discussed in previous section, the virtual address issued by the processor is mapped

to a particular physical address to perform actual data transfer. There are various

address mapping techniques with their own merits and demerits. All these mapping

schemes make use of a translation table known as page table, which is stored in main

memory. The page table contains the pages and corresponding memory location along

with some other information. The additional information is maintained with the help of

some special bits such as valid bit and dirty bit. The valid bit associated with a page is

set if the page is available in the memory. The dirty bit is set if the page is modified after

loading into memory.

11.7.1 Direct Mapping
In direct mapping scheme, the virtual address is divided into two fields: the virtual page

number and the offset. The page number field directly identifies an entry in the page

table. If the valid bit associated with the page table entry identified by the virtual page

number is valid, the contents of the page table are related to the physical address. The

page table contents and page offset are concatenated to form the actual physical

address. On the other hand, if the valid bit of the page table entry associated with the

virtual page number is not set, a page fault occurs. In case of a page fault, the required

data are transferred from the disk to the main memory. The data transfer may also

require the page replacement to make space in the memory. For that purpose, the

replacement policies are needed. The simplicity of direct mapping is its main advantage.

But the size of page table is large in case of direct mapping.

11.7.2 Associative Mapping
In associative mapping also, the virtual address is divided into two fields, a page

number and an offset similar to direct mapping technique. The page table entries are

also divided into two parts: the virtual page number and the physical page number.

When a virtual address is generated by the processor, the page table is searched for a

match of the virtual page number field. If a match is found, the corresponding physical

page number is extracted from the page table. The physical page number is

concatenated with the offset field to generate the physical address. In case a match is

not found for the virtual page number, it leads to a page fault. If a page fault occurs, the

memory management unit loads the corresponding page from the disk into the main

memory. The main advantage of the associative mapping is that it needs a shorter page

table. On the other hand, searching overhead is its main disadvantage.

11.7.3 Set Associative Mapping
The set associative mapping is a compromise between direct mapping and associative

mapping. It is a hybrid technique that combines the features of direct mapping and

associative mapping. In set associative mapping, the virtual address is divided into

three fields: a tag, an index, and an offset. The page table is divided into sets. Each set

consists of a number of fields. Like direct mapping, the tag field of a virtual address is

used to directly find the page table set to search the physical address. After identifying

the set, a search is conducted to match the tag field with all the entries in the set. If a

match is found, the corresponding physical page address is extracted and concatenated

with the offset field to generate the physical address. In case of a no match, a page fault

occurs that is handled as discussed in previous two mapping techniques. The set

associative mapping reduces the searching overhead to a specific set. While matching

operation is as simple as in direct mapping. Thus it establishes a compromise between

direct mapping and associative mapping.

In modern computer system, a portion of the page table is kept in translational

lookaside buffer (TLB), which is typically designed as set associative memory. When a

virtual address is generated by the processor, the TLB is searched first to find the

corresponding physical address. With the help of TLB memory access overhead can be

reduced. If a match is not found in TLB then the page table is searched as usual.

11.8 Memory Allocation

Memory allocation is the process of reserving computer memory for the execution of a

computer program or process. It could be a partial or complete allocation of the memory

needed by a program depending on the availability. The memory management unit

takes the responsibility of memory allocation. Memory allocation is managed through

operating system but it is primarily a computer hardware operation. When a program is

executed, the required memory is allocated to the program. Once the program

execution is over or it becomes idle, the allocated memory is released so that the

released memory could be allocated to other programs or services if needed. This

process is known as memory de-allocation. There are two types of memory allocation

approaches: static memory allocation and dynamic memory allocation. The static

memory allocation is done at compile time, while dynamic memory allocation is

performed at program runtime.

Operating system handles the primary memory and moves the

programs/processes between disk and main memory. It keeps track of allotted and

available/free the memory locations. It is the job of operating system to decide when

and how much memory to allocate to the processes. The main memory is usually

divided into two parts: low memory and high memory. The operating system itself

resides in low memory, while the user processes are kept in high memory partition. The

physical allocation of memory can be performed in two different ways: single partition

allocation and multiple partition allocation. In single partition allocation, all the user

processes are held in a single large partition. Relocation register is used to prevent the

user programs to modify each other and operating system related code and data.

Another register called limit register is used to specify the range of addresses belonging

to a user process. On the other hand, in multiple partition allocation scheme, the

memory is divided into multiple fixed-sized parts. A partition is allowed to contain only

one process at a time. A user process is picked from the queue and a free partition is

allocated to it. When a process terminates, its partition is released that becomes

available for other processes in the queue.

As memory is allocated and released during the process execution and

termination, it creates some free space at scattered locations in the memory.

Sometimes memory could not be allocated to a process because no particular available

piece is sufficient to hold the process. This problem is known as fragmentation. There

are two types of fragmentation: internal fragmentation and external fragmentation.

When memory block or partition assigned to a process is larger than its requirement,

some space remain unused but it cannot allocated to other process until it is released.

This type of fragmentation is known as internal fragmentation. The internal

fragmentation can be reduced by careful memory allocation such that a memory block

good enough to hold a process should be assigned to that process. If the required

memory space cannot be allocated to a process as sufficient space is not available at

contiguous locations even though collectively the free space is larger than the required

memory. This type of fragmentation is known as external fragmentation. The external

fragmentation can be reduced by compaction. The memory contents are shuffled to

bring the unused space together to form a larger free block.

Check your progress 3
1. Why virtual address is translated to a physical address?

2. What is the role valid bit?

3. Explain the utility of dirty bit?

4. What is page table?

5. What is the advantage and disadvantage of direct mapping?

6. Write the advantages and disadvantages of associative mapping?

7. What is in translational lookaside buffer?

8. Differentiate static and dynamic memory allocation.

9. Explain multi-partition memory allocation.

10.Differentiate single partition and multi-partition allocation.

11.What is memory fragmentation?

12.How can you reduce the external memory fragmentation?

11.9 Summary

There is a big gap between the processor cycle time and memory access time. Due to

the speed gap, the processor cannot work to its full potential. A variety of memory

technologies have been used over the generations. It is highly desirable to reduce the

speed gap between processor and memory. The performance of the computers is

limited by the memory bandwidth and latency. The bandwidth is the rate at which

information can be transferred between memory and processor or other devices. In

early computers magnetic material was used to store the data. In 1970s, the

semiconductor memory was evolved and replaced core magnetic memory. Robert

Dennard invented the DRAM that revolutionized the computer industry. DRAM provides

better density than core magnetic memory but with some disadvantages such as

volatility, more power consumption, need of power refreshment periodically, etc. But

despite several disadvantages, DRAM replaced core magnetic memory as the main

memory of the system due to its higher density and lesser cost. The traditional DRAM

architecture is asynchronous, which is not synchronized with the system clock signal. A

comparatively newer form of DRAM is synchronous DRAM (SDRAM) that uses system

clock signal to coordinate the memory access. The basic version of SDRAM is known

as single data rate (SDR) SDRAM, which was later replaced by an enhanced version

double data rate (DDR) SDRAM family. Later several generations of SDRAM evolved

over the years.

It is highly desirable that a computer memory should be large enough to contain

large programs and that could work at a speed that is comparable to the processor.

However, there is no such memory technology available that could fulfil all these

requirements related to size and speed. Therefore, multiple memories having different

characteristics are used in a computer system to meet all the requirements. Usually a

large size DRAM works as the main memory of the system. But DRAM is not a good

match to speed of the processor. Therefore, a cache memory is used between the main

memory and processor to hide slow speed of the memory from the processor.

Therefore, if we wish to keep the access time under certain threshold, the size of the

cache is also limited accordingly. Therefore, we use multiple cache memories at

different levels. The size, organization, and technology of the cache at different levels

may be different. A virtual memory system intends to optimize the use of the main

memory using the lower speed secondary memory. It is a technique that extends the

physical memory beyond its physical size. It is a technique that extends the physical

memory beyond its physical size. The virtual memory allows to accommodate the

programs larger than the available physical memory with the help of secondary

memory. It is based on the fact that usually not all the parts of a given program are

active at a time. Therefore, only the active parts of a program are brought to the main

memory keeping the remaining non-active parts in the secondary storage. The virtual

memory is divided into pages and corresponding unit on the main memory is known as

page-frame. The size of pages and page-frames is same. The data transfer between

disk and main memory is performed in the form of pages. The addresses issued by a

processor are therefore not actual physical addresses. Instead, such addresses are

called virtual addresses. The virtual addresses issued by the processor are mapped to

some physical addresses in order to access the data. The mapping or translation of

virtual to physical address is performed by the memory management unit. There are

various address mapping techniques with their own merits and demerits. The major

mapping techniques include direct mapping, associative mapping, and set-associative

mapping. The direct mapping is simple but uses a large page table. On the other hand

associative mapping although uses a smaller page table involves searching overhead.

The set-associative mapping is a compromise between direct mapping and associative

mapping. Memory allocation is the process of reserving computer memory for the

execution of a computer program or process. It could be a partial or complete allocation

of the memory needed by a program depending on the availability. The memory

management unit takes the responsibility of memory allocation. As memory is allocated

and released during the process execution and termination, it creates some free space

at scattered locations in the memory. Sometimes memory could not be allocated to a

process because no particular available piece is sufficient to hold the process. This

problem is known as fragmentation. There are two types of fragmentation: internal

fragmentation and external fragmentation. It is desirable to reduce any kind of

fragmentation.

Review Questions

Q.1 Write a short note on the evolution of the computer memory technology.

Q.2 Briefly explain different generations of DRAMs with their major characteristics.

Q.3 Why do you need multilevel memories? What is the criteria to place different

memories at different levels?

Q.4 How is the capacity of the physical memory extended with the help of virtual

memory? Explain.

Q.5 Explain different address mapping techniques with their merits and demerits.

Q.6 What approaches are used to allocate memory to the programs or processes in a

computer system?

Q.7 What is fragmentation? How many types of fragmentation are there? How can

you reduce the fragmentation?

UNIT- 12 Cache Memory

Structure

12.0 Introduction

12.1 Objectives

12.2 Cache Memory System

12.3 Cache Performance

12.4 Program Locality

12.5 Mapping Techniques

12.6 Replacement Algorithms

12.7 Cache Updating

12.8 Summary

Review Questions

Unit 12: Cache Memory

12.0 Introduction
In comparison to the speed of processors, the main memory is extremely slow. The

processor cannot spend much of its time waiting for instructions and data in main

memory if it is to perform well. As a result, it's essential to design a strategy that cuts

down on the time it takes to get the needed information. As technological and packaging

constraints limit the speed of the main memory unit, the solution must be found in a

different architectural configuration. A good approach is to employ a fast cache memory,

which makes the main memory appear faster to the processor than it actually is.

Cache memories are small, high-speed buffer memories that are used in

computer systems to temporarily store chunks of main memory that are (believed to be)

in use. Information in cache memory can be accessible in a fraction of the time it takes

to access data in main memory. As a result, a central processing unit (CPU) with cache

memory requires considerably less time to fetch and/or store instructions and operands.

Cache memory are found in almost all modern computer systems.

12.1 Objectives
After the completion of this unit, the students would:

1. Have a better understanding of cache memory used in computer system.

2. Know the concept of locality of reference.

3. Understand the different mapping techniques used in cache memory.

4. Know various replacement algorithms and updating policies used in designing cache

memory system.

12.2 Cache Memory System
As we all know, a memory unit is an important part of any digital computer since it

stores programmes and data. The Dynamic RAM (DRAM) is used as main memory.

The processor then reads the program's code and data from main memory and

executes it. The DRAMs that make up the primary memory are slower. As a result, wait

states must be inserted into memory read/write cycles. This slows down the execution

process. High-speed memory, such as Static RAM (SRAM) must be employed to speed

up the process. The average memory access time can be decreased by placing the

active portions of the programme and data in fast small memory, reducing the total

execution time of the programme. Such a fast small memory is referred to as a cache

memory.

Figure 12.1: Cache memory system

A cache memory system consists of a large amount of slow low-cost memory, DRAM,

and a small rapid memory, SRAM. This system has been set up to simulate a large

amount of rapid memory. Figure 12.1 shows a cache memory system. When compared

to main memory, the access time of cache memory is extremely fast. When the CPU

sends a read request, the contents of a block of memory words comprising the given

location are sent one word at a time into the cache. The desired items are then read

directly from the cache whenever the programme refers to any of the locations in this

block. The cache memory can usually store a significant number of blocks at a time,

although this number is little when compared to the total amount of blocks in the main

memory. If the CPU discovers that the requested data is not in cache, the processor

retrieves it from main memory (DRAM).

12.3 Cache Performance
When the processor needs to read or write data from main memory, it first looks in the

cache for a matching item.

A cache hit said to occurs when the CPU discovers that the requested memory

location is in the cache, and data is read from the cache.

A cache miss occurs when the CPU cannot locate the memory location in the cache.

When a cache miss occurs, the cache creates a new entry and copies data from

main memory, after which the request is fulfilled using the cache's contents.

Cache memory performance is commonly quantified in terms of a metric known as Hit

ratio. Cache hit ratio is calculated by comparing the number of cache hits to the total

number of content requests received. It can be determined as follows.

Cache Hit Ratio = no. of hits/total accesses

 = Cache hit / (Cache hit + Cache miss)

Cache miss ratio is the inverse of this, in which the number of cache misses is

calculated and compared to the total number of requests as follows.

Cache Miss Ratio = no. of miss/total accesses

 = Cache miss / (Cache hit + Cache miss)

 = 1- Hit Ratio

Average memory access time (AMAT) is a common metric to analyse computer

memory system performance. It can be determined as follows.

Average Memory Access Time = hr x (tc) + (1 – hr) x (tc + tm)

Where, hr = hit ratio

 tc = cache memory access time

 tm = main memory access time

Check your progress 1

6. What is cache memory?

7. What is the need of cache memory in modern computer systems?

8. Define cache hit?

9. What is a cache miss?

10.Explain cache hit ratio?

11.What is cache miss ratio?

12.Find the cache hit ratio, if total number of requests generated by the CPU is

90 out of which 85 requests were fulfilled by cache memory.

13.Find the average memory access time, if a hit takes 0.5ns and happens

90% of the time, and a miss takes 10ns and happens 10% of the time.

12.4 Program Locality
Prediction of memory location for the future access is critical in every memory system.

This is achievable because most computer systems access data from the same area.

Program locality is the prediction of the next memory location from the current memory

address. Cache controller is enabled by programme locality.

12.4.1 Locality of Reference
A programme can have a simple loop, nested loops, or a few routines that call each

other repeatedly. The precise structure of instruction sequencing is unimportant; what

matters is that many instructions in specific parts of the programme are executed

repeatedly over a period of time. The rest of the programme is accessed on a fairly

infrequent basis. The term for this is "locality of reference." It appears in two forms:

temporal and spatial. A recently executed command is likely to be executed again very

soon, according to the temporal. Because of the spatial relationship, instructions that

are placed close to recently performed instructions are more likely to be executed

shortly.

The temporal element of the locality reference recommends that whenever

instruction and data information is needed for the first time, it should be brought into

cache and stored there until it is needed again. The spatial element recommends that

instead of moving only one item from main memory to the cache, several items at

nearby addresses should be brought as well. A set of continuous addresses of size is

referred to as a block.

12.4.2 Elements of Cache Design
The major issues in cache design include cache size, mapping function, replacement

algorithm, write policy, block size, and cache number, etc. All these are briefly

explained here. The cache should be small enough that the overall average cost per

bit is comparable to that of main memory alone, while also being large enough that the

overall average access time is near to that of the cache alone.

At any given time, the cache memory can store a fair number of blocks, although

this amount is minimal in comparison to the total number of blocks in the main

memory. To link the main memory blocks and cache blocks, we must utilise mapping

functions. Cache mapping is a mechanism for transferring the contents of main

memory to cache memory. In the situation of a cache miss, cache mapping specifies

how a block from main memory is mapped to the cache memory. There are three

commonly used mapping functions: direct mapping, associative mapping, set

associative mapping. All these techniques are introduced in Unit 11 and explained in

more detail later in sections.

When the cache is full and a memory word is addressed that isn't in the cache.

To make room for the new block containing the referred word, the cache controller

must select which block should be eliminated. The replacement algorithm is a

collection of rules for making this decision. There are four most common replacement

algorithms: Least-Recently Used (LRU), First-In First-Out (FIFO), Least-Frequently-Used

(LFU), and Random.

Cache updating policy is another name for it. Two copies of the same data can

exist in a cache system at the same time, one in cache and one in main memory. Two

different sets of data are associated with the same address if one copy is updated

while the other is not. To prevent this from happening, the cache system provides

following updating policies: Write through system, Buffered write through system,

Write-back system.

Check your progress 2

1. Explain Locality of reference?

2. What are different elements of cache design?

3. What is the use of mapping function?

4. Write the names of different cache mapping functions?

5. Why replacement policy is required in cache design?

6. List some of the replacement algorithms used in cache design?

7. What is write policy in cache design?

8. Name the various write policies used in cache design?

12.5 Mapping Techniques
The speed with which cache memory may be accessed is one of its primary qualities.

As a result, while looking for terms in the cache, very little or no time should be lost. A

mapping procedure refers to the process of moving data from main memory to cache

memory. There are three types of mapping techniques used in cache memory

organization:

1. Direct mapping technique

2. Associative mapping technique

3. Set-associative mapping technique

To discuss various mapping techniques for specifying where memory blocks are placed

in the cache, we use a specific small example. Consider a cache consisting of 256

blocks of 16 words each, for a total of 4096 (4K) words, and assume that the main

memory is addressable by a 17-bit address. The main memory has 128Kwords, which

we will view as 8K blocks of 16 words each. For simplicity, we will assume that

consecutive addresses refer to consecutive words. To help in the discussion of these

three mapping procedures we will use a specific example of a memory organization as

shown in Figure 12.2.

Figure 12.2: Cache Memory Example

CPU
Cache

Memory
4K x 32

Main Memory
128K x 32

Figure 12.3: Direct Mapped Cache

The main memory can store 128K words of 32 bit each. The cache is capable of

storing 4K words at any given time. For every word stored in cache, there is a

duplicate copy in main memory. The CPU communicates with both memories. It first

sends a 17-bit address to cache. If there is a hit, the CPU accepts the data from cache.

If there is a miss, the CPU reads the word from main memory and the word is then

transferred to cache.

12.5.1 Direct mapping
The direct-mapping technique is the easiest way to determine cache locations in which

to store memory blocks. In this technique, block i of the main memory maps onto block i

modulo 256 of the cache, as shown in Figure 12.3. Thus, whenever the main memory

blocks 0, 256, 512, etc. is loaded in the cache, it is stored in cache block 0. Blocks 1,

257, 513, etc. are stored in cache block 1, and so on. Because more than one memory

block is mapped to a single cache block position, even if the cache isn't full, there may

be contention for that location. For example, instructions of a program may start in block

2 and continue in block 258, potentially after a branch. As this program is executed,

both of these blocks must be transferred to the block-2 position in the cache. Contention

is resolved by allowing the new block to overwrite the currently resident block. The

placement algorithm is simple in this situation.

The memory address is used to identify where a block should go in the cache.

The memory address can be divided into three fields, as shown in Figure 12.3. The

lower-order 4 bits of memory address selects one of 16 words in a block. When a new

block enters the cache, the next 8-bits of memory address determines the cache block

number in which this block must be stored. The high-order 5 bits of the memory address

of the block are stored in 5 tag bits associated with its location in the cache. They

determine which of the 32 blocks assigned to this cache slot is currently stored in the

cache.

As execution progresses, the 8-bit cache block field of each address generated

by the processor points to a specific block location in the cache. The high-order 5 bits of

the address are compared with the tag bits associated with that cache location. If they

match, then the desired word is in that block of the cache. If no matches are found, then

the block containing the required word must first be read from the main memory and

loaded into the cache. The direct-mapping technique is simple to use, although it is

limited in its flexibility.

12.5.2 Associative mapping technique
Associative memory is the fastest and most versatile cache structure method. This

organization is illustrated in Figure 12.4. It allows any block from main memory to be

placed anywhere in the cache. A specific block is uniquely identifiable by its memory

block number once it is placed in the cache, this is known as tag. As there is no fixed

block, the memory address has only two fields: Word and tag. This technique is also

referred to as fully associative cache. In this case, 13 tag bits are required to identify a

memory block when it is resident in the cache. To see if the desired block is present, the

tag bits of an address received from the processor are compared to the tag bits of each

block of the cache. It gives complete freedom over where the memory block is to store

in the cache. As a result, the cache's space can be better utilised. If the cache is full, a

new block must eject (replace) an existing block. In this situation, we'll need an

algorithm to choose the replacement block. Many replacement algorithms are possible,

that we will discuss in Section 12.6. Because it is necessary to scan all 256 tag patterns

to determine whether a given block is in the cache, the cost of an associative cache is

higher than the cost of a direct-mapped cache. This type of search is known as an

associative search. The tags must be searched in parallel for speed reasons.

12.5.3 Set Associated Mapped Cache
The set associative mapping is a hybrid of direct and associative mapping techniques. It

is made up of numerous groups of direct mapped blocks that work in parallel. A block of

data from any page in main memory can be placed in any direct-mapped cache block.

As a result, the direct mapping technique's contention problem is reduced by providing a

limited number of block placement options. The number of required address

comparisons is determined by the number of direct mapped cache in the cache system.

These comparisons are always less than the fully associative mapping's required

comparisons.

The set associative mapped cache with two blocks per set is shown in Figure

12.5. Each page in the main memory is structured so that the size of each page is the

same as that of a single directly mapped cache. Because each block from main memory

has two options for placement, it's called a two-way set associative cache.

Block 0,128, 256... 8064 of main memory can be placed in any of the two blocks

(block 0 or block 1) of set 0 and occupy one of two block locations within this set using

this technique. With 128 sets, the address's 7-bit set field indicates which set of the

cache may store the specified block. The address's tag field must then be compared

associatively to the tags of the set's two blocks to see if the requested block is present.

It's easy to set up this two-way associative search. In order to see if a match exists, the

tag field of the CPU address is compared to both tags in the cache. An associative

search of the tags in the set, similar to an associative memory search, is used to

perform the comparison logic. Because the set size increases, more words with the

same index but different tags can be cached, the hit ratio improves. However, as the set

size grows, the number of bits in cache words grows, necessitating more complicated

comparison logic. When a miss occurs in a set associative cache and the set is full, any

replacement mechanism must be used to replace one of the tag- data items with new

data.

Figure 12.4: Associated Mapped Cache

Figure 12.5: Set Associated Mapped Cache

12.6 Replacement Algorithms
Only if the cache is full should a new block be inserted into the cache to replace an old

block. The replacement algorithm is used to replace the block. The four most prevalent

replacement algorithms are as follows:

• LRU

• FIFO

• LFU

• Random

In LRU technique, the block that has been in the cache for the longest time without a

reference is chosen for replacement. The idea behind this strategy is that the memory

locations referenced recently are more likely to be referenced again. Therefore, it is

better to replace the idle blocks. This strategy is more suitable for the two-way set

associative cache organisation.

The FIFO is the most simple replacement technique. It selects the block that is

residing in memory for longest time without any bias. It is simple and easy to implement

but may replace those blocks that would be referenced again soon leading to more

replacements. The LFU strategy selects the block having fewest references is chosen

for replacement. There are no explicit criteria for replacing any block in the Random

strategy. Any of the existing blocks are randomly chosen to replace.

12.7 Cache Updating
In a memory hierarchy, two copies of the same data can exist at different memory

levels at the same time. The copies of the same data may be different in different

memory levels. Therefore, it is important to keep all the copies updated. There are

different techniques to update the cache memory.

 Write through system

 Buffered write through system and

 Write back system

12.7.1 Write through system
In write through updating system, data is copied to memory by the cache controller as

soon as it is written to the cache. As a result, main memory always includes correct

data, and any cache block can be replaced without losing data.

12.7.2 Buffered Write through system
In buffered write-through system, before the write cycle to the main memory is

completed, the CPU can start a new cycle. The write accesses to the main memory are

buffered as a result of this. When main memory is updated in such systems, read

access, often known as a "cache hit," can be conducted simultaneously. However, the

processor must wait for consecutive write operations to the main memory or read

operations with "cache miss."

12.7.3 Write back system
In this method, data is written into the cache every time a change occurs, but only at

specified intervals or under particular situations it is stored into the corresponding

address in main memory. When a data location is modified in write back system, the

data in cache is referred to as fresh, whereas the matching data in main memory is

referred to as stale. If the cache controller receives a request for stale data in main

memory, it updates the data in main memory before accessing it. Because writing data

into cache alone takes less time than writing the same data into both cache and main

memory, write back improves system performance. However, in the case of a crash or

other adverse event, this speed comes with the danger of data loss.

12.8 Summary
Cache memories are small, high-speed buffer memories that are used in computer

systems to temporarily store chunks of main memory that are (believed to be) in use.

Information in cache memory can be accessible in a fraction of the time it takes to

access data in main memory. A cache memory system consists of a large amount of

slow low-cost memory, DRAM, and a small amount of rapid memory, SRAM.

This system has been set up to simulate a large amount of rapid memory. When

compared to main memory, the access time of cache memory is extremely fast. When

the processor needs to read or write data from main memory, it first looks in the cache

for a matching item. A cache hit said to occurs when the CPU discovers that the

requested memory location is in the cache. A cache miss occurs when the CPU cannot

locate the memory location in the cache.

Program locality is the prediction of the next memory location from the current

memory address. Cache controller is enabled by programme locality. For a given time

period, a computer programme tends to access the same set of memory locations,

which is known as locality of reference. It appears in two forms: temporal and spatial. A

recently executed command is likely to be executed again very soon, according to the

temporal. Because of the spatial relationship, instructions that are placed close to

recently performed instructions are more likely to be executed shortly.

The cache should be small enough that the overall average cost per bit is

comparable to that of main memory alone, while also being large enough that the

overall average access time is near to that of the cache alone. Cache mapping is a

mechanism for transferring the contents of main memory to cache memory. In the

situation of a cache miss, cache mapping specifies how a block from main memory is

mapped to the cache memory. Three types of mapping techniques used in cache

memory organization, direct mapping, associative mapping and set associative

mapping. In direct mapping, the main memory blocks can be placed in only one place

in the cache. In associative mapping, any block from main memory can be placed

anywhere in the cache. Associative memory is the fastest and most versatile cache

structure method. The set associative mapping is a hybrid of direct and associative

mapping techniques. Blocks of the cache are grouped in to sets, and the mapping

allows a block of the main memory to reside in any block of a specific set. Hence, the

contention problem of the direct mapping is eased by having a few choices for block

placement in set associative mapping.

Only if the cache is full should a new block be inserted into the cache to replace

an old block. The replacement algorithm is used to replace the block. Two copies of

the same data can exist in a cache system at the same time, one in cache and the other

in main memory. Two different sets of data are associated with the same address if one

copy is updated while the other is not. To avoid this, the caching system has been

updated with features such as write through policy, buffered write through system and

write back policy. In write through system, data is copied to memory by the cache

controller as soon as it is written to the cache. In buffered write through system,

cache uses a "write buffer" to hold data being written back to main memory. This frees

https://foldoc.org/cache
https://foldoc.org/main+memory

the cache to service read requests while the write is taking place. There is usually only

one stage of buffering so subsequent writes must wait until the first is complete. Most

accesses are reads so buffered write-through is only useful for very slow main memory.

In write back system, only the cache location is updated during a write operation. The

location is then marked by a flag so that later when the word is removed from the cache

it is copied into main memory.

Review Questions
1. How does a cache memory improve computer performance?

2. A cache memory needs an access time of 30ns and main memory 150ns,

what is the average access time of CPU (assume hit ratio =80%) ?

3. A digital computer has a memory unit of 64k x 16 and a cache memory of

210 words. The cache uses direct mapping with a block size of four words.

How many bits are there in the Tag, Block and Word fields of address

format?

4. Explain set associative mapping with an example?

5. Explain why associative mapping is fastest compare to other two

techniques?

6. Consider a cache consisting of 128 blocks of 16 words each for a total of

2048 (2K) words, and assume that the main memory is addressable by a 16

bit address and it consists of 4 blocks. How many bits are there in each of

the Tag, Block\Set and word fields for different mapping techniques?

7. Explain various replacement policies used in cache design?

8. Explain write through and write back policies used in cache memory

system?

 Bachelor of Computer
Application

Uttar Pradesh Rajarshi Tandon BCA-EC
 Open University Computer Architecture

Block

5
SYSTEM ORGANIZATION

Unit 13

IO and System Control

Unit 14
Parallel Processing

BLOCK INTRODUCTION

Peripheral devices are also important for a computer system. A set of I/O modules is

used to access and control these devices. Each I/O module controls one or more

peripheral devices. I/O modules are responsible for performing communication between

the peripheral devices and computer system. Block 4 presents a discussion on

mechanism and functioning of I/O system. In addition, it also deals with the concept of

parallelism. Block 4 is divided into Unit 13 and Unit 14. The Unit 13 is primarily

concerned with the mechanisms of I/O devices and I/O systems. While, Unit 14 gives

overview of parallel processing mechanisms and multiprocessor systems.

UNIT- 13 IO and System Control

Structure
13.0 Introduction

13.1 Objectives

13.2 I/O Module Functions

13.3 Programmed I/O

13.4 Interrupt Driven I/O

13.5 Interrupt Hardware

13.6 Direct Memory Access

13.7 I/O Channels and I/O Processors

13.8 Summary

Review Questions

Unit 13: IO and System Control

13.0 Introduction

The processor and memory are the most important modules of a computer system. In

addition, a set of I/O modules is another important components of a computer system.

Each I/O module controls one or more peripheral devices. All such modules interface

with the system bus. I/O modules are responsible for performing communication

between the peripheral devices and computer system with the help of the bus. The

general model of an I/O module is shown in Figure 13.1.

Figure 13.1: General model of an I/O module

As shown in Figure 13.1, a peripheral device is attached to the computer system

through an I/O module. The status of the device, control information, and data are

transferred between I/O module and the device through a link. The operation of a device

is controlled by a control logic. Each device contains a transducer that converts

electrical signals received by the device to other forms and vice versa. In addition, there

is buffer with the transducer that temporarily holds the data that is transferred between

the device and external environment. It was discussed in previous units that there is big

System buses Address Lines

Data Lines

Control Lines

I/O Module

. . .Links to peripheral devices

Keyboard Monitor Printer

speed gap between processor and memory. This gap is even larger between processor

and I/O devices. The buffer devices play important role to manage this speed gap. A

peripheral device keeps the data received by the user in the input buffer and indicates

the availability of data to the processor. When processor takes the data, it indicates the

device to proceed further. Similarly, when processor has data to transfer to the device, it

holds the data in an output buffer and indicates to the device. The device takes the data

and indicates it to the processor to proceed further. This communication between

processor and devices is carried out with the help of an I/O protocol.

13.1 Objectives
The learning objectives of this unit are as follows.

1. To explain the interaction mechanism between peripheral devices and computer

system.

2. To discuss different types of I/O systems with their merits and demerits.

3. To understand operation of programmed I/O, interrupt driven I/O, and direct

memory access.

4. To understand the function of I/O channels and processors.

13.2 I/O Module Functions
An I/O module is important for controlling the peripheral devices and related operations.

The I/O modules perform a variety of operations including control and timing,

communication, data buffering, and error detection, etc. During the execution of a

program or process, the processor may need to communicate with one or more

peripheral devices depending on the need for input or output. In order to perform data

transfer, resources such as main memory and the system bus are shared input/output

activities. Therefore, a control and timing function is required to coordinate the flow of

traffic between internal resources and external devices. The communication process

involves the following components or steps.

1. Device Address: A single I/O module can handle multiple peripheral devices.

Each device associated with an I/O module is identified with a unique device

address. The I/O module identifies the devices with their addresses.

2. Control Signal: The processor sends a command to the device through control

bus that is intercepted by I/O module. The command is received in the form of

control signal. The command parameters are transferred through data bus.

3. Device Status: The peripheral devices are very slow as compared to the

processor. The device may be busy with previous operation or device may not be

functional due to some error when I/O module received the command signal.

Therefore, I/O module reports the device status to the processor before any data

transfer takes place.

4. Data Buffering: When I/O module informs that device is ready, the related data

exchange is performed over the data bus. The data are transferred either directly

between processor and I/O module or between memory and I/O module. Usually

signals are exchanged directly between I/O module and processor, while

memory sends larger chunks of data. Both processor and memory are much

faster than peripheral devices. The peripheral devices cannot receive data at

such a high transfer rate. Although I/O module can operate at a speed

compatible to the memory. To manage large speed gap between two

components, the I/O module uses data buffering as also discussed earlier. The

memory sends the data rapidly to the I/O module of a device. The I/O module

holds the data in its buffer, which is sent to the destination device at its rate.

Similarly, when a device sends the data to memory, the memory can get tied up

due to slow data rate. Therefore, the I/O module uses data buffering during data

transfer in reverse direction also. The I/O module receives the data from

peripheral device and collects it in the buffer. Later, data are transferred at the

desired rate.

5. Error Detection: I/O module is also responsible for error detection and reporting.

A device could be non-working or malfunctioning due to some electrical and/or

mechanical faults. Some form of error codes are used to identify and report the

errors in the system. Besides electrical and mechanical malfunctions,

unintentional changes in bit pattern could lead to another type of errors. I/O

modules use parity bit checking to verify the correctness of the received bit

pattern.

Figure 13.2: General structure of I/O module.

There are different types of I/O modules that vary in their complexity and the number of

devices controlled by them. However, a general structure is followed by all the I/O

module. Figure 13.2 shows the general structure of I/O modules. In this structure, there

are some data registers that are used to buffer the data during send and receive

operations between the devices and computer. It also includes some status registers,

which maintain current status information. The status registers also serve as control

registers to receive control information from the processor. Each I/O module consists of

a logic unit that is responsible to interact with the processor. The logic unit

communicates with the processor through control lines. The processor issues

commands to the device through the set of control lines. An I/O module might be

connected to multiple devices. It uses device specific logic interface to interact with the

devices. Each external device is identifies by a unique device address. Therefore, I/O

module maintains a set of device addresses and it is able to associate a particular

Set of Status/Control
Registers

Set of Data Registers

I/O Logic I/O Logic

I/O Logic

.

.

.

Status

Data

Control

Status

Data

Control

Data Lines

Data Lines

Address
Lines

Control
Lines

Interface to system bus

address to a specific device. The I/O modules are able to hide complicated details of the

device to the processor and allow the processor to perform operation using simple

read/write and open/close commands. Thus an I/O module can act as a high-level

interface between the processor and the devices. Such I/O modules are referred as I/O

controller or I/O channel. There is an important difference between I/O controller and I/O

channel. The I/O channel takes the most of the processing burden, while an I/O

controller requires the detailed control. I/O controller are used with minicomputers and

I/O channels on the other hand are used with mainframe computers. Any kind of I/O

module connects to the processor through a set of system buses as in the figure.

The I/O subsystems can be classified according to the extent of processor

involvement in data transfer between processor and peripheral devices. The data can

be transferred either between processor and I/O device or between memory and I/O

device. In its simplest form, the entire processing is carried out between processor and

the I/O devices. However, it is highly desirable to restrict the involvement of processor in

I/O operations to save useful CPU cycles.

Check your progress 1
1. What are responsibilities of an I/O module in a computer system?

2. Why is a transducer used in a device?

3. How is the speed gap between device and processor or memory managed?

4. Write major components involved in communication between processor and

devices?

5. What is I/O protocol?

6. What is the role of status registers?

7. Differentiate I/O controller and I/O channel.

8. How are the devices connected to the same I/O module are identified during data

transfer?

9. Why is I/O logic used in an I/O module?

10.How does an I/O module verify the correctness of the bit pattern?

Select I/O Device

Select I/O Device

Is Ready?

Perform Read/Write Operation
from/to Device Interface

Figure 13.3: Work flow of programmed I/O.

13.3 Programmed I/O
In a programmed I/O subsystem, the processor executes a program that initiates the

operation and checks the device status. If device is ready for operation, it sends a read

or write command for transferring the data. In this arrangement, the processors needs

to wait after issuing a command until I/O module completes its operation. Since the

processor is much faster than the I/O module, it leads to the wastage of useful

processor time. The working of the programmed I/O module is illustrated with the help

of flow chart in Figure 13.3. When the processor encounters an I/O related instruction

while executing a program, it selects the appropriate I/O device and issues a command

to its I/O module. The I/O module performs the requested action and then sets device

status with the help of status register. The I/O module does not inform or interrupt the

processor about the status of device. Instead, the processor periodically checks the

status register. When processor finds the device status ready, it performs the read/write

operation. There are four types of I/O command that can be issued by the processor to

I/O module.

1. Control: The control command is used to activate the peripheral devices. A

peripheral device is informed about the desired operation using the command.

2. Test: The test command is used to check the status of the peripheral device. The

processor can test the availability of the device before data transfer. It checks if

the device is powered on and the previous operation is over or not.

3. Read: With the read command the processor causes the I/O module to obtain

the data from the device. The I/O module receives the data and places it in the

internal buffer. The processor can then receive the data through the data bus.

4. Write: By issuing the write command the processor causes the I/O module to

take the data from the data bus. The I/O module receives the data over data bus

and subsequently sends it to the peripheral device.

Programmed I/O works under the processor control. Operations under programmed I/O

involve a complete instruction fetch, decode, and execute cycle. It is useful where data

transfer is carried out character by character. But programmed I/O is highly slow leading

to significant loss of CPU time in busy waiting. The busy-wait feature of programmed I/O

is its main disadvantage. Even a moderate I/O operation significantly degrades the CPU

performance. Therefore, some mechanism is highly desirable to manage the speed gap

between processor and peripherals. The status registers play important role to avoid

processor overwriting the device contents before it is used by the device.

During program execution, the processor fetches the I/O-related instructions from

memory and issues the I/O commands to an I/O module to execute the instructions. The

instructions often have one-to-one mapping into I/O commands. Typically, multiple I/O

devices are connected through the same I/O modules to the system. As discussed

earlier, each device is given a unique address. The I/O command issued to an I/O

module contains the address of the desired device. The I/O module interprets the

address lines to check if the issued command is for itself. There are two possible

addressing modes: memory mapped and isolated. With memory-mapped addressing,

the I/O devices and memory locations share the same addressing space. The full range

of addresses may be used for both memory and I/O devices. The same bus can be

used for memory related and I/O operations with a single read line and a single write

line on the bus. In another arrangement, the bus may consist of memory read/write plus

I/O command lines. With this arrangement, the command line needs to specify whether

the address refers to a memory location or an I/O device. In isolated I/O, the I/O

address space is separated from memory address space. In this case, the I/O ports are

accessible only by I/O commands. With isolated I/O a smaller instruction set is used.

While, a range of instructions can be made available with memory mapped I/O. It is

good for programming but needs more memory space. Both type of addressing is used

in commercial computers.

13.4 Interrupt Driven I/O
The busy-wait feature of the programmed I/O is the main problem with programmed I/O

as the processor has to spend a long time idle waiting for the I/O module of the device

to become ready. The processor frequently checks the status of the I/O module before

transmitting the data. It significantly degrades the overall performance of the system. It

is highly desirable to reduce the involvement of processor in the procedure of I/O

operations to save the useful CPU cycles. The system throughput can be improved by

saving the CPU cycles in such operations. Interrupt driven I/O is an alternative to

programmed I/O that does not involve processor in busy-wait. It does not require the

processor to repeatedly check the device status. Instead, the processor goes to its

usual work after issuing the command to I/O module. When I/O module is ready to

serve the command, it interrupts the processor to exchange data. The processor halts

the current execution and performs the data transfer and then resumes its work.

In input operation, the processor issues a READ command and goes off to work

on something else. It checks for interrupt at the end of each instruction cycle. When the

processor receives the interrupt from the I/O module, it saves the context of the current

program and goes to process the interrupt. The processor reads the data from I/O

module through data bus and stores it in memory. It then resumes execution of the

program whose context was saved earlier.

When I/O module receives the READ request, it proceeds to read data from the

associated peripheral device. The data form the device is received in data register of

the I/O module. After receiving the data in its data register, the I/O module signals an

interrupt to the processor and waits until its data are requested by the processor. When

the processor request is received, the module transfers its data through data bus.

Figure 13.4: Involvement of processor in interrupt driven I/O.

I/O module issues
interrupt

Processor halts the
current execution

Processor
acknowledges the

interruption

Processor saves PSW
and PC

Processor loads
interrupt based new

PC

Save process state
information

Restore the process
state

Process the interrupt

Restore old PSW and
PC

Hardware Software

The involvement of processor in interrupt driven I/O is shown in Figure 13.4. The

sequence of events takes place as follows.

1. An interrupt signal issued by I/O module to the processor.

2. The processor responds to the interrupt only after finishing with the execution of

the current instruction.

3. The processor finds the interrupt and sends an acknowledgment to the device.

After receiving the acknowledgement, the device removes the interrupt.

4. The processor saves its status in program status word (PSW) register. It also

saves the location of next instruction to be executed in program counter (PC)

register. After saving the necessary information, the processor transfers the

control to the interrupt routine. There are different implementations of the

interrupt routine. It could be a single program for all kind of interrupts or a

separate program could be written for each different interrupt. The interrupt

routines could also be developed according to device type i.e. one routine for

each device type. Therefore, the processor needs to determine the interrupt type

and accordingly the interrupt handling routine is invoked.

5. Now the processor loads the entry location of the interrupt-handling program into

PC and processor proceeds to the next instruction cycle.

6. Some other information such as state of the current program, processor

registers, and stack pointer, etc. is also needed to save before processing the

interrupt.

7. After saving all the necessary information, it's now turn of the interrupt handler to

process the interrupt.

8. Once the interrupt processing is over, the saved information is retrieved from the

stack and registers are restored.

9. Finally, the PSW and PC values are restored from the stack and the next

instruction from the previously interrupted program is executed.

The interrupt can occur asynchronously at any point of time during the execution of user

programs. Therefore, it is necessary to save important state information about the

interrupted program to resume it later. The interrupt relieves the CPU from periodically

checking the device status, thus saving the useful CPU time. Most processors complete

the current instruction cycle before serving the interrupt. When processor receives the

interrupt signal, it may not be interested to serve the interrupt. It can indicate its

willingness to accept the interrupt by setting a flag. This flag indicates the willingness of

the processor to the device.

When processor is serving an interrupt and yet another interrupt occurs, the

response to the new interrupt depends upon the priority of the newly arrived interrupt. If

the newly arrived interrupt has a lower or equal priority to currently served interrupt,

then it has to wait until the current interrupt is served. On the other hand, if the newly

arrived interrupt has a higher priority over the currently served interrupt, then the

processor saves the status of currently served interrupt and serves the newly arrived

interrupt.

13.5 Interrupt Hardware
The computers need hardware support for the processor to recognize and serve the

interrupts. The specialized interrupt lines are provided to the processor, which are used

to send interrupt signals to the processor. If there are multiple peripheral devices,

multiple simultaneous interrupt requests could be generated by different devices. The

processor must be able to recognize and handle the multiple interrupt requests. It

should be able to recognize the device generating the interrupt request. There are four

general techniques to identify the device.

13.5.1 Multiple Interrupt Lines
A straightforward approach is to use dedicated multiple interrupt lines between I/O

modules and processor. However, it is difficult to dedicate too many bus lines or

processor pins to interrupt lines. On the other hand, even if multiple interrupt lines are

used, multiple I/O modules are likely to be connected with an interrupt line. Therefore,

this approach is highly impractical and rarely used in the commercial computers.

13.5.2 Software Poll
Software poll is an alternative to multiple interrupt lines approach. This approach uses

an interrupt-service routine, which responsible to poll each I/O module and identify the

device that caused the interrupt. The poll could be conducted through conducted with

help of a separate command line. When the processor detects an interrupt, it calls the

interrupt-service routine to determine the interrupting device. Alternatively, the

processor can read the status register of I/O modules to identify the interrupting module.

13.5.3 Daisy Chain
The software poll is a time consuming technique. The hardware poll is an efficient

alternative to the software poll. Daisy chain is an effective hardware poll technique that

uses a common interrupt request line for all the modules. The interrupt acknowledge

line is daisy chained through the modules. If the processor finds an interrupt, an

acknowledgement is sent that propagates through a series of I/O modules before it

reaches the requesting module. Upon receiving the acknowledgement, the requesting

module responds by placing a word on the data lines. This word contains the address or

unique identifier of the I/O module. In this approach no general interrupt-service routine

is required.

13.5.4 Bus Arbitration

There is a technique known as independent source bus arbitration that allows each

device to have its own interrupt request line and grant line. A device can send its

interrupt request over the interrupt request line independent of other devices. The grant

line is used by the device to receive the grant signal for its request. In this arbitration

scheme, the priority of a device is independent of the device location.

Check your progress 2
1. What is the main disadvantage of the programmed I/O?

2. Write the name of commands issued by I/O module in programmed I/O.

3. How many addressing modules are there for I/O modules? Write the addressing

modes.

4. How is the speed gap between processor and I/O module managed?

5. How does a processor respond when an interrupt is issued to it?

6. What is usage of PSW and PC in interrupt driven I/O?

7. When does processor respond to the interrupt?

8. Why is it necessary to save the information of the interrupted program?

9. What is the main advantage of the interrupt driven I/O?

10.How does the processor indicate its willingness to accept the interrupt?

11.How are the multiple interrupts handled?

12.What type of hardware support is required for interrupt driven I/O?

13.Write different mechanisms for identifying interrupt generating device.

14.What is the major limitation of having multiple interrupt lines?

15.What is responsibility of interrupt service routine in software poll?

16.How is the daisy chain is efficient than software poll?

13.6 Direct Memory Access
The interrupt driven I/O reduces the involvement in the data transfer between

peripherals and computer system. But still, the processor play an important role in the

interrupt based mechanism for data transfer. It would be good if the processor is

involved in peripheral related operations. Direct memory access more popularly known

as DMA is one such technique that further reduces the intervention of the processor in

data transfer between peripheral devices and memory. It allows the CPU to perform

other important work by providing direct memory access to the devices. It is highly

effective in case of large data transfers.

DMA uses an additional module known as DMA controller on the system bus.

DMA controller is a hardware component that controls the peripheral devices. DMA

controller takes place of processor during the data transfer from or to the memory. For

this purpose, it uses the same system bus that is used by the processor. Therefore, it

must wait for the processor to free the system bus or it should request the processor to

temporarily suspend its operation. When processor receives the request from DMA, it

returns the acknowledgement granting the access to system bus. After taking the

permission, DMA can conduct the data transfer through the bus. The processor that

supports DMA uses some input output signals for receiving DMA request and sending

acknowledgement. Because DMA controller does a kind of bus cycle stealing, this

technique is called cycle stealing. When processor needs to send or receive data, it

issues a command to DMA controller. The system bus sharing mechanism used by

DMA is shown in Figure 13.5.

Figure 13.5: Bus sharing by DMA and processor

A DMA controller consists of an address register, a data count register, and a

control register. The address register specifies the address of memory location that

contains the data to be transferred. The data count register is used to specify the

number of words to be transferred. It is decremented by one after each word transfer.

The transfer mode is specified by the control register. DMA is able to transfer the data in

single cycle mode or burst mode. In burst mode, DMA keeps control of the bus until

entire data is transferred from or to memory. In single-cycle mode, DMA relinquishes

the bus after transferring each data word. The single-cycle mode results in higher

overhead as request/acknowledge sequence is performed for each data word transfer.

It could degrade the system performance especially in case of large data transfer. It is

preferred if the system cannot tolerate interrupt latency of more than a few cycles.

13.7 I/O Channels and I/O Processors

DMA
Controller Processor

Device Memory

Address Bus
Data Bus

Request

Acknowledgement

DMA technology does not take complete control of I/O operations from the processor.

I/O channel is an extension of the DMA that has the ability to take complete control of

I/O instructions. The I/O channel is often also called I/O processor. The processor does

not execute I/O instructions if I/O channels are used in a computer system. The

processor only initiates an I/O transfer by instructing the I/O channel. The I/O channel

executes program in memory that specifies the devices, memory locations, priority, and

instructions for handling some error conditions. There are two types of I/O channels:

selector channel and multiplexor channel. A selector channel can control multiple high-

speed devices. But at any one time, only one of those devices performs data transfer. A

particular devices is selected by the I/O channel for the data transfer. With each device

an I/O module is associated that is used to handle that device. A multiplexor channel on

the other hand is able to handle multiple devices at the same time.

Check your progress 3
1. What is DMA controller?

2. Which system bus is used by DMA for data transfer?

3. How does DMA take access to system bus from the processor?

4. What is cycle stealing?

5. Explain the usage of address register, data count register, and control register in

DMA controller?

6. Why is there higher overhead in single-cycle mode in DMA?

7. Differentiate DMA and I/O channel.

8. What is the main advantage of I/O channel or I/O processor?

9. Write different types of I/O channels.

10.Differentiate selector and multiplexor channels.

13.8 Summary
A set of I/O modules is an important components of a computer system. Each I/O

module controls one or more peripheral devices. All such modules interface with the

system bus. I/O modules are responsible for performing communication between the

peripheral devices and computer system with the help of the bus. A peripheral device is

attached to the computer system through an I/O module. The status of the device,

control information, and data are transferred between I/O module and the device

through a link. The operation of a device is controlled by a control logic. A buffer is used

to temporarily hold the data that is transferred between the device and external

environment. The buffer devices play important role to manage this speed gap. There

are different types of I/O modules that vary in their complexity and the number of

devices controlled by them.

In a programmed I/O subsystem, the processor executes a program that initiates

the operation and checks the device status. If device is ready for operation, it sends a

read or write command for transferring the data. In this arrangement, the processors

needs to wait after issuing a command until I/O module completes its operation. Since

the processor is much faster than the I/O module, it leads to the wastage of useful

processor time. The busy-wait feature of programmed I/O is its main disadvantage.

Even a moderate I/O operation significantly degrades the CPU performance. It is highly

desirable to reduce the involvement of processor in the procedure of I/O operations to

save the useful CPU cycles. The system throughput can be improved by saving the

CPU cycles in such operations. Interrupt driven I/O is an alternative to programmed I/O

that does not involve processor in busy-wait. It does not require the processor to

repeatedly check the device status. Instead, the processor goes to its usual work after

issuing the command to I/O module. When I/O module is ready to serve the command,

it interrupts the processor to exchange data. The processor halts the current execution

and performs the data transfer and then resumes its work.

The computers need hardware support for the processor to recognize and serve

the interrupts. The specialized interrupt lines are provided to the processor, which are

used to send interrupt signals to the processor. If there are multiple peripheral devices,

multiple simultaneous interrupt requests could be generated by different devices. The

processor must be able to recognize and handle the multiple interrupt requests. It

should be able to recognize the device generating the interrupt request. There are four

general techniques to identify the device: multiple interrupt lines, software poll, daisy

chain, and bus arbitration. Multiple interrupt lines are not used in the modern computers.

The interrupt driven I/O reduces the involvement in the data transfer between

peripherals and computer system. But still, the processor play an important role in the

interrupt based mechanism for data transfer. It would be good if the processor is

involved in peripheral related operations. Direct memory access more popularly known

as DMA is one such technique that does not require the intervention of the processor in

data transfer between peripheral devices and memory. It allows the CPU to perform

other important work by providing direct memory access to the devices. It is highly

effective in case of large data transfers. DMA uses an additional module known as DMA

controller on the system bus. DMA controller is a hardware component that controls the

peripheral devices. DMA controller takes place of processor during the data transfer

from or to the memory. For this purpose, it uses the same system bus that is used by

the processor. Therefore, it must wait for the processor to free the system bus or it

should request the processor to temporarily suspend its operation. When processor

receives the request from DMA, it returns the acknowledgement granting the access to

system bus. After taking the permission, DMA can conduct the data transfer through the

bus.

DMA technology does not take complete control of I/O operations from the

processor. I/O channel is an extension of the DMA that has the ability to take complete

control of I/O instructions. The I/O channel is often also called I/O processor. The

processor only initiates an I/O transfer by instructing the I/O channel. The I/O channel

executes program that specifies the devices, memory locations, priority, and instructions

for handling some error conditions. Selector channel and multiplexor channel are two

types of I/O channels. The selector channel can control multiple high-speed devices but

only one device can perform data transfer at a time. The multiplexor channel can handle

multiple devices at the same time.

Review Questions
Q.1 What is I/O module in a computer system? With the help of a diagram explain the

general model of an I/O module.

Q.2 What is the role of buffer devices in I/O module?

Q.3 Write and explain major steps or components involved in the communication

between a peripheral device and processor.

Q.4 With the help of a diagram explain the general structure of an I/O module and

explain the job of each component.

Q.5 How does programmed I/O work? Explain with the help of a flow chart.

Q.6 Write and explain all kind of commands that are used in a programmed I/O.

Q.7 How many types of addressing modes are used in programmed I/O? Explain each

and differentiate them.

Q.8 What is the major advantage of interrupt-driven I/O over programmed I/O? Explain

the working process of interrupt-drive I/O.

Q.9 Explain the involvement of the processor in interrupt-driven I/O with help of a

diagram.

Q.10 What are the major techniques to identify a device? Explain each.

Q.11 What are the major advantages of DMA over other I/O techniques? Explain its

working process.

Q.12 With the help of a diagram, explain the bus sharing mechanism between DMA and

processor.

UNIT- 14 Parallel Processing

Structure
14.0 Introduction

14.1 Objectives

14.2 Parallel Processing Mechanisms

14.3 Multiprocessor Systems

14.4 Loosely Coupled Multiprocessors

14.5 Tightly Coupled Multiprocessors

14.6 Multiprocessor Operating System

14.7 Summary

Review Questions

Unit 14: Parallel Processing

14.0 Introduction
Earlier computer systems were considered to operate in a sequential manner that

execute one instruction at a time. Although, it is not completely true. Even the early

computers could have generated multiple control signals simultaneously. Modern

computers consists of several components such as instruction pipelining that are able to

function in overlapping manner. Now computers have multiple execution units to

execute multiple instructions simultaneously. The parallel execution of instructions or

programs can significantly enhance the performance of the computer system. With the

advancement in hardware technology and its availability at affordable cost, the

computer designers have more opportunities to consider parallelism for better

performance. Formally the parallel processing as defined by Hwang and Briggs (1984)

Parallel processing is an efficient form of information processing, which

emphasizes the exploitation of concurrent events in the computing process.

Concurrency implies parallelism, simultaneity, and pipelining. Parallel events may

occur in multiple resources during the same time interval; simultaneous events

may occur at the same time instant; and pipelined events may occur in

overlapped time spans. These concurrent events are attainable in a computer

system at various processing levels. Parallel processing demands concurrent

execution of many programs in the computer. It is in contrast to sequential

processing. It is a cost effective means to improve system performance through

concurrent activities in the computer.

is given in the following box.

Parallel processing needs collective efforts in the field of hardware, software,

algorithms, and languages. The parallelism can be achieved from program level to intra-

instruction level. The role of hardware in parallelism increases from program level to

intra-instruction level. It is important to have a trade-off between hardware and software.

The uniprocessor systems have their limitations limitation to achieve high degree of

parallelism. The computing power can be increased by uniprocessor architecture to

multiprocessor architecture. A computer system with multiple processors and shared

memory space and peripherals is known as multiprocessor system. Like a conventional

uniprocessor system, the multiprocessor systems also run under the control of a single

operating system. However, multiprocessor operating systems have some different

management and design issues.

14.1 Objectives
The learning objectives of this unit are as follows.

1. To provide an overview of the parallel processing mechanisms.

2. To introduce the processor level parallelism.

3. To understand design issues of multiprocessor system.

4. To understand software requirements for multiprocessors.

14.2 Classification of Computers
There exist many different types of computers that can be differentiated on the basis of

their architectural features. The computers having common features can be put together

into one category. There are various categorization or classification schemes including

Flynn's classification, Feng's classification, Hwang and Briggs classification, and Bell's

classification, etc. Flynn's classification is one of the most popular classification

schemes that divides the computers on the basis of the multiplicity of instruction/data

stream units. According to Flynn's classification, the computers are classified into

following categories.

 Single Instruction Stream Single Data Stream (SISD)

 Single Instruction Stream Multiple Data Stream (SIMD)

 Multiple Instruction Stream Single Data Stream (MISD)

 Multiple Instruction Stream Multiple Data Stream (MIMD)

SISD computers are mostly the sequential processing computers that may also have

some degree of overlapping in their execution stages. The modern serial computers and

pipelined computers fall under this category. These computers consist of a single

control unit. However, there could be multiple functional units in the system. The

conceptual illustration of SISD is given in Figure 14.1.

Figure 14.1: SISD architecture

The SIMD computers are able to process multiple data streams simultaneously,

but all the data streams are operated by the same instruction. There are multiple

arithmetic logic units (ALUs) known as processing elements. All the processing

elements are controlled by the same control unit and they share the same main memory

as shown in Figure 14.2. The memory may have multiple modules. The control unit

broadcasts the instruction to the processing elements. The processing elements

perform the same operation on different data sets.

MM

CUPU

Data stream

Instruction stream

PU: Processing Unit, MM: Memory Module, CU: Control Unit

Instruction stream

PU1

PU2

.

.

.

PUn

MM1

MM2

.

.

.
MM

m

CU

Data stream 1

Data stream 2

Data stream n

Instruction stream

Instruction stream

Shared memory

Figure 14.2: SIMD architecture

The MISD computers consist of multiple processing units that conceptually

operate on the same data stream. The multiple processing units work in a macro-pipe

such that output of one processing unit is the input for the next processing unit.

However, there is no known commercial computer available that is based on MISD

architecture. Although, some pipelined computers and systolic arrays are considered by

some architects as examples of MISD architecture. The conceptual design of SIMD

computers is shown in Figure 14.3.

MM1

MM2

.

.

.
MM

m

Data stream

Data stream

PU1

PU2

.

.

.

PUn

CU1

CU2

.

.

.

CUn

Instruction stream n

Instruction stream 2

Instruction stream 1

Instruction stream 1

Instruction stream 2

Instruction stream n

Shared
memory

Figure 14.3: MISD architecture

The multiprocessor systems and multi-computer systems fall under MIMD

category, which are able to process multiple instructions on the different data streams

simultaneously. The processing units in MIMD computers interact with the help of a

shared memory or through an interconnection network. Based on the type of method

used for communication, the MIMD computers can be further classified into different

subcategories. The conceptual illustration of SISD is given in Figure 14.4.

MM1

MM2

.

.

.
MM

m

Data stream 1

PU1

PU2

.

.

.

PUn

CU1

CU2

.

.

.

CUn

Instruction stream n

Instruction stream 1

Instruction stream 2

Instruction stream n

Shared
memory

Figure 14.4: MIMD architecture

14.3 Parallel Processing Mechanisms
The parallel computer architecture can be divided into three main categories depending

on their features. Three main categories of paralleling processing approaches are as

follows:

1. Pipelined systems

2. Array processors

3. Multiprocessor systems

Although, these three categories are not mutually exclusive and a parallel processing

system the most of these features to some extent.

14.3.1 Pipelined Systems
The concept of pipelining is discussed already introduced in Unit 9. As discussed

earlier, it is a technique that executes program instructions/operations in an overlapped

manner to achieve parallelism. An instruction can be divided into some steps. Usually,

there are four major steps of an instruction including instruction fetch, instruction

decode, operand fetch, and execution. A sequential system completes all these parts of

an instruction before taking the next instruction into execution. A pipelined computer

arranges the different stages of an instruction as a linear cascade to execute

successive instructions in an overlapped fashion. When one instruction moves form one

stage to next step, the other instruction comes in to occupy the vacated stage. The

delay at different stages is different usually. Therefore, instructions move from one

Instruction stream 2

Instruction stream 1

Data stream 2

Data stream n

stage to another stage at the pace of the slowest stage in the pipeline to avoid any kind

of conflict. The operation of all the stages is synchronized with the help of a common

clock. The common clock triggers the flow of data from stage to stage. Interface latches

are used between two stages to temporarily hold the intermediate results. If there are n

stages in a pipeline, the first output is generated after n clock periods. But once the

pipeline is filled, it gives output every clock period. As compared to a sequential

processor, a pipelined processor is at most n times faster if there are n stages in the

pipeline. However, this kind of speed-up can be achieved only in an ideal case. Actually,

that kind of speed-up could not be achieved due to several reasons such as data

dependency, interrupts, and memory dependencies. There could be different types of

pipelines such as instruction pipeline, arithmetic pipeline, scalar pipeline, and vector

pipeline, etc. Different pipelines can be dedicated to different operations.

14.3.2 Array Processors
Array processors consist of multiple ALUs that can operate in parallel. These ALUs are

known as processing elements. The pipelines processors achieve temporal parallelism.

With the help of multiple processing elements, the array processor achieve spatial

parallelism. The processing elements are able to perform the same function at the same

time. Therefore, array processors are suitable to carry out vector operations in parallel.

Each processing element consists of ALU, a local memory, and some registers. All the

processing elements in an array processor are interconnected through a data routing

network and work under the control of a single control unit. The processing elements do

not have any separate control units. For any vector operation, the control unit takes the

responsibility of instruction fetching from the control memory and to decode it. The

decoded instruction is broadcast to all the processing elements involved in the

operation. The processing elements fetch operands from their local memories. The

interconnection network plays an important role in array processors. There are many

different types of interconnection networks that can be used in array processors for

internal communication. Parallel algorithms are also required for carrying out vector and

matrix operations such as multiplication, sorting, and fast Fourier transformation.

14.3.3 Multiprocessor Systems
A multiprocessor system consists of multiple processors that are usually comparable in

their capabilities. All the processors have access to a shared memory and peripheral

devices. Each processor also has its own local memory and private I/O devices. The

entire system works under the control of a single operating system. The operating

system is responsible for interaction between processors besides other resource

management tasks. The processors communicate and cooperate at job, task, or data

levels to solve a problem. The communication could be done with the help of a shared

memory or through an interrupt network. Multiprocessor systems are often differentiated

by the type of interconnection network used.

At architectural level, the multiprocessors can be divided into two major

categories: loosely-coupled and tightly-coupled multiprocessors. In a tightly-coupled

multiprocessor system, the processors communicate with the help of a shared main

memory. The processors and memory are interconnected either through multi-ported

memory or through an interconnection network. In tightly-coupled multiprocessor

system, managing the memory conflicts among different processors is a major issue.

In loosely coupled multiprocessor systems, each processor has a large local

memory and I/O devices. The processors do not communicate through memory instead

a message transfer system is used to exchange messages for information sharing. The

advantage of message transferring system is that no memory conflicts are observed

unlike tightly coupled multiprocessors. But there are larger communication delays in

case of message transferring system. Therefore, tightly coupled multiprocessors are

preferred if a high degree of interaction is required among the processors. While,

loosely coupled multiprocessors are good if communication requirement is minimal.

Check your progress 1
1. Formally define parallel processing.

2. Write the categories of computers according to Flynn's classification.

3. Pipelined computers are sequential processing computers or parallel processing

computers?

4. Differentiate SIMD and MIMD computers.

5. Write an example of MISD computers.

6. How do processors in MIMD computers communicate?

7. How is the delay between different stages managed in a pipelined computer?

8. What kind of speed-up is achieved by pipelined computers?

9. Differentiate the parallelism achieved by pipelining and parallelism achieved by

array processors.

10.Differentiate loosely coupled and tightly coupled multiprocessor systems.

Figure 14.5: Tightly coupled multiprocessor system without private cache memory.

1
. . .

2 p

1 2 3 m. . .

Processor Memory
Interconnection Network

. . .

. . .

Interrupt Signal
Interconnection Network

. . .
In

pu
t-O

ut
pu

t P
ro

ce
ss

or

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

.
.

.

.
.

.

d

1

2

.
.

.

Processor

Local Memory

Shared Memory Module

Disk Module

14.4 Tightly Coupled Multiprocessor
As discussed earlier, the processors in tightly coupled multiprocessor systems have a

local memory and a shared memory that is used for communication and exchange of

information. The shared memory is a fast memory such as cache to deal with the

conflicts. If high degree of interaction is needed in an application, the tightly coupled

multiprocessor systems are a good choice. The tightly coupled multiprocessor systems

are also good for high speed processing. There are two major models for tightly coupled

multiprocessor systems. One of these models is shown in Figure 14.5. In this model,

each processor has its local memory and share a global memory. The local memory

stores operating system related code and data for the processor. There are three

different types of interconnection networks: Interrupt Signal Interconnection, Input-

Output Interconnection Network, and Processor Memory Interconnection Network. The

global memory is divided into several memory modules. The processors are connected

to memory modules through Processor Memory Interconnection Network. One memory

module can be connected to only one processor during a memory cycle. If there are

requests from multiple processors to access the same memory module during the same

memory cycle, it results in memory conflicts. Such memory conflicts are handled by

Processor Memory Interconnection Network. The number of memory modules is kept

compatible to the number of processors in the system to reduce the memory conflicts.

To further reduce the memory conflicts, a local cache can be associated with each

processor. The cache reduces the traffic to Processor Memory Interconnection Network

that helps to reduce the requests to access memory modules. The Interrupt Signal

Interconnection Network is responsible to transfer interrupt from one processor to other

processors. Similarly, Input-Output Interconnection Network connects processors to

peripherals. Cyber-170, UNIVAC 1100/94, Cray X-MP, Honeywell 60/66, IBM 3081, and

PDP-10 are the example of tightly coupled multiprocessor system.

Message Transfer System

Computer
Module 1

Computer
Module 2

Computer
Module n. . .

Figure 14.6: Loosely coupled multiprocessor system.

14.5 Loosely Coupled Multiprocessor
In loosely coupled multiprocessor systems each processor has a large local memory

and a local set of peripheral devices. Therefore, processors access most of the

instructions and data in their own local memories. Thus loosely coupled multiprocessor

systems do not experience that kind of memory conflicts as observed in tightly coupled

multiprocessor systems. In case a process executes on multiple processors, the

communication among the processors takes place through a message transferring

system. Loosely coupled multiprocessors are preferred when communication among the

processors is not required frequently. A processor with its local memory and I/O devices

is referred as computer module. The computer modules are connected to message

transfer system as shown in Figure 14.6. In this system, all the computer modules are

connected in a non-hierarchical manner. It is also possible to arrange computer

modules in a hierarchical manner for large multiprocessor system. In such a system a

cluster is formed by connecting a set of computer modules in non-hierarchical manner.

Then, multiple clusters are interconnected through inter-cluster bus.

The internal structure of a computer module is shown in Figure 14.7. In addition

to local memory and local I/O devices, it contains a channel and arbiter switch (CAS).

The CAS provides an interface with other computer modules in the system. CAS can

buffer the messages and resolves the conflicts accessing the message transfer system.

When there are requests to access message transfer system from multiple computer

modules, the CAS decides which particular computer module gets the service. Example

of loosely coupled multiprocessor system is Cm*.

Processor

Local
Memory

I/O
Devices

CAS

Figure 14.7: Computer Module

14.6 Multiprocessor Operating System
All those functionalities required for uniprocessor operating systems such as memory

management, resource allocation, deadlock handling, and process management, etc.

are also required for the multiprocessor operating systems. The underlying hardware in

multiprocessors is different from a uniprocessor system. Therefore, some additional

capabilities are needed in a multiprocessor operating system for efficient resource

management, load balancing, scheduling, support for parallelism, synchronization, and

reliability, etc. When a user program is executed, the operating system should be able

to exploit parallel processing capabilities of the system. Without support for parallel

processing and other additional capabilities, it would not be possible to take advantage

of the hardware capabilities of the multiprocessor systems.

The multiple computer modules make the job of a multiprocessor operating

system challenging. The performance of such operating system depends on its ability to

communicate, load balancing, memory management, and resource management, etc.

There are three main operating system designs for multiprocessors namely master-

slave, separate supervisor, and floating supervisor control. The master-slave

configuration is the simplest approach and it is a kind of simple extension of

uniprocessor operating system. It is easy to implement but it is inefficient in resource

utilization. Also, it does not have desirable control over the resources and events in the

system. All the three operating system organizations are described here.

In master-slave configuration based approach, one of the processors is

designated as master and rest other processors are considered as slaves. The

operating system runs on the master processor only and slave processors are

controlled by the operating system as other resources. The master is responsible to

maintain the status of all the slave processors and work distribution. The slave

processors send their request for any executive service to the master via a special

instruction call. When master receives the request, it is acknowledged and appropriate

action is taken. As the entire operating system runs on a single processor, the conflict

problems are simplified. However, master-slave configuration is highly inflexible and

susceptible to the failures. If master processor goes down or an unrecoverable error

occurs, the entire system comes to a halt. The performance of the entire system highly

depends on the master processor. If master processor is unable to quickly dispatch the

process, the slave processors cannot be used to their potential. The utilization of the

slave processors depends on the efficiency of the master processor. Therefore, it is

desirable that master processor should have higher capabilities than slave processors.

Master processor with higher capabilities could better control the slave processors. The

master-slave configuration is preferred for those applications where work load is well

defined and well distributed.

In separate supervisor system, each processor contains its own copy of the basic

kernel, a set of private tables, and a set of private I/O devices. All processors are able to

service their most of the needs with the help of their kernels and file system. For

resource sharing and communication purpose, a set of global tables and shared file

structure are used. The global tables and files are shared and accessed by all the

processors. Therefore, a mechanism is required to control the access to the shared

resources. The separate supervisor system is not as vulnerable to the system failure as

master-slave configuration. However, to keep a copy of kernel at each processor takes

a lot of memory. Also, reconfiguration of I/O devices is difficult in this type of system.

The third configuration of the multiprocessor operating system is the floating

supervisor control. It is the most flexible approach that considers the processors as a

set of resources. The kernel floats from one processor to other. This approach is better

for load balancing and makes efficient use of resources. Like other multiprocessor

operating system approaches, the floating supervisor has to deal with the conflicts due

to simultaneous resource access requests from multiple processors. The conflicts are

supposed to be handled protecting the system integrity. None of the available

multiprocessor operating systems is exclusively based on any of the three configuration.

All such operating systems are make use some or more features of all the three

configurations.

Check your progress 2
1. When do you prefer the tightly coupled multiprocessor systems?

2. What are the advantages of having a local memory?

3. How are the processors connected to share memory modules in tightly coupled

multiprocessors?

4. How can the memory conflicts be reduced?

5. Give some examples of tightly coupled multiprocessors.

6. What is the advantage of having a larger local memory in loosely coupled

multiprocessor?

7. What is advantage of loosely coupled multiprocessor?

8. How do processors communicate in loosely coupled multiprocessors?

9. What is the role of CAS in a computer module?

10. Give an example of loosely coupled multiprocessor.

11. What are the additional functionalities required for a multiprocessor operating

system as compared to the uniprocessor operating system?

12. What are challenges for a multiprocessor operating system?

13. Write the major operating designs for multiprocessors?

14.What are the responsibilities of master in master-slave operating system?

15.What are the limitations of master slave, separate supervisor, and floating

supervisor designs?

16. Which of the three operating system designs is better for load balancing?

17. Master slave approach is preferred for which type of applications?

14.7 Summary
Parallel processing is an efficient form of information processing, which emphasizes the

exploitation of concurrent events in the computing process. Concurrency implies

parallelism, simultaneity, and pipelining. Parallel processing needs collective efforts in

the field of hardware, software, algorithms, and languages. The role of hardware in

parallelism increases from program level to intra-instruction level. It is important to have

a trade-off between hardware and software. The uniprocessor systems have their

limitations limitation to achieve high degree of parallelism. The parallel computer

architecture can be divided into three main categories depending on their features.

Three main categories of paralleling processing approaches are as follows: Pipelined

systems, Array processors, and Multiprocessor systems. The pipelining is a technique

that executes program instructions/operations in an overlapped manner to achieve

parallelism. Array processors consist of multiple ALUs that can operate in parallel.

These ALUs are known as processing elements. The pipelines processors achieve

temporal parallelism. With the help of multiple processing elements, the array processor

achieve spatial parallelism. The processing elements are able to perform the same

function at the same time. Therefore, array processors are suitable to carry out vector

operations in parallel. The computing power can be increased by uniprocessor

architecture to multiprocessor architecture. A computer system with multiple processors

and shared memory space and peripherals is known as multiprocessor system. The

entire system works under the control of a single operating system. The operating

system is responsible for interaction between processors besides other resource

management tasks. The processors communicate and cooperate at job, task, or data

levels to solve a problem.

At architectural level, the multiprocessors can be divided into two major

categories: loosely-coupled and tightly-coupled multiprocessors. In a tightly-coupled

multiprocessor system, the processors communicate with the help of a shared main

memory. The processors in tightly coupled multiprocessor systems have a local

memory and a shared memory that is used for communication and exchange of

information. The shared memory is a fast memory such as cache to deal with the

conflicts. If high degree of interaction is needed in an application, the tightly coupled

multiprocessor systems are a good choice.

In loosely coupled multiprocessor systems, the processors do not communicate

through memory instead a message transfer system is used to exchange messages for

information sharing. Each processor has a large local memory, a local set of peripheral

devices, and CAS. The processors access most of the instructions and data in their own

local memories. Thus loosely coupled multiprocessor systems do not experience that

kind of memory conflicts as observed in tightly coupled multiprocessor systems. The

CAS provides an interface with other computer modules in the system. CAS can buffer

the messages and resolves the conflicts accessing the message transfer system.

The underlying hardware in multiprocessors is different from a uniprocessor

system. Therefore, some additional capabilities are needed in a multiprocessor

operating system for efficient resource management, load balancing, scheduling,

support for parallelism, synchronization, and reliability, etc. There are three main

operating system designs for multiprocessors namely master-slave, separate

supervisor, and floating supervisor control. The master-slave configuration is the

simplest approach and it is a kind of simple extension of uniprocessor operating system.

It is easy to implement but it is inefficient in resource utilization. Also, it does not have

desirable control over the resources and events in the system. In separate supervisor

system, each processor contains its own copy of the basic kernel, a set of private

tables, and a set of private I/O devices. All processors are able to service their most of

the needs with the help of their kernels and file system. For resource sharing and

communication purpose, a set of global tables and shared file structure are used. The

floating supervisor control is the most flexible approach that considers the processors

as a set of resources. The kernel floats from one processor to other. This approach is

better for load balancing and makes efficient use of resources.

Review Questions
Q.1 What is parallel processing? How can the parallel processing be achieved in a

computer system?

Q.2 Describe the different categories of computers according to Flynn's classification.

Draw the figures to illustrate the conceptual architecture of all the categories and

highlight the important features.

Q.3 Compare the pipelined computers, array processors, and multiprocessor systems

from architectural and parallel processing point of view. Discuss their

applications.

Q.4 What is multiprocessor system? How is it different from a multicomputer system?

Describe and contrast the different architectural configuration for multiprocessor

systems.

Q.5 With the help of a sketch, describe the architecture of a tightly coupled

multiprocessor system. Explain the process of communication and information

sharing in the system.

Q.6 With the help of a sketch, describe the architecture of a loosely coupled

multiprocessor system. Explain the process of communication and information

sharing in the system.

Q.7 What are similarities and differences between a uniprocessor and a

multiprocessor operating systems?

Q.8 Compare the features of different configurations for a multiprocessor operating

system.

