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1.1. Introduction 

 

The entire field of engineering and science – heat, light, sound, gravitation, 

magnetism, fluid flow, population dynamics and mechanics are described by 

differential equations. Other modern technologies such as radio, television, 

cars and aircraft all depend on the mathematics of differential equations 

Differential equations play an important role in modeling virtually every 

physical, technical or biological process, from celestial motion to bridge 

design to interactions between neurons. Further applications are found in 

fluid dynamics with the design of containers and funnels in heat conduction 

analysis with the design of heat spreaders in microelectronics, in rigid-body 

dynamic analysis, with falling objects, and in exponential growth of current 

in an R-L circuit. This unit introduces first order differential equations – the 

subject is clearly of great importance in many different areas of science and 

engineering. 

 

1.2 Objectives 

 

After reading this unit students should be able to: 

 Define and understand the differential equation and its types 



 Find the order and degree of a differential equation 

 Form the differential equation of given function 

 Solve the given differential equation 

 Understand the geometrical meaning of differential equation 

 Solve the initial value problems 

 State the existence and uniqueness theorems 

 

1.3 Definition of Differential Equation 

 

An equation which contains the independent variable, dependent variable 

and its derivatives is called a differential equation. 

Equivalently, 

An equation involving dependent and independent variables and the 

differential coefficients (derivatives) of dependant variable with respect to 

one independent variables is called a Differential equation. 

The general first-order differential equation for the function y = y(x) is 

written as ),( yxf
dx

dy
 ,  where f(x, y) can be any function of the independent 

variable x and the dependent variable y.  

For Example: 

1) 
yx

dx

dy
cos3 

 



2) 
ecyx

dx

dy

dx

yd
cos52

2

2


 

3) 

xeyx
dx

dy

dx

yd
 sec532

3

3

 

4) 
75  y

dx

dy

 

5) 
xy

dx

dy

dx

yd
8cos3

2

2


 

6) 
mg

dx

yd
m 

2

2

 

7) 
75

3









y

dx

dy

 

 

1.4 Types of differential equations 

 

A differential equation is an equation for a function that relates the values of 

the function to the values of its derivatives. An ordinary differential equation 

(ode) is a differential equation for a function of a single variable, e.g., x(t) or 

y(t), while a partial differential equation (pde) is a differential equation for a 

function of several variables, e.g., v(x, y, z, t). An ode contains ordinary 

derivatives and a pde contains partial derivatives. Typically, pde’s are much 

harder to solve than ode’s. 

There are two types of differential equations, namely 



i. Ordinary Differential Equations (ODE’s) 

ii. Partial Differential Equations (PDE’s) 

 

i. Ordinary Differential Equations (ODE’s): 

Ordinary Differential Equations (ODE’s): A differential equation involving 

derivatives of the dependent variable with respect to only one independent 

variable is called an ordinary differential equation (ODE’s). 

Equivalently, 

ODE is an equation involving an unknown function y of a single variable t 

together with one or more of its derivatives /// , yy etc. 

Example 1.4.1: 02

3

2

2











dx

dy

dx

yd
 is an ordinary differential equation. 

ii. Partial Differential Equations (PDE’s): 

Many functions depend on more than one independent variable. Of course, 

there are differential equations involving derivatives with respect to more 

than one independent variables, called partial differential equations (PDE’s). 

Example 1.4.2: 

















t

y

x

y
9

2

2

 is partial differential equation.  

 



 

1.5 Order and degree of differential equations: 

 

1.5.1 Order of a differential equation: 

A differential equation can be classified according to its order and degree.  

Order of a differential equation is defined as the order of the highest order 

derivative of the dependent variable with respect to the independent variable 

involved in the given differential equation. 

Consider the following differential equations: 

i. xe
dx

dy
 , this ODE involves highest derivative of first order. 

Therefore order  is one 

ii. 0
2

2

 y
dx

yd
, this ODE involves highest derivative of second order. 

Therefore order  is two. 

iii. x
dx

yd
x

dx

yd
sin

3

2

2
2

3

3









 , this ODE involves highest derivative of 

third order. Therefore order is three. 

 

1.5.2 Degree of a differential equation: 



Degree of a differential equation To study the degree of a differential 

equation, the key point is that the differential equation must be a polynomial 

equation in derivatives, i.e., y′, y″, y″′ etc. Consider the following 

differential equations:  

iv. 02

2

2

2

3

3









 y

dx

dy

dx

yd

dx

yd
 

v. 0sin 2

2









y

dx

dy

dx

dy
 

vi. 0sin 









dx

dy

dx

dy
 

 

We observe that, in the above equation (iv) is a polynomial equation in y″′, 

y″ and y′, equation (v) is a polynomial equation in y′ (not a polynomial in y 

though). Degree of such differential equations can be defined. But equation 

(vi) is not a polynomial equation in y′ and degree of such a differential 

equation cannot be defined. By the degree of a differential equation, when it 

is a polynomial equation in derivatives, we mean the highest power (positive 

integral index) of the highest order derivative involved in the given 

differential equation. In view of the above definition, one may observe that 

differential equations (i), (ii), (iii) and (iv) each are of degree one, equation 

(v) is of degree two while the degree of differential equation (vi) is not 

defined.  



 

Note: Order and degree (if defined) of a differential equation are always 

positive integers.  

 

 

1.5 Test Your Progress 

Find the order and degree, if defined, of each of the following differential 

equations: 

i. 0cos  x
dx

dy
    

ii. ii. 0

2

2

2




















dx

dy
y

dx

dy
x

dx

yd
xy  

iii. 
0

/2

3

3

 yey
dx

yd

 

vii. iv. 0)sin( ///

4

4

 y
dx

yd
 

viii. 05/  yy     

ix.  03 //  yyy iv

 

x.   0)cos( /2//  yy    

xi.  xxy 3sin3cos//   

xii.   xeyyyy 254/3//2// )()(    

02 //////  yyy . 

 



1.6 Solution of Differential Equation 

 

In earlier topics, we have solved the equations of the type:  

012 x               ................ ... (1)  

sin2 x – cos x = 0           .... .......(2) 

The solutions of equations (1) and (2) are numbers, real or complex, that will 

satisfy the given equation i.e., when that number is substituted for the 

unknown x in the given equation, L.H.S. becomes equal to the R.H.S. 

Now consider the differential equation , 

0
2

2

 y
dx

yd
            ............... ... (3)  

In contrast to the first two equations, the solution of this differential equation 

is a function   that will satisfy it. 

i.e., when the function   is substituted for the unknown y (dependent 

variable) in the given differential equation, L.H.S. becomes equal to R.H.S.  

The curve )(xy   is called the solution curve (integral curve) of the given 

differential equation.  

 

Consider the function given by  

)sin()( bxaxy       ........... (4)  

where a, b ∈ R. When this function and its derivative are substituted in 

equation (3),  



L.H.S. = R.H.S. 

So it is the solution of a differential equation (3).  

Let a and b be given some particular values say 2a  and 
4


b , then we get 

a function 









4
sin2)(1


 xxy     ........... (5)  

When this function and its derivative are substituted in equation (3) again 

L.H.S. = R.H.S. Therefore 1  is also a solution of the equation (3).  

Function   consists of two arbitrary constants (parameters) a and b, it is 

called general solution of the given differential equation.  

Whereas function 1  contains no arbitrary constants but only the particular 

values of the parameters a and b and hence is called a particular solution of 

the given differential equation. The solution which contains arbitrary 

constants is called the general solution ( or primitive) of the differential 

equation.  

Thus,  

 

The solution free from arbitrary constants i.e., the solution obtained from the 

general solution by giving particular values to the arbitrary constants is 

called a particular solution of the differential equation. 

 

 

 

 



For example: 

1. The solution formula 
2tCey   , which depends on the arbitrary 

constant C, describes a family of solutions and is called a general 

solution. 

2. The graphs of these solutions, drawn in the figure, are called solution 

curves. 

 

  Figure 

 

3. Given the value of the solution at a point, we can determine the 

unique particular solution. 

 

Example 1.6.1: Verify that the function    xey 3  is a solution of the 

differential equation 06
2

2

 y
dx

dy

dx

yd
. 

Solution:  Given function is xey 3 ...............   (1) 



Differentiating both sides of equation (1) with respect to x , we get  

xe
dx

dy 33                     ................. (2)  

Now, differentiating (2) with respect to x, we have  

xe
dx

yd 3

2

2

9      .....................(3) 

Substituting the values of 
dx

dy

dx

yd
,

2

2

 and y from equations (3), (2) and (1) in 

the given differential given equation, we get 

RHSeeeeey
dx

dy

dx

yd
LHS xxxxx   099)(6396 33333

2

2

. 

 

Example 1.6.2: Verify that the function    xbxay sincos  , where a, b Є R 

is a solution of the differential equation 0
2

2

 y
dx

yd
. 

Solution:  Given function is xbxay sincos  ...............   (1) 

Differentiating both sides of equation (1) with respect to x , we get  

xbxa
dx

dy
cossin                          ................. (2)  

Now, differentiating (2) with respect to x, we have  

xbxa
dx

yd
sincos

2

2

          ....................(3) 



Substituting the values of 
2

2

dx

yd
 and y from equations (3) and (1) in the given 

differential given equation, we get 

RHSxbxaxbxay
dx

yd
LHS  0sincossincos

2

2

. 

 

Example 1.6.3: Verify that the function    yyx 1tan , is a solution of the 

differential equation 0122  y
dx

dy
y . 

Solution:  Given function is yyx 1tan       ...............   

(1) 

Differentiating both sides of equation (1) with respect to x , we get  

2

2

2

2

2

1
1

11

1
1

y

y

dx

dy
Or

y

y

dx

dy
Or

dx

dy

ydx

dy 














              ................. (2)  

Substituting the values of 
dx

dy
 and y from equations (2) and (1) in the given 

differential given equation, we get 

RHSy
y

y
yy

dx

dy
yLHS 







 
 01

1
1 2

2

2
222 . 

Note: The particular solution satisfying the initial condition 00 )( yxy   is the 

solution yxy )(  whose value is 0y when 0xx  . Thus the graph of the 

particular solution passes through the point ),( 00 yx   in the xy-plane. A first-



order initial value problem is a differential equation ),(/ yxfy   whose 

solution must satisfy an initial condition 00 )( yxy  . 

 

 

1.6 Test Your Progress 

In each of the following exercises, verify that the given functions (explicit or 

implicit) is a solution of the corresponding differential equation. 

1. 1 xey   ;  0///  yy    2. cxxy  22  ;  

022/  xy   

3. cxy  cos   ;  0sin/  xy   4. 21 xy    ;  
2

/

1 x

xy
y


   

5. Axy     ;  )0(/  xyxy .   

6. xxy sin    ;   yxxyxxyxy  ,0;22/ . 

7. cyxy  log   ;  )1(;
1

2
/ 


 xy

xy

y
y . 

8. xyy cos   ;  yyxyyy  /)cossin( . 

9. ),(;22 aaxxay     ;  )0(;0)( /  yyyx . 

 

 

 



1.7 Formation of Differential Equation 

 

We know that the equation, 044222  yxyx ........... (1). This represents 

a circle of centre at (–1, 2) and radius 1 unit. 

Differentiating equation (1) with respect to x, we get 

2,
2

1





 y

y

x

dx

dy
.................(2), which is a differential equation. We will 

find later on that this equation represents the family of circles and one 

member of the family is the circle given in equation (1). This leads to the 

concept of formation of the differential equation. 

Procedure to form a differential equation that will represent a given 

family of curves. 

(i) If the given family 1F  of curves depends on only one parameter 

then it is represented by an equation of the form  

0),,(1 ayxF .................(1). 

For example, the family of parabolas axy 2  can be represented by an 

equation of the form f (x, y, a) : axy 2 . 

 



Differentiating equation (1) with respect to x, we get an equation 

involving y′, y, x, and a, i.e.,  g (x, y, y′, a) = 0     ........ ... (2) 

The required differential equation is then obtained by eliminating a from 

equations (1) and (2) as  F(x, y, y′) = 0 .    ....... ........(3) 

(ii) If the given family 2F of curves depends on the parameters a, b 

(say) then it is represented by an equation of the from  

2F  (x, y, a, b) = 0     ... ......(4)  

Differentiating equation (4) with respect to x, we get an equation involving 

y′, x, y, a, b,  

i.e.,   g (x, y, y′, a, b) = 0 ... ........(5)  

But it is not possible to eliminate two parameters a and b from the two 

equations and so, we need a third equation. This equation is obtained by 

differentiating equation (5), with respect to x, to obtain a relation of the form  

h (x, y, y′, y″, a, b) = 0 ... ....(6)  

The required differential equation is then obtained by eliminating a and b 

from equations (4), (5) and (6) as  

F (x, y, y′, y″) = 0 ... ...........(7) 



Note: The order of a differential equation representing a family of curves is 

same as the number of arbitrary constants present in the equation 

corresponding to the family of curves. 

 

Example 1.7.1: Form the differential equation representing the family of 

curves y = mx, where, m is arbitrary constant. 

Solution:  We have ,  y = mx ........... (1) 

Differentiating both sides of equation (1) with respect to x, we get  m
dx

dy
  

Substituting the value of m in equation (1) we get 
dx

dy
xy   Or 0 y

dx

dy
x , 

which is free from the parameter m and hence this is the required differential 

equation. 

Example 1.7.2: Form the differential equation representing the family of 

curves  

y = a sin (x + b), where a, b are arbitrary constants. 

Solution:  We have y = a sin(x + b) ...... (1) 

Differentiating both sides of equation (1) with respect to x, successively we 

get 



)cos( bxa
dx

dy
 ........................(2) 

)sin(
2

2

bxa
dx

yd
 ....................(3) 

Eliminating a and b from equations (1), (2) and (3), we get 

From equation (1),  
a

y
bx  )sin( , substitute this in equation (3) we obtain 

y
a

y
a

dx

yd











2

2

 or  0
2

2

 y
dx

yd
 

Which is free from the arbitrary constants a and b and hence this is the 

required differential equation. 

Example 1.7.3: Form the differential equation representing the family of 

parabolas having vertex at origin and axis along positive direction of x-axis.  

Solution:  Let P denote the family of above said parabolas (see Figure) and 

let (a, 0) be the 

focus of a member of the given family, where a is an arbitrary constant. 

Therefore, equation of family P is  



 

    Figure 

axy 42    ..................... (1) 

Differentiating both sides of equation (1) with respect to x, we get  

      a
dx

dy
y 42   ... ................(2) 

Substituting  equation (2) in equation (1), we obtain the required differential 

equation as, 

dx

dy
xyy 22    or  02 2  y

dx

dy
xy   or  02  y

dx

dy
x . 

Example 1.7.4:  Form the differential equation representing the family of 

ellipses having foci on X-axis and centre at the origin. 

Solution:  We know that the equation of said family of ellipses (see Figure) 

is  



1
2

2

2

2


b

y

a

x
       ... ...............  (1) 

 

  Figure 

Differentiating equation (1) with respect to x, we get 

2

2

2222
0

22

a

b

dx

dy

x

y
Or

a

x

dx

dy

b

y
Or

dx

dy

b

y

a

x
  ... ...............  (2) 

Differentiating equation (2) with respect to x, we get 

00

2

2

2

2

2

2

2































































dx

dy
y

dx

dy

dx

yd
yxOr

x

dx

dy
y

dx

dy

dx

yd
yx

 

Or   0

2

2

2
































dx

dy

x

y

dx

dy

dx

yd
y  

Example 1.7.5:  Form the differential equation of the family of circles 

touching the x-axis at origin. 



Solution: Let C denote the family of circles touching x-axis at origin. Let (0, 

a) be the coordinates of the centre of any member of the family (see the 

following Fig). Therefore, equation of family C is  222 )( aayx   Or 

ayyx 222  ...........(1) 

   

    Figure 

where, a is an arbitrary constant. Differentiating both sides of equation (1) 

with respect to x, we get 

dx

dy
a

dx

dy
yx 222    Or  

dx

dy
a

dx

dy
yx    Or  

dx

dy
dx

dy
yx

a



 ..............(2) 

Substituting the value of a from equation (2) in equation (1), we get 

dx

dy
dx

dy
yx

yyx



 222    



Or    









dx

dy
yxy

dx

dy
yx 222    

Or    xy
dx

dy
y

dx

dy
yx 22 222   

Or    
 22

22 2
2

yx

xy

dx

dy
Orxy

dx

dy
yx


  

This is the required differential equation of the given family of circles. 

1.7 Test Your Progress 

In each of the following exercises, form a differential equation representing 

the given family of curves by eliminating arbitrary constants a and b. 

1. 1.1 
b

y

a

x
  2. )( 222 xbay   3. xx beaey 23   4. 

)(2 bxaey x    

5. )sincos( xbxaey x  . 

6. Form the differential equation of the family of circles touching the y-axis 

at origin.  

7. Form the differential equation of the family of parabolas having vertex at 

origin and axis along positive y-axis.  

8. Form the differential equation of the family of ellipses having foci on y-

axis and centre at origin.  



9. Form the differential equation of the family of hyperbolas having foci on 

x-axis and centre at origin.  

10. Form the differential equation of the family of circles having centre on y-

axis and radius 3 units.  

11. Find the differential equation, which has xx beaey    as the general 

solution?. 

12. Find the differential equation, which has xy    as its particular solution?. 

 

1.8 Geometrical meaning of a differential equation 

 

Let )(ty  be a solution of the ODE  ),( ytfy  . The graph of the solution )(ty

is called a solution curve. For any point ),( 00 yt  on the solution curve 

00 )( yty   and the differential equation says that ))(,()( 000 tytyty  . 

The LHS is the slope of the solution curve, and the RHS tells us what the 

slope is at ),( 00 yt . 

1.8.1. Direction Field for ),(/ ytfy  : 

Draw a line segment with slope ),( ji ytf attached to every grid point ),( ji yt in 

a rectangle R where f (t, y) is defined R = { (t, y)| a ≤ t ≤ b and c ≤ y ≤ d }. 

The result is called a direction field. 



 

  Figure 

Geometric interpretation of Solution is,  

Direction field provides information about qualitative form of solution 

curves. 

Finding a solution to the differential equation is equivalent to the geometric 

problem of finding a curve in ty-plane that is tangent to the direction field at 

every point. 

 

   Figure 



1.9. Initial value problems (IVP) 

 

A differential equation is an equation involving a relation between an 

unknown function and one or more of its derivatives. Equations involving 

derivatives of only one independent variable are called ordinary differential 

equations and may be classified as either initial-value problems (IVP) or 

boundary-value problems (BVP).  

The distinction between the two classifications lies in the location where the 

extra conditions are specified. For an initial value problem (IVP), the 

conditions are given at the same value of x , whereas in the case of the 

boundary value problem (BVP), they are prescribed at two different values 

of x . 

An initial value problem is a differential equation (of any order) together 

with initial conditions that must be satisfied by the solution of the 

differential equation and its derivatives at the initial point.  

For example:  

i) Consider the differential equation, 1)0(,22  yyx
dx

dy
. Here 0x

is the initial point. 



ii) Consider the differential equation, 1)0(,2)0(, /

2

2

 yyyx
dx

yd
. 

Here 0x is the initial point. 

Equivalently, 

Initial Value Problem: 

The problem of finding a function y of x when we know its derivative and its 

value 0y  at a particular point 0x  is called an initial value problem.  

This problem can be solved in two steps.  

1. Find the general solution of the given differential equation. 

2. Using the initial data, plug it into the general solution and solve for C. 

Consider the problem of finding a function )(ty  that satisfies the following 

ordinary differential equation (ODE):  

btaytf
dt

dy
 ),,( .  The function ),( ytf is given, and we denote the 

derivative of the sought function by 
dt

dy
ty )(/  and refer to ‘t’ as the 

independent variable. Earlier we dealt with the question of how to 

approximate, differentiate or integrate an explicitly known function.  



Here, similarly, the function ),( ytf  is given and the sought result is different 

from ),( ytf  but related to it. The main difference though is that ),( ytf

depends on )(ty , and we would like to be able to compute )(ty  possibly for 

all ‘t’ in the interval [a, b], given the ODE which characterizes the 

relationship between the function and some of its derivatives.  

Example 1.9.1: The function tyytf ),(  defined for t ≥ 0 and any real 

)(ty  gives the ODE 0,)(/  tty
dt

dy
ty . You can verify directly that for 

any scalar α the function tetty  1)(  satisfies the ODE. If it is given, in 

addition, that 1)0( y , then 0101  e  , hence α = 2 and the unique 

solution is tetty  21)( . 

Boundary Value Problem: 

It is a differential equation together with a collection of values that must be 

satisfied by the solution of the differential equation or its derivative at no 

fewer than two different points. 

For example:  

i) Consider the differential equation, 

2)1(1)0(,cos3 /

2

2

 yandyxy
dx

dy

dx

yd
.  



ii) Consider the differential equation, 1)1(,2)0(,
2

2

 yyyx
dx

yd
.  

Example 1.9.2: Show that the function xexy
3

1
)1(   is a solution to the 

first-order initial value problem 
3

2
)0(,  yxy

dx

dy
. 

Solution:  Consider, xyyxf
dx

dy
 ),(              ................  (1) 

From the function, xx e
dx

dy
exy

3

1
1,

3

1
)1(      ............  (2) 

Substituting the values of 
dx

dy
 and y from equation (2) in equation (1), we 

obtain 

xxx exexexy
dx

dy

3

1
1

3

1
)1(

3

1
1   

Thus, LHS = RHS. 

The function satisfies the initial condition because 

3

2

3

1
1)0(

3

1
)1(  yexy x . 

The graph of the function is shown in the following Figure. 

 



 

  Figure 

Slope Fields, Viewing Solution Curves: 

Each time we specify an initial condition 00 )( yxy   for the solution of a 

differential equation ),(/ yxfy  , the solution curve (graph of the solution) is 

required to pass through the point ),( 00 yx  and to have slope ),( 00 yxf there. 

We can picture these slopes graphically by drawing short line segments of 

slope ),( yxf  at selected points ),( yx  in the region of the xy-plane that 

constitutes the domain of ƒ. Each segment has the same slope as the solution 

curve through ),( yx and so is tangent to the curve there. The resulting picture 

is called a slope field (or direction field) and gives a visualization of the 

general shape of the solution curves. The following Figure (a) shows a slope 

field, with a particular solution sketched into it in Figure (b). We see how 

these line segments indicate the direction the solution curve takes at each 

point it passes through. 



  

   Figure (a)    Figure (b) 

Slope field for xy
dx

dy
  The particular solution curve 

through the point 








3

2
,0  

 

1.10 Statements of Existence and Uniqueness Theorems 

 

In ODE theory the following questions are naturally arising :   

 Given an initial value theorem (IVP) is there a solution to it (question 

of existence)?  

  If there is a solution is the solution unique (question of uniqueness)? 

  For which values of x does the solution to initial value theorem (IVP) 

exists (the interval of existence)? 



The fundamentally important question of existence and uniqueness of 

solution for initial value theorem (IVP) was first answered by Rudolf 

Lipschitz in 1876 (nearly 200 years later than the development of ODE). In 

1886 Giuseppe Peano discovered that the initial value theorem IVP has a 

solution (it may not be unique) if   is a continuous function of ( ,  ). In 

1890 Peano extended this theorem for system of first order ODE using 

method of successive approximation. In 1890 Charles Emile Picard and 

Ernst Leonard Lindelo  f presented existence and uniqueness theorem for the 

solutions of initial value theorem (IVP). According to Picard Lindelo f 

theorem if   and 
y

f




 are continuous functions of x, y in some rectangle:{( , 

 ):   <   <  ;   <   <  } containing the point ),( 00 yx then in some interval 

)0(00   xxx  there exists a unique solution of initial value 

problem (IVP). 

Equivalently, 

In addition to its intrinsic mathematical interest, the theory of ordinary 

differential equations has extensive applications in the natural sciences, 

notably physics, as well as other fields. The existence and uniqueness of a 

solution to a first-order differential equation, given a set of initial conditions, 

is one of the most fundamental results of ODE.  



We will investigate solutions to the differential equation, 

00 )(),,( ytyytf
dt

dy
  ............(1)  

where t ∈ R, y ∈ R
n
 , and ),( ytf is defined and differentiable (of class C

r
 , r ≥ 

1) in a domain U of R × R
n
. A solution will be a function φ : R → R

n
 n, 

where  

  00 )(,)(,)( ytttft 


   ..........(2)  

We will state the following theorems, which guarantee the existence and 

uniqueness of the solution for any equation of the form (1).  

Theorem 1.10.1: (The Existence Theorem).  

Suppose the right-hand side y  of the differential equation ),( ytf
dt

dy
 is 

continuously differentiable in a neighbourhood of the point ),( 00 yt ∈ R × R
n
 . 

Then there is a neighbourhood of the point 0t  such that a solution of the 

differential equation is defined in this neighbourhood with the initial 

condition yt )( 0 , where y  is any point sufficiently close to 0y . Moreover, 

this solution depends continuously on the initial point y .  

Theorem 1.10.2: (The Uniqueness Theorem).  



Given the above conditions, there is only one possible solution for any given 

initial point, in the sense that all possible solutions are equal in the 

neighbourhood under consideration. 

1.11 Summary 

 

In this unit, we studied the definition of differential equation and its various 

types. We also saw the order and degree of differential equations and its 

solution approaches. We also studied formation of differential  equations and 

its geometrical interpretation. The initial value problem and boundary value 

problem are discussed with existence and uniqueness theorems. 

1.12 Terminal Questions 

 

1. Find the differential equation of the curve           

2. Find the differential equation of the curve as      

3. Find the order and degree of the differential equation (
   

   
   

 
  

  
       

1.13. Answers to exercises 

1.5 Test Your Progress 



i. Order  1 and degree 1   

ii.  Order 2 and degree 1 

iii. Order 3 and degree 1 

iv. Order 4 and degree 1 

v. Order 1 and degree 1 

vi. Order 4 and degree 1 

vii. Order 2 and degree 2 

viii. Order 2 and degree 1 

ix. Order 2 and degree 3 

x. Order 3 and degree 1 

 

1.7 Test Your Progress 

1. 0
2

2


dx

yd
 

2 0

2

2

2











dx

dy
y

dx

dy
x

dx

yd
xy    

3  065 ///  yyy   

4. 044 ///  yyy   

5. 02 ///  yyy  

6.  
xy

xy

dx

dy

2

22 
    



7. 02  y
dx

dy
x   

8. 0

2

2

2
































dx

dy

x

y

dx

dy

dx

yd
y   

9.

 

0

2

2

2
































dx

dy

x

y

dx

dy

dx

yd
y   

10. 
y

x

dx

dy




3
 

11. 0//  yy  

 12. 1
dx

dy
  



Unit –02: Methods of solution of a differential equation of first 

order and first degree 

 

Structure 

2.1. Introduction 

2.2. Objectives 

2.3. Methods of solution of differential equations of first order and first 

degree 

2.4. Method of separation of variables. 

2.5. Solution of Homogeneous equations 

2.6. Equations reducible to Homogeneous form 

2.7. Summary 

2.8 terminal Questions 

2.9 Answers to exercises 

 

 

 

 

 

 



2.1 Introduction 

 

Ordinary differential equations find a wide range of application in biological, 

physical, social and engineering systems which are dynamic in character. 

They can be used to affectively analyze the evolutionary trend of such 

systems, they also aid in the formulation of these systems and the qualitative 

examination of this stability under and adaptability to external stimuli. 

Ordinary Differential Equation: A differential equation which contains only 

one independent variable and the derivatives are with respect to this 

independent variable only is called ordinary differential Equations.  

For Example:  

1. xy
dx

dy

dx

yd
sin5

2

2

  2. 04
2

2

 y
dx

yd
 3. xy

dx

dy
log  

The general first-order differential equation for the function )(xfy  is written 

as ),( yxf
dx

dy
 ,  where ),( yxf  can be any function of the independent variable 

x and the dependent variable y.  

OR 

Any differential equation of the first order and first degree can also be written 

in the form 

0),(),(  dyyxNdxyxM . 



Example 2.1.1: The differential equation 

xy

yx

dx

dy

2

3




  this can also be written as 0)3()2(  dyyxdxxy  

Existence of a solution: The general solution of the equation ),( yxf
dx

dy
 , if 

it exists, has the form 0),,( Cyxf , where C is an arbitrary constant. Under 

what circumstances does a general solution exist? We have the following 

theorem. 

Theorem 1:  A general solution of  ),( yxf
dx

dy
 exists over some specified 

region R of points ),( yx  if the following conditions are met: 

 

a) ),( yxf is continuous and single-valued over R 

b)  
dy

f
 exists and is continuous at all points of R 

The general solution f(x, y, C) = 0 of a differential equation ),( yxf
dx

dy
 over 

some region R consists of a family of curves, called the integral curves of the 

differential equation, (one curve for each possible value of C, each curve 

representing a particular solution), such that through each point in R there 

passes one and only one curve of the family 0),,( Cyxf . 

 



2.2. Objectives 

 

After reading this unit students should be able to: 

 Understand and apply the different methods of solution of differential 

equations of first order and first degree  

 Solve the separable, homogeneous and non homogeneous first order 

and first degree ODE’s 

 

2.3. Methods of solution of differential equations of first order 

and first degree 
 

i) Method of Separation of variables 

ii) Method of solving the reducible to separable form 

iii) Method of solving the Homogenous ODE 

iv) Method of solving the Non-Homogenous (Reducible to homogeneous) 

ODE 

 

2.4. Method of Separation of Variables 

 

If ),( yxf
dx

dy
 can be expressed as a product )()( ygxf

dx

dy
 , where  )(xf is a 

function of x  



and )( yg is a function of y, then the differential equation ),( yxf
dx

dy
 is said 

to be of variable  

separable form. The differential equation ),( yxf
dx

dy
 then has the form 

)()( ygxf
dx

dy
 , it  

can be written as  dxxf
yg

dy
 )(

)(
, then it becomes separable equation. 

The method of solution of it is, by integrating both sides 

i.e., Cdxxf
yg

dy
  )(

)(
. Where C is the arbitrary constant. 

Example 2.4.1: Solve the differential equation  2,
2

1





 y

y

x

dx

dy
. 

Solution: Consider,   

cx
xy

y

Cdxxdyy

obtainwegIntegratin

FormSeparableVariabledxxdyy

y

x

dx

dy














22
2

)1()2(

,

)()1()2(

,
2

1

22

 

This is the required general solution. 

Example 2.4.2: Solve the differential equation  
2

2

1

1

x

y

dx

dy




  

Solution: Consider,   



CxyOr

Cxy

C
x

dx

y

dy

obtainwegIntegratin

FormSeparableVariable
x

dx

y

dy

x

y

dx

dy




























11

11

22

22

2

2

tantan

tantan

11

,

)(
11

1

1

 

This is the required general solution. 

Example 2.4.3: Solve the differential equation  y
dx

dy
x cot  

Solution: Consider,   

  

C
x

y
Or

Cxy

Cdx
x

ydy

weobtaingIntegratin

FormSeparableVariabledx
x

ydy

y
dx

dy
x













sec

loglog)log(sec

log
1

tan

,,

)(
1

tan

cot

 

This is the required general solution. 

Example 2.4.4: Solve the initial value problem  0)0(0)1( 2  ywithy
dx

dy
 

Solution: Consider,   



)1...(....................tan

)1(

,

)(
)1(

)1(

0)1(

1

2

2

2

2

Cxy

Cdx
y

dy

obtainwegIntegratin

FormSeparableVariabledx
y

dy

y
dx

dy

y
dx

dy

















 

Now, using the given initial conditions as 0)0( y , equation (1) becomes 

000tantan 11   COrCCxy  

Thus, the required particular solution is 0tantan 11   xyOrxy  

Example 2.4.5: Solve the differential equation  x
dx

dy
xy  4  

Solution: Consider,   

Cdx
x

dyy

gIntegratindx
x

dyyOr

FormSeparableVariabledx
x

x
dyy

x
dx

dy
xy


























 1
2

,1
2

)(
4

4

 

CxxyOr

CxdxxyOr



 


2/12/3

2/12/3

4
3

2

2
3

2
 

This is the required general solution. 



 

Method of Reducible to Separation of Variables 

Some differential equations may not appear in variable separable form 

initially but through appropriate substitutions, then it can be made variable 

separable form. 

Example 2.4.6: Solve the differential equation  2212 yxxy
dx

dy
x   

Solution: Consider,   

 

2 22 1 ..............................(1)
dy

x y x x y
dx

  
 

2

,

(1)

2 1 , var

Substitute xy v then differentiating with respect to x we get

dy dv
x y

dx dx

Equation becomes

dv
x v this is in iable separabe forn in terms of x and v

dx



 

 

 

2

2

2
1

1 2

2 , int ,
1

2
1

sin 2
2

sin ( ) .

dv
x dx egrating we obtain

v

dv
x dx C

v

x
v C

Or xy x C is the required general solution





 


 


 
   

 

 

 
 



2.4 Test Your Progress 

Solve the following ODE’s 

i) 12 2  x
dx

dy
x  

ii) 
2

2

y

x

dx

dy
  

iii) 
x

x

dx

dy

cos1

cos1




  

iv) yxe
dx

dy   

v) xe
dx

dy x sin  

vi) )2)(2(  yx
dx

dy
xy  

vii) dxeedyee xxxx )()(    

viii) 0)2(1)1( 2  ywith
dx

dy
xx  

ix) 1)0(tan  ywithxy
dx

dy
 

x) 1)0(
21

cos
2




 ywith
y

xy

dx

dy
 

xi) 2)( yx
dx

dy
  

 

 



2.5. Solution of Homogeneous equations 

 

A function ),( yxf  is said to be homogeneous function of degree n if

),(),( yxfyxf n   for any nonzero constant λ. 

Consider the following functions; 

i) xyyyxf 2),( 2   

By the definition of homogeneous functions; 

),()2())((2),( 22222 yxfxyyyxyyxf    

This implies that the given function ),( yxf  is a homogeneous function of 

degree 2. 

ii) yxyxf 32),(   

By the definition of homogeneous functions; 

),()32(32),( yxfyxyxyxf    

This implies that the given function ),( yxf  is a homogeneous function of 

degree 1. 

iii) 
x

y
yxf cos),(   

By the definition of homogeneous functions; 

),(coscoscos),( 0 yxf
x

y

x

y

x

y
yxf 




   



This implies that the given function ),( yxf  is a homogeneous function of 

degree 0. 

iv) yxyxf cossin),(   

By the definition of homogeneous functions; 

),(cossin),( yxfyxyxf n   

This implies that the given function ),( yxf  is not an homogeneous function. 

Equivalently, 

Therefore, a function ),( yxf is a homogeneous function of degree n if 

)/(),()/(),( yxfyyxfOrxyfxyxf nn  . 

Consider the following functions; 

i)   )/(/(2)/(2),( 2222 xyfxxyxyxxyyyxf   

Or    )/()/(212),( 222 yxfyyxyxyyyxf  .  

Therefore, ),( yxf  is a homogeneous function of degree 2. 

ii)    )/(/3232),( xyxfxyxyxyxf  . 

Or     )/(3/232),( yxxfyxyyxyxf   

Therefore, ),( yxf  is a homogeneous function of degree 1. 

iii) )/(cos),( 0 xyfx
x

y
yxf    

Therefore, ),( yxf  is a homogeneous function of degree 0. 

iv) )/(cossin),( xyfxyxyxf n   Or  )/(cossin),( yxfyyxyxf n  



Therefore, ),( yxf  is not a homogeneous function. 

 

2.5.1. Method of Solution of Homogeneous equations: 

If the differential equation )/(),( xyfxyxf
dx

dy n  .............  (1)  is 

homogeneous of degree zero. Then,  

i.  Substitute 
dx

dv
xv

dx

dy
obtainwextrwatingdifferentionvxy  ,.., . 

ii. Put the value of  
dx

dv
xv

dx

dy
  in equation (1) 

iii. Simplified equation reduces to the variable separable form in terms 

of v  and x   

iv. Integration leads to the general solution in terms of v  and x  

v. Substitute 
x

y
v  in the solution obtained in step (iii) gives the 

required general solution of the equation (1). 

Note:  If the homogeneous differential equation is in the form 

)/(),( yxfyyxf
dy

dx n where, ),( yxf is homogeneous of degree n., then we 

make a substitution 
y

x
v   i.e., vyx  and we proceed further to find the 

general solution as discussed above. 



Example 2.5.1: Show that the differential equation
xyx

yx

dx

dy






2

22

 is 

homogeneous and solve it 

Solution: Consider,   

  
 

)/(
/1

/1

)1.......(..............................

0

2

22

2

22

xyfx
xyx

xyx

dx

dy

xyx

yx

dx

dy












 

RHS is a homogeneous function of degree zero. Therefore, equation (1) is a 

homogeneous differential equation. 

To solve equation (1), let’s substitute vxy  . Then,

)2.......(..........,..
dx

dv
xv

dx

dy
getwextrwatingdifferention   

Substitute equation (2) in equation (1) , we obtain, 

v

v

dx

dv
x

v

vvv
v

v

v

dx

dv
xOr

vxx

xvx

dx

dv
xv





















1

1

1

1

1

1 222

22

222

 

This is in variable separable form 

C
x

dx
dv

v

v

egrating
x

dx
dv

v

v

log
1

1

int,
1

1














 



Cxv

Cxdv
v

v
dv

v

logloglog)1log(

loglog
11

1







   

 

Example 2.5.2: Show that the differential equation 0)()(  dxyxdyyx  is 

homogeneous and solve it 

Solution: Consider,   

0)()(  dxyxdyyx

 
RHS is a homogeneous function of degree zero. Therefore, equation (1) is a 

homogeneous differential equation. 

To solve equation (1), let’s substitute vxy  . Then,

)2......(....................,..
dx

dv
xv

dx

dy
getwextrwatingdifferention   

Substitute equation (2) in equation (1) , we obtain, 

v

v

dx

dv
x

v

vvv
v

v

v

dx

dv
xOr

xvx

vxx

dx

dv
xv





















1

1

1

1

1

1

2

2

 

This is in variable separable form 



Cx
v

vOr

Cxvv

Cxdv
v

v
dv

v

C
x

dx
dv

v

v

egrating
x

dx
dv

v

v

log
1

1
logtan

loglog)1log(
2

1
tan

loglog
11

1

log
1

1

int,
1

1

2

1

21

22

2

2

































 

Now, substitute 
x

y
v   we get 

Cx
yx

x

x

y
Or

Cx

x

yx

y

loglogtan

log

1

1
logtan

22

1

2

1






































 

This is the required general solution of the given homogeneous differential 

equation (1). 

Example 2.5.3: Show that the differential equation x
x

y
y

dx

dy

x

y
x 

















coscos  

is homogeneous and solve it 

Solution: Consider,   

cos cos

cos

............................( 1 )

cos

y dy y
x y x

x dx x

y
y x

dy x
Or

ydx
x

x

   
    

   

 
 

 


 
 
 

 



0

/ cos 1 / cos 1

( / )

cos cos

y y
x y x y x

x xdy
x f y x

y ydx
x

x x

      
       

      
  

   
   
   

 

RHS is a homogeneous function of degree zero. Therefore, equation (1) is a 

homogeneous differential equation. 

To solve equation (1), let’s substitute vxy  . Then,

)2......(....................,..
dx

dv
xv

dx

dy
getwextrwatingdifferention   

Substitute equation (2) in equation (1) , we obtain, 

vdx

dv
x

v

vvvv
v

v

vv

dx

dv
xOr

vx

xvvx

dx

dv
xv

cos

1

cos

cos1cos

cos

1cos

cos

cos












 

This is in variable separable form 

 xCv

Cxv

C
x

dx
vdv

egrating
x

dx
vdv

logsin

loglogsin

logcos

int,cos









  

Now, substitute 
x

y
v   we get 

 xC
x

y
logsin 








  



This is the required general solution of the given homogeneous differential 

equation (1). 

 

Example 2.5.4: Show that the differential equation 0)2(2 //  dyxeydxye yxyx  

is homogeneous and solve it 

Solution: Consider,   

 
)/(

2

1)/(2

)1...(..............................
2

2

0)2(2

0

/

/

/

/

//

yxfy
ye

eyxy

ye

yxe

dy

dx
Or

dyxeydxye

yx

yx

yx

yx

yxyx











 

RHS is a homogeneous function of degree zero. Therefore, equation (1) is a 

homogeneous differential equation. 

To solve equation (1), let’s substitute vyx  . Then,

)2......(....................,..
dy

dv
yv

dy

dx
getwextrwatingdifferention   

 

Substitute equation (2) in equation (1) , we obtain, 

v

v

vv

v

v

v

v

v

v

v

v

edy

dv
yOr

e

veve
v

e

ve

dy

dv
yOr

e

ve

dy

dv
yv

e

ve

ye

yvye

dy

dv
yv

2

1

2

212

2

12

2

12

2

12

2

2



















 



This is in variable separable form 

 yCe

Cye

C
y

dy
dve

egrating
y

dy
dve

edy

dv
y

v

v

v

v

v

/log2

loglog2

log2

int,2

,
2

1












  

Now, substitute 
y

x
v   we get 

 yCe yx /log2 /   

This is the required general solution of the given homogeneous differential 

equation (1). 

 

Example 2.5.5: Show that the differential equation 

02)/log(  xdydyxyxydx  is homogeneous and solve it. 

Solution: Consider,   

 dyxyxxydxOr

xdydyxyxydx

)/log(2

02)/log(




 

 

 
)/(

)/log(2

)1...(..............................
)/log(2

0 xyfx
xyx

y

dx

dy

xyxx

y

dx

dy
Or









 

RHS is a homogeneous function of degree zero. Therefore, equation (1) is a 

homogeneous differential equation. 



To solve equation (1), let’s substitute vxy  . Then,

)2......(....................,..
dx

dv
xv

dx

dy
getwextrwatingdifferention   

Substitute equation (2) in equation (1) , we obtain, 

v

vv

dx

dv
xOr

v

vvv

v

vvvv

dx

dv
xOr

v
v

v

dx

dv
x

v

v

vxx

vx

dx

dv
xv

log2

)1(log

log2

log

log2

log2

log2

log2log2



























 

This is in variable separable form 

Cxv
vv

dv

C
x

dy

v

dv

vv

dv

egrating
x

dx
dv

vv

v
Or

x

dx
dv

vv

v

logloglog
)log1(

log
)log1(

int,
)log1(

)log1(1

)1(log

log2
























 

Now, substitute 
x

y
v   we get 

This is the required general solution of the given homogeneous differential 

equation (1). 

 



Example 2.5.6: For the differential equation 

10;0)/(cos  xwhenyxyec
x

y

dx

dy
,  find  

the particular solution satisfying the given condition. 

Solution: Consider,   

)1...(..........)........./()/(cos

0)/(cos

0 xyfxxyec
x

y

dx

dy
Or

xyec
x

y

dx

dy





 

RHS of equation (1) is a homogeneous function of degree zero. Therefore, 

equation (1) is a homogeneous differential equation. 

To solve equation (1), let’s substitute vxy  . Then, Substitute equation (2) in 

equation (1) , we obtain, 

ecv
dx

dv
xOr

vecvv
dx

dv
x

ecvv
dx

dv
xv

cos

cos

cos







 

This is in variable separable form 

Cxv

C
x

dx
dvv

egrating
x

dx
dvv

logcos

logsin

int,sin







  



Now, substitute 
x

y
v   we get 

)3(....................log/cos Cxxy   

This is the required general solution of the given homogeneous differential 

equation (1). 

Now, to find the particular solution, using the given initial conditions; 

10  xwheny . 

From equation (3), we get eCOrC /11log  . 

Therefore, the require particular solution is given by  

1log/cos

1
loglog/cos





xxyOr

e
xxy

 

2.5 Test Your Progress 

1. Which of the following are the homogeneous differential equations?  

(i) 0)423()564(  dxxydyyx    

(ii) 0)()( 33  dyyxdxxy   

(iii) 02)2( 23  xydydxyx   

(iv) 0)( 222  dyyxyxdxy  

 

 



2. Show that the given differential equation is homogeneous and solve each of 

them. 

(i) 
x

yx

dx

dy 
  

(ii) yx
dx

dy
yx 2)(   

(iii) 
xy

yx

dx

dy

2

22 
  

(iv)    xdyxyxxyyydxxyyxyx )/cos()/sin()/sin()/cos(   

(v) 0)/sin(  xyxy
dx

dy
x  

(vi) 12;02)2( 22  xwheny
dx

dy
xyxy

 

(vii) xy

y
y

dx

dy
x

loglog 


 

 

2.6. Equations reducible to Homogeneous form (Non-

Homogeneous ODE’s of first order) 

 

The differential equation of the form )1..(....................
222

111

cybxa

cybxa

dx

dy






 
is called 

non homogeneous equation. 

The method of solution involves following two types 



Type 1: If 
2

1

2

1

b

b

a

a
 , if however )(

2

1

2

1 saym
b

b

a

a
  then the differential equation 

becomes of the form )2..(....................
)(

2

1

cbyax

cbyaxm

dx

dy




 . To solve this equation, 

we substitute the common expression vbyax  , on differentiation we get 

dx

dv

dx

dy
ba  . The transformed equation will be solved by the method of 

variable separable. 

Type 2: If 
2

1

2

1

b

b

a

a
 then we substitute hXx   and kYy  , where kandh  are 

arbitrary constant to be so chosen as to make the given equation 

homogeneous. With the above substitutions, we get dXdx   and dYdy  , so 

that 
dX

dY

dx

dy
 . This reduces the equation to homogeneous form. 

Hence, the given equation becomes 

)3..(....................
)(

)(

22222

11111

ckbhaYbXa

ckbhaYbXa

dX

dY




  

Now, choose kandh such that 0111  ckbha  and 222 ckbha  =0.  

Then, the differential equation becomes 

YbXa

YbXa

dX

dY

22

11




 , which is homogeneous. 



Now, this equation can be solved as in case of homogeneous equations by 

substituting VXY  . Finally, by replacing X by )( hx  and Y  by )( ky  we shall 

get the solution in original variables x and y . 

 

Illustrations on Type-1, non homogeneous ODE’s of first order: 

Example 2.6.1: Find the solution of the differential equation  122

3






yx

yx

dx

dy

. 

Solution: We have, 
)1.....(..........

122

3






yx

yx

dx

dy

 

Equation (1) is a non-homogeneous ordinary differential equation of Type 1 

Here, 
2

1

2

1

2

1

2

1 
b

b

a

a
 

1)(2

3






yx

yx

dx

dy

 

Put 
11 

dx

dv

dx

dy
Or

dx

dv

dx

dy
vyx

 

Equation (1) gives, 1
12

3

12

3
1 











v

v

dx

dv
Or

v

v

dx

dv
 

12

43

12

123

1
12

3

















v

v

dx

dv

v

vv

v

v

dx

dv
Or

 

This is in variable separable form 



CxvvOr

Cxvv

Cdxdv
v

egratingdxdv
v

Or

dxdv
v

v




































)43log(
9

5

3

2

)43log(
3

1

3

5

3

2

43

3/5

3

2

int,
43

3/5

3

2

43

1

 

Substitute vyx  , we get 

  Cxyxyx  4)(3log
9

5
)(

3

2
 is the required general solution. 

Example 2.6.2: Find the solution of the differential equation  424

12






yx

yx

dx

dy

. 

Solution: We have, 
)1.........(..........

424

12






yx

yx

dx

dy

 

Equation (1) is a non-homogeneous ordinary differential equation of Type 1 

Here, 
2

1

2

1

4

2

2

1

2

1 
b

b

a

a
 

4)2(2

12






yx

yx

dx

dy

 

Put 
222 

dx

dv

dx

dy
Or

dx

dv

dx

dy
vyx

 

Equation (1) gives, 2
42

1

42

1
2 











v

v

dx

dv
Or

v

v

dx

dv
 



42

95

42

841











v

v

dx

dv
Or

v

vv

dx

dv

 

This is in variable separable form 

CxvvOr

Cxvv

Cdxdv
v

egratingdxdv
v

dxdv
v

v





































)95log(
25

2

5

2

)95log(
5

1

5

2

5

2

95

5/2

5

2

int,
95

5/2

5

2

95

42

 

Substitute vyx 2 , we get 

  Cxyxyx  9)2(5log
25

2
)2(

5

2
 is the required general solution. 

Example 2.6.3: Find the solution of the differential equation  433

6






yx

yx

dx

dy

 

Solution: We have, 
)1.(....................

433

6






yx

yx

dx

dy

 

Equation (1) is a non-homogeneous ordinary differential equation of Type 1 

Here, 
3

1

3

1

3

1

2

1

2

1 





b

b

a

a
 

4)(3

6






yx

yx

dx

dy

 

Put dx

dv

dx

dy
Or

dx

dv

dx

dy
vyx  11

 



Equation (1) gives, 
43

6
1

43

6
1











v

v

dx

dv
Or

v

v

dx

dv
 

43

22

43

643











v

v

dx

dv
Or

v

vv

dx

dv

 

This is in variable separable form 

 

CxvvOr

Cxvv

Cdxdv
v

egratingdxdv
v

dxdv
v

v





































)1log(
2

7

2

3

)1log(73
2

1

1

7
3

2

1

int,
1

7
3

2

1

22

43

 

Substitute vyx  , we get 

  Cxyxyx  1)(log
2

7
)(

2

3
 is the required general solution. 

 

Illustrations on Type-2, non homogeneous ODE’s of first order: 

Example 2.6.4: Find the solution of the differential equation  4

73






x

yx

dx

dy

 

Solution: We have, 
)1.....(..........

4

73






x

yx

dx

dy

 

Equation (1) is a non-homogeneous ordinary differential equation of Type 2, 

since 



0

3

1

1

2

1

2

1 


b

b

a

a
 

Let’s substitute hXx   and kYy  , where kandh  are arbitrary constants. 

Then,  

we get dXdx   and dYdy  , so that 
dX

dY

dx

dy
 .  

Thus, the given equation (1) becomes 

)2..(....................
)4(

)73(3

4)(

7)(3)(











hX

khYX

hX

kYhX

dX

dY
 

Now, choose h and k such that 073  kh  and 04 h , this implies that h = 

4 and k = -1 

Then, the differential equation (2) becomes, 

)/(

31
3 0 XYfX

X

X

Y
X

X

YX

dX

dY























 .......................(3),  which is 

homogeneous in terms of X and Y of degree zero. 

Now, substituting
dX

dV
XV

dX

dY
VXY  .  

Therefore, Equation (3) reduces to 

V
dX

dV
XOrV

dX

dV
XV 4131 

 

This is in variable separable form 



4/1

4/1

)41(

)41(

1
loglog

log)41log(
4

1

log
41

,
41

V

C
XOr

V
CXOr

CXV

C
X

dX

V

dV

gIntegratin
X

dX

V

dV



















 

Now, Substitute 
X

Y
V  then put 4 xX  and 1 yY , we get 

84
84

)4(
4

4

1
41

4

41

4/1



































yxCOr
yx

xC
xOr

x

y

C
xOr

X

Y

C
X

 

This is the required general solution of the equation (1).  

Example 2.6.5: Find the solution of the differential equation  1

62






yx

y

dx

dy

 

Solution: We have, 
)1...(....................

1

62






yx

y

dx

dy

 

Equation (1) is a non-homogeneous ordinary differential equation of Type 2, 

since 

1

2

1

0

2

1

2

1 
b

b

a

a
 

Let’s substitute hXx   and kYy  , where kandh  are arbitrary constants. 

Then,  



we get dXdx   and dYdy  , so that 
dX

dY

dx

dy
 .  

Thus, the given equation (1) becomes 

)2..(....................
)1(

)62(2

1)()(

6)(2











khYX

kY

kYhX

kY

dX

dY
 

Now, choose h and k such that 062 k  and 01 kh , this implies that h = 

2 and k = -3 

Then, the differential equation (2) becomes, 

)/(

1

)/2(2 0 XYfX

X

Y
X

XYX

YX

Y

dX

dY















 .......................(3),  which is homogeneous 

in terms of X and Y of degree zero. 

Now, substituting
dX

dV
XV

dX

dY
VXY  .  

Therefore, Equation (3) reduces to 

1
.,.

1)1(

)1(

)1(

)1(

1

2

1

2

1

2

2

2

2
































V

VV

dX

dV
Xei

V

VV

V

VV

dX

dV
X

V

VV

V

VVV
V

V

V

dX

dV
XOr

V

V

dX

dV
XV

 

This is in variable separable form 








































X

C
dV

VV

C
X

dX

VV

dVV

gIntegratin
X

dX
dV

VV

V

log
1

1

2

log
)1(

,
)1(

2

2

 








 


















 











V

V
XCOr

X

C

V

V
Or

X

C
VV

2

2

)1(

log
)1(

log

loglog)1log(2

 

Now, Substitute 
X

Y
V  then put 2 xX  and 3 yY , we get 

 





















 








 


)3)(2(

)2()3(
)2(

)(

/

)1/(

2

22

yx

xy
xCOr

XY

XY
X

XY

XY
XC

 

This is the required general solution of the equation (1).  

Example 2.6.6: Find the solution of the differential equation 

 

2

2

12














x

yx

dx

dy

 

Solution: We have, 
)1..(..............................

2

12
2















x

yx

dx

dy

 

Equation (1) is a non-homogeneous ordinary differential equation of Type 2, 

since  



0

1

1

2

2

1

2

1 
b

b

a

a
 

Let’s substitute hXx   and kYy  , where kandh  are arbitrary constants. 

Then,  

we get dXdx   and dYdy  , so that 
dX

dY

dx

dy
 .  

Thus, the given equation (1) becomes 

)2.(....................
)2(

)12(2

2)(

1)()(2
22




























hX

khYX

hX

kYhX

dX

dY
 

Now, choose h and k such that 012  kh  and 02 h , this implies that h = 

2 and k = -3 

Then, the differential equation (2) becomes, 

)/(
/2(2 0

22

XYfX
X

XYX

X

YX

dX

dY
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





 








 


          
.......................(3),  which is 

homogeneous in terms of X and Y of degree zero. 

Now, substituting 
dX

dV
XV

dX

dY
VXY  .  

Therefore, Equation (3) reduces to 

 

2

7

2

3

432 22

iV
dX

dV
XOr

VV
dX

dV
XOrV

dX

dV
XV













 

This is in variable separable form 
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V
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C
X
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V
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gIntegratin
X
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7
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


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
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


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





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Now, Substitute 
X

Y
V  then put 2 xX  and 3 yY , we get 

)2(log
7)2(

))2(3)3(2(
tan

7

2

log
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)32(
tan

7

2

log
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2/3/(2
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
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 


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
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OR 

3)2(32(log
2

7
tan)2(7

2

1
)(

,32

3(log
2

7
tan7

2

1
)(




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
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
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


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


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


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
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
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





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xCxxxy

getweyYandxXSubstitute

XCXXXY

 

This is the required general solution of the equation (1). 

 



2.6 Test Your Progress 

Find the solutions of the following differential equations. 

(i) 
1

1






yx

yx

dx

dy
 

(ii) 
122

3






yx

yx

dx

dy
 

(iii) 
123

346






yx

yx

dx

dy
 

(iv) 423)564(  xy
dx

dy
yx  

(v) 0)425()9512(  dyyxdxyx  

(vi) 32

12






yx

yx

dx

dy
 

(vii) 0)124()12(  dyyxdxyx  

(viii) 564

423






yx

xy

dx

dy
 

(ix) dxxydyyx )12()342(   

 

 

 



2.7 Summary 

 

In this unit, we studied the method of solving the differential equation in 

which variables are separable and homogeneous equation and method of 

solving them. We also studied the equation which are reductive to the 

homogeneous from. 

 

2.8 Terminal Questions 

 

1. Solve the differential equations. 

a)    
  

  
      

  

  
   

b)       
 

 
         

 

 
            

 

 
         

 

 
    

  

  
   

c) 
  

  
            

d)                   

 

2.9. Answers to exercises 

 

2.4 Test Your Progress 

i) Cxxy  log2  

ii) Cx
y

 2
3

3
 



iii) Cxxy  tan  

iv) Cee yx    

v) Cxx
e

y
x

 )cos(sin
2

 

vi) Cxxyy  22 log)2log()2(  

vii) Chxy  seclog  

viii) 






 


x

xx
y

2

)1()1(9
log

22

 

ix) 1seclog 22  xy  

x) 1sinlog 2  xyy  

xi) xcxy  )tan(  

2.5 Test Your Progress 

1. (iv) is the only homogeneous differential equation 

2. (i) xxCy )log(  

(ii) C
x

yx
yxyx 







 
 

3

2
tan32)log( 122  

(iii) xCyx  22  

(iv) 
xy

x

y

C

sec

  

(v) 
x

y

x

y
ecCx cotcos 

 



(vi) 1:
1

:
1

2

/2 


 y

x

yx xeSolutionParticularande
x

CSolutionGeneral
 

(vii) 
2x

y
C 

 

2.6 Test Your Progress 

(i) )( yxCe xy 

  

(ii)   C
x

yxy 
3

433log
9

5

3

2

 

(iii) 3232  yxCe yx

 

(iv) Cxyxyx  49)222114(log9)32(14
 

(v) Cyxyxyx  4956 22

 

(vi) Cxyxy 




































22

5

1

5

7

5

1

5

7

 

(vii) Cyxyx  12log2
 

(viii) Cxyxyx  49)222114(log9)32(14
 

(ix) yxCeyx 84584 
 

(x) CyxCe yx  232

 

2.7 Test Your Progress 

i) Cxxy  )1( 2

 

ii) C
x

x

x
y 

 31

3

 



iii) Ceyx x
x


log

2

1

 

iv) Cxxy  )1( 2

 

v) Cxye x 
2

 

vi) C
xxx

yx 
164

log 44
2

 

vii) Cyxe y  tan
 

viii) xCxy tantan 
 

ix) 
2

2

222 1
coslog2 Cx

x
xxxy 










 

x) Cxxy  2coslog2
 

xi) 2secsec2  xxy
 

xii) 
4

tan)1( 12 
  xxy

 

2.8 Test Your Progress 

i) C
xyx


255 2

51

 

ii) C
xx

x

xy





1log1

 

iii) C
xxx

xy 
45

2

6
)1(
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iv) C
eex

ey
xx

x 

22
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2
2

1

 



v) Cxxy 


 522 cos
5

2
cos
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x

y
vi 



2

2

2

)1(
2

1

)1(

sin
)

 

Ceeeevii xeey xx

 )1()
 

Cexeyxviii xx log)
 

3
2

)
36
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
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y
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xyyxx sin3) 333 
 

 



Unit –03: Linear differential equation 

 

Structure 

3.1. Introduction 

3.2. Objectives 

3.3. Linear differential equations of first order and first degree 

3.4. Bernoulli’s differential equation (Or Non linear equations of 

first order and first degree) 

3.5. Summary 

3.6 Terminal Questions 

3.7 Answers to exercises 

 

 

 

 

 

 

 

 



3.1. Introduction 

 

The ordinary differential equations may be divided into two large 

classes, namely, linear equations and non-linear equations. Whereas non-

linear equations are difficult in general, linear equations are much 

simpler because then solutions have general properties that facilitate 

working with them, and there are standard methods for solving many 

particularly important linear differential equations.  

In the previous unit, we had learnt how to solve variable separable form, 

homogeneous and non homogeneous differential equations of first order 

and first degree. In this lesson we will learn how to solve linear, non 

linear ( i.e., Bernoulli’s Equation) , exact  and non exact ODE’s which 

are very useful in various physical and Engineering applications. 

 

3.2. Objectives 

 

After reading this unit students should be able to: 

 Understand and find the solution of linear differential equations of 

first order and first degree  

 Solve the Bernoulli’s equation ( Or Non linear differential 

equations) of first order and first degree  



 Solve the exact  differential equations of first order and first 

degree  

 Identify the integrating factor to Solve the non-exact first order 

and first degree ODE’s 

 

3.3. Linear differential equations of first order and first 

degree 

 

A first-order linear differential equation is one that can be written in the 

form )()( xQyxP
dx

dy
 . 

Where P and Q are continuous functions of x. Equation (1) is the linear 

equation’s standard 

form.  

Equation (1) is linear (in y) because y and its derivative 
dx

dy
 occur only to 

the first power, they are not multiplied together, nor do they appear as 

the argument of a function (such as sin y, ye , or 
dx

dy
). 

Example 3.3.1: Put the following equation in standard form: 

yx
dx

dy
x 32   



Solution: Consider, yx
dx

dy
x 32   

xy
xdx

dy

y
x

x
dx

dy

xbyDividing





3

3
 

Which is in the standard form )()( xQyxP
dx

dy
  with  

x
xP

3
)(   and 

xxQ )( , so the 

minus sign is part of the formula for P(x). 

3.3.2. Solving Linear Equations: 

We solve the equation QPy
dx

dy
  

by multiplying both sides by a positive function )(xv that transforms the 

left-hand side into 

the derivative of the product yxv )( . We will show how to find )(xv in a 

moment, but first we 

want to show how, once found, it provides the solution we seek. 

Here is why multiplying by )(xv works: 

Original equation in standard form is )()( xQyxP
dx

dy
 .................(1) 

Multiply by positive )(xv , we obtain 



)()()()()( xvxQyxvxP
dx

dy
xv   

)(xv  is chosen to make ).( yv
dx

d
Pvy

dx

dy
v   

  )()()( xQxvyxv
dx

d
  

Integrating w. r. t ‘ x ’ 

  dxxQxvyxv  )()()(  

dxxQxv
xv

y  )()(
)(

1
  .......................(2) 

 

Equation (2) expresses the solution of Equation (1) in terms of the 

functions )(xv and 

Q(x). We call )(xv an integrating factor for Equation (1) because its 

presence makes the 

equation integrable. 

 

Remark 3.3.1: 

Why doesn’t the formula for P(x) appear in the solution as well? It does, 

but indirectly, 

in the construction of the positive function )(xv . We have 

The condition imposed on )(xv is   )()()()()()( xyxvxP
dx

dy
xvxyxv

dx

d
  



By using the product rule of derivatives 

)()()(

)()()()()(

xyxvxP
dx

dv
yOr

xyxvxP
dx

dy
xv

dx

dv
y

dx

dy
xv





 

This last equation will hold if   )()( xvxP
dx

dv
 , which is in variable 

separable form 

0)(;)(
)(

 xvdxxP
xv

dv
 

Integrate both sides 

  dxxP
xv

dv
)(

)(
 

Or  dxPxv )(log  

Taking exponentiation on both sides to solve for )(xv . 


Pdxpdxv evOreelog   .........................(3) 

Thus a formula for the general solution to Equation (1) is given by 

Equation (2), where )(xv is given by Equation (3). However, rather than 

memorizing the formula, just remember how to find the integrating 

factor once you have the standard form so P(x) is correctly identified. 

Any anti derivative of P works for Equation (3). 



To solve the linear equation )()( xQyxP
dx

dy
 , multiply both sides by the 

integrating factor 
dxxP

exv
)(

)(  and integrate both sides. 

When you integrate the product on the left-hand side in this procedure, 

you always obtain 

the product )()( xyxv of the integrating factor and solution function )(xy

because of the way )(xv  is defined. 

 

 

Remark 3.3.2:  Here, it is observed that if the function )(xQ is identically 

zero in the standard form given by the equation (1), the linear equation is 

separable and can be solved by the method of variable separable form. 

)()( xQyxP
dx

dy
  

If  0)( xQ , then we get 

dxxP
y

dy
Or

yxP
dx

dy

)(

0)(





 

This is in variable separable form. 

 

 



 

Example 3.3.1: Solve the equation .0,32  xyx
dx

dy
x  

Solution: Let’s first put the given equation 0,32  xyx
dx

dy
x  in the 

standard form as xy
xdx

dy


3
..................(1)  so that it is linear and 

x
xP

3
)(  is identified. 

The integrating factor is 

 

3

log3

)/3()(

1

)(

x
e

eexv

x

dxxdxxP









 

Now, we multiply both sides of the equation (1) by the integrating factor 

viz., )(xv and then integrate 

C
x

y
x

dx
x

y
x

egrating
x

y
xdx

d
Or

x
y

xdx

dy

x
Or

x
x

y
xdx

dy

x




























11

11

int,
11

131

131

3

23

23

243

33

 

 



 

Solving this last equation for y gives the general solution: 

0,
1 323 








 xCxxC

x
xy

 

Example 3.3.2: Solve the equation .)2( /222 xexyx
dx

dy
x   

Solution: Let’s first put the given equation xexyx
dx

dy
x /222 )2(   in the 

standard form as xey
x

x

dx

dy /2

2

2 






 
 ..................(1)  so that it is linear and 

2

2
)(

x

x
xP


 is identified. 

The integrating factor is 

 

xxx

x
x

dx
xx

dx
x

x

xeee

e

eexv

22
log

2
log

212
22

)(

























 

Now, we multiply both sides of the equation (1) by the integrating factor 

viz., )(xv and then integrate 



 

C
x

eyx

egratingdxxxye
dx

d
Or

xy
x

x

dx

dy
xeOr

exey
x

x

dx

dy
xe

x

x

x

xxx












 









 






2

int,

2

2

2
/2

/2

2

/2

/2/2

2

/2

 

Solving this last equation for y gives the general solution: 









 

x

Cx
ey x

2

/2

. 

 

Example 3.3.3: Solve the equation .log2log xy
dx

dy
xx   

Solution: Let’s first put the given equation xy
dx

dy
xx log2log   in the 

standard form as
x

y
xxdx

dy 2

log

1









 ..................(1)  so that it is linear and 

xx
xP

log

1
)(  is identified. 

The integrating factor is 

 
xe

eexv

x

dx
x

x
dx

xx

log

)(

)log(log

log

/1

log

1


















 



Now, we multiply both sides of the equation (1) by the integrating factor 

viz., )(xv and then integrate 

 

 

 

  C
x

xy

Cdxx
x

xyOr

Cdxx
x

xy

egratingx
x

xy
dx

d
Or

x
x

y
xxdx

dy
x































2

)(log2
log

log
1

2log

log
2

log

int,log
2

)(log

log
2

log

1
log

2

 

  CxxyOr  2)(loglog  

Solving this last equation for y gives the general solution: 

x

C
xy

log
log  . 

 

Example 3.3.4: Solve the equation .1)1( 
dx

dy
yx  

Solution: Let’s first put the given equation 1)1( 
dx

dy
yx  in the 

standard form as 11
)1(

1



 yx

dy

dx
Oryx

dy

dx
Or

yxdx

dy

..................(1)  so that it is linear and 1)( yP is identified. 

The integrating factor is 



 y

dydyyP

e

eexv








1)(

)(
 

Now, we multiply both sides of the equation (1) by the integrating factor 

viz., )(xv and then integrate 

 

   

   

Ceeyxe

CdyeeyxeOr

Cdxyexe

egratingyexe
dy

d
Or

yex
dy

dx
e

yyy

yyy

yy

yy

yy

































)1(

)1(

1

int,1

1

 

Solving this last equation for x gives the general solution: 

yCeyx  2 . 

Example 3.3.5: Solve the equation .0)()1(
1tan2 


dx

dy
exy y  

Solution: Let’s first put the given equation 0)()1(
1tan2 


dx

dy
exy y  in 

the standard form as yy ex
dy

dx
yOrex

dy

dx
y

11 tan2tan2 )1(0)()1(


  

)1()1( 2

tan

2

1

y

e

y

x

dy

dx
Or

y









..................(1)  so that it is linear and 1)( yP is 

identified. 

The integrating factor is 



 
y

dy
ydyyP

e

eexv
1

2

tan

1

1

)(

)(





 

 

Now, we multiply both sides of the equation (1) by the integrating factor 

viz., )(xv and then integrate 

 

Cexe

Cdy
y

e
xeOr

Cdye
y

e
xe

egrating
y

e
exe

dy

d

y

e
e

y

x

dy

dx
e

yy

y
y

y
y

y

y
yy

y
yy


















































































11

1

1

1

1

1

1

11

1

11

tan2tan

2

tan2
tan

tan

2

tan
tan

2

tan
tantan

2

tan
tan

2

tan

2

1

)1(

)1(

int,
)1(

)1()1(

 

Solving this last equation for x gives the general solution: 

yy Ceex
11 tantan

2

1   . 

Example 3.3.6: Find the particular solution of 0,1log3  xxy
dx

dy
x , 

satisfying 2)1( y . 



Solution: Let’s first put the given equation 0,1log3  xxy
dx

dy
x  in 

the standard form as
x

x
y

xdx

dy

3

1log

3

1 
 ..................(1)  so that it is linear 

and 
x

xP
3

1
)(  is identified. 

The integrating factor is 

 

3/1

log
3

1

3

1
)(

1

)(

x
e

eexv

x

dx
x

dxxP










 

Now, we multiply both sides of the equation (1) by the integrating factor 

viz., )(xv and then integrate 

   

 

 
  CxxxyxOr

CdxxxxyxOr

Cdx
x

xx
xyxOr

Cdxxxyx

egratingxxyx
dx

d
Or

x

x
xy

xdx

dy
x





























 






























3/13/13/1

3/43/13/1

3/13/1
3/1

3/43/1

3/43/1

3/13/1

3)1(log

)1(log

3
3/1

)1(log
3

1

1log
3

1

int,1log
3

1

3

1log

3

1

 

Solving this last equation for y gives the general solution: 

    4log4(log3)1(log 3/13/13/1  xCxyOrCxxyOrCxxy  

................. (2) 



Now, let’s use the given initial conditions as; when 1x and 2y  in the 

equation (2), we get 

2)40(2  CC . Substituting the value of C in equation (2) gives 

the particular solution given by 4log2 3/1  xxy . 

Example 3.3.7: Find the particular solution of ecxxxy
dx

dy
cos4cot  , 

satisfying 0
2









y . 

Solution: Consider , ecxxxy
dx

dy
cos4cot      ..................(1)  this is linear 

and xxP cot)(  is identified. 

The integrating factor is 

 
xe

eexv

x

xdxdxxP

sin

)(

sinlog

cot)(




 

Now, we multiply both sides of the equation (1) by the integrating factor 

viz., )(xv and then integrate 

 

Cxxy

Cdxxxy

egratingxxy
dx

d
Or

xxy
dx

dy
xOr

xecxxxy
dx

dy
x




















22sin

4sin

int,4)sin(

4cossin

sincos4cotsin

 



Solving this last equation for y gives the general solution: 

ecxCxyOr
x

Cx
y cos)2(

sin

2 2
2




    .................  (2) 

Now, let’s use the given initial conditions as; when 
2


x and 0y  in the 

equation (2), we get 

22
0

22 
 CC . Substituting the value of C in equation (2) gives 

the particular solution given by ecxxy cos)
2

2(
2

2 
 . 

 

3.3 Test Your Progress 

Solve the following differential equations: 

i) 12)1( 2  xy
dx

dy
x  

ii) 
22 )1()1(  xxy

dx

dy
xx  

iii) 
x

x xexy
dx

dy
x

log
2

1
1

log


  

iv) 12)1( 2  xy
dx

dy
x  

v) 
2

2 xexy
dx

dy   



vi) 0log2 2  xxy
dx

dy
x  

vii) ydyexdydx y 2sec  

viii) xy
dx

dy
x tan2sin   

ix) 


















2

1
sin

12

xx
xy

xdx

dy
 

x) 
x

x

xx

y

dx

dy

log

2sin

log
  

xi) Solve 
3

.sintan2


 xwhenoythatGivenxxy
dx

dy
 

xii) Solve 1.
1

1
2)1(

2

2 


 xwhenoythatGiven
x

xy
dx

dy
x  

 

3.4. Non-linear ( or Bernoulli’s ) differential equations 

 

Definition 3.4.1: 

An equation of the form nyxQyxP
dx

dy
)()(  ...............(1), where P  and Q  

are functions of x  only and ‘ n ’ is a real number. 

Case 1: If 1n then equation (1) can be written as 

  0)()(  yxQxP
dx

dy
 ............................(2) 



This is of variable separable form, therefore its general solution is given 

by 

  CdxQP
y

dy
)( . 

Case 2: If 1n then divide the equation (1) by ny , we obtain 

)()( 1 xQyxP
dx

dy
y nn   ................................(3) 

Put uy n 1    

Differentiate with respect to x ; 
dx

du

dx

dy
yn n  )1( . 

Equation (3) gives; QnuPn
dx

du
)1()1(  . This is linear differential 

equation in u  and x  

Therefore, Integrating factor =   Pdxn

e
)1(

 

Its general solution is given by dxue

Pdxn

eQnPdxn 






)1(

)1()1(

........................(4) 

To get the general solution of equation (1), substitute uy n 1 . 

Example 3.4.1: Solve the equation .cossincot 222 xxyxy
dx

dy
  

Solution: Given equation xxyxy
dx

dy 222 cossincot  .............(1)  is 

Bernoulli’s equation. 



Dividing equation (1) by 2y , we obtain xxx
ydx

dy
y 222 cossincot

1


.....................(2) 

Put
dx

du

dx

dy

y
Or

dx

du

dx

dy

y
u

y


22

111
 

Equation (2) gives, 

   xxxu
dx

du 22 cossincot   

xxxu
dx

du
Or 22 cossincot             ...................................(3) 

This is linear equation in u and x  with xxP cot)(  is identified 

The integrating factor is 

 
ecxe

eexv

x

xdxdxxP

cos

)(

sinlog

cot)(









 

Now, we multiply both sides of the equation (3) by the integrating factor 

viz., )(xv and then integrate 

 

 

C
x

ecxu

Cdxxxecxu

egratingxxecxu
dx

d
Or

xxecxxu
dx

du
ecxOr

ecxxxxu
dx

du
ecx





















3

cos
cos

)sin(coscos

int,sincoscos

cossincoscotcos

coscossincotcos

3

2

2

2

22

 



     Substitute u
y


1
, we get 

C
x

ecx
y


3

cos
cos

1 3

 is the required general solution of the given 

differential equation (1) 

Example 3.4.2: Solve the equation 2/1

21
xy

x

xy

dx

dy



  

Solution: Given equation 2/1

21
xy

x

xy

dx

dy



 .............(1)  is Bernoulli’s 

equation. 

Dividing equation (1) by 2/1y , we obtain xy
x

x

dx

dy
y 


 2/1

2

2/1

1

.....................(2) 

Put
dx

du

dx

dy
yOr

dx

du

dx

dy
yuy 2

2

1 2/12/12/1    

Equation (2) gives, 

   xu
x

x

dx

du





21
2  

2)1(2 2

x
u

x

x

dx

du
Or 


            ...................................(3) 

This is linear equation in u and x  with 
)1(2

)(
2x

x
xP


 is identified 

The integrating factor is 



 

4/12

)1log(
4

11

4

1

)1(2

1

)1(2)(

)1(

1

)(

2

2

2

x

ee

e

eexv

xdt
t

dx
x

x

dx
x

x

dxxP





















 

Now, we multiply both sides of the equation (3) by the integrating factor 

viz., )(xv and then integrate 

Cx
x

u
Or

C
x

x

u

Cdx
x

x

x

u

gIntegratin
x

x

x

u

dx

d
Or

x

x
u

x

x

dx

du

x
Or

x

x
u

x

x

dx

du

x





















































































4/312

4/12

4/312

4/12

4/124/12

4/124/12

4/124/524/12

4/1224/12

)1(3
)1(

4/3

)1(

2

1

2

1

)1(

)1(2

1

)1(

,
)1(2

1

)1(

)1(2)1(2)1(

1

)1(

1

2)1(2)1(

1

 

       Substitute uy 2/1 , we get 

4/1222/14/32

4/12

2/1

)1()1(3)1(3
)1(

xCxyOrCx
x

y



 is the required 

general solution of the given differential equation (1). 

Example 3.4.3: Solve the equation yxyx
dx

dy 23 cos2sin   



Solution: Given equation yxyx
dx

dy 23 cos2sin  .............(1)  is 

Bernoulli’s equation. 

Dividing equation (1) by y2cos , we obtain 32 tan2sec xyx
dx

dy
y 

.....................(2) 

Put
dx

du

dx

dy
yuy  2sectan  

Equation (2) gives, 

   32 xxu
dx

du
      ...................................(3) 

This is linear equation in u and x  with xxP 2)(  is identified. 

The integrating factor is 

  
2

2

2
2

2)(

)(

x

x

xdxdxxP

ee

eexv





 

Now, we multiply both sides of the equation (3) by the integrating factor 

viz., )(xv and then integrate 

 

Cxeue

Cdxxxeue

gIntegratinxeue
dx

d
Or

xexu
dx

du
e

xx

xx

xx

xx



















)1(
2

1

,

2

2

2

3

3

22

22

22

22

 



       Substitute uy tan , we get 















  2222

2

1
tan

2

1
tan)1(

2

1
tan

2
1

2
2 xxxx Ce

x
yOrCe

x
yOrCxeey  is 

the required general solution of the given differential equation (1). 

Example 3.4.4: Solve the equation   132  xyyx
dx

dy
  

Solution: Given equation   132  xyyx
dx

dy
 can be written as 

 xyyx
dy

dx
 32  

Or    32 yxxy
dy

dx
 .............(1)  is Bernoulli’s equation.  

Dividing equation (1) by 2x , we obtain 3

2

11
yy

xdy

dx

x
 .....................(2) 

Put  
dy

du

dy

dx

x
u

x





2

11
 

Equation (2) gives, 

   33 yyu
dy

du
Oryyu

dy

du
      ...................................(3) 

This is linear equation in u and y  with yyP )( is identified. 

The integrating factor is 

 2/)( 2

)( yydydyyP

eeexv   



Now, we multiply both sides of the equation (3) by the integrating factor 

viz., )(xv and then integrate. 

 

Ceeyeu

Cdyyeeu

gIntegratinyeue
dy

d
Or

yeyu
dy

du
e

yyy

yy

yy

yy


















2/2/22/

32/2/

32/2/

32/2/

222

22

22

22

2

,
 

  Substitute u
x


1
, we get 

2/22/2/22/ 2222

2
1

2
1 yyyy eCy

x
OrCeeye

x

 is the required 

general solution of the given differential equation (1). 

Example 3.4.5: Solve the equation  
y

x
yx

dx

dy

cos

cos
sinsin    

Solution: Given equation  
y

x
yx

dx

dy

cos

cos
sinsin   can be written as 

 xyxx
dx

dy
y cossincossincos    Or    xxxy

dx

dy
y cossincossincos     

.....................(1)  is Bernoulli’s equation.  

Put  
dx

du

dx

dy
yuy  cossin  

Equation (1) gives, 

   xxux
dx

du
cossincos       ...................................(2) 



This is linear equation in u and x  with xxP cos)(  is identified. 

The integrating factor is 

 
xxdxdxxP

eeexv sincos)(

)(   

Now, we multiply both sides of the equation (2) by the integrating factor 

viz., )(xv and then integrate. 

 

   

 

CxeeuOr

Cdxxexeu

Cdxxxeeu

egratingxxeeu
dx

d
Or

xxeux
dx

du
e

xx

xx

xx

xx

xx























)1(sin

cossin

cossin

int,cossin

cossincos

sinsin

sinsin

sinsin

sinsin

sinsin

 

  Substitute uy sin , we get 

 xxxx eCxyOreCxyOrCxeey sin1sinsinsin 1sinsin)1(sinsin)1(sinsin  

is the required general solution of the given differential equation (1). 

Example 3.4.6: Solve the equation 

1)(0,sin2  yconditioninitialwithxxxy
x

y

dx

dy
.  

Solution: Given equation xxy
x

y

dx

dy
sin2    ...................(1)  is 

Bernoulli’s equation.  



Dividing equation (1) by 2y , we obtain xx
xydx

dy

y
sin

11
2



.....................(2) 

Put  
dx

du

dx

dy

y
u

y





2

11
 

Equation (2) gives, 

   xxu
xdx

du
Orxxu

xdx

du
sin

1
sin

1
      ...................................(3) 

This is linear equation in u and x  with 
x

xP
1

)(


 is identified. 

The integrating factor is 

 

x
e

eexv

x

dx
x

dxxP

1

)(

log

1
)(










 

Now, we multiply both sides of the equation (3) by the integrating factor 

viz., )(xv and then integrate. 

Cx
x

u

Cdxx
x

u

gIntegratinx
x

u

dx

d
Or

xu
xdx

du

x


























cos

sin

,sin

sin
11

 



  Substitute u
y


1
, we get 

Cx
xy

OrCx
x

y
 cos

1
cos

/1
...........................(4) is the required general 

solution of the given differential equation (1). 

Now, let’s use the given initial conditions as; when x and 1y  in the 

equation (4), we get 

1
1

cos
1







CC . Substituting the value of C in equation (4) gives 

the particular solution given by 1
1

cos
1




x
xy

. 

3.4 Test Your Progress 

Solve the following differential equations: 

i) 
62 yx

x

y

dx

dy
  

ii) xyy
dx

dy
x log2  

iii) 2

3

1

2
3

y

x

x

y

dx

dy



  

iv)    01tan2 231   yxyx
dx

dy
 

v) 
y

xx
xy

dx

dy 2cossin
tan   



vi) 
322 )1(sin

1

2
cos2 


 xy

xdx

dy
yy  

vii)  yxyx eee
dx

dy
 

 

viii) 
xxyeyy

dx

dy
x  log  

ix) 1)1(.22 332  ythatGivenxy
dx

dy
xy  

  )(.cos432 ythatGivenxy
dx

dy
xyx  

 

3.5 Summary 

 

In this unit, we studied the liner differential  equation of first order and 

first degree and method of solving them. We have also seen the 

Bernoulli’s differential equation  i.e. equation which are reducible  to 

linear from and its solution. 

 

3.6 Terminal Questions 

 

1. Solve the following differential equations 

A. 
  

  
         



B. 
  

  
         

C.     
  

  
         

D.                      

3.7 Answers to exercises 

 

3.3 Test Your Progress 

i) Cxxy  )1( 2

 

ii) C
x

x

x
y 

 31

3

 

iii) Ceyx x
x


log

2

1

 

iv) Cxxy  )1( 2

 

v) Cxye x 
2

 

vi) C
xxx

yx 
164

log 44
2

 

vii) Cyxe y  tan
 

viii) xCxy tantan 
 

ix) 
2

2

222 1
coslog2 Cx

x
xxxy 










 

x) Cxxy  2coslog2
 



xi) 2secsec2  xxy
 

xii) 
4

tan)1( 12 
  xxy

 

 

 

3.4 Test Your Progress 

i) C
xyx


255 2

51

 

ii) C
xx

x

xy





1log1

 

iii) C
xxx

xy 
45

2

6
)1(

456
23

 

iv) C
eex

ey
xx

x 

22
tan

22

2
2

1

 

v) Cxxy 


 522 cos
5

2
cos

 

Cx
x

y
vi 



2

2

2

)1(
2

1

)1(

sin
)

 

Ceeeevii xeey xx

 )1()
 

Cexeyxviii xx log)
 

3
2

)
36

3





xx

y
ix

 

xyyxx sin3) 333 
 



 



 

Unit –04: Exact differential equations 

 

Structure 

4.1. Introduction 

4.2. Objectives 

4.3. Exact differential equations of first order and first degree 

4.4. Integrating factors to solve Non-Exact differential equations of 

first order and first degree  

4.5. Summary 

4.6 Terminal Questions 

4.7 Answers to Exercises 

 

 

 

 

 

 

 



4.1. Introduction 

 

The ordinary differential equations first order and first degree has 

different forms according to their nature, namely, exact differential 

equations and non-exact differential equations. Whereas non-exact 

equations are difficult in general, exact equations are much simpler 

because the solutions of exact differential equations are solved by using 

direct testing of necessary condition of exactness and formula for general 

solution, and there are standard methods ( i.e., integrating factors ) for 

solving many particularly important non exact differential equations.  

In the previous unit, we had learnt how to solve variable separable form, 

homogeneous, non homogeneous and linear and non linear differential 

equations of first order and first degree. In this unit we will learn the 

techniques for solving analytically some special forms of ODE’s namely 

exact and non exact, which are useful in various applications. 

 

4.2. Objectives 

 

After reading this unit students should be able to: 

 Solve the exact  differential equations of first order and first 

degree  



 Find the integrating factors in different forms 

 Identify the suitable integrating factor to solve the given non-

exact first order and first degree ODE 

 

4.3. Exact differential equations of first order and first 

degree 

 

Definition 4.3.1: A differential equation 0),(),(  dyyxNdxyxM . Where 

M and N are functions of yx,  is called an exact differential equation if 

there exists a function ),( yxf having continuous first order partial 

derivatives such that 
x

f
M




  and 

y

f
N




  for such a function f , we write 

dfNdyMdx   where df stands for dy
y

f
dx

x

f
df









 . 

Equivalently, 

A differential expression dyyxNdxyxM ),(),(  is an exact differential in a 

region R of the planexy   if it corresponds to the differential of some 

function ),( yxf  defined on R.  

A first order differential equation of the form 0),(),(  dyyxNdxyxM is 

called an exact differential equation if the expression on the left hand side 

is an exact differential. 



 

The criterion for an exact differential: 

Let ),(),( yxNandyxM continuous and have continuous first partial 

derivatives in a rectangular region R defined by dycbxa  , . Then a 

necessary and sufficient condition for dyyxNdxyxM ),(),(  to be exact 

differential is 
x

N

y

M









. 

Theorem 4.3.1: The Necessary and sufficient condition for the 

differential equation 0 NdyMdx to be exact is  
x

N

y

M









. 

Proof: By the definition of an exact differential equation, there exists a 

function ),( yxf having continuous partial derivatives such that 
x

f
M




  

.............(1) and 
y

f
N




 ..............(2) 

Differentiate equation (1) partially with respect to y  and equation (2) 

partially with respect to x , we obtain, 
xy

f

y

M








 2

 and 
yx

f

x

N








 2

. 

For the functions having continuous first order partial derivatives it is true 

that 
yx

f

xy

f








 22

 

x

N

y

M









  



Now, let us suppose that 
x

N

y

M









. 

To prove: 0 NdyMdx is an exact differential equation.  

Let 
y

dxMyxF ),(  [where 
y

dxM means while integrating keep ‘y’ 

constant]. 

Consider 
yx

F

xy

F

x

N

y

M


















 22

 

0
2












yx

F

x

N
 

0

















y

F
N

x
Or  

As )(y
y

F
N 




 (say) as it does not contain terms of x  

)(y
y

F
N 




  

Now, 

    dyyydwhereyFddyydF

dyydy
y

F
dx

x

F

dyy
y

F
dx

x

F
dyNdxM

)()()()(

)(

)(








































 

Therefore, 0 NdyMdx is an exact differential equation. 

Thus, the general solution of it is given by, 

cdyyyxF   )(),(   where 
tconsyKeeping

dxMyxF
tan

),(  



y

F
Ny




)( , where )(y  is independent of x  (i.e., free from x ). 

Hence, the general solution of an exact differential equation is given by 

CdyydxM
tconsyKeeping

  )(
tan

  

Equivalently,   CdyxfromfreeNofTermsdxM
tconsyKeeping

 
tan

 

 

Note 4.3.1: The general solution of an exact differential equation can also 

be given by 

CdxxdyN
tconsxKeeping

  )(
tan

 . 

Equivalently,   CdxyfromfreeMofTermsdyN
tconsxKeeping

 
tan

 

 

Example 4.3.1: Solve the differential equation  

0)24()24( 2222  dyxxyydxyxyx  

Solution: Given equation is 0)24()24( 2222  dyxxyydxyxyx  

xy
x

N
yx

y

M

xxyyNandyxyxMHere

4444

24)24(, 2222














 












x

N

y

M
 Given equation is an exact differential equation. 

 The general solution of it is given by 



 

C
y

xyyx
x

Or

C
y

xy
x

y
x

Cdyydxyxyx

CdyxfromfreeNofTermsdxM

tconsyKeeping

tconsyKeeping






































3
22

3

3
2

2
4

3

)24(

3
22

3

3
2

23

2

tan

22

tan

 

Example 4.3.2: Solve the differential equation  

0)32()4( 232 22

 dyyxyedxxey xyxy
 

Solution: Given equation is 0)32()4( 232 22

 dyyxyedxxey xyxy  

)1(2)1(2

2)(22)2(

324,

22

22

232

22

2222

22
















xyyexyye

yeyxye
x

N
yexyey

y

M

yxyeNandxeyMHere

xyxy

xyxyxyxy

xyxy

 












x

N

y

M
 Given equation is an exact differential equation. 

 The general solution of it is given by 

 

CyxeOr

C
yx

y

e
y

Cdyydxxey

CdyxfromfreeNofTermsdxM

xy

xy

tconsyKeeping

xy

tconsyKeeping













































34

34

2

2

2

tan

32

tan

2

2

2

3
3

4
4

3)4(

 



Example 4.3.3: Solve the differential equation  

0)sectan()tan2( 222  dyyyxxdxyyxy  

Solution: Given equation is 0)sec()tan2( 22  dyyxxxdxyyxy  

)1(2)1(2

sec12sec12

sectan2,

22

22

22

22
















xyyexyye

yx
x

N
yx

y

M

yxxxNandyyxyMHere

xyxy

 












x

N

y

M
 Given equation is an exact differential equation. 

 The general solution of it is given by 

 

CyxxyyxOr

Cyxxy
x

y

Cdxyyxy

CdyxfromfreeNofTermsdxM

tconsyKeeping

tconsyKeeping





















tan

tan
2

2

)tan2(

2

2

tan

tan

 

 

4.3 Test Your Progress 

Solve the following differential equations 

i) 0)1()1( 22  dyxydxyx  

ii) dyyaxdxayx )()( 22   

iii) 0)cos(2sin 22  dyxyxdxy  



iv) 0)1()1( //  dy
y

x
edxe yxyx  

v) 0sincos)1(  xdyexdxe yy  

vi) 0)23()62( 2222  dyyxyxdxyxyx  

vii) 0)32()4( 232 22

 dyyxyedxxey xyxy  

viii) 0)2(  dyyedxyxe xyxy  

ix) 
22 yx

ydxxdy
ydyxdx




  

x) 0)sectan()tan2( 222  dyyyxxdxyyxy  

 

 

4.4. Non exact differential equations and Integrating 

factors 

 

It is sometimes possible that even though the original first order 

differential equation 0),(),(  dyyxNdxyxM is not exact, but we can 

multiply both sides of this differential equation by some function [say, 

),( yxf ] so that the resulting differential equation 

0),(),(),(),(  dyyxNyxfdxyxMyxf  becomes exact. Such a function 

(or factor) ),( yxf is known as an integrating factor for the original 

differential equation 0),(),(  dyyxNdxyxM . 



Sometimes a differential equation which is not exact, can be made so 

on multiplication by a suitable factor called an integrating factor. 

Remark: It is possible that we lose or gain solutions while multiplying 

an ordinary differential equation by an integrating factor. 

For Example: consider the  first order differential equation 

0 xdyydx , which is clearly non-exact. But observe that if we 

multiply both sides of this differential equation by the factor 
2

1

y
, the 

resulting ODE becomes 0
2

 dy
y

x

y

dx
which is exact. 

The rules for finding integrating factors of the equation 

0),(),(  dyyxNdxyxM are as follows. 

 

4.4.1 Integrating factors found by Inspection: 

In a number of cases, the integrating factor can be found after 

regrouping the terms of the equation and recognizing each group as 

being a part of an exact differential. In this connection the following 

integrable combinations prove quite useful. 

i) )(xydydxxdy   

ii) 











x

y
d

x

ydxxdy
2

 



iii) 



















x

y
d

xy

ydxxdy
log  

iv) 











y

x
d

y

xdyydx
2

 

v) 











 

x

y
d

yx

ydxxdy 1

22
tan  

vi) 

















yx

yx
d

yx

ydxxdy
log

2

1
22

 

 

Example 4.4.1 (i): Solve the differential equation  

02)( 2  dxxydyedxye xx . 

Solution: We have 02)( 2  dxxydyedxye xx . Here, we can observe that 

the terms xye  and dye x  should be put together. 

02
2




 xdx
y

dyedxye xx

 Or 02 







xdx

y

e
d

e

. Integrating, we obtain 

Cx
y

e x

 2  is the required general solution. 

 

Example 4.4.1 (ii): Solve the differential equation  

0)( 22  dxyxaydxxdy . 

Solution: We have 0)( 22  dxyxaydxxdy . Here, we can observe that 

the terms ydxxdy   and  22 yx   should be put together. 



0tan0 1

22














  adx

x

y
dOradx

yx

ydxxdy
 Integrating, we obtain 

Cax
x

y








 1tan  is the required general solution. 

Example 4.4.1 (iii): Solve the differential equation  

22

2 )(

yx

ydxxdya
ydxxdy




 . 

Solution: We have 
22

2 )(

yx

ydxxdya
ydxxdy




 . Here, we can observe that the 

all terms are already combined together. 









 

x

y
daxyd 12 tan)( . Integrating, we obtain 

C
x

y
axy 








 12 tan  is the required general solution. 

 

4.4.2 Integrating factor of a Homogeneous Equation: 

If 0),(),(  dyyxNdxyxM be a homogeneous equation in x  and y , then 

NyMx 

1
 is an integrating factor provided 0 NyMx . 

Example 4.4.2(i): Solve the differential equation  
dx

dy
xy

dx

dy
yx  . 

Solution: Given equation is 
dx

dy
xy

dx

dy
yx  .............................(1) 



)2....(....................0)()(

)(







dyyxdxxyOr

xy
dx

dy
yxOr

xy
dx

dy
y

dx

dy
xOr

 

Here,  )( yxNandxyM   

11 










x

N
and

y

M
 

x

N

y

M









  

Thus, given equation is non-exact differential equation. 

But equation (1) is homogeneous differential equation. 

Now, Consider 02222  yxyxyxyxNyMx  

22

11

yxNyMx
factorgIntegratin





  

Multiplying equation (1) by the integrating factor 
22

1

yx 
 we get 

0
2222










dy

yx

yx
dx

yx

xy
 ..................(3) is exact, because as 

221221
yx

yx
Nand

yx

xy
M









  

222

22

222

22

1

)(

2

)(

)2)(()1)((

yx

yxyx

yx

yxyyx

y

M














  and 

222

22

222

22

1

)(

2

)(

)2)(()1)((

yx

yxyx

yx

yyxyx

x

N














 



x

N

y

M









 11  

Hence, the general solution of the equation (3) is given by, 

CdyxfromfreeNofTermsdxM
tconsy

  )( 1

tan

1  

Cdx
yx

x
dx

yx
yOr

Cdx
yx

xy

tconsy

tconsy





























 



tan

2222

tan

22

1
 

Cyx
y

x
Or

Cyx
y

x

y
y
























221

221

log
2

1
tan

log
2

1
tan

1

 

This is the required general solution of the given equation (1). 

 

Example 4.4.2(ii): Solve the differential equation  0)2( 22  dyyxxydx . 

Solution: Given equation is 0)2( 22  dyyxxydx .............................(1) 

Here,  )2( 22 yxNandxyM   

x
x

N
andx

y

M
2









  

x

N

y

M









  

Thus, given equation is non-exact differential equation. 

But equation (1) is homogeneous differential equation. 



Now, Consider 022 3322  yyyxyxNyMx  

32

11

yNyMx
factorgIntegratin 


  

Multiplying equation (1) by the integrating factor 
32

1

y


 we get 

  0)2(
2

1

2

1 22

33
 dyyx

y
xydx

y
 ..................(3) is exact, because as 

3

22

131
2

2

2 y

yx
Nand

y

xy
M


  

36

33

23

23

1

4

62

)2(

)6())(2(

y

x

y

xyxy

y

yxyxy

y

M














 and 

36

3

23

223

1

4

4

)2(

)0)(2()2)(2(

y

x

y

xy

y

yxxy

x

N










 

x

N

y

M









 11  

Hence, the general solution of the equation (3) is given by, 

CdyxfromfreeNofTermsdxM
tconsy

  )( 1

tan

1  

Cdy
y

dxx
y

Or

Cdy
y

dx
y

xy

tconsy

tconsy










 


 



tan

2

tan

3

1

2

1

1

2
 



C
y

x
yOr

Cy
x

y





2

2

2

2

4
log

log
22

1

 

This is the required general solution of the given equation (1). 

 

Example 4.4.2(iii): Solve the differential equation  

0)3()2( 2322  dyyxxdxxyyx . 

Solution: Given equation is 0)3()2( 2322  dyyxxdxxyyx      

.............................(1) 

Here,  )3(2 2322 yxxNandxyyxM   

xyx
x

N
andxyx

y

M
634 22 









  

x

N

y

M









  

Thus, given equation is non-exact differential equation. 

But equation (1) is homogeneous differential equation. 

Now, Consider 032 22223223  yxyxyxyxyxNyMx  

22

11

yxNyMx
factorgIntegratin 


  

Multiplying equation (1) by the integrating factor 
22

1

yx
 we get 



0)3(
1

)2(
1 23

22

22

22
 dyyxx

yx
dxxyyx

yx
 ..................(3) is exact, because 

as 
yy

x
Nand

xy
M

321
211   

2

1 1

yy

M





  and 

2

1 1

yx

N





 

x

N

y

M









 11  

Hence, the general solution of the equation (3) is given by, 

CdyxfromfreeNofTermsdxM
tconsy

  )( 1

tan

1  

Cyx
y

x
Or

Cdy
y

dx
xy

tconsy











 

log3log2

321

tan  

This is the required general solution of the given equation (1). 

 

Note: If the given differential equation 0),(),(  dyyxNdxyxM  is 

homogeneous and exact then solution of differential equation is factor of 

CNyMx  . 

 



4.4.3 Integrating factor for an Equation of the type 

0),(),( 21  xdyyxfydxyxf : 

If the equation 0),(),(  dyyxNdxyxM be of this form, then 
NyMx 

1
 is an 

integrating factor ( Provided 0 dyNdxM ). 

Example 4.4.3(i): Solve the differential equation  

0)1()1(  xdyxyydxxy . 

Solution: Given equation is 0)1()1(  xdyxyydxxy .............................(1) 

Here,  yxxNandxyyM 22   

xy
x

N
andxy

y

M
2121 









  

x

N

y

M









  

Thus, given equation is non-exact differential equation. 

But equation (1) is of the form 0),(),( 21  xdyyxfydxyxf . 

Now, Consider 02 222222  yxyxxyyxyxNyMx  

222

11

yxNyMx
factorgIntegratin 


  

Multiplying equation (1) by the integrating factor 
222

1

yx
 we get 



0)(
2

1
)(

2

1 2

22

2

22
 dyyxx

yx
dxxyy

yx
 ..................(3) is exact, because as 

yxy
Nand

xyx
M

2

1

2

1

2

1

2

1
2121   

22

1

2

1

yxy

M





  and

22

1

2

1

yxx

N





 

x

N

y

M









 11  

Hence, the general solution of the equation (3) is given by, 

CdyxfromfreeNofTermsdxM
tconsy

  )( 1

tan

1  

1

1

tan

2

1
log

log
1

loglog
1

2

1

log
2

1
log

2

11
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1

C
xyy

x
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C
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x
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y
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




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





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


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












 

 

This is the required general solution of the given equation (1). 

 

Example 4.4.3(ii): Solve the differential equation  

0)()( 3223  dxyyxdyxyx . 



Solution: Given equation is 

0)1()1(0)()( 22223223  xdyyxydxyxOrdxyyxdyxyx

.............................(1) 

Here,  xyxNandyyxM  2332  

1313 2222 








 yx

x

N
andyx

y

M
 

x

N

y

M









  

Thus, given equation is non-exact differential equation. 

But equation (1) is of the form 0),(),( 21  xdyyxfydxyxf . 

Now, Consider 023333  xyxyyxxyyxNyMx  

xyNyMx
factorgIntegratin

2

11



  

Multiplying equation (1) by the integrating factor 
xy2

1
  we get 

0)(
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1 2332 


dyxyx
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dxyyx
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 ..................(3) is exact, because as 
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 1  
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
 11  

Hence, the general solution of the equation (3) is given by, 



CdyxfromfreeNofTermsdxM
tconsy

  )( 1

tan

1  

1
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22
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2
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log
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log
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
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



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This is the required general solution of the given equation (1). 

 

Example 4.4.3(iii): Solve the differential equation 

0)1()1( 2222  xdyxyyxydxxyyx . 

Solution: Given equation is 0)1()1( 2222  xdyxyyxydxxyyx

.............................(1) 

Here,  xyxyxNandyxyyxM  223232  

123123 2222 




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 xyyx

x

N
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M









  

Thus, given equation is non-exact differential equation. 

But equation (1) is of the form 0),(),( 21  xdyyxfydxyxf . 



Now, Consider 02 2222332233  yxxyyxyxxyyxyxNyMx  

222

11

yxNyMx
factorgIntegratin 


  

Multiplying equation (1) by the integrating factor 
222

1

yx
 we get 

xyxyxNandyxyyxM  223232  
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 ..................(3) is exact, 

because as 
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Hence, the general solution of the equation (3) is given by, 

CdyxfromfreeNofTermsdxM
tconsy

  )( 1
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This is the required general solution of the given equation (1). 

 



4.4.4 (a) If the differential equation 0),(),(  dyyxNdxyxM  is non-exact 

and there exists a continuous single variable function )(xf  such that 

N

x

N

y

M

xf

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 is an integrating factor of 

0),(),(  dyyxNdxyxM . 

Equivalently, 

In the equation 0),(),(  dyyxNdxyxM , 

if )(xf
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
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(say)[ i.e., function of x only], then  dxxf
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 is an 

integrating factor. 

 

Example 4.4.4(a) (i) Solve the differential equation 
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Thus, given equation (1)  is non-exact differential equation. 



Now, consider  
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Multiplying the given differential equation by the Integrating Factor (I F) 

=
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The general solution is given by 
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This is required solution of given differential equation (1). 

 

Example 4.4.4(a) (ii) Solve the differential equation 
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Solution: Given equation is    
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Thus, given equation (1)  is non-exact differential equation. 

Now, consider  
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Multiplying the given differential equation by the Integrating Factor (I F) 

= 3x , we get 
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The general solution is given by 
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This is required solution of thegiven differential equation (1). 

 

Example 4.4.4(a) (iii): Solve the differential equation 
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Solution: Given equation is    
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Thus, given equation (1) is non-exact differential equation. 
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Multiplying the given differential equation by the Integrating Factor (I F) 

= x , we get 
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The general solution is given by 
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This is required solution of the given differential equation (1). 



 

Example 4.4.4(a) (iv): Solve the differential equation 
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Thus, given equation (1)  is non-exact differential equation. 
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Multiplying the given differential equation by the Integrating Factor (I F) 

= xe , we get 
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The general solution is given by 
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This is required solution of the given differential equation (1). 

 

4.4.4 (b) If the differential equation 0),(),(  dyyxNdxyxM  is non-exact 

and there exists a continuous single variable function )(yf  such that 
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Example 4.4.4(b) (i) Solve the differential equation 
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Thus, given equation (1)  is non-exact differential equation. 
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Multiplying the given differential equation by the Integrating Factor (I F) 
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y

x
yxM

2
3 22

1    and  

2

2
3

1 2
y

x
yxN   gives

x

N

y

M

y

x
yx

x

N
and

y

x
yx

y

M


















 11

2

21

2

21 2
6

2
6  

The general solution is given by 
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This is required solution of given differential equation (1). 

 

Example 4.4.4(b) (ii) Solve the differential equation 

0)()2( 32  dyyeydxeyx xx

  
 

Solution: Given equation is    
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Thus, given equation (1)  is non-exact differential equation. 
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Multiplying the given differential equation by the Integrating Factor (I F) 

=
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The general solution is given by 
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This is required solution of given differential equation (1). 

 

Example 4.4.4(b) (iii) Solve the differential equation 
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Solution: Given equation is    
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Thus, given equation (1)  is non-exact differential equation. 
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Multiplying the given differential equation by the Integrating Factor (I F) 

= y , we get 
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The general solution is given by 
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This is required solution of given differential equation (1). 

 

4.4.5 For the equation of the type 
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Example 4.4.5 (i) Solve the differential equation 
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Solution: Given equation is    
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Thus, given equation (1)  is non-exact differential equation. 

Now, 

Equation (1) can be written in the form  
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0)2()( 22  xdyydxyxxdyydxxy  

1,2,21,1 1111  nmbaandnmbawith
 

Where  
n

kb

m

ha 11 



 and 

1

1

1

1 11

n

kb

m

ha 




 

  
1

11

1

11 





kh
 and 

1

12

2

12






 kh
 on solving we obtain

30920  khkhandkh

 

33

33 1

yx
yxyxfactorgIntegratin kh   .

 



Multiplying the given differential equation (1) by the Integrating Factor (I 

F) =
33

1

yx
, we get 

0
1121

0)(
1

)2(
1

22

22

33

22

33


















 dy

yxy
dx

xyx
Orxdyyxxy

yx
ydxyxxy

yx
 

  is an exact differential equation.  Because as 









xyx
M

21
21   and  











yxy
N

11
21  gives

x

N

y

M

yxx

N
and

yxy

M





















 11

22

1

22

1 11
 

The general solution is given by 

      CdyxfromfreeNofTermsdxM
tconsy

  )( 1

tan

1  

C
xyy

x
Or

Cyx
xy

Cdy
y

dx
xyx

tconsy































  

1
log

loglog2
1

121

2

tan

2

 

This is required solution of given differential equation (1). 

 

Example 4.4.5 (ii) Solve the differential equation 

0)42()( 3342  dyxyxdxyyx
  
 

Solution: Given equation is    

)1....(....................0)42()( 3342  dyxyxdxyyx   



3342 42, xyxNandyyxMHere 
 

3232 464 yx
x

N
andyx

y

M












 

x

N

y

M











 

Thus, given equation (1)  is non-exact differential equation. 

Now, 

Equation (1) can be written in the form  

dyxndxymyxdyxndxymyx baba )()( 1111

 as 

0)4()2( 3002  xdyydxyxxdyydxyx  

4,1,3,02,1,0,2 1111  nmbaandnmbawith
 

Where  
n

kb

m

ha 11 



 and 

1

1

1

1 11

n

kb

m

ha 




 

  
2

10

1

12 





kh
 and 

4

13

1

10 


 kh
 on solving we obtain

10
2

5
0452  kandhkhandkh

 

102/5 yxyxfactorgIntegratin kh  .
 

Multiplying the given differential equation (1) by the Integrating Factor (I 

F) = 102/5 yx , we get 

0)42()(0)42()( 132/7102/11142/5112/933102/542102/5  dyyxyxdxyxyxOrdyxyxyxdxyyxyx

  is an exact differential equation.   



Because as  )( 142/5112/9

1 yxyxM    and  )42( 132/7102/11

1 yxyxN   gives

x

N

y

M

yxyx

yxyx
x

N
andyxyx

y

M





















 

11

132/5102/9

13
1

2

7

10
1

2

11

1132/5102/91

1411

2

7
4

2

11
21411

 

The general solution is given by 

      CdyxfromfreeNofTermsdxM
tconsy

  )( 1

tan

1  

C
yx

xyOr

CxyxyOr

C
x

y
x

y

Cdxyxyx
tconsy
































 

711
2

7

2

11

2

2/72/11

)(

32
2/711

2/7142/1111

2/7
14

2/11
11

tan

142/5112/9

 

This is required solution of given differential equation (1). 

 

4.4 Test Your Progress 

Solve the following differential equations. 

i) 0log  dxxxdyydx      

ii) 03
322  dxeyxxdyydx x

  

iii) 0)log2(2  dyyxxydx   



iv) 
2

33

xy

yx

dx

dy 


   
 

v) 0)42()2( 434  dyxyxydxyy   

vi) 03)22( 23  dyxydxy     

vii) 02)2( 23  xydydxyx     

viii) 0)1(2 22  dxyxxydy       

ix) 0)( 2  xydydxyy        

x) 02)( 343  dyydxxyx        

xi) 0)(2)( 4223  dyyxyxdxyxy   

0)42()2( 434  dxxyxydxyy  

 

4.5 Summary 

 

In this unit, we studied criteria for an exact differential equation and non 

exact  differential equation and to find Integrating factors in different 

cases to make the equation exact. We also studied how to find the 

integrating factor by inspection of the differential equation. 

 

 

 



 

4.6 Terminal Questions 

1. Solve the following differential equation. 

A.                      

B.     
 

      
 

    
 

 
      

C.                         

D.                    

E.                                

F. 
  

  
            

 

4.7. Answers to exercises 

 

4.3. Test Your Progress  

i) Cyx  )1)(1( 22  

ii) Cyaxyx  33 3  

iii) Cyyxy  322cos3 3  

iv) Cyex yx  /  

v) Cxe y  sin)1(  

vi) Cyxyyxx  3223 392  

vii) Cyxexy  342

 



viii) Cye yx  2/  

ix) Cyxyx   )/(tan2 122  

x) Cyxyyyx  tan)tan(2  

4.4. Test Your Progress 

 i) 01log  xcxy  

ii) ce
y

x x 
3

 

iii) cyxy  2log4  

iv)   cxyx 
3

/log3  

v) cyx
y

y 







 2

2

2
 

vi)  cxyx  232

 

vii) 

223 cxyx 
 

viii) cxyx  123

 

ix) cxyx   

x)   ceyx x 
2

142

 

xi)   ceyx x 
2

142

 

xii) cy
y

x
xy 








 2

2

2
 

 



Unit –05: Differential equation of the first order but not of 

the first degree 

 

Structure 

5.1. Introduction 

5.2. Objectives 

5.3. Equations Solvable for p 

5.4. Equations Solvable for y  

5.5. Equations Solvable for x 

5.6. Clairaut’s Equation 

5.7. Singular Solutions 

5.8. Summary 

5.9 Terminal Questions 

5.10 Answers to Exercises 

 

 

 

 

 



5.1 Introduction 

 

As 
dx

dy
will occur in higher degrees, it is convenient to denote 

dx

dy
 by p. 

Such equations are of the form 0),,( pyxf , which is not of first degree, 

is called a differential equation of first order and higher degree, the 

general form of first order and nth degree differential equation is 

)1(0..................... 1

2

2

1

1  

 napapapap nn

nnn  

Where naaa ...,....................,, 21  are functions in x  and y . Now we shall 

discuss the solution of the above differential equation in the following 

three cases. 

(i.) Equations solvable for p 

(ii.) Equations solvable for x  

(iii.) Equations solvable for y  

 

5.2. Objectives 

 

After reading this unit students should be able to: 

 Solve the Differential equations of the first order but not of the 

first degree, 



 Recognize and solve the equations solvable for x, y and p 

 Identify and solve the Clairaut’s equation  

 Find the singular solutions of the given ODE’s  

 

5.3 Equations solvable for p 

Let )1(0..................... 1

2

2

1

1  

 napapapap nn

nnn

..........................(1) be the differential equation of first order and n
th

  

degree. If it can be solved for ‘p’ then equation (1) can be resolved into 

‘n’ linear factors in ‘p’. Then, we have  

),(............................),,(),,(

,0),(..................,0),(,0),(

0)],(......[..........)],([)],([

21

21

21

yxf
dx

dy
yxf

dx

dy
yxf

dx

dy

dx

dy
pwhereyxfpyxfpyxfp

yxfpyxfpyxfp

n

n

n







 

Solving each of n differential equations, we get ‘n’ solutions. Let them 

be 

0),,(..............0),,(,0),,( 2211  nn cyxFcyxFcyxF  

Thus, the solution of equation (1) is given by 

0),,(..............),,(),,( 2211  nn cyxFcyxFcyxF  

But equation (1) is of first order differential equation. 

Therefore, the solution of equation (1) is given by 



cccctakingbycyxFcyxFcyxF nn  ........0),,(..............),,(),,( 2121 . 

 

Example 5.3.1: Solve the differential equation 
x

y

y

x

dy

dx

dx

dy


  .
 

Solution: Given equation is    )1.....(..............................
x

y

y

x

dy

dx

dx

dy
   

Using p
dx

dy
  gives x

y

y

x

p
p 

1
 Or 012 










y

x

x

y
pp  

Factorising leads 0


















y

x
p

x

y
p  

)3...(....................0)2.(....................0 


















y

x
pand

x

y
p   

From equation (2), we have 

cxy

obtainweegratingxydOr

dxydyxOr
x

y

dx

dy







int,0)(

00

 

From equation (3), we have 

cyx

obtainwegIntegratin

dyydxxOr
y

x

dx

dy





22

,

00

 

Thus, cyxOrcxy  22

 constitute the required solution. 

 



 

 

 

Example 5.3.2: Solve the differential equation ).( yxxy
dx

dy

dx

dy











  
 

Solution: Given equation is    )1...(....................)( yxxy
dx

dy

dx

dy









   

Using p
dx

dy
  gives )()( yxxypp    

Factorising leads to   022  xyxpyp   Or  022  xypyxp  

Or  0)())((  xpyxpxp  

Or  0))((  yxpxp  

)3(....................0)()2.....(..........0)(  yxpandxp  

From equation (2), we have 

c
x

yobtainweegratingxdxdyOrx
dx

dy


2
,int,0

2

 

From equation (3), we have xy
dx

dy
Oryx

dx

dy
 0  

This represents the linear differential equation of first order and first 

degree. 

xdx

eeFIfactorgIntegratin  .  



It’s general solution is given by  

xxxxxx cexyOrcexeyeOrcdxexye   )1()(  

Thus, c
x

y 
2

2

 and  xcexy  )1(  constitutes the required solution. 

Example 5.3.3: Solve the differential equation 0)(

2









x

dx

dy
yx

dx

dy
y

  

.
Solution: Given equation is    )1........(..........0)(

2









x

dx

dy
yx

dx

dy
y  

Using p
dx

dy
  gives 0)(2  xpyxyp   

Factorising leads to   02  xxppyyp    

Or  0)1()1(  pxppy  

Or  0))(1(  xpyp  

)3(....................0)()2.....(..........0)1(  xpyandp  

From equation (2), we have 

cxyOrcxyobtainweegratingdxdyOr
dx

dy
 ,int,01  

From equation (3), we have y

x

dx

dy
Orx

dx

dy
y  0  

Or obtainwegIntegratinxdxydy ,,0  c
xy


22

22

 



Thus, cxy   and  c
xy


22

22

 constitutes the required solution. 

5.3 Test Your Progress 

Solve the following differential equations (Equations Solvable for ‘p’) 

i) 0cot2 22  yxpyp        

ii) pyxpxy )()1( 222         

iii) 0)()( 2222  xyxpyxyxxyp     

iv) pxypyxp 2223 2)2(               

v) 3322 2)2( xpypxy      

vi) 022  xypxp  

  

5.4. Equations Solvable for  

Let )1.(....................0),,( pyxf be given differential equation. If equation 

(1) cannot be resolved into linear factors in ‘p’ and if it can be put in the 

form ),(1 pxfy  ................(2) then we say that equation (1) can be solved 

for y . Differentiating equation (2) with respect to '' x  we get a 

differential equation in two variables x  and p of the form  











dx

dp
px

dx

dy
p ,, ........................(3) 

y



Now, it may be possible to solve this new differential equation in '' x  and 

'' p . 

Let its solution be )4.(....................0),,( cpxF . 

Eliminating ‘p’ from equations (2) and (4), we obtain the required 

general solution of the equation (1) in the form  .0),,( cyxF Where ‘c’ is 

arbitrary constant. 

 

Note 5.4.1: 

(i)  In case elimination of p is not possible from equations (1) and 

(2) for x and y and obtain ),(),,( 21 cpFycpFx   as the required 

solution, where is the parameter. 

It is called a solution in the parametric form. 

(ii) The solution which does not contain an arbitrary constant is 

called singular solution. 

(iii) The solution which does not contain  i.e., in the form 

0),( pyf  and if it is solvable for  we get )(yp   which 

can be solved by using variables separable method. If it is 

solvable for '' y  it can be written in the form which can also be 

'' p

'' x

'' p



solved by using variables separable method. 

(iv) If given differential equation is homogeneous in  and '' y  

then it can be written in the form 0)/,( xypf , this equation 

can be solved using method of solving homogeneous equation. 

 

Example 5.4.1: Solve the differential equation 24 pxpxy 
  .

 

Solution: Given equation is    )1....(..........2424 pxpxyOrpxpxy    

Equation (1) is a differential equation solvable for '' y  

Differentiating equation (1) with respect to  '' x  


















 px

dx

dp
xpx

dx

dp
p

dx

dy
)()4(2 324

,  using dx

dy
p   

024 432 
dx

dp
px

dx

dp
xpxpp   

0)21()21(2 33  px
dx

dp
xpxp  

02)21( 3 









dx

dp
xppx  

)3.........(..........02)2.......(..........0)21( 3 









dx

dp
xpandpx  

'' x



Here, equation (2) is discarded as it does not contain dx

dp
 and it gives 

singular solution. 

From equation (3), we obtain   p

dp

x

dx
Or

dx

dp
xp 

2
2 , integrating, 

)4..(..........logloglog2log2
2

2

 
x

c
pOrcpxOrcpxc

p

dp

x

dx
 

Eliminating ‘p’ from equations (1) and (4) gives the general solution of 

the equation (1). 

pxpxyei  24.,.  

Using , x

c
c

x

c
x

x

c
xy

x

c
p 

















 2

2

2

2

4

2  

Thus, x

c
cy  2

. Where ‘c’ is arbitrary constant. 

Example 5.4.2: Solve the differential equation paxy 1tan
  .

 

Solution: Given equation is    )1........(..........tan 1 paxy    

Equation (1) is a differential equation solvable for '' y  

Differentiating equation (1) with respect to  '' x  

dx

dp

p

a

dx

dy
21

1


 , using dx

dy
p   

dx

dp
appp

dx

dp

p

a
p 


 23

2
1

1
1   



)1()1(01 2232 pp
dx

dp
apOrpp

dx

dp
apOr   

01)1( 2 









dx

dp
app  

)3.........(..........01)2.......(..........0)1( 2 









dx

dp
apandp  

Here, equation (2) is discarded as it does not contain dx

dp
 and it gives 

singular solution. 

From equation (3), we obtain,   

dx
ap

dp
Orp

dx

adp
Or

dx

dp
ap

1

)1(
)1()1(





 , integrating, 

)4..(..........1)1()1log(
1

)1(  



a

x
c

a

x
c

epOrepOrc
a

x
pcdx

ap

dp

 

Eliminating ‘p’ from equations (1) and (4) gives the general solution of 

the equation (1). 

paxyei 1tan.,.   

Using , 1


a

x
c

ep  

Thus, 















 1tan 1 a

x
c

eaxy . Where ‘c’ is arbitrary constant. 

Example 5.4.3: Solve the differential equation ypxp 23 12)278( 
  .

 



Solution: Given equation is    
2

3
23

12

)278(
12)278(

p

xp
yOrypxp


   

24

9

3

2

p

xpx
y            ........................(1) 

Equation (1) is a differential equation solvable for '' y  

Differentiating equation (1) with respect to  '' x  




























4

2 2

4

9

3

2

p

dx

dp
xpp

dx

dp
xp

dx

dy
,  using dx

dy
p   




























4

2 2

4

9

3

2

p

dx

dp
xpp

dx

dp
xpp  

Multiplying by   
412p     




















dx

dp
xpp

dx

dp
xppp 227812 245

 

0)274()274(2 323  ppp
dx

dp
xp  

0)2)(274( 23  p
dx

dp
xppOr  

)3.(....................02)2.......(..........0)274( 23  p
dx

dp
xpp  



Here, equation (2) is discarded as it does not contain dx

dp
 and it gives 

singular solution. 

From equation (3), we obtain   02 2  p
dx

dp
xp , separating the variables 

and integrating, 

  cxpc
x

dx

p

dp
logloglog2log2  

xcpOrc
x

p
Orc

x

p
Or 







 22

loglog  .........................(4) 

Eliminating ‘p’ from equations (1) and (4) gives the general solution of 

the equation (1). 

24

9

3

2
.,.

p

xpx
yei   

Using , c

xcx
yOr

xc

xxcx
yxcp

4

9

3

2

4

9

3

2
  

Thus, 1
3

2
c

xcx
y  . Where ‘c1’ is arbitrary constant. 

Example 5.4.4: Solve the differential equation nppxy  2
  .

 

Solution: Given equation is    nppxy  2 .......................... (1)   

Equation (1) is a differential equation solvable for '' y  

Differentiating equation (1) with respect to  '' x  



















 

dx

dp
np

dx

dp
xp

dx

dy n 12 ,  using dx

dy
p   

















 

dx

dp
np

dx

dp
xpp n 12   

  02 1  

dx

dp
npxp n

 

12  nnpx
dp

dx
pOr . 

22  nnpx
pdp

dx
Or  

This represents linear equation in terms of x and p. 

2log

2
2

. peeFI p
dp

p 


 . 

Its general solution is given by 

2
11

2222

)1(1




 





  cp
n

np
xOrc

n

p
nxpOrcdppnpxp

nn
n

            

...............(2) 

Substituting the value of x from equation (2) in equation (1), we get 

nn
n

n
n

p
n

n

p

c
yOrp

p

c

n

np
yOrpcp

n

np
py






























 



1

12

1
2

1
2 2

1

...............(3) 

An equation (2) and (3) constitutes the required general solution. 

5.4 Test Your Progress 

Solve the following differential equations (Equations Solvable for ‘y’) 



i) 022  xpyxp  

ii) 042 223  xypxp  

iii) pxpy  2  

iv) )(tan2 21 xpxpy   

v) pppy cossin   

vi) 02

4

2 
















y

dx

dy
x

dx

dy
x  

 

 

5.5. Equations solvable for  

 

Let )1.(....................0),,( pyxf be given differential equation. If equation 

(1) cannot be resolved into linear factors in ‘p’ and if it can be put in the 

form ),(1 pyfx  ................(2) . 

Then we say that equation (1) can be solved for x . Differentiating 

equation (2) with respect to '' x  we get a differential equation in two 

variables x  and p of the form  











dy

dp
py

dy

dx

p
,,

1
 ........................(3) 

x



Now, it may be possible to solve this new differential equation in '' y  and 

'' p . 

Let its solution be )4.(....................0),,( cpyF . 

Eliminating ‘p’ from equations (2) and (4), we obtain the required 

general solution of the equation (1) in the form .0),,( cyxF Where ‘c’ is 

arbitrary constant. 

Note 5.5.1: 

i) This method is especially useful for equations which do not 

contain y. 

ii) If it is not possible to eliminate ’p’ from equations (2) and 

(3)[i.e., elimination is not feasible) then equations (2) and 

(3)together represent the general solution of equation (1) in 

terms of p. Where ‘p’ may be regarded as a parameter. 

Suppose that the given differential equation does not contain ‘y’ i.e., in 

the form 0),( pxf . If it is solvable for ‘p’ then it may be written as 

)(xp   which can be solved by variables separable method. If it is 

solvable for ''x , it may be written as )(px   which can also be solved as 

explained above. 

 



Example 5.5.1: Solve the differential equation 084 23  yxypp
  
 

Solution: Given equation is    084 23  yxypp  

 Equation (1) is a differential equation solvable for '' x        











p

y

y

p
x

8

4

1 2

  .......................... (1) 

Differentiating equation (1) with respect to  '' y  

























22

2

.8

2

4

1

p

dy

dp
yp

y

py
dy

dp
p

dy

dx
,  using dx

dy
p   

























22

2

.8

2

4

11

p

dy

dp
yp

y

py
dy

dp
p

p  , multiplying by 
224 py , we obtain 




















dy

dp
ypyp

dy

dp
pyppy 2222 824  

0)4()4(2 3223  pypyp
dy

dp
y  

0)4(2 23 







 ypp

dy

dp
yOr  

)3.........(..........02)2.......(..........0)4( 23 







 p

dy

dp
yandyp  



Here, equation (2) is discarded as it does not contain dy

dp
 and it gives 

singular solution. 

From equation (3), we obtain   y

dy

p

dp
Orp

dy

dp
y  202 , integrating, 

)4..(..........logloglog2log2 2
2

  cypOrc
y

p
Orcypc

y

dy

p

dp
 

Eliminating ‘p’ from equations (1) and (4) gives the general solution of 

the equation (1). 











p

y

y

p
xei

8

4

1
.,.

2

084 23  yxypp  

Using , c

yc

c

y
c

cy

y
cxcyp 2

4
8

4

18

4

12 




























  

Thus, c

yc
x 2

4
 . Where ‘c’ is arbitrary constant. 

Example 5.5.2: Solve the differential equation 











21
tan

p

p
xp

   

Solution: Given equation is    











21
tan

p

p
xp  

2

1

2

1

1
tan

1
tan

p

p
pxOr

p

p
xp





 

............................(1) 

 Equation (1) is a differential equation solvable for '' x        



Differentiating equation (1) with respect to  '' y  



























22

22

2 )1(

2)1(

1

1

p

dy

dp
p

dy

dp
p

dy

dp

pdy

dx
,  using dx

dy
p   



























22

22

2 )1(

2)1(

1

11

p

dy

dp
p

dy

dp
p

dy

dp

pp  , multiplying by 
22 )1( pp  , we obtain 

dy

dp
ppp

dy

dp
ppp )21()1()1( 22222   

22 )1(2 p
dy

dp
pOr  . This is in variable separable form 

obtainwegIntegratindy
p

pdp
,,

)1(

2
22



  

 


 dydp
p

p
22 )1(

2
 

cyp  12 )1(  

12 )1(  pcyOr  

The general solution of equation (1) is given by 
2

1

1
tan

p

p
px


   and 

12 )1(  pcy . 

Example 5.5.3: Solve the differential equation abpxp 3

  
 



Solution: Given equation is    
23

33

p

b

p

a
xOrbpaxpOrabpxp   

 Equation (1) is a differential equation solvable for '' x        

23 p

b

p

a
x    .......................... (1) 

Differentiating equation (1) with respect to  '' y  

dy

dp

p

b

p

a

dy

dx













34

23
,  using  

1
23231

2334

























dy

dp

p

b

p

a
Or

dy

dp

p

b

p

a

p   

  dydpbpapOr   23 23 . This is in variable separable form  

Integrating,   cdydpbpap  
 23 23  

cydppbdppaOr  
 23 23  

c
p

b

p

a
yOr 

2

2

3
2  

 This gives the general solution of the equation (1). 

5.5 Test Your Progress 

Solve the following differential equations (Equations Solvable for ‘x’) 

i) 0)3(3  xpyp  

ii) 322 pypxy   

dx

dy
p 



iii) ypxyp  23  

iv) 2apypx   

v) 044 42  yypxp  

 

5.6. Clairaut’s equation  

 

Differential equation of the form )1......(..........)(pfpxy   is called 

Clairauts equation. 

Clairauts equation is solvable for ‘y’. 

Differentiating with respect to ‘x’, we obtain 

  p
dx

dp
pfx

dx

dy
Or

dx

dp
pfp

dx

dp
x

dx

dy
 )()( //  

Using , we obtain   0)(/ 
dx

dp
pfx  

)3........(..........0)()2....(..........0 '  pfxand
dx

dp
 

Here, Equation (3) is discarded as it gives singular solution. Therefore to 

find the general  

solution of equation (1), let’s solve equation (2). 

dx

dy
p 



00  dp
dx

dp
, integrating )4.....(..........cpOrcdp  , where ‘c’ is 

arbitrary constant. 

Now, eliminating ‘p’ from equations (1) and (4), we get )(cfcxy  , 

which is the general  

solution of the Clairaut’s equation given by (1). 

 

Note 5.6.1:  

i) It can be observed that, the general solution of the Clairaut’s 

equation )(pfpxy    

will be obtained by replacing ‘p’ with ‘c’. 

 

ii) Many equations of the first order but of higher degree can be 

easily reduced to the Clairaut’s form by making suitable 

substitutions. 

 

Example 5.6.1: Solve the differential equation;  .)1(2

2

dx

dy
x

dx

dy
y 










  
 

Solution: Given differential equation is  )1.......(..........)1(2

2

dx

dy
x

dx

dy
y 








  



Using dx

dy
p  , we get )1(2)1()1(2 22 pxpppxyOrpxpy  . 

This is in Clairaut’s equation, therefore it’s general solution is  

).1( cxcy   

Example 5.6.2: Solve the differential equation;  22 )( yppxyx 
  

 

Solution: Given differential equation is  
22 )( yppxyx 

.............................(1) 

Put dvdyandduxdxvyandux  22

 

x

p

xdx

dy

du

dv
PwithxP

du

dv
x

xdu

dv

dx

dy
p

22
22

2/
 .  

222 4)2()( uvPPuvuyppxyx   

2

22

41

2

424)2(

P

Pu
vOr

vPvpuOrvPPuv






 

This is in Clairaut’s equation, therefore its general solution is  

2

2

2 41

2

41

2

c

cx
yOr

c

cu
v





 . 

Example 5.6.3: Solve the differential equation;  pxpyypx 2))(( 
  

 

Solution: Given differential equation is  pxpyypx 2))((   

.............................(1) dvydyandduxdxvyanduxPut  2222

 

x

yp

xdx

ydy

du

dv
PwithP

y

x

ydu

xdv

xdu

ydv

dx

dy
p 

2

2

2/

2/
 



 
v

uP
uuPv

v

uP
pxpyypx

2
2))(( 








  

  PPvuPOr
v

uP
uP

v

vuP
Or 2)1)((

2
1 







 
 

1

2

1

2
)(







P

P
uPvOr

P

P
vuP  

This is in Clairaut’s equation, therefore its general solution is  

1

2

1

2 22







c

c
cxyOr

c

c
cuv . 

5.6 Test Your Progress 

Solve the following differential equations (Clairaut’s Equation) 

i) 22 )( yppxyx       

ii) 22)( pyypx    

iii) yppxy 22    

iv) 21 ppxy          

v) ppxy  )sin(   

vi) 
22222 2 apxppxyy    

 

 

 



5.7. Singular Solutions 

 

If we eliminate ‘p’ from equation (3) given by 0)('  pfx and the 

Clairaut’s equation in (1)  

given by )(pfpxy  , we obtain an equation involving no constant. 

This is the singular  

solution of equation (1) which gives the envelope of the family of 

straight lines given by the  

equation (4). 

We need to proceed as below to obtain the singular solution. 

i) Find the general solution by replacing ‘p’ by ‘c’, we obtain the 

equation (4) 

ii) Differentiate equation (4) with respect to ‘c’, we obtain 

0)('  cfx ............(5). 

iii) Eliminating ‘c’ from equations (4) and (5) leads to the singular 

solution. 

 

Example 5.7.1: Find the general and singular solution of the differential 

equation 02  aypxp
  
 



Solution: Given differential equation is  )1...(....................02  aypxp  

p

a
xpyOrxpayp  2

 

This is in the form of Clairaut’s equation given by )(pfpxy  . 

Therefore it’s general solution is given by 

)2...(........................................
c

a
cxy   

Now, to find the singular solution differentiating equation (2) with 

respect to ‘c’, we obtain 

)3......(..........0 2

2 x

a
cOr

x

a
cOr

c

a
x   

Eliminating ‘c’ from equations (2) and (3), we get 

x

xa
yOrax

x

a
yOr

x

a

a

x

a
y

)1( 
    

This is the desired singular solution. 

 

Example 5.7.2: Find the general and singular solution of the differential 

equation )log( ypxp 
  
 

Solution: Given differential equation is  )log( ypxp   

pp epxyOreypx  )( ..........................(1) 



This is in the form of Clairaut’s equation given by )(pfpxy  . 

Therefore its general solution is given by 

)2.(..............................cecxy   

Now, to find the singular solution differentiating equation (2) with 

respect to ‘c’, we obtain 

)3......(..........
1

log0 









x
cOrxeOrex cc

 

Eliminating ‘c’ from equations (2) and (3), we get 

xx
xyOre

x
xy x 11

log
1

log )/1log( 
















    

This is the desired singular solution. 

 

Example 5.7.3: Find the general and singular solution of the differential 

equation )sin( xpyp 
  
 

Solution: Given differential equation is  )sin( xpyp   

ppxyOrxpyp 11 sinsin   ..........................(1) 

This is in the form of Clairaut’s equation given by )(pfpxy  . 

Therefore its general solution is given by 

)2.(..............................sin 1 ccxy   



Now, to find the singular solution differentiating equation (2) with 

respect to ‘c’, we obtain 

2

22

2

1
)1(11

1

1
0

x
cOrcxOr

c
x 


  

)3......(...............
11

1
2

2

2

x

x
cOr

x
c


  

Eliminating ‘c’ from equations (2) and (3), we get 













 



 

x

x

x

x
y

1
sin

1 2
1

2

   

This is the desired singular solution. 

 

5.7 Test Your Progress 

Find the general and singular solutions of the following differential 

equations  

i) )( 222 bpapxy       

ii) pypxypx  sincoscossin  

iii) 22222 2 apxppxyy   

iv) 
21 ppxy   

 

 



5.8 Summary 

 

In this unit, we have studied the diffential equation of the first order but 

not of first degree which are (1) Solvable for y (2) Solvable for x. (3) 

Solvable for p. We also studied Clairaut’s equation and how to 

determine  singular solution. 

 

5.9 Terminal Questions 

 

1. Find the general and singular solution of the differential 

equation              

2. Solve 

   
  

  
        

  

  
      

3. Solve 

                

4. Solve 

           
 
   

 

 



5.10 Answers to Exercises 

 

5.3 Test Your Progress (Solvable for ‘p’) 

i) 0
2

tansin 2222 









x
xyc  

ii) 0))(( 22  cxycxy  

iii) 0)2)(( 222  cxxycxy  

iv) 0)1)()(( 2  cyxycxycy  

v) 0))(( 22422  cxycxxy  

vi) xxccxy  322  

 

5.4 Test Your Progress (Solvable for ‘y’) 

i) xxccxy  322  

ii) 42 232  xcyc  

iii) pceandpxpy ppx   2)1(2  

iv) ccxy 1tan2   

v) cpx  sin  

vi) 22 ccxy   

 



5.5 Test Your Progress (Solvable for ‘y’) 

i) 2/1223 )1()1()3(  pcpyandppyx  

ii) 32 2 ccxy   

iii) 32 2 ccxy   

iv) cpapapy  12 cosh1)(  

v) 0)1(40)(4)(4 4222  ycxycOrycyycyx  

 

5.6 Test Your Progress (Clairaut’s Equation) 

i) 222 ccxy   

ii) 2ccyxy   

iii) 
21

2

c

cx
y


  

iv) 21 ccxy   

v) ccxy 1sin  

vi) 
22 cacxy   

5.7 Test Your Progress 

i) General solution is 222 bcacxy   ; Singular solution is  

01 2  xy  



ii) General solution is ccxy 1sin  ; Singular solution is  

x

x
xy

1
sin1

2
12 

 

 

iii) General solution is 21 ccxy   ; Singular solution is  

2

2

2

2

1
1

1 x

x

x

x
y





  

iv) General solution is 22 cacxy   ; Singular solution is  

2

22
2

2

2

11 x

xa
a

x

ax
y





  
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6.1. Introduction 

 

Differential equations are very important mathematical subject from both 

theoretical and practical perspectives. The theoretical importance is given by 

the fact that most pure mathematical theories have applications in differential 

equations. 

The practical importance is given by the fact that the most important time 

dependent scientific, social and economical problems are described by 

differential equations. The bridge between nature (or universe) and us is 

provided by mathematical modelling, which is the process of finding the 

correct mathematical equations describing a certain problems. This process 

might start with experimental measurements and analysis, which leads to 

differential equations. 

Many real-world problems, when formulated mathematically, lead to 

differential equations. We encountered a number of these equations in 

previous units when studying phenomena such as the motion of an object 

moving along a straight line, the simple harmonic motion of moving object, 

simple electrical circuits, heat flow of an object, the decay of a radioactive 

material, the growth of a population, and the cooling of a heated object placed 

within a medium of lower temperature. 



In the previous units we introduced differential equations of the form 

)(xf
dx

dy
 , where ƒ 

is given and y is an unknown function of x. When ƒ is continuous over some 

interval, we 

learned that the general solution y(x) was found directly by integration, 

dxxfy  )( . And we also investigated differential equations of the form 

),( yxf
dx

dy
 , where ƒ is a function of both the independent variable x and the 

dependent variable y. There we learned how to find the general solution when 

the differential equation is separable. 

In this unit we further extend our study to include other commonly occurring 

first-order 

differential equations. They involve only first derivatives of the unknown 

function y(x), and 

model phenomena such as simple electrical circuits, or the resulting 

concentration of a 

chemical being added and mixed with some other fluid in a container. 

In this unit, we shall consider only such practical problems which give rise to 

differential equations of the first order and first degree. 



6.2. Objectives 

 

After reading this unit students should be able to: 

 Understand the geometrical applications of ODE’s of first order and 

degree 

 Understand the orthogonal trajectories 

 Understand the oblique or isogonal trajectories 

 

6.3. Geometrical Applications of Differential Equations of First 

Order and First Degree 

 

(i) Cartesian Coordinates: 

 

 

 



Let P(x, y) be any point on the curve 0),( yxf  (as shown in the figure). 

Then, we have 

1. Slope of the tangent at the point P(x, y) is 
dx

dy
tan  

2. Equation of the tangent at the point P(x, y) is )( xX
dx

dy
yY   so that its 

x -intercept is 
dx

dy
yxOT .  and y -intercept is 

dx

dy
xyOT ./  . 

3. Equation of the normal at the point P(x, y) is )( xX
dy

dx
yY   

4. Length of the tangent is 
























2

1.
dy

dx
yPT  

5. Length of the normal is 





















2

1.
dx

dy
yPN  

6. Length of the sub-tangent is 
dy

dx
yTM .  

7. Length of the sub-normal is 
dx

dy
yMN .  

8. 





















2

1
dx

dy

dx

ds
 and 

























2

1
dy

dx

dy

ds
 

9. Differential of the area = y.dx Or x.dy 

10. Radius of the curvature at the point P(x, y) is 

2

2

2/3
2

1

dx

yd

dx

dy

P





















  



(ii) 

 

Let ),( rP  be any point on the curve )(fr  (as shown in the figure). Then, 

we have 

1.    

2. 
dr

d
r


 .tan  , sinrp   

3. 
2

422

111










d

dr

rrp
 

4. Polar sub-tangent is 
dr

d
rOT


 2  

5. Polar sub-normal is 
d

dr
ON   

6. 










































2

2

2

;1




d

dr
r

d

ds

dr

d
r

dr

ds
 

 

6.3.1. Some Basic illustrations to understand/study the importance of 

further geometrical applications: 



 

Example 6.3.1: Find the equation of the curve which passes through the point 

(3, -4) and has the slope 
x

y2
 at the point (x, y) on it. 

Solution: It is given that, slope of the curve is 
x

y

dx

dy 2
  

Cxy

obtainwegIntegratin

FormSeperableVariabledx
xy

dy
Or

loglog2log

,

)(
2





 

Where, C is the constant of integration. 

2Cxy  …………. (1) is the equation of the curve 

Since, this curve passes through the point (3, -4). Equation (1) gives 

9

4
94  COrC  

Therefore required equation of the curve is given by 094
9

4 22  yxOrxy . 

Example 6.3.2: Find the equation of the curve which passes through the 

origin and has the slope 13  yx . 

Solution: It is given that, slope of the curve is 13  yx
dx

dy
…………… (1) 

 















1
3

1

31

13

dx

dv

dx

dy
Or

dx

dv

dx

dy

vyxPut

 



Substituting in equation (1), we obtain 

cxv

gIntegratindx
v

dv

formSeparableVariablev
dx

dv
Or

v
dx

dv

log)13log(
3

1

,
13

)(13

1
3

1




















 

Where, ‘c’ is the constant of integration. 

)1......(....................
393

13

13

3
)13(

log

3

3

3

3

3

x

x

e
c

yx

yxvPut

e
c

v
Or

x
c

v
















 


 

Since, this curve passes through origin. Equation (1) gives 33 1

3  cOrc  

Therefore required equation of the curve is given by 

xx eyxOreyx 33 133393  . 

Example 6.3.3: At every point on a curve the slope is the sum of the abscissa 

and the product of the ordinate and the abscissa and the curve passes through 

(0, 1). Find the equation of the curve. Solution: It is given that, slope of the 

curve is )1( yx
dx

dy
Orxyx

dx

dy
  



C
x

y

obtainwegIntegratin

FormSeperableVariablexdx
y

dy
Or

log
2

)1log(

,

)(
1

2






 

Where, C is the constant of integration. 

2

2

)1(
x

e
C

y



 …………. (1) is the equation of the curve 

Since, this curve passes through the point (0, 1). Equation (1) gives 

21
2

 COr
C

 

Therefore required equation of the curve is given by 

1221 2/2/ 22

 xx eyOrey . 

 

Example 6.3.4: A curve is such that the length of the perpendicular from 

origin on the tangent at any point P of the curve is equal to the abscissa of P. 

Prove that the differential equation of the curve is 02 22  x
dx

dy
xyy , and 

hence find the curve. 

 Solution: Let the equation of the tangent at P(x, y) is given by 

)( xX
dx

dy
yY  . 

Since the length of the perpendicular from origin on the tangent at any point P 

of the curve is equal to the abscissa of P. 



02

2

1

1

22

2

222

2

2

2

2

2

2







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







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














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

































dx

dy
xyxyOr

dx

dy
xx

dx

dy
xyy

dx

dy
xOr

dx

dy
xy

dx

dy
xOr

x

dx

dy

y
dx

dy
x

 

This is the required differential equation of the curve.  

Now, to find the equation of the curve, consider 02 22  x
dx

dy
xyy  

xy

xy

dx

dy

2

22 
 .....................(1),  it is homogeneous ODE of first order and first 

degree. 

Put 
dx

dv
xv

dx

dy
vxy  , then equation (1) gives 

cxv

obtainwegIntegratin

formSeperableVariable
x

dx
dv

v

v

v

v

v

vv
v

v

v

dx

dv
x

vx

xxv

dx

dv
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loglog)1log(

,
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2

2

1

2
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2

1

2
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2222

2
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



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
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


 

Where, ‘c’ is the constant of integration. 



cxyxOrcx
x

y

x

y
vSubstitute

cvxOr
x

c
vOr

x

c
vOr












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







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22
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2

22

2

1

)1()1(

log)1log(

 

This is the required equation of the curve. 

 

Example 6.3.5: A plane curve has the property that the tangents from any 

point on the Y-axis to the curve are of constant length ‘a’. Find the differential 

equation of the family to which the curve belongs and hence obtain the curve. 

Solution: Equation of the tangent at the point P(x, y) is )( xX
dx

dy
yY   . 

Since 0X . 

dx

dy
xyYx

dx

dy
yY  )0(  

The point on Y-axis is 









dx

dy
xy,0 . 

The tangents from any point on the Y-axis to the curve are of constant length 

‘a’. This implies that 

  2

2

22

2

2
0 a

dx

dy
xxay

dx

dy
xyx 









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
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)(
22

22

2

2
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x

xa

dx
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Or

xa
dx

dy
x








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




 

c
x

xaa
axay

egratingdx
x

xa
dy









22
22

22

log

int,

 

 

Example 6.3.6: Determine the curve whose sub-tangent is twice the abscissa 

of the point of contact and passes through the point (1, 2).  

Solution: Let P(x, y) be the point on the curve. The sub tangent at P(x, y) is 

dy

dx
y.  

Since 

)1....(....................loglog2log

int,2

)(2.

2cyxOrcyx

egrating
y

dy

x

dx

formSeperableVariablex
dy

dx
y







 

This is the required equation of the curve. Since, this curve passes through the 

point (1, 2). 

From equation (1), we get 
4

1
41  cOrc . 

Hence, the equation of the curve is xy 42  . 

 



Example 6.3.7: Determine the curve in which the length of the subnormal is 

proportional to the square of the ordinate.  

Solution: Let P(x, y) be the point on the curve. The sub normal at P(x, y) is 

dx

dy
y. . 

Since 22 .. yk
dx

dy
yy

dx

dy
y  , where ‘k’ is constant of proportionality. 

kxceyOrckxy

obtainwegIntegratin

formSeperableVariabledxk
y

dy





loglog

,

)(

 

Where, ‘c’ is the constant of integration. 

 

Example 6.3.8: Show that the curve in which the portion of the tangent 

included between the co-ordinates axes is bisected at the point of contact is a 

rectangular hyperbola.  

Solution: Let the tangent at any point P(x, y) of a curve cut the axes at T and 

T
’
 as shown in the following figure.  

 



Since, its x -intercept is 
dx

dy
yxOT .

  

And its y -intercept is 
dx

dy
xyOT ./ 

 

Therefore, the co-ordinates of T  and /T are 














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dx
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dx
yx ,00,  

Since P is the mid-point of /TT .  
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This represents the equation of the rectangular hyperbola, having ‘x’ and’y’ 

axes as its asymptotes. 

 

Example 6.3.9: Find the curve for which the normal makes equal angles with 

the radius vector and the initial line. 

Solution: Let PT and PN be the tangent and normal at the point ),( rP of the 

curve so that 
dr

d
r


 tan . Since ONPOPN  090  (as shown in the 

following figure). 
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Example 6.3.10: Find the shape of a reflector such that light coming from a 

fixed source is reflected in parallel rays. 

Solution: In the XY-plane, let /PP be the reflected ray, where P is the point (x, 

y) on the curve 0),( yxf . 

 



If /TPT be the tangent at P, then angle of incidence = angle of reflection. 
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Now, differentiating equation (1) w. r.t. ‘y’, we obtain 
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Now, eliminating ‘p’ from equations (1) and (2), we obtain 

cxcyOrcxcyOrc
c

y
xyp

p

y
x 2222 2222

2

  

Hence the reflector is the member of the family of paraboloids of revolution 

cxczy 2222  . 

 



6.3. Test Your Progress 

(i) The tangent at any point of a certain curve forms with the ordinate 

axes a triangle of constant area A. Find the equation to the curve. 

(ii) Find the curve which passes through the origin and is such that the 

area included between the curve, the ordinate and the X-axis is twice 

the cube of that ordinate. 

(iii) Find the curve whose  

(a) Polar sub-tangent is constant 

(b) Polar sub-normal is proportional to the sine of the victorial angle. 

(iv) Determine the curve for which the angle between the tangent and the 

radius vector is twice the victorial angle. 

(v) Find the curve for which the tangent at any point P on it bisects the 

angle between the ordinate at P and the line joining P to the origin. 

(vi) Find the curve for which the tangent,  the radius vector ‘r’ and the 

perpendicular from the origin on the tangent form a triangle of area 

kr
2
. 

 

6.4. Orthogonal Trajectories 

 

The concept of the orthogonal trajectories is of wide use in applied 

mathematics especially in field problems. For instance, in an electric field, the 



paths along which the current flows are the orthogonal trajectories of the 

equipotential curves and vice versa. In fluid flow, the stream lines and 

equipotential lines (line of constant velocity potential) are orthogonal 

trajectories. Likewise, the lines of heat flow for a body are perpendicular to 

the isothermal curves. The problem of finding the orthogonal trajectories of a 

given family of curves depends on the solution of the first order differential 

equations. 

 

Definition 6.4.1: 

An orthogonal trajectory of a family of curves is a curve that intersects each 

curve of the family at right angles, or orthogonally (as shown in the following 

figure 1). 



  

Figure 1: An orthogonal trajectory intersects the family of curves at right 

angles, or orthogonally 

 

For instance, each straight line through the origin in an orthogonal trajectory 

of family of circles 222 ayx  , centred at the origin is an orthogonal 

trajectory (as shown in the following figure 2). 

 

Figure 2: Every straight line through the origin is orthogonal to the 

family of circles centred at the origin. 

Such mutually orthogonal system of curves are of particular importance in 

physical problems related to electrical potential, where the curves in one 

family correspond to strength of an electric field and those in the other family 



correspond to constant electric potential. They also occur in hydrodynamics 

and heat-flow problems. 

Equivalently, 

Two families of curves are such that each curve in either family is orthogonal 

(whenever they intersect) to every curve in the other family. Each family of 

curves is orthogonal trajectories of the other. In case the two families are 

identical, then we say that the family is self-orthogonal. 

 

Note: Orthogonal trajectories have important applications in the field of 

physics.  

 

For example: The equipotential lines and the streamlines in an irrotational 

two dimensional flow are orthogonal. 

 

 

    Orthogonal Trajectories 

 



6.4.1. To find the orthogonal trajectories of the family of curves F(x, y, 

c)=0  

[i.e., Cartesian Form] 

i. Form its differential equation in the form 0,, 








dx

dy
yxf by eliminating 

‘c’. 

ii. Replace 
dx

dy
 by 

dy

dx
  in this differential equation, (so that the product 

of their slopes at each point of intersection is -1). 

iii. Solve the differential equation of the orthogonal trajectories of the 

form 0,, 









dy

dx
yxf . 

 

Example 6.4.1: Find the orthogonal trajectories of family of straight lines 

through the origin. 

Solution: The family of straight lines through the origin is given by,  

mxy    ............. ...   (1) 

Differentiating equation (1) w. r. t '' x , we obtain 

m
dx

dy
  ..................  (2) 

Eliminating ‘m’ from equations (1) and (2), we get 

0/  yxyOr
x

y

dx

dy
  ........................  (3) 



This represents the ODE for the family of straight lines represented by the 

equation (1). 

Now, replace 
dx

dy
 by 

dy

dx
  in this differential equation represented by the 

equation (3). 

ydyxdxOr
x

y

dy

dx
  ......................  (4) 

This represents the ODE for the orthogonal family of straight lines 

represented by the equation (1). 

Integrating equation (4), we obtain 

222
222

222
cyxOr

cyx
  

This represents the family of circles with centre at the origin (as shown in the 

following figure). 

 

 



Example 6.4.2: Find the orthogonal trajectories of family of curves axy  , 

0a  is an arbitrary constant. 

OR 

If the stream lines (paths of fluid particles) of a flow around a corner are 

tconsxy tan , find their orthogonal trajectories (called equipotential lines). 

Solution: The given family of curves axy  represents the family of parabolas 

,  

axy    ............. ...   (1) 

Differentiating equation (1) w. r. t '' x , we obtain 

0 y
dx

dy
x  ..................  (2) 

This represents the ODE for the family of straight lines represented by the 

equation (1). 

Now, replace 
dx

dy
 by 

dy

dx
  in this differential equation represented by the 

equation (2). 

ydyxdxOry
dy

dx
x  0  ......................  (3) 

This represents the ODE for the orthogonal family of straight lines 

represented by the equation (1). 

Integrating equation (3), we obtain 



cyxOr
cyx

 22
222

222
 

This represents the family of hyperbolas (as shown in the following figure). 

 

 

Example 6.4.3: Find the orthogonal trajectories of family of semicubical 

parabola 32 xay  . 

Solution: The given family of curves 32 xay  represents the family of semi 

cubical parabolas ,  

32 xay    ............. ...   (1) 

Differentiating equation (1) w. r. t '' x , we obtain 

232 x
dx

dy
ay   ..................  (2) 

Eliminating ‘a’ from equations (1) and (2), we get 

3
2

32 2

2

3










dx

dy

y

x
Orx

dx

dy

y

x
y   ........................  (3) 



This represents the ODE for the family of semi cubical parabolas represented 

by the equation (1). 

Now, replace 
dx

dy
 by 

dy

dx
  in this differential equation represented by the 

equation (3). 









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


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obtainwegIntegratinydyxdx

FormSeperableVariable
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Or    222 32 cyx    ............................  (4) 

This represents the family of circles with centre at the origin (as shown in the 

following figure). 

 

Example 6.4.4: Find the orthogonal trajectories of system of confocal and 

coaxial parabolas. 

Solution: The equation of family of confocal parabolas having X-axis as their 

axis is given by,  

)(42 axay    ............. ...   (1) 

Differentiating equation (1) w. r. t '' x , we obtain 

a
dx

dy
yOra

dx

dy
y 242   ..................  (2) 

Eliminating ‘a’ from equations (1) and (2), we get 



         

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

dx

dyy
x

dx

dy
yOr

dx

dyy
x

dx

dy
yy

2
2

2
22    

 02

2









 y

dx
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xOr  ........................  (3) 

This represents the ODE for the family of confocal parabolas represented by 

the equation (1). 

Now, replace 
dx

dy
 by 

dy

dx
  in this differential equation represented by the 

equation (3). 

      0202
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yOr ......................  (4) 

This is same as equation (3) 

Thus, we see that a system of confocal and coaxial parabolas is self-

orthogonal, each member of the family (1) cuts every other member of the 

same family orthogonally. 

 

Example 6.4.5: Find the orthogonal trajectories of family of confocal conics 

1
2

2

2

2





a

y

a

x
, where  is the parameter. 

Solution: We have 1
2
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x
 ……………….  (1) 



Differentiating equation (1), we get  
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To eliminate ‘’ ,  Substituting this in the equation (1), we get 
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This is the differential equation of the given family of curves represented by 

the equation (1). 

Now, replace 
dx

dy
 by 

dy

dx
  in this differential equation represented by the 

equation (3), we get 

c
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This is the equation of the required orthogonal trajectories. 

 

6.4 Test Your Progress 

i. Find the orthogonal trajectories of family of parabolas axy 42  . 



ii. Find the orthogonal trajectories of family of parabolas 2axy  . 

iii. Find the orthogonal trajectories of family of Coaxial circles  

2222  cxyx  , ‘’ being the parameter. 

iv. Find the orthogonal trajectories of family of Confocal conics  

1
2

2

2

2





  b

y

a

x
, ‘’ being the parameter. 

v. Show that the family of parabolas )(42 ayax   is self orthogonal. 

vi. The electric lines of force of two opposite charges of the same 

strength at (±1, 0) are circles (through these points) of the form 

122  ayyx . Find their equipotential lines (orthogonal 

trajectories). 

 

6.5. To find the orthogonal trajectories of the family of curves 

0),,( crF  [i.e., Polar Form] 

 

i. Form its differential equation in the form 0,, 











d

dr
rf by 

eliminating ‘c’. 

ii. Replace 
d

dr
 by 

dr

d
r

2  in this differential equation. 
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iii. Solve the differential equation of the orthogonal trajectories of the 

form 0,, 2 









dr

d
rrf


 . 

 

Example 6.5.1: Find the orthogonal trajectories of family of straight lines 

through the origin in polar form. 

Solution: The family of straight lines through the origin is given by,  

A   ............. ...   (1) 

Differentiating equation (1) w. r. t ''r , we obtain 

00  


dOr
dr

d
 ..................  (2) 



This represents the ODE for the family of straight lines represented by the 

equation (1). 

Now, replace 
d

dr
 by 

dr

d
r

2  in this differential equation represented by the 

equation (2). 

00
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2

 drOr

dr

d
r


 ......................  (3) 

This represents the ODE for the orthogonal family of straight lines 

represented by the equation (1). 

Integrating equation (3), we obtain, cr  . 

This represents the family of circles with centre at the origin. 

 

Example 6.5.2: Find the orthogonal trajectories of the cardioides 

)cos1(  ar . 

Solution: Given equation of the cardioide is,  

)cos1(  ar   ............. ...   (1) 

Differentiating equation (1) w. r. t '' , we obtain 




sina
d

dr
  ....................  (2) 

This represents the ODE for the family of straight lines represented by the 

equation (1). 



Now, eliminating ‘a’ from equations (1) and (2), we obtain 

From equation (1), 



cos1
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r

aOrar  

Equation (2) gives, 
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Now, replace 
d

dr
 by 

dr

d
r

2  in this differential equation represented by the 

equation (2). 
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This represents the ODE for the orthogonal family of cardioides represented 

by the equation (1). 
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Integrating equation (3), we obtain,  
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This represents the required orthogonal trajectory. 



 

Example 6.5.3: Find the orthogonal trajectories of the family of nar n sin . 

Solution: Given equation of the family of curves is,  

nar n sin  

Taking ‘log’ on both sides, we get 

 narn sinlogloglog  ............. ...   (1) 

Differentiating equation (1) w. r. t '' , we obtain 
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This represents the ODE for the family of the curves represented by the 

equation (1). 

Now, replace 
d

dr
 by 

dr

d
r

2  in this differential equation represented by the 

equation (2). 
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Integrating equation (3), we obtain,  
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This represents the required orthogonal trajectory. 

 

Example 6.5.4: Find the orthogonal trajectories of the curves 

)sin(cos2   ar . 

Solution: Given equation of the cardioide is,  

)sin(cos2   ar   ............. ...   (1) 

Differentiating equation (1) w. r. t '' , we obtain 

)sin(cos2 


 a
d

dr
 ....................  (2) 

This represents the ODE for the family of straight lines represented by the 

equation (1). 

Now, eliminating ‘a’ from equations (1) and (2), we obtain 

From equation (1), 
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Equation (2) gives, 
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Now, replace 
d

dr
 by 

dr

d
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2  in this differential equation represented by the 

equation (3). 

)(
)sin(cos

)sin(cos

)sin(cos

)sin(cos2

FormSeparableVariable
dr

d
rOr

r

dr

d
r



















 

This represents the ODE for the orthogonal family of cardioides represented 

by the equation (1). 
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Integrating equation (3), we obtain,  
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This represents the required orthogonal trajectory. 

Example 6.5.5: Find the orthogonal trajectories of 
cos1

2




a
r . 

Solution: Given equation of the curve is,  

cos1

2
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a
r   ............. ...   (1) 

Differentiating equation (1) w. r. t '' , we obtain 
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This represents the ODE for the family of curves represented by the equation 

(1). 

Now, eliminating ‘a’ from equations (1) and (2), we obtain, 

From equation (1), )cos1(2
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Equation (2) gives, 
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Now, replace 
d

dr
 by 

dr

d
r

2  in this differential equation represented by the 

equation (3). 

)(
2

tan

2
tan2

FormSeparableVariable
dr

d
rOr

r
dr

d
r









 

This represents the ODE for the orthogonal family of curves represented by 

the equation (1). 

r

dr
d  



2
cot    ......................  (4) 

Integrating equation (4), we obtain,  
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This represents the required orthogonal trajectory. 

 

6.5 Test Your Progress 

i. Find the orthogonal trajectories of family of cardioides )cos1(  ar . 

ii. Find the orthogonal trajectories of the family of curves 2cos22 ar  . 

iii. Find the orthogonal trajectories of the family of curves nn anr cos . 

iv. Show that the family of curves nar n sec  and ecnbr n cos  are 

orthogonal. 

 

 

6.6.  Isogonal Trajectories (Or Oblique Trajectories) 

 

Two families of curves such that every member of either family cuts each 

member of the other family at a constant angle α (say), are called isogonal or 

oblique trajectories of each other. The slopes m1 and m2 of the tangents to the 



corresponding curves at each point are connected by the relation 

tcons
mm

mm
tantan

1 21

21 



 (as shown in the figure). 

 

 

Figure: Oblique ( Or Isogonal)Trajectories 

In other words, 

Here the two families of curves intersect at an arbitrary angle α 6= π/2. 

Suppose the first family be  

  0,, cyxf   ...............  (1). 

To find the oblique trajectories of this family we proceed as follows. First, 

differentiate (1) w.r.t. ‘x’ to find       0,,, /

1 cyyxf   .................  (2). 

Eliminate ‘c’ between the equations (1) and (2) to find the differential 

equation , 

  0,, /

2 yyxf   .................  (3). 

If m1, is the slope of this family, then we write equation (3) as  



  0,, 12 myxf   .................  (4). 

Let m2 be the slope of the second family. Then,   

tan
1 21

21 




mm

mm
.  

Thus, we find 




tan1

tan

2

2
1

m

m
m




 . 

Hence, from equation (4), the ODE for the second family satisfies  

0
tan1

tan
,,

2

2
2 







 





m

m
yxf


 

Replacing m2 by y
1
, the ODE for the second family is written as  

0
tan1

tan
,,

/

/

2 






 





y

y
yxf


  ...........  (5) 

General solution of equation (5) gives the required oblique trajectories. 

 

Note: If we let 
2


  , we obtain the orthogonal trajectories. 

Example 6.6.1: Find the oblique trajectories of the family of circles 

222 ayx  , which intersect at 45
0
. 

Solution: Given family of circles is 222 ayx    ……………….(1) 

Differentiate the equation (1) w. r. t ‘x’. We obtain 

yxyOr
y

x

dx

dy
Or

dx

dy
yx /022 /  . 



For the oblique (Or  isogonal) trajectories, we replace 

/

/

/

/
/

1

1

)4/tan(1

)4/tan(

y

y

y

y
y












. 

Thus, the ODE for the oblique (Or isogonal) trajectories is given by  

y

x

y

y



/

/

1

1


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,

1,

)()()()(

)1()1(
1

1

//

1

//

//

//

/

/

ODEogeneous
yx

xy
yyOrcxy

obtainwegIntegratin

yx

xy
yOryThus

xyyyxOryxyyx

yxyy
y

x

y

y
















 


 

Example 6.6.2: Find the oblique trajectories that intersects the family 

Axy   at an angle of 60
0
. 

Solution: Given family if curves is Axy    ………………. (1) 

Differentiate the equation (1) w. r. t ‘x’. We  obtain 

11 /  yOr
dx

dy
. 

For the oblique (Or isogonal) trajectories, we replace 

/

/

/

/
/

31

3

)3/tan(1

)3/tan(

y

y

y

y
y












. 



Thus, the ODE for the oblique (Or isogonal) trajectories is given by 

1
31

3
/

/




y

y


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1
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/

/
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3
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












 


 

6.7 Summary 

 

In this unit, we studied Geometrical application of differential equation based 

on tangent, normal, subtangent etc. to find orthogonal trajectories in Cartesian 

and polar form, also to find oblique trajectories. 

 

6.8 Terminal Questions 

 

1) Find the Cartesian equation of the curve whose subtangent is constant. 

2) Show that the parabola is the only curve in which the subnormal is 

constant. 

3) Find the orghugant  trajectories of the system of curve  
  

  
   

 

 
  



4) Find the orthogonal  trajectories of         

5) Find the equation of the family of oblique  trajectories which cut the line 

           .  

6.7 Answers to Exercises 

 

6.3. Test Your Progress 

(i) baxy     (ii)   23yx     (iii) (a) cr  )(   (b) 

cosbar    

(iv)   2sin22 ar    (v)  1222  cyxc   (vi)  cotaer   

 

6.4. Test Your Progress 

(i) cyx  222    (ii) 222 2 cyx   (iii) 0222  cyyx    

(iv) This system is self orthogonal (vi) 0122  cxyx  

 

6.5. Test Your Progress 

(i) )cos1(  cr   (ii) 2sin22 cr   (iii) cnr n sin  
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7.1. Introduction 

 

Applied mathematics involves the relationships between mathematics and its 

applications. Often the type of mathematics that arises in applications is 

differential equations. Thus, the study of differential equations is an integral 

part of applied mathematics. 

Differential equations are found in many areas of mathematics, science, and 

engineering. One may be surprised to see the way in which differential 

equations dominate the study of many aspects of science and engineering. 

Differential equations are very important mathematical subject from both 

theoretical and practical perspectives. The theoretical importance is given by 

the fact that most pure mathematical theories have applications in differential 

equations. 

Applied mathematics is said to have three fundamental aspects;  

Firstly, the modelling process by which physical objects and processes are 

described by physical laws and mathematical formulations. Since so many 

physical laws involve rates of change (or the derivative), differential 

equations are often the natural language of science and engineering. 



Secondly, the analysis of the mathematical problems that are posed. This 

involves the complete investigation of the differential equation and its 

solutions. 

Thirdly, however, the mathematical solution of the differential equation does 

not complete the overall process. The interpretation of the solution of the 

differential equation in the contest of the original physical problem must be 

given, and the implications further analysed. 

The practical importance is given by the fact that the most important time 

dependent scientific, social and economical problems are described by 

differential equations. The bridge between nature (or universe) and us is 

provided by mathematical modelling, which is the process of finding the 

correct mathematical equations describing a certain problems. This process 

might start with experimental measurements and analysis, which leads to 

differential equations. 

Many real-world problems, when formulated mathematically, lead to 

differential equations. We encountered a number of these equations in 

previous units when studying phenomena such as the motion of an object 

moving along a straight line, the simple harmonic motion of moving object, 

simple electrical circuits, heat flow of an object, the decay of a radioactive 



material, the growth of a population, and the cooling of a heated object 

placed within a medium of lower temperature. 

In the previous units we introduced differential equations of the form 

)(xf
dx

dy
 , where ƒ 

is given and y is an unknown function of x. When ƒ is continuous over some 

interval, we 

learned that the general solution y(x) was found directly by integration, 

dxxfy  )( . And we also investigated differential equations of the form 

),( yxf
dx

dy
 , where ƒ is a function of both the independent variable x and the 

dependent variable y. There we learned how to find the general solution 

when the differential equation is separable. 

In this unit we further extend our study to include other commonly occurring 

first-order 

differential equations. They involve only first derivatives of the unknown 

function y(x), and 

model phenomena such as simple electrical circuits, or the resulting 

concentration of a 

chemical being added and mixed with some other fluid in a container. 



In this unit, we shall consider only such practical problems which give rise to 

differential equations of the first order and first degree. 

Also, we present a sufficient number of applications to enable the students to 

understand how differential equations are used and to develop some feeling 

for the physical information they convey. 

 

7.2. Objectives 

 

After reading this unit students should be able to: 

 Understand the physical applications of ODE’s of first order and 

degree 

 Apply Newton’s law of cooling 

 Understand to model the electrical circuits and solve the first order 

ordinary differential equations which arise. 

 Understand the Chemical applications of ODE’s of first order and 

degree 

 

7.3. Physical Applications of Differential Equations of First 

Order and First Degree 
 

In applications, the dependent variables are frequently functions of time, 

which we denote by ‘t’. Some applications such as Newton's Law of 

Cooling, Kirchhoff’s Laws of Electric Circuits, Motion under Gravity, 



Rectilinear Motion, Simple Harmonic Motion, Rate of Growth or Decay,  

Heat flow are discussed here. In all these cases, modelling, analysis and 

interpretation are important. 

 

7.4. Newton's Law of Cooling 

 

Modelling the Newton’s Law of Cooling, according to this law, the 

temperature of a body changes at a rate which is proportional to the 

difference in temperature between that of the surrounding medium and that 

of the body itself. 

If ‘ 0 ’ is the constant temperature of the surrounding medium and ‘θ’ is the 

temperature of an object at time ‘t’. Then,  

)( 0


 k
dt

d
, where ‘k’ is a constant. 

Note: In case of process of heating, Newton’s law is given by, )( 0


 k
dt

d
, 

where ‘k’ is a constant. 

 

Example 7.4.1: If the temperature of the air is 30
0
 C and the substance cools 

from 100
0
 C to 70

0
 C in 15 minutes, find when the temperature will be 40

0
 C. 

Solution: If ‘θ’ be the temperature of the body at any time ‘t’, then 

)30(  


k
dt

d
, where ‘k’ is a constant. 



dtk
d


 )30(


, Integrating, we obtain 

egrationoftconstheiscwhereckt inttan'',log)30log(   

ktecOr  )30(   ......................  (1) 

When t = 0, θ = 100
0
 C and when t=15, θ = 70

0
. 

From equation (1), we get 70)30100( )0(   cec k  

And again from equation (1), 0373077191.070)3070( 15   ke k  

Thus, equation (1) becomes, te )0373077191.0(70)30(    ....................  (2) 

Now, when θ = 40
0
C, equation (2) gives, 

ste t min15.5270)3040( )0373077191.0(    

 

Example 7.4.2: If the air is maintained at 30
0
 C and the temperature of the 

body cools from 80
0
 C to 60

0
 C in 12 minutes. Find the temperature of the 

body after 24 minutes. 

Solution: If ‘θ’ be the temperature of the body at any time ‘t’, then 

)30(  


k
dt

d
.  Where ‘k’ is a constant. 

dtk
d


 )30(


, Integrating, we obtain 

egrationoftconstheiscwhereckt inttan'',log)30log(   

ktecOr  )30(   ......................  (1) 

When t = 0, θ = 80
0
 C and when t=12, θ = 60

0
. 



From equation (1), we get 50)3080( )0(   cec k  

Again from equation (1), 0425688019.050)3060( 12   ke k  

Thus, equation (1) becomes, te )0425688019.0(50)30(    ....................  (2) 

Now, when t = 24 mins, equation (2) gives, 

Ce 024)0425688019.0( 4850)30(     

 

Example 7.4.3: A body originally at 80
0
 C cools down to 60

0
C in 20 

minutes, the temperature of the air being 40
0
 C. What will be the temperature 

of the body after 40 minutes from the original?. 

Solution: If ‘θ’ be the temperature of the body at any time ‘t’, then 

)40(  


k
dt

d
, where ‘k’ is a constant. 

dtk
d


 )40(


, Integrating, we obtain 

egrationoftconstheiscwhereckt inttan'',log)40log(   

ktecOr  )40(   ......................  (1) 

When t = 0, θ = 80
0
 C and when t=20, θ = 60

0
. 

From equation (1), we get 40)4080( )0(   cec k  

Again from equation (1), 034657359.040)4060( 20   ke k  

Thus, equation (1) becomes, te )034657359.0(40)40(    ....................  (2) 



Now, when t = 40 mins, equation (2) gives, 

Ce 040)034657359.0( 5040)40(    . 

 

Example 7.4.4: A body is exposed to a constant temperature of 280 K. After 

1 minute the temperature of the body is 350 K and after 5 minutes it is 310K. 

Find an expression for the temperature θ at time t. Sketch the graph of θ 

against t for t≥0. 

Solution: If ‘θ’ be the temperature of the body at any time ‘t’, then 

)280(  


k
dt

d
, where ‘k’ is a constant. 

dtk
d





)280(


, Integrating, we obtain 

egrationoftconstheiscwhereckt inttan'',log)280log(   

ktecOr  )280(   ......................  (1) 

When t = 60 Secs, θ = 350K and when t=300 Secs, θ = 310K. 

From equation (1), we get kk ecec 6060 70)280350(   

Again from equation (1), 

  003530407.0
70

30
70)280310( 24030060   keOree kkk  

Thus, equation (1) becomes, tkt eOre 003530407.0)60( 49.8628070)280(       



Next, to sketch the graph of θ against t for t≥0, we need to find the value of θ 

at t = 0 : 

49.36649.8628049.86280 0  e . 

The graph in the following figure shows that the temperature of the body will 

eventually reach very close to the temperature of the surroundings at 280 K. 

This is because 86.49 )1053.3( 3

49.86
e  is the transient term and decays to zero 

as t gets large.  

 

 

Figure 7.4.4 

 

7.4. Test Your Progress 

1) An object is initially at 400 K, and the constant surrounding temperature 

is 300 K. Determine an expression that gives the temperature )(t   at time 

t. 



2) Newton’s law of cooling gives )( Tk
dt

d
 


, where θ is the temperature at 

time t, T is the constant surrounding temperature and k is a constant. Given 

that 0)0( T . Show that TeTT kt  )( 0 . 

3) A body is at a temperature of 373 K. After 5 minutes the temperature of 

the body is 330 K. Find an expression for )(t  given that the constant 

surrounding temperature is 300 K. Sketch the graph of   against t for .0t  

What does   tends to as t tends to  . 

4) By applying Newton’s law of cooling to an object we obtain 

)320(  


k
dt

d
where   is the temperature at time t and k is a constant. Given 

that when t = 0,   = 348 K, find an expression for  . 

 

7.5. Simple Electrical Circuits (Kirchhoff’s Laws of Electrical 

Circuits) 
 

Here, we examine electrical engineering applications. In electrical principles 

R, L and C are constants representing resistance, inductance and capacitance 

respectively. 

E represents the e.m.f. and )()(),( tiiOrtIItvv   represents voltage and 

current respectively at time t. 



We shall consider circuits made up of three passive elements: resistance, 

inductance and capacitance. An active element: voltage source which may be 

a battery or a generator. 

 

7.5.1. Symbols: 

 Quantity of electricity      : Symbol is Q ( Or q ): Unit of 

measurement is Coulomb. 

 Current (“ time rate flow of electricity”):  Symbol is I ( Or i ) :  

Unit of measurement is ampere (A). 

 Resistance (R)   : Symbol is  : Unit of measurement 

is ohm (Ω). 

 Inductance (L)   : Symbol is    : Unit of measurement 

is henry (H). 

 Capacitance (C) :  Symbol is  : Unit of measurement 

is farad (F). 



 Electromotive force (e. m. f) Or voltage, E:  : 

Unit of measurement is volt (V). 

 Loop is any closed path formed by passing through two or more 

elements in series. 

 Nodes are the terminals of any of these elements. 

 

7.5.2. Ohm’s Law: Current is the rate of flow of electricity. 

 )'( LawsOhmIRV  . The voltage v, across an inductor of inductance L 

(figure 1), is given by 

  

Figure. 1 

 
dt

di
LV  , the voltage v, across an inductor of inductance L (Figure. 

2), is given by 

 

  Figure. 2 



 
dt

dv
Ci  , the voltage v, across a capacitor of capacitance C (Figure 

3), is related to the current. 

 

  Figure. 3 

 

Note: Remember that R, L and C are positive constant. 

 

7.5.3. Basic Relations: 

   dtiqOr
dt

dq
i  

 Voltage drop across the resistance RiR )( . 

 Voltage drop across the inductance 
dt

di
LL )(  

 Voltage drop across the inductance 
C

q
C )(  

7.5.4. Kirchhoff’s Laws: 

 

1. The algebraic sum of the voltage drops around any closed circuit is equal 

to the resultant electromotive force in the circuit. 

2. The algebraic sum of the currents flowing into (or from) any node is zero. 



 

Note: The formulation of differential equations for an electrical circuit 

depends on these two Kirchoff’s laws which are of cardinal importance. 

 

Below is the explanation of Kirchhoff’s Law. 

Sum of the voltage rises = sum of the voltage drops 

 

 

Figure. 4: Applied voltage to the circuit is v and v1, v2 and v3 are 

voltage drops 

 

With reference to the just above figure, Kirchhoff’s law says; 321 vvvv   

Now, we use these rules to form differential equations of electrical circuits. 

 

7.5.5. Modelling of Electric circuit containing the resistance R and 

inductance L in series with a voltage source (battery) E. 



 

 

Let ‘I’ be the current flowing in the circuit at any time ‘t’. Then by 

Kirchhoff’s first law, we have sum of voltage drops across R and L = E. 

L

E
I

L

R

dt

dI
OrERI

dt

dI
LOrE

dt

dI
LRIei .,.  

This represents Leibnitz’s linear equation. 

 

7.5.6. Modelling of Electric circuit containing the resistance R and 

capacitance C in series with a voltage source (battery) E. 

 

 

Let ‘I’ be the current flowing in the circuit at any time ‘t’. Then by 

Kirchhoff’s first law, we have sum of voltage drops across R and C = E. 

R

E
Q

RCdt

dQ
OrEQ

Cdt

dQ
ROrEQ

C
RIei 

111
.,.  

This also represents Leibnitz’s linear equation. 



7.5.7. Modelling of Electric circuit containing the resistance R , 

inductance L and capacitance C in series with a voltage source (battery) 

E. 

 

 

 

Let ‘I’ be the current flowing in the circuit at any time ‘t’. Then by 

Kirchhoff’s first law, we have sum of voltage drops across R, L and C = E. 

L

E
Q

LCdt

dQ

L

R

dt

Qd
OrEQ

C
RI

dt

dI
LOrEQ

Cdt

dI
LRIei 

111
.,.

2

2

 

This represents the LDE of second order. 

 

Example 7.5.1: With reference to the following figure, which consists of a 

resistor of resistance R, connected in series with an inductor of inductance L, 

and an applied constant voltage E.? 

 



i. Obtain a first order differential equation for the current i at time ‘t’ 

ii. Solve this differential equation for the initial condition, when t = 0, 

i = 0. 

iii. What is the value of i as t→∞. 

iv. Sketch the graph of ‘i’ versus ‘t’ for t≥0. 

 

Solution: By applying Kirchhoff’s law to the circuit, we have 

i. Voltage drop across the resistance RiR )( . 

Voltage drop across the inductance 
dt

di
LL )(  

By applying the Kirchhoff’s law to the circuit, we obtain, 

L

E
I

L

R

dt

dI
OrERI

dt

dI
LOr

dt

dI
LRIE

LceinducacrossdropVoltageRceresisacrossdropVoltageE



 )(tan)(tan

 

This represents Leibnitz’s linear equation. 

ii. To solve this equation, 

t
L

R

eFI  . , it’s general solution is given by,  

)1(..........................,
t

L

R

t
L

R
t

L

R
t

L

R
t

L

R

ce
R

E
IThus

c
R

L
e

L

E
eIcdte

L

E
eI













 

 

Since, when t = 0, I = 0. Equation (1) gives, 
R

E
c  . 



Thus, the general solution of the above differential equation is given by 
















 t
L

R

e
R

E
I 1 . 

iii. Since R and L are positive, we have 

R

E
Isoandtase

L

R t
L

R




0,0 . 

iv. At t = 0, I = 0 therefore the graph goes through the origin and is 

asymptotic to the line 
R

E
I   (as shown in the below figure). 

 

 

Example 7.5.2: With reference to the following figure, which consists of a 

resistor of resistance R = 3 Ω, connected in series with an inductor of 

inductance L = 5 H, and an applied constant voltage VoltsE 240 . 

i. Obtain a differential equation giving the current I at time t. 

ii. Solve the differential equation for the initial condition, when t = 0, 

I = 0. 

 

Solution: By applying Kirchhoff’s law to the circuit, we have 



i. Voltage drop across the resistance RiR )( . 

Voltage drop across the inductance 
dt

di
LL )(  

By applying the Kirchhoff’s law to the circuit, we obtain, 

)1(.....................

)(tan)(tan

L

E
I

L

R

dt

dI
OrERI

dt

dI
LOr

dt

dI
LRIE

LceinducacrossdropVoltageRceresisacrossdropVoltageE





 

Since, HLandR 53  , VoltsE 240 . (Given) 

Now, Equation (1) gives, 

2406.0

240
5

3





I
dt

dI
Or

I
dt

dI

 

This represents Leibnitz’s linear equation in terms of ‘I’ and ‘t’. 

ii. To solve this equation, 

teFI 6.0.  , it’s general solution is given by,  
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Since, when t = 0, I = 0. Equation (1) gives, 400c . 

Thus, the general solution of the above differential equation is given by, 

)1(400400400 6.06.0 tt eeI   . 

 



Example 7.5.3: Show that the differential equation for the current I in an 

electrical circuit containing an inductance L and a resistance R in series and 

acted on by an electromotive force tE sin satisfies the equation 

tERI
dt

dI
L sin . 

Find the value of the current at any time ‘t’, if initially there is no current in 

the circuit. 

Solution: By Kirchhoff’s first law, we have sum of voltage drops across 

tEisLandR sin . 

i.e., tE
dt

dI
LRI sin  

This is the required differential equation which can be written as 

t
L

E
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L

R

dt

dI
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This represents Leibnitz’s linear equation in terms of ‘I’ and ‘t’. 

To solve this equation, 
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This is the required general solution. 

 

Observation: As ‘t’ increases indefinitely, the exponential term will 

approach zero. This implies that after sometime the current I(t) will execute 

nearly harmonic oscillations only (as shown in the following figure). 

 

      Figure 

 

7.5. Check Your Progress 

1. When a switch is closed in a circuit containing a battery E, a resistance R 

and an inductance L, the current I build up at a rate given by .ERI
dt

dI
L   

Find I as a function of t. How long will it be, before the current has reached 

one half its final value if E = 6 volts, R = 100 Ohms and  

L = 0.1 Henry. 

2. When a resistance R ohms is connected in series with an inductance L 

henries with an e.m.f of E volts, the current ‘I’ amperes at time t is given by 



.ERI
dt

dI
L   If E = 10 sint volts and I = 0 when t = 0, find I as a function of 

t. 

3. A resistance of 100 Ω, an inductance of 0.5 Henry are connected in series 

with a battery of 20 volts. Find the current in the circuit at t = 0.5 sec, if I = 0 

at t = 0. 

4. The equation of electromotive force in terms of current I for an electrical 

circuit having resistance R and condenser of capacity C in series is 


C

idt
RiE . Find the current I at any time t when tEE m sin . 

5. A resistance R in series with inductance L is shunted by an equal 

resistance R with capacity C. An alternating e.m.f. E sinpt produces currents 

I1 and I2 in two branches. If initially there is no current, determine I1 and I2 

from the equations. .cossin 22
1

1 ptpE
dt

dI
R

C

I
andptERI

dt

dI
L   Verify that if 

LCR 2 , the total current 
R

ptE
bewillii
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21  . 

 

7.6. Heat flow 

 

The fundamental principles involved in the problems of heat conduction are: 

i. Heat flows from a higher temperature to the lower temperature. 



ii. The quantity of heat in a body is proportional to its mass and 

temperature. 

Heat: The form of energy that can be transferred from one system to another 

as a result of temperature difference.  

◉ Thermodynamics is concerned with the amount of heat transfer as a system 

undergoes a process from one equilibrium state to another.  

◉ Heat Transfer deals with the determination of the rates of such energy 

transfers as well as variation of temperature.  

◉ The transfer of energy as heat is always from the higher-temperature 

medium to the lower-temperature one. Heat transfer stops when the two 

mediums reach the same temperature.  

◉ Heat can be transferred in three different modes: conduction, convection, 

and radiation. 

Conduction heat transfer  

◉ Conduction: The transfer of energy from the more energetic particles of a 

substance to the adjacent less energetic ones as a result of interactions 

between the particles.  

◉ In gases and liquids, conduction is due to the collisions and diffusion of the 

molecules during their random motion.  



◉ In solids, it is due to the combination of vibrations of the molecules in a 

lattice and the energy transport by free electrons. 

Rate of conduction  

◉ The rate of heat conduction through a plane layer is proportional to the 

temperature difference across the layer and the heat transfer area, but is 

inversely proportional to the thickness of the layer. 

   

             Heat conduction through a large plane wall of thickness Δx and 

area A 
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7.6.1. Fourier Law of Heat Conduction: 

“The rate of heat-flow across an area is proportional to the area and to the 

rate of change of temperature with respect to its distance normal to the area”. 

dx
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KAQxWhen

x

T
KA

x

TT
KAQ

cond

Conduction















,0

21

 

In heat conduction analysis, A represents the area normal to the direction of 

heat transfer. 

Equivalently,  

If q (cal/sec) be the quantity of heat that flows across a slab of area α (cm
2
) 

and thickness δx in one second, where the difference of temperature at the 

faces is δT, Then, by the statement of Fourier Law of heat conduction, 

dx

dT
kq    .......................  (1) 



Where ‘k’ is a constant depending upon the material of the body and is 

called the thermal conductivity. 

 Heat is conducted in the direction of decreasing temperature, and the 

temperature gradient becomes negative when the temperature decreases 

with increasing x. 

 The negative sign in the equation ensures that heat transfer in the positive 

‘x’ direction is a positive quantity. 

 Thermal conductivity ‘k’ is a measure of the ability of a material to 

conduct heat. 

 Temperature gradient 
dx

dT
 is the slope of the temperature curve on a T-x 

diagram. 

 The rate of heat transfer through a unit thickness of the material per unit 

area per unit temperature difference. 

 The thermal conductivity of a material is a measure of the ability of the 

material to conduct heat. 

 A high value for thermal conductivity indicates that the material is a good 

heat conductor, and a low value indicates that the material is a poor heat 

conductor or insulator. 

 



Example 7.6.1: The block of 304 stainless steel shown below, is well 

insulated on the front and back surfaces, and the temperature in the block 

varies linearly in both the X-axis and Y-directions, find the heat fluxes and 

heat flows in the x-and y-directions. 

Solution: The thermal conductivity of 304 stainless steel is 14.4 W/m.K.  

The cross sectional areas are:  
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Since the temperature variation is linear, replacing the partial derivatives 

with finite differences, the heat fluxes are: 

2
^

2
^

/1440
1.0

10
4.14

/1440
05.0

5
4.14

mW
x

T
k

x

T
kq

mW
x

T
k

x

T
kq

y

x




























 












  



The heat flows are obtained by multiplying the fluxes by the corresponding 

cross-sectional areas: 

WAqq
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Example 7.6.2: Apply the conduction equation to the situation illustrated in 

the following Figure. 

In order to make the mathematics conform to the physical situation, the 

following conditions are imposed: 

 

 

Figure 7.6.2: One-dimensional heat conduction in a 

solid. 

i. Conduction only in x-direction  )(xTT  , so 0
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ii. No heat source  0


q  

iii. Steady state 0





t

T
 

iv. Constant ‘k’ 

 

Solution:  With respect to the given figure and given conditions, the 

conduction equation in Cartesian coordinates then becomes: 

00
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2

2
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



dx

Td
Or

x

T
k . 

(The partial derivative is replaced by a total derivative because x is the only 

independent variable in the equation.) Integrating on both sides of the 

equation gives: 1C
dx

dT
 , integrating again, gives: 21 CxCT  . 

Thus, it is seen that the temperature varies linearly across the solid. The 

constants of integration can be found by applying the boundary conditions: 

10 TTxAt   and 2TTBxAt  . 

The first boundary condition leads to 21 CT   and the second the gives: 

112 TBCT  . 

Solving for C1 we find: 
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The heat flux is obtained from Fourier’s Law: 
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Multiplying by the area gives the heat flow: 
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Example 7.6.3: A pipe 20 cm in diameter contains steam at 150
0
C and is 

protected with a covering 5 cm thick for which the thermal conductivity is 

0.0025. If the temperature of the outer surface of the surrounding is 40
0
C, 

find the temperature half-way through the covering under steady state 

conditions. 

Solution: Let q cal/sec. Be the constant quantity of heat flowing out radially 

through a surface of the pipe having radius x cm. And length  is 1 cm (as 

shown in the following Figure 7.6.3). Then the area of the lateral surface = 

2πx. 

 

Figure 7.6.3 



Therefore, by Fourier Law of heat conduction; 

x
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q
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Since T = 150, when x = 10. 
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Subtracting equation (2) from equation (1), we get 

5.1log
2

110 e
k

q


   ...............................    (3) 

Since T = t, when x = 12.5 

c
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q
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Subtracting (1) from (4), 25.1log
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Dividing (5) by (3), Ctwhence
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Test Your Progress 7.6 

1) A pipe 20 cm in diameter contains steam at 200
0
C. It is covered by a 



layer of insulating material 6 cm thick and the thermal conductivity is 

0.0003. If the temperature of the outer surface is 30
0
C, find the heat loss 

per hour from two metre length of the pipe. 

2)  A steam pipe 20 cm in diameter contains steam at 150
0
C and is covered 

with asbestos 5 cm thick. The outside temperature is kept at 60
0
C. By 

how much should the thickness of the covering be increased in order that 

the rate of heat loss should be decreased by 25%?. 

 

7.7. Chemical Reactions 

 

Suppose a chemical in a liquid solution ( or dispersed in a gas) runs into a 

container holding the liquid (or the gas) with, possibly, a specified amount of 

the chemical dissolved as well. The mixture is kept uniform by stirring and 

flows out of the container at a known rate. In this process, it is often 

important to know the concentration of the chemical in the container at any 

given time. The differential equation describing the process is based on the 

formula, 
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If y(t) is the amount of chemical in the container at time t and V(t) is the total 

volume of liquid in the container at time t, then the departure rate of the 

chemical at time t is  
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Accordingly, equation (1) becomes; 
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Suppose y is measured in pounds, V in gallons, and t in minutes, the units in 

equation (3) are given by, 
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Example 7.7.1: A tank initially contains 50 gallons of fresh water. Brine. 

Containing 2 pounds per gallon of salt, flows into the tank at the rate of 2 

gallons per minute and the mixture kept uniform by stirring, runs out at the 

same rate. How long will it take for the quantity of salt in the tank to increase 

from 40 to 80 pounds? 

Solution: Let the salt content at time t be y lb, so that its rate of change is 
dt

dy
 



 

Figure 7.7.1 

min/422inf lblbgalwaterfreshoflowofRate  . 

If C be the concentration of the brine at time t, the rate at which the salt 

content decreases due to the out-flow min/22 lblbCgal  . 

C
dt

dy
24   ...........................  (1) 

Also, since there is no increase in the volume of the liquid, the concentration 

50

y
C  . 

Therefore, equation (1) becomes  
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Separating the variables and integrating, we have 
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25 . Where k is the constant of integration. 

kyt e  )100(log25     ...............  (2) 

Initially when t = 0, y = 0; equation (2) gives,  
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Eliminating k from equation (3) using equation (2), we obtain 
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Now, taking t = t1 when y = 40 and t = t2 when y = 80, we have 
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Example 7.7.2: In an oil refinery, a storage tank contains 2000 gallons of 

gasoline that initially has 100 lb of an additive dissolved in it. In preparation 

for winter weather, gasoline containing 2 lb of additive per gallon is pumped 

into the tank at a rate of 40 gal/min. The well-mixed solution is pumped out 

at a rate of 45 gal/min. How much of the additive is in the tank 20 min after 

the pumping process begins?. 

 

Solution: Let y be the amount (in pounds) of additive in the tank at time t. 

We know that y = 100 when t = 0. The number of gallons of gasoline and 

additive in solution in the tank at any time t is  
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Figure 7.7.2: The storage tank mixes input liquid with stored liquid to 

produce an output liquid. 

 

If C be the concentration of the brine at time t, the rate at which the salt 

content decreases due to the out-flow min/45 gal . 
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Also,  
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The differential equation modelling the mixture process is 
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The general solution of the equation (1) is given by 
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integration. 
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To find the value of C, using 0100  twheny   (Given). 

Equation (1) gives;  
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Now equation (1) becomes; 9
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(2) 

Equation (2) gives the particular solution of given initial value problem. 

Further, the amount of additive in the tank 20 min after the pumping begins 

is 



i.e., substitute t = 20 in equation (2); we get 
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Test Your Progress 7.7 

1) A tank contains 1000 gallons of brine in which 500 lt. Of salt are 

dissolved. Fresh water runs into the tank at the rate of 10 gallons/minute 

and the mixture kept uniform by stirring, runs out at the same rate. How 

long will it be before only 50 lt. Of salt is left in the tank? 

2) A tank is initially filled with 100 gallons of salt solution containing 1 lb. 

Of salt per gallon. Fresh brine containing 2 lb. Of salt per gallon runs into 

the tank at the rate of 5 gallons per minute and the mixture assumed to be 

kept uniform by stirring, runs out at the same rate. Find the amount of salt 

in the tank at any time, and determine how long it will take for this 

amount to reach 150 lb.  

3) In a chemical reaction in which two substances A and B initially of 

amounts a and b respectively are concerned, the velocity of 

transformation 
dt

dx
 at any time t is known to be equal to the product 

))(( xbxa   of the amounts of the two substances then remaining un 



transformed. Find t in terms of  x if whenxandba 3.06.0,7.0   

ondst sec300 . 

 

7.8. Rate of Growth or Decay 

 

7.8.1: Rate of Growth 

“The rate of growth of substance at time t is directly proportional to the 

substance present at that time”.  

Let y(t) be the substance present at time t. Then, the natural growth equation 

is the differential equation given by, 

ky
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 . Where ‘k’ is a constant of proportionality. 

Its general solution is given by 
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 , This is in variable separable form 

Integrating, we obtain 
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If the initial conditions given are 0)0( yy  , then 0yC   

Therefore, the particular solution is given by kteyy 0  



 

Figure 7.8.1: Exponential Growth 

 

7.8.2:  Rate of Decay 

“The rate of decay of radioactive substance at time t is directly proportional 

to the mass of the substance present at that time”.  

Let y(t) be the substance present at time t. Then, the equation of decay is the 

differential equation given by, 
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y

dt
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 . Where ‘k’ is a constant of proportionality. 

Its general solution is given by 
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 , This is in variable separable form 

Integrating, we obtain 
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If the initial conditions given are 0)0( yy  , then 0yC   

Therefore, the particular solution is given by kteyy  0  



 

Figure 7.8.2: Exponential Decay 

Example 7.8.1: The number N of bacteria in a culture grew at a rate 

proportional to N. The value of N was initially 100 and increased to 332 in 

one hour. What would be the value of N after 
2

1
1  hours? 

Solution: By the law of rate of growth, we have 

kdt
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dN
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dt
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 . Integrating, we obtain 
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Initially, N = 100 when t = 0, equation (1) gives C = 100 

Now equation (1) becomes kteN 100   ....................  (2) 

And N = 332 when t = 1 Hr, from equation (2), we get 

199965.1100332100.,.  keeNei kkt  

Now, if Hrst 5.1
2

3

2

1
1  , then from equation (2), we obtain 

9647.604100 )5.1()199965.1(  eN . 

 



Example 7.8.2: Radium decomposes at the rate proportional to the amount 

present. If a fraction p of the original amount disappears in 1 year, how much 

will it remain at the end of 21 years? 

Solution: By the law of rate of decay, we have 

Let y(t) be the radium present at time t. Then, the equation of decay is the 

differential equation given by, 

ky
dt

dy
y

dt

dy
 . Where ‘k’ is a constant of proportionality. 

Its general solution is given by 

dtk
y

dy
ky

dt

dy
 , This is in variable separable form 

Integrating, we obtain 

kt

ee CeyOrCkty  loglog   .................... (1) 

Initially, y = Y (say) when t = 0, equation (1) gives C = Y 

Now equation (1) becomes kteYy    ....................  (2) 

And y = Y/p when t = 1 Year, from equation (2), we get 

pkOr
p

keY
p

Y
eYyei ee

kkt log
1

log.,. 







   

Now, if yearst 21 , let 1yy  , then from equation (2), we obtain 

 
21

1

)21(log

1

1












p
YyOreYy

pe  



Example 7.8.3: A 30% of radioactive substance disappeared in 10 days, how 

long will it take for 90% of it to disappear? 

Solution: By the law of rate of decay, we have 

Let y(t) be the radioactive substance present at time t. Then, the equation of 

decay is the differential equation given by, 

ky
dt

dy
y

dt

dy
 . Where ‘k’ is a constant of proportionality. 

Its general solution is given by 

dtk
y

dy
ky

dt

dy
 , This is in variable separable form 

Integrating, we obtain 

kt

ee CeyOrCkty  loglog   .................... (1) 

Initially, y = Y (say) when t = 0, equation (1) gives C = Y 

Now equation (1) becomes kteYy    ....................  (2) 

And YYYy 7.0
100

30
  when t = 10 days, from equation (2), we get 

03567.07.0 10  keYY k  

Now, if YYYy 1.0
100

90
 , then again from equation (2), we obtain 

daysteYY t 5.641.0 )03567.0(    

 



Test Your Progress 7.7 

1) A rate at which bacteria multiply is proportional to the instantaneous 

number present. If the original number doubles in 2 hours, in how many 

hours will it triple? 

2) Under certain conditions cane sugar in water is converted into dextrose at 

a rate which is proportional to the amount unconverted at any time. If it is 

of 75 gm. At time t = 0.8 gm. are converted during the first 30 minutes, 

find the amount converted in 
2

1
1  hours 

 

7.8 Summary 

 

In this unit we have studied the physical applications of differential 

equations of first order and first degree like problems based on Newton’s 

Law cooling , simple electric circuit, Kirchhoff’s law, Modelling  of electric 

circuit, heat flow, Fourier law of heat conduction , chemical reaction, growth 

and decay of radioactive substances. 

 

7.9 Terminal Questions 

 

1. Assuming    as the original temperature of the body at     and that of 

the surroundings is    find the temperature u of the body at time t. 



2. A glass of ice cold water is kept in a room at temperature       If the 

initial rate of temperature increase is       per minute, find the 

temperature of water ofter 10 minutes. 

3. In a culture of bacteria the rate of increase is proportional to the number 

present. If their number are 3000 and 5000 at the end of 3 and 4 hours, 

find their number in the beginning. 

7.8. Answers to Exercises 

Test Your Progress 7.4: 

(1) )3(100)( ktet   (3) te )1096.2( 3

73300
  (4) ktet 28320)(   

 

Test Your Progress 7.5: 

(1) 0.0006931 secs (2) 

















 t
L

R

LetLtR
RL

cossin
10

22
 (3) 

)1(
5

1 100 eI   

(4) )(cot)sin(
1

1

222

1





RCwheret

CR

CE
keI m

t
RC 






 . 

Test Your Progress 7.6: 

(1) 490, 000 cal  (2)  2.16 cm 

Test Your Progress 7.7: 

(1) 3Hrs. 50 mins. 16 Secs    (2) se t min9.13);1(100 20/   



(3) 













x

x
t e

5.0

7.0
log52log5300 2  

Test Your Progress 7.8: 

(1) 
2log

3log
2

e

e   (2) 21.5 grams 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Unit –08: Physical applications of differential equations of first 

order and first degree 
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8.1. Introduction 

8.2. Objectives 

8.3. Physical applications of differential equations of first order and first 

degree  

8.4. Rectilinear Motion 

8.5. Motion under Gravity  

8.6. Simple Harmonic Motion 

8.7. Summary 

8.8 Terminal Questions 

8.9 Answers to Exercises 

 

 



8.1. Introduction 

 

Differential equations are found in many areas of mathematics, science, 

and engineering. One may be surprised to see the way in which 

differential equations dominate the study of many aspects of science 

and engineering. 

Differential equations are very important mathematical subject from 

both theoretical and practical perspectives. The theoretical importance 

is given by the fact that most pure mathematical theories have 

applications in differential equations. 

In the previous units we introduced differential equations of the form 

)(xf
dx

dy
 , where ƒ 

is given and y is an unknown function of x. When ƒ is continuous over 

some interval, we 

learned that the general solution y(x) was found directly by integration, 

dxxfy  )( . And we also investigated differential equations of the form 



),( yxf
dx

dy
 , where ƒ is a function of both the independent variable x 

and the dependent variable y. There we learned how to find the general 

solution when the differential equation is separable. 

Many real-world problems, when formulated mathematically, lead to 

differential equations. We encountered a number of these equations in 

previous units when studying phenomena such as the, simple electrical 

circuits, heat flow of an object, the decay of a radioactive material, the 

growth of a population, and the cooling of a heated object placed within 

a medium of lower temperature. 

In this unit, we shall consider only such practical problems which give 

rise to differential equations of the first order and first degree. 

Also, we present a sufficient number of applications to enable the 

students to understand how differential equations are used and to 

develop some feeling for the physical information they convey. 

We further extend our study to include other commonly occurring first-

order 



differential equations. They involve only first derivatives of the 

unknown function y(x), and 

model phenomena such as motion of an object moving along a straight 

line, the simple harmonic motion of moving object. 

We shall consider only such practical problems which give rise to 

differential equations of the first order and first degree. 

Also, we present a sufficient number of applications to enable the 

students to understand how differential equations are used and to 

develop some feeling for the physical information they convey. 

8.2. Objectives 

After reading this unit students should be able to: 

 Understand the physical applications of ODE’s of first order and degree 

 Apply Newton’s second law of motion  and modeling the motion of 

particles in mechanics 

 Understand to model the motion under gravity and solve the first order 

ordinary differential equations which arise. 



 Understand and apply the simple harmonic motion in modelling the  

ODE’s of first order and degree 

8.3. Physical Applications of Differential Equations of First 

Order and First Degree 

In applications, the dependent variables are frequently functions of 

time, which we denote by‘t’. Some applications such as Newton's Law 

of Cooling, Kirchhoff’s Laws of Electric Circuits, Rate of Growth or 

Decay are already discussed in the previous unit and Motion under 

Gravity, Rectilinear Motion, Simple Harmonic Motion,  Heat flow are 

discussed here. In all these cases, modelling, analysis and interpretation 

are important. 

8.4. Rectilinear Motion 

Let a body of mass ‘m’ start moving from the point O along the straight 

line OX under the action of a force F. After any time t, let it be moving 

at P where OP = x, then  

    



i. 
dt

dx
vvelocityits )(  

ii. 
dx

dv
v

dt

dx

dx

dv

dt

dv

dt

dx

dt

d

dt

xd
aonacceleratiits 










2

2

)(  

If, however, the body be moving along a curve, then 

i. 
dt

ds
vvelocityits )(  

ii. 
ds

dv
vOr

dt

dv
Or

dt

sd
aonacceleratiits 

2

2

)(  

iii. The quantity mv  is called the momentum. 

Newton’s Second Law of Motion: 

The net force F (say) acting on the body is directly proportional to rate 

of change of momentum of the body. 

i.e., Net force = mass  acceleration 

2

2

)(
dt

xd
m

dt

dv
mFOrma

dt

dv
mmv

dt

d
F  , if ‘m’ is constant. 

Now, consider the example of resisted motion 

Example 8.4.1: A moving body is opposed by a force per unit mass of 

value cx and resistance per unit of mass of value bv
2
 where x and v are 



the displacement and velocity of the particle at that instant. Find the 

velocity of the particle in terms of x, if it starts from rest. 

Solution: By Newton’s second law of motion, the equation of the 

motion of the body is given by 

)( 2

2

2

bvcxm
dt

xd
m

dt

dv
mF  .   (Since the force is opposite) 

22 )( bvcx
dx

dv
vOrbvcxm

dt

dv
m   

cxbv
dx

dv
v  2    ……………..   (1). This represents the Bernoulli’s 

equation. 

dx

du

dx

dv
vuvPut  22  so that equation (1) yields to  

cxbu
dx

du
Orcxbu

dx

du
22

2

1
   ……………….  (2) 

This represents the Linear ODE of first order and first degree. 

bxbdx

eeFI 22

.  .  

General solution of equation (2) is given by 



1

22 2 cdxecxeu bxbx   , integrating by parts 

1

2

2

2

1

22
2

2

2
1

2
2

ce
b

c
e

b

cx

cdx
b

e

b

e
xceu

bxbx

bxbx
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









 

 

Substituting uv 2 , we get; 
b

cx
ec

b

c
v bx  2

12

2

2
 ……………… (3) 

Initially v = 0 when x = 0;  equation  (3) gives 122
0 c

b

c
 . 

Thus, substituting 
21

2b

c
c   in equation (3), we get  

         
b

cx
e

b

c

b

c
v bx  2

22

2

22
 

Or     
b

cx
e

b

c
v bx   )1(

2

2

2

2  

Consider the example of resisted vertical motion 

Example 8.4.2: A particle falls under gravity is a resisting medium 

whose resistance varies with velocity. Find the relation between 

distance and velocity if initially the particle starts from rest. 



Solution: After falling a distance ‘s’ in time t from rest, let ‘v’ be the 

velocity of the particle. The forces acting on the particle are its weight 

mg downwards and resistance mv upwards. 

 Equation of motion is vmmg
dt

dv
m   

dt
vg

dv
Orvg

dt

dv
Or 





 .  Integrating,  

ctvgOrcdt
vdtg

dv


  )log(
1




  ………………  (1) 

Since v = 0 when t = 0, equation (1) gives gc log
1


  

Thus,  

g

vg
ee

vg

g
Or

t
vg

g
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
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)1( tttt e
g

vorvggeOrvgge
g
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e 




  


  

Thus, )1( te
g

dt

ds
v 



  ………………………. (1) 

Integrating, we obtain, 



11

1
)1( cet

g
sOrcdte

g
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






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Since s = 0 when t = 0, 
21



g
c  . 

Thus,   1
222

  tt e
g

t
g

sOr
g

e
g

t
g

s 


   ………………….. (2) 

Eliminating ‘t’ from equations (1) and (2), we get 

From equation (1) ,  
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This is a desired relation between s and v. 

 

 



Example 8.4.3: A body of mass m, falling from rest is subject to the 

force of gravity and air resistance proportional to the square of the 

velocity (i.e., kv
2
). If it falls through a distance x and possesses a 

velocity v at that instant, prove that 











22

2

log
2

va

a

m

kx
, where mg = ka

2
. 

Solution: If the body is moving with the velocity ‘v’ after having fallen 

through a distance x, then its equation of motion, by Newton’s law of 

motion is given by 

dx

dv
mv

dt

dv
mma

dt

xd
mFForceNet 

2

2

 

)( 222 vak
dx

dv
mvOrkvmg

dx

dv
mv  ………..   (1)  

 2kamg   

Separating the variables and integrating, we get  

)2(....................)(log
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Initially, when x = 0,  v = 0. Then, ca  2log
2

1
  ……………..   (3) 



To eliminate ‘c’ from equations (2) and (3):  Subtracting equation (3) 

from equation (2), we obtain 

  

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Test Your Progress 8.4 

1) A particle of mass ‘m’ moves under gravity in a medium whose 

resistance is k times its velocity, where k is a constant. If the particle is 

projected vertically upwards with a velocity v, show that the time to 

reach the highest point is 









mg

kv

k

m
e 1log . 

2) A body of mass m falls from rest under gravity and air resistance is 

proportional to square of velocity. Find velocity as function of time. 

3) A body of mass m falls from rest under gravity in a field whose 

resistance is mk times the velocity of the body. Find the terminal 

velocity of the body and also the time taken to aquire one half of its 

limiting speed. 

A particle is projected with velocity v along a smooth horizontal plane 

in the medium whose resistance per unit mass is  times the cube of 



the velocity. Show that the distance it has described in time is 

 121
1 2  tv
v




. 

 

8.5. Motion under Gravity 

 

Elementary motions of a particle are frequently described by 

differential equations. Simple integration can sometimes be used to 

analyze these elementary motions. For the one-dimensional vertical 

motion of a particle, we recall from calculus that, 

Newton’s Second Law of Motion: 

The net force F (say) acting on the body is directly proportional to rate 

of change of momentum of the body. 

i.e., Net force = mass  acceleration 

2

2

)(
dt

xd
m

dt

dv
mFOrma

dt

dv
mmv

dt

d
F  , if ‘m’ is constant 

Equivalently, 
2

2

,,
dt

xd
mt

dt

dx
xF 








   .........................  (1) 



Here we have allowed the forces to depend on position, velocity, and 

time.  

Equation (1) is a second order differential equation, we have not yet 

studied the techniques to solve the equation (1). However, it can be 

solved by simple integration if the force F does not depend on 
dx

x and
dt

 

Consider the following situation; 

Suppose that the only force on the mass is due to gravity. Then, it is 

known that F = -mg, where g is the acceleration due to gravity. The 

minus sign is introduced because gravity acts downward, toward the 

surface of the earth. Here we are taking the coordinate system so that x 

increases toward the sky. The magnitude of the force due to gravity mg 

is called the weight of the body near the surface of the planet earth, g is 

approximately g=9.8 m/s
2
. If we assume that, we are interested in a 

mass that is located sufficiently near the surface of the earth, then g can 

be approximated by this constant. With the only force being gravity, 

equation (1) becomes 

g
dt

xd
Ormg

dt

xd
m 

2

2

2

2

. Integrating yields  



1Cgt
dt

dx
 , where C1 is an arbitrary constant of integration 

1)( CgttvOr    .......................   (2) 

If we assume that the velocity at t = 0 is given and let 0vv  . 

Equation (2) gives; 01 vC  ,this implies  0vgt
dt

dx
   ..................  (3) 

Now, the position can be determined by integrating the velocity in the 

equation (3). 

20

2

2

1
Ctvgtx    ..................  (4) 

Where C2 is second constant of integration. Again we assume that the 

position at t = 0 is x0. Then equation (4) gives 02 xC  , so that 

00

2

2

1
xtvgtx  . 

Note: If the applied force depends only on time and is not constant, 

then the formulas for velocity and position may be obtained by 

integration. If the applied force depends on other quantities, then 

solving the differential equation is not so simple. 

 



Consider the another examples; 

Example 8.5.1: Suppose a ball is thrown upward from ground level 

with velocity v0 and the only force is gravity. How high does the ball go 

before falling back toward the ground? 

Solution: As in the above situation, the corresponding differential 

equation is given by 

   g
dt

xd


2

2

 ................. (1) 

The successive integrations with initial conditions, at t = 0, x = 0 and 

0v
dt

dx
 yields to  

     0vgt
dt

dx
  .................. (2) 

and tvgtx 0

2

2

1
  .............. (3) 

From equation (3), the height is known as a function of time. To 

determine the maximum height, we must first determine the time at 

which the ball reaches this height. From calculus, the maximum of a 

function x = x(t) occurs at a critical point where 0
dt

dx
. At the 



maximum height the ball has stopped rising and has not started to fall, 

so the velocity is zero. Thus, the time of the maximum height is 

determined from equation (2): 

      00  vgt    Or   equivalently,  
g

v
t 0  ................ (4) 

When this time t in equation (4) is substituted into (3, a formula for the 

maximum height y (say) is obtained: 
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In the following example we consider the motion of a boat across a 

stream; 

 

Example 8.5.2: A boat is rowed with a velocity ‘v’ directly across a 

stream of width ‘a’. If the velocity of the current is directly proportional 

to the product of the distances from the two banks, find the path of the 

boat and the distance downstream to the point where it lands. 

Solution: Taking the origin at the point from where the boat starts, let 

the axes be chosen as in the following figure 8.5.2. 



At any time t after its start from O, let the boat be at P(x, y), so that  

)( yakycurrenttheofvelocity
dt

dx
  

vrowedbeingisboatthewhichwithvelocity
dt

dy
  

)( yaky

v

dx
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
  ……………….(1) 

 

Figure 8.5.2 

This gives the direction of the resultant velocity of the boat which is 

also the direction of the tangent to the path of the boat. 

Equation (1) is of variable separable form and we can write it can be 

written as 

dx
k

v
dyyay  )( . Integrating, we obtain Cx

k

vyay


32

32

 



Since, initially y = 0 when x = 0 implies C = 0. 

Hence the equation to the path of the boat is given by 

v

yaky
xOrvxyakyOr

x
k

vyay
Orx

k

vyay
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By putting y = a, we get the distance AB, downstream where the boat 

lands is equal to 

v

ka

v

aaka

66

)23( 32




. 

Test Your Progress 8.5 

1) When a bullet is fired into a sand tank, its retardation is proportional to 

the square root of its velocity. How long will it take to come to rest if it 

enters the sand tank with velocity v0. 

2) A particle of mass m is attached to the lower end of a light spring 

(whose upper end is fixed) and is released. Express the velocity v as a 

function of the stretch ‘x’ feet. 

 



8.6. Simple Harmonic Motion 

Differential equations of the type 02

2

2

 yk
dx

yd
, where ‘k’ is a constant, 

arise in vibration problems. One of the simplest cases is known as 

simple harmonic motion (SHM). 

Consider a particle P, moving to and fro about its equilibrium position 

O as shown in figure 8.6. 

 

 Figure 8.6 

The equation of motion at any time ‘t’ is given by 

02

2

2

 xk
dt

xd
  …………..  (1). Where ‘x’ is displacement, ‘k’ is a 

constant and ‘t’ is time. 

Equation (1) is a second order differential equation, we have not yet 

studied the techniques to solve the equation (1). However, it can be 



solved by separating the variables and by simple integration if the force 

F does not depend on 
dt

dx
andx . 

Equation (1) can also be written as, xdxkvdvOrxk
dx

dv
v 22 0  . 

Integrating, we get 

1

222
22

2
2

222
cxkvOr

cx
k

v
 . 

 

Note: The motion of an object or weight bobbing freely up and down 

with no resistance on the end of a spring is an example of simple 

harmonic motion. The motion is periodic and repeats indefinitely. So 

we represent it using trigonometric functions. 

Consider the following example, which describes a case in which there 

are no opposing forces such as friction to slow the motion. 

Example 8.6.1: A weight hanging from a spring is stretched down 5 

units beyond its rest position and released at time t = 0 to bob up and 

down. Its position at any later time t is 5cost. Find its velocity and 

acceleration at any time t. 



Solution: We have, tsPosition cos5:   

 

Figure 8.6.1(a): A weight hanging from a vertical spring and then 

displaced oscillates above and below its rest position 

 

tt
dt
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dt

dv
aonAcceleratiand
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dt

ds
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cos5)sin5(:

sin5)cos5(:
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

 

We can notice the following points from the above situation 

1. As time passes, the weight moves down and up between s = -5 and s = 5 

on the s-axis. The amplitude of the motion is 5. The period of the 

motion is 2π, the period of the cosine function. 

2. The velocity v = -5sint attains its greatest magnitude, 5, when cost = 0, 

as the graphs shown in figure 8.6.1(b). Hence, the speed of the weight, 



tv sin5 , is greatest when cost = 0, that is, s = 0 (the rest position). The 

speed of the weight is zero when sint = 0. This occurs when s= 5cost = 

±5, at the end point of the interval of motion. 

 

Figure 8.6.1(b): The graphs of the position and velocity of the weight 

3. The weight is acted upon by the spring and by gravity. When the weight 

is below the rest position, the combined forces pull it up, and when it is 

above the rest position, they it down. The weight’s acceleration is 

always proportional to the negative of its displacement. This property of 

springs is called Hooke’s law. It says that “the force required to hold a 

stretched or compressed spring x units from its natural length 

(unstressed) length is proportional to x”. In symbols, F = kx. Where ‘k’ 

is the spring constant or force constant. 



4. The acceleration, a = -5cost, is zero only at the rest position, where cost 

= 0 and the force of gravity and the force from the spring balance each 

other. When the weight is anywhere else, the two forces are unequal 

and acceleration is nonzero. The acceleration is greatest magnitude at 

the points farthest from the rest position, where cost = ±1. 

Example 8.6.2: The motion of the spring-mass system  (as shown in 

figure 8.6.2) is described by 

 

Figure 8.6.2 

025
2

2

 x
dt

xd
. Where x is displacement and t is time. Deternine the 

particular solution for this differential equation with initial conditions, 

when t = 0, both x = 1 and 10
dt

dx
. 

Solution: We have 025
2

2

 x
dt

xd
. This equation is of second order, so 

we will write it as 



dxdvvx
dx

dv
v 2525  , this is in variable separable form. 

Integrating 

cdxdvv   25 . Where ‘c’ is the constant of integration. 

cxvOrcx
v

25025
2

2
2

 …………….. (1) 

Since, when t = 0, both x = 1 and 10
dt

dx
. Equation (1) gives 

75250100  cOrc . 

Thus, 150502  xv . 

8.7 Summary 

 

In this unit we have studied application of differential equation of first 

order and first degree in (1) Rectilinear motion, (2) Motion under 

gravity (3) simple harmonic equation. 

 



8.8 Terminal Questions 

 

1) A particle is moving under gravity from rest in a medium whose 

resistance varies as the velocity of the particle. Find the velocity and 

distance of the particle after time t. 

2) A particle is moving in straight line from rest with constant acceleration 

f. Find the velocity and distance softer time t. 

 

8.7. Answers to Exercises 

Test Your Progress 8.4 
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Test Your Progress 8.5 

1) kv /2 0   2) 22 2 x
m

gxv


  

 



 

Block-III 

The n
th

 order linear differential equation with 

constant coefficients 

 
 
U P RAJARSHI TANDON                                                             UGMM-104 
OPEN UNIVERSITY                                               DIFFERENTIAL 
EQUATION  
PRAYAGRAJ 

 
 

 

Unit-9 

 The n
th

 order linear differential equation with constant  

coefficients 

Unit-10 

 Methods of finding particular integrals by inverse operator 

method 

Unit-11 

 Equation reducible to Linear with constant coefficients  

Unit-12 

Linear differential equations of second order  

           

 

 

 

 

 

 

 

 



Unit –09 The n
th

 order linear differential equation with 

constant coefficients 

 

Structure 

9.1. Introduction 

9.2. Objectives 

9.3. The n
th
 order linear differential equation with constant 

coefficients 

9.4. General solution and complementary function 

9.5. Methods of finding complimentary function 

9.6. Methods of finding particular integrals 

9.7. Method of undetermined coefficients 

9.8. Method of variation of parameters 

9.9. Summary 

9.10. Terminal Questions  

9.11. Answers to Check your Progress 

 



9.1. Introduction 

 

We have already studied the basics of differential equations, including 

separable first-order equations. In this unit, we go a little further and look at 

second-order, higher- order and n
th

-order equations, which are equations 

containing second derivatives of the dependent variable. The solution 

methods we examine are different from those discussed earlier, and the 

solutions tend to involve trigonometric functions as well as exponential 

functions. Here we concentrate primarily on second-order and higher-order 

equations with constant coefficients. 

 

Such equations have many practical applications. The operation of certain 

electrical circuits, known as resistor–inductor–capacitor (RLC) circuits, can 

be described by second-order differential equations with constant 

coefficients. These circuits are found in all kinds of modern electronic 

devices—from computers to smart phones to televisions. Such circuits can 

be used to select a range of frequencies from the entire radio wave 

spectrum, and are they commonly used for tuning AM/FM radios. We look 

at these circuits more closely later in illustrations. 

 



Spring-mass systems, such as motorcycle shock absorbers, are a second 

common application of second-order differential equations. For motocross 

riders, the suspension systems on their motorcycles are very important. The 

off-road courses on which they ride often include jumps, and losing control 

of the motorcycle when landing could cost them the race. The movement of 

the shock absorber depends on the amount of damping in the system. In 

this chapter, we model forced and unforced spring-mass systems with 

varying amounts of damping. 

When working with differential equations, usually the goal is to find a 

solution. In other words, we want to find a function (or functions) that 

satisfy the differential equation. The technique we use to find these 

solutions varies, depending on the form of the differential equation with 

which we are working. Second-order differential equations have several 

important characteristics that can help us determine which solution method 

to use. In this section, we examine some of these 

Characteristics and the associated terminology. 

 

9.2. Objectives 

After reading this unit students should be able to: 

 Identify the linear differential equations of second and higher order 



 Recognize the homogeneous and non homogeneous linear 

differential equations of higher order 

 Determine the characteristic equation of a homogeneous linear 

differential equation  

 Determine the particular integrals by using different methods 

 Find the general solution of the given homogeneous and non 

homogeneous linear differential equations 

 Solve the initial value and boundary value problems involving linear 

differential equations. 

 

9.3. The n
th

 order linear differential equation with constant 

coefficients 
 

The linear differential equations are those in which the dependent variable 

and its derivatives occur only in the first degree and are not multiplied 

together. Thus the general linear differential equation of the n
th
 order is of 

the form 

)(..............
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Where naaaa ....................,,, 210 are real valued functions, and a0 is not 

identically zero. F(x) is function of ‘x’ only. 



If naaaa ....................,,, 210 are all constants, then the equation is known as 

linear differential equation with constant coefficients. 

If F(x) = 0 for every value of x, the equation is said to be a homogeneous 

linear equation.  

If F(x) ≠ 0 for some value of x. Then, the equation is said to be a non 

homogeneous linear equation. 

In particular, 

A second order differential equation is linear if it can be written in the form 

)(212

2

0 xFya
dx

dy
a

dx

yd
a   

Note:  

1. Such equations are most important in the study of electro-mechanical 

vibrations and other engineering problems. 

2. In linear differential equations, y and its derivatives can be raised 

only to the first power and they may not be multiplied by one 

another.  

3. Terms involving y
2
 or √y

/
 make the equation nonlinear. Functions of 

y and its derivatives, such as siny or e
y’

, are similarly prohibited in 



linear differential equations. 

4. The equations may not always be given in standard form. It can be 

helpful to rewrite them in that form to decide whether they are linear, 

or whether a linear equation is homogeneous. 

 

 Example 9.3.1: Classify each of the following equations as linear or 

nonlinear. If the equation is linear, determine further whether it is 

homogeneous or non homogeneous. 

i. 322/4// 3 xyxyxy   

ii. 03)(cos)(sin ///  yyxyy  

iii. 0434 ///2  xtxxxt  

iv. 5// 45 xyy   

v. 0cos)(sinsin)(cos ///  xyxyyx  

 

Solution: (i) We have, 322/4// 3 xyxyxy  . This equation is nonlinear 

because of the y
2
 term. 

 

(ii) We have, 03)(cos)(sin ///  yyxyy . This equation is linear. There is no 

term involving a power or function of y, and the coefficients are all 



functions of x. The equation is already written in standard form, and F(x) is 

identically zero, so the equation is homogeneous. 

 

(iii) We have, 0434 ///2  xtxxxt . This equation is nonlinear. Note that, in 

this case, x is the dependent variable and t is the independent variable. The 

second term involves the product of x and /x , so the equation is nonlinear. 

 

(iv) We have, 5// 45 xyy  This equation is linear. Since 54)( xxF  , the 

equation is non homogeneous. 

 

(v) We have, 0cos)(sinsin)(cos ///  xyxyyx . This equation is nonlinear, 

because of the /sin y term. 

 

Test Your Progress 1 

Classify each of the following equations as linear or nonlinear. If the 

equation is linear, determine further whether it is homogeneous or non 

homogeneous. 

 

i.  03468 2/2//  ttyytty  

ii. 3)(cos)sin( /2///2  yyxyxyx  

iii. yyxyy cos35 ///   



iv.   08 3/2//  yxyy  

v. 03cos)(sin ///  tytyt  

 

9.4. General solution and Complimentary Function 

 

We want to find a general solution (also known as complete solution) to a 

linear differential equation. Just as with first-order differential equations, a 

general solution (or family of solutions) gives the entire set of solutions to a 

differential equation. An important difference between first-order and 

second-order and higher order equations is that, with second-order  and 

higher order equations, we typically need to find two different solutions or  

more solutions to the equation to find the general solution. If we find two 

or more solutions, then any linear combination of these solutions is also a 

solution. We state this fact as the following theorem. 

Theorem 9.4.1: Superposition Principle 

(1) If )(1 xy  and )(2 xy  are solutions to a linear homogeneous differential 

equation of nth order, then the function )()()( 2211 xycxycxy  , where c1 

and c2 are constants, is also a solution. 



Consider, if )(1 xy  and )(2 xy  are only two solutions of the equation 
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)()()(][ 2211 xycxycxusay   is also its solution. 

Since )(1 xyy   and )(2 xyy   are solutions of equation (1) 
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(2) If c1 and c2 be two arbitrary constants, then we get 

LHS = )(...............
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        = 0)0()0( 21  cc = RHS 
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  .....................  (4). This 

proves the theorem. 



Since the general solution of a differential equation of n
th
 order contains ‘n’ 

arbitrary constants, it follows from above that if nyyyy .......,..........,,, 321  are 

‘n’ independent solutions of equation (1), then  

nn ycycycycy  .................332211  is its complete solution. 

(3) If vy   be any particular solution of 
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Adding equations (4) and (6), we have 
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This shows that vuy   is the complete solution of equation (5). 

The part u is called the complementary function (C. F) and the part v is 

called the particular integral (P.I) of equation (5). 

Therefore, the complete solution (C. S) of equation (5) is IPFCy ..  . 

Thus in order to solve the equation (5), we have to first find the C. F., i.e., 

the complete solution of (1), and then the P.I., i.e., a particular solution of 

(5). 



For Example: To solve the linear differential equation of second order   

0
2

2

 cy
dx

dy
b

dx

yd
a . Where a, b, and c are constants. 

Solution: We have, 0
2

2

 cy
dx

dy
b

dx

yd
a   ......................  (1) 

Since all the coefficients are constants, the solutions are probably going to 

be functions with derivatives that are constant multiples of themselves. We 

need all the terms to cancel out, and if taking a derivative introduce a term 

that is not a constant multiple of the original function, it is difficult to see 

how that term cancels out. Exponential functions have derivatives that are 

constant multiples of the original function, so let’s see what happens when 

we try a solution of the form xexy )( , where  is some constant. 

 xxx exyandexythenexyIf   2/// )()(,)(   . Substituting these 

expressions into equation (1), we get 

)()()( 22///

2

2

cbaeecebeacybyaycy
dx

dy
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dx

yd
a xxxx    . 

Since xe is never zero, this expression can be equal to zero for all x only if 

02  cba  . This is called as the characteristic equation of the 

differential equation. 



Definition 9.4.1: The characteristic equation of the differential equation 

00 ///

2
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dx
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The characteristic equation is very important in finding solution to 

differential equations of this form. We can solve the characteristic equation 

either by factorising or by using the quadratic formula 
a

acbb

2

42 
  

  This gives four cases. The characteristic equation has   

i. Distinct real roots 

ii. A single, repeated real root 

iii. Complex conjugate roots 

iv. Complex conjugate repeated roots 

Before considering each of these cases separately, let’s have the idea of 

operator Din solving the linear differential equations of higher order. 

Operator D: Denoting 
3

3

2

2
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dx
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dx

d
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d
 etc, by 32 ,, DDD  etc, so that 

yD
dx

d
yD
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3
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2

2

2

,,  etc, the equation (5) above can be written in 

the symbolic form XyaDaDa n

nn   )..............( 1

10 , i.e., f(D)y = X, where 

n

nn aDaDaDf   ..............)( 1

10 , i.e., a polynomial in D. 



Thus, the symbol D stands for the operation of differentiation and can be 

treated much the same as an algebraic quantity i.e., f(D) can be factorised 

by ordinary rules of algebra and the factors may be taken in any order. For 

instance yDDOryDDyDDy
dx

dy

dx

yd
)3)(1()1)(3()32(32 2

2

2

 . 

9.5. Methods of finding complimentary function 

 

To solve the equation 0...........
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.....................  (1) 

Where naaaa ...............,,, 210  are constants. 

The equation (1) in operator form is 0)..............( 1

10   yaDaDa n

nn   

………..   (2) 

Its symbolic coefficient equated to zero i.e., 0..............1

10  

n

nn aDaDa  is 

called the auxiliary equation (A.E). Let m1, m2, ……………., mn be its 

roots. 

Case I: If all the roots be real and different, then equation (2) is equivalent 

to 

0)(..............)()( 21  ymDmDmD n   ………………  (3) 



Now, equation (3) will be satisfied by the solution of 0)(  ymD n , i.e., 

0 ym
dx

dy
n . This represents Leibnitz’s linear and xmneFI


. .  

Therefore, its solution is xm

nn

xm nn ecyeicey 


.,. . 

Similarly, since the factors in equation (3) can be taken in any order, it will 

be satisfied by the solutions of xm
ecybyeietcymDymD 2

221 .,.0)(,0)(   

etc. 

Thus, the complete solution of equation (1) is 

xm

n

xmxm necececy  ............21

21   ...............  (4) 

Case II: A single, repeated real root. i.e., if two roots are equal (i.e., m1 = 

m2), then equation (4) becomes 
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It has only n-1 arbitrary constants and is, therefore, not the complete 

solution of equation (1). In this case, we proceed as follows: 

The part of the complete solution corresponding to the repeated root is the 

complete solution of  0)()( 11  ymDmD . 

Putting  00)(,)( 111  zm
dx

dz
OrzmDbecomesitzymD  



This is a Leibnitz’s linear in z and xmneFI


. . 

Therefore,  its solution is xmxm
eczOrcez n 1

11 
  . 

Thus, xmxm
ecym

dx

dy
OreczymD 11

1111)(    …………………..  (5) 

Its I.F. being xmne
 , the solution of equation (5) is 

xm
xm

xm
ecxcyOrcxccdxecey 1

1
1 )( 212121  

  

Thus the complete solution of equation (1) is 

xm

n

xmxm necececxcy  .............)( 31

321 . 

If, however, the A.E. has three equal roots (i.e., m1 = m2 = m3), then the 

complete solution is 

xm

n

xmxm necececxcxcy  .............)( 41

432

2

1 . 

Case III: Complex conjugate roots. 

If one pair of roots be imaginary, i.e.,  imim  21 , , then the 

complete solution is 

xm

n

xmx

xm

n

xmxixix

xm

n

xmxixi

n

n

n

ececxixcxixce

ecececece

ececececy











.............)]sin(cos)sin(cos[

.............)(

.............

3

3

3

321

321

3

)(

2

)(

1







 



 sincos,'[ ieTheoremsEulerby i   

xm

n

xmx nececxCxCey  .............]sincos[ 3

321   

Where )( 212211 cciCandccC  . 

Case IV: Complex conjugate repeated roots 

If two points of imaginary roots be equal i.e., 

 immimm  4321 , , then by case II, the complete solution is 

xm

n

xmx nececxcxcxcxcey  .............]sin)(cos)[( 3

34321   

Example 9.5.1: Solve  043
2

2

 y
dx

dy

dx

yd
. 

Solution: Given equation is 043043 ///

2

2

 yyyOry
dx

dy

dx

yd
  

..................   (1). This represents homogeneous linear ODE of second order 

with constant coefficients. 

The symbolic form of equation (1) is 0)43( 2  yDD . 

The corresponding auxiliary equation is 0432  DD

4,1,0)1)(4(0442  DDDOrDDD , these are real and 

distinct roots. 



Hence the general solution (Or complete solution) of equation (1) is 

xx ececy 4

21

 . 

Example 9.5.2: Solve  0136
2

2

 y
dx

dy

dx

yd
. 

Solution: Given equation is 01360136 ///

2

2

 yyyOry
dx

dy

dx

yd
  

..................   (1). This represents homogeneous linear ODE of second order 

with constant coefficients. 

The symbolic form of equation (1) is 0)136( 2  yDD . 

The corresponding auxiliary equation is 01362  DD

iiD

i
i

D

23,23

23
2

46

2

166

2

)13)(1(4366













, these are real and 

distinct roots. 

Hence the general (Or complete) solution of equation (1) is 

]2sin2cos[ 21

3 xcxcey x   . 

Example 9.5.3: Solve  096
2

2

 y
dt

dy

dt

yd
. 



Solution: Given equation is 096096 ///

2

2

 yyyOry
dt

dy

dt

yd
  

..................   (1). This represents homogeneous linear ODE of second order 

with constant coefficients. 

The symbolic form of equation (1) is 0)96( 2  yDD . 

The corresponding auxiliary equation is 0962  DD

3,3

)(3
2

6

2

06

2

)9)(1(4366














D

TwiceD
 

These are real repeated roots. 

Hence the general (Or complete) solution of equation (1) is ][ 21

3 ctcey t   . 

Example 9.5.4: Solve  044
2

2

3

3

 y
dt

dy

dt

yd

dt

yd
. 

Solution: Given equation is 044044 //////

2

2

3

3

 yyyyOry
dt

dy

dt

yd

dt

yd
  

...........   (1). This represents homogeneous linear ODE of third order with 

constant coefficients. 

The symbolic form of equation (1) is 0)44( 23  yDDD . 



The corresponding auxiliary equation is 04423  DDD

iD

DDandiDD

DDOrDDD

2,1

10)1(20)4(

0)1)(4()1(4)1(

2

22







 

Here, one is real root and another is complex conjugate case. 

Hence the general (Or complete) solution of equation (1) is 

]2sin2cos[ 32

0

1 tctceecy tt   . 

Or  tctcecy t 2sin2cos 321   . 

Example 9.5.5: Solve  0

3

2

2









 y

dt

yd
. 

Solution: Given equation is 0][0 3//

3

2

2









 yyOry

dt

yd
  ...........   (1). 

This represents homogeneous linear ODE of sixth order with constant 

coefficients. 

The symbolic form of equation (1) is 0)1( 32  yD . 

The corresponding auxiliary equation is 0)1( 32 D  

iiiD

ThriceiDD

ThriceD







,,

)(1

)(01

2

2

 



Here, it is a case of complex conjugate repeated roots. 

Hence the general (Or complete) solution  of equation (1) is 

ttctccttctccyOr

ttctccttctccey t

sin)(cos)(

]sin)(cos)[(

2

654

2

321

2

654

2

321

0




 

Example 9.5.6: Solve  04
4

4

 y
dt

yd
. 

Solution: Given equation is 0404 /

4

4

 yyOry
dt

yd V   ...........   (1). This 

represents the homogeneous linear ODE of fourth order with constant 

coefficients. 

The symbolic form of equation (1) is 0)4( 4  yD . 

The corresponding auxiliary equation is 044 D

iDDDFrom

andiDDDFrom

DDDDDD

DDD















1
2

842
,022,

1
2

842
,022,

022,0220)2()2(

0444)(

2

2

22222

2222

 

Here, both the roots are complex conjugate with different real part. 

Hence the general (Or complete) solution of equation (1) is 

]sincos[]sincos[ 4321 tctcetctcey tt   . 



Example 9.5.7: Solve the initial value problem, 

0)0(,1)0(02 /

2

2

 yywithy
dx

dy

dx

yd
. 

Solution: Given equation is 0202 ///

2

2

 yyyOry
dx

dy

dx

yd
 ..............  

(1)  This represents homogeneous linear ODE of second order with 

constant coefficients. 

The symbolic form of equation (1) is 0)12( 2  yDD . 

The corresponding auxiliary equation is 0122  DD

1,1,0)1(01 22  DDOrDDD , these are real and repeated 

roots. 

Hence the general solution (Or complete solution) equation (1) is 

xecxcy  )( 21    .............  (2) 

Now, applying the given initial conditions: 1)0( y , equation (2) gives, 

21 c  

From equation (2), xx ececxcy   121

/ )( , using the condition 0)0(/ y , we 

obtain 

10 12112  cccOrcc . 



Thus, the solution of the given initial value problem (known as particular 

solution) is xexy  )1( . 

Example 9.5.8: Solve the initial value problem, 

15)0(,0)0(065 /

2

2

 yywithy
dx

dy

dx

yd
. 

Solution: Given equation is 065065 ///

2

2

 yyyOry
dx

dy

dx

yd
 ..............  

(1)  This represents homogeneous linear ODE of second order with 

constant coefficients. 

The symbolic form of equation (1) is 0)65( 2  yDD . 

The corresponding auxiliary equation is 0652  DD

3,2,0)2)(3(06232  DDDOrDDD , these are real and 

repeated roots. 

Hence the general solution (Or complete solution) equation (1) is 

xx ececy 3

2

2

1

   .............  (2) 

Now, applying the given initial conditions: 0)0( y , equation (2) gives, 

210 cc  ...............  (3) 



From equation (2), xx ececy 3

2

2

1

/ 32   , using the condition 15)0(/ y , we 

obtain 

15323215 2121  ccOrcc   ......................  (4) 

Solving equations (3) and (4), we get 1515 21  candc . 

Thus, the solution of the given initial value problem (known as particular 

solution) is )(151515 3232 xxxx eeeey   . 

Test Your Progress 2 

Solve the following differential equations. 

1. 016
2

2

 y
dt

yd
  2. 0136

2

2

 y
dx

dy

dx

yd
 3. 016

2

2

 y
dt

yd
 

4. 096
2

2

 y
dx

dy

dx

yd
  5. 0

3

3

 y
dt

yd
  6. 

033
2

2

3

3

 y
dx

dy

dx

yd

dx

yd
  

7. 0168
2

2

4

4

 y
dx

yd

dx

yd
  8. 0)1()1( 22  yDD   

9. 2)0(,0)0(,0134 /

2

2

 yyy
dt

dy

dt

yd
. 

10. 1)0(,4)0(,0102 /

2

2

 yyy
dt

dy

dt

yd
. 

 



9.6. Methods of finding particular integrals 

 

In this section, we examine how to solve non homogeneous differential 

equations. The terminology and methods are different from those we used 

for homogeneous equations, so let’s start by defining some new terms. 

Consider the non homogeneous linear differential equation 

)(...........
2

2

21

1

10 xfya
dx

yd
a

dx

yd
a

dx

yd
a nn

n

n

n

n

n










 

The associated homogeneous equation is 

0...........
2

2

21

1

10 








ya
dx

yd
a

dx

yd
a

dx

yd
a nn

n

n

n

n

n

 

is called the auxiliary equation. We have already seen that solving the 

auxiliary equation is an important step in solving a non homogeneous 

differential equation. 

 

General Solution to a Non homogeneous Ordinary Linear Differential 

Equation: 

Let )(xy p be any particular solution to the non homogeneous linear 

differential equation 



)(...........
2

2

21

1

10 xfya
dx

yd
a

dx

yd
a

dx

yd
a nn

n

n

n

n

n










 

Also, let )(...........)()( 2211 xycxycxycy nnc   denote the general solution to 

the auxiliary equation. Then, the general solution of the non homogeneous 

linear differential equation is given by pc yyy  . Where cy is known as 

complementary function and py is called particular integral. 

In the preceding section, we learned how to solve homogeneous equations 

with constant coefficients. Therefore, for non homogeneous equations of 

the form )(...........
2

2

21

1

10 xFya
dx

yd
a

dx

yd
a

dx

yd
a nn

n

n

n

n

n










, we already know 

how to solve the auxiliary equation, and the problem boils down to finding 

a particular solution for the non homogeneous equation. We now examine 

two techniques for this: the method of undetermined coefficients and the 

method of variation of parameters. 

 

9.7. Method of Undetermined Coefficients 

 

To find the particular integral of 

    )(..............)( 1

10 xFyaDaDayDf n

nn   . We assume a trial solution 

containing unknown constants which are determined by substitution in the 



given equation. The trial solution to be assumed in each case, depends on 

the form of F(x). Thus when 

i) F(x) is an exponential: If xexF 32)(  , trial solution xae3  

ii) F(x) is trigonometrical: If xxF 2sin3)(  , trial solution 

xaxa 2cos2sin 21   

iii) F(x) is a polynomial: If 32)( xxF  , trial solution 

43

2

2

3

1 axaxaxa   

However when xOrxxF sectan)(  , this method fails, since the number 

of terms obtained by differentiating xOrxxF sectan)(   is infinite. 

The above method holds so long as no term in the trial solution appears 

in the C.F. If any term of the trial solution appears in the C.F., we 

multiply this trial solution by the lowest positive integral power of '' x  

which is large enough so that none of the terms which are then present, 

appear in the C.F. 

Note: However, even if F(x) included a sine term only or a cosine term 

only, both terms must be present in the trial solution. The method of 

undetermined coefficients also works with products of polynomials, 

exponentials, sines, and cosines. 



Table 1. Some of the key forms of F(x) and the associated trial solutions 

for )(xy p are summarized in the following table. 

Sl. 

No. 

F(x) Trial solutions for 

)(xy p  

1 k (a constant) A (a constant) 

2 bax  BAx  (Note: The trial 

must include both terms 

even if 0b ) 

3 cbxax 2  cBxAx 2  (Note: The 

trial must include all 

three terms even if 

corb  are zero) 

4 Higher order polynomials Polynomial of the same 

order as F(x) 

5 xae  xAe  

6 xbxa  sincos   xBxA  sincos  (Note: 

The trial must include 

all three terms even if 

corb  are zero) 



7 xbexae xx   sincos   xBexAe xx   sincos   

8 xecbxax )( 2   xecBxAx )( 2   

9 xbxbxbxaxaxa  sin)(cos)( 21

2

021

2

0   

xBxBxB

xAxAxA





sin)(

cos)(

21

2

0

21

2

0




 

10 xebxbxbxeaxaxa xx   sin)(cos)( 21

2

021

2

0 

 xeBxBxB

xeAxAxA

x

x









sin)(

cos)(

21

2

0

21

2

0





 

 

9.7.1  Working Method of Undetermined Coefficients 

 

Step 1. Solve the auxiliary equation and write down the general solution. 

 

Step 2: Based on the form of F(x), make an initial trial solution for )(xy p . 

 

Step 3: Check whether any term in the trial solution for )(xy p  is a solution 

to the auxiliary equation. If so, multiply the trial solution by '' x . Repeat this 

step until there are no terms in )(xy p  that solves the auxiliary equation. 

 

Step 4: Substitute )(xy p into the differential equation and equate like terms 

to find values for the unknown coefficients in )(xy p . 

 



Step 5: Add the general solution to the auxiliary equation and the particular 

integral you just found to obtain the general solution to the non 

homogeneous equation. 

Example 9.7.1: Find the general solution of xey
dx

dy

dx

yd 3

2

2

22  . 

Solution: We have xx eyyyOrey
dx

dy

dx

yd 3///3

2

2

2222    ..............  (1) 

Here, we have xexF 32)(   

The symbolic form of the equation (1) is xeyDD 32 2)2(   

The corresponding auxiliary equation is 022 DD  

2,10)2)(1(022  DDDDD . 

The complementary function is given by xx

c ececxyFC 2

21)(.   . 

Now, to find the particular integral )(xy p , by the method of undetermined 

coefficients, 

Since xexF 32)(  , the particular solution might have the form x

p Aexy 3)(  . 

Then, we have x

p Aexy 3/ 3)(   and x

p Aexy 3// 9)(  . For )(xy p  to be the part of 

the solution to the differential equation, we must find a value for A such 

that 

xx

xxxx

x

eAe

eAeAeAe

eyyy

33

3333

3///

24

2239

22







 



2

1
24  AOrA  Then, x

p exy 3

2

1
)( 








 . 

Thus the general (Or complete) solution of equation (1) is given by,

xxx

pc eececxyxyIPFCy 32

21
2

1
)()(..   . 

Example 9.7.2: Find the general solution of xexy
dx

dy

dx

yd  3242 2

2

2

. 

Solution: We have xx exyyyOrexy
dx

dy

dx

yd   32423242 2///2

2

2

  

..............  (1) 

Here, we have xexxF  32)( 2  

The symbolic form of the equation (1) is xexyDD  32)42( 22  

The corresponding auxiliary equation is 0422  DD  

31
2

322

2

1642
0422 i

i
DDD 





 . 

The complementary function is given by 

)3sin3cos()(. 21 xcxcexyFC x

c   . 

Now, to find the particular integral )(xy p , by the method of undetermined 

coefficients,  

Since xexxF  32)( 2 , the particular solution might have the form 

x

p eaaxaxaxy  321

2

0)( . Then, we have x

p eaaxaxy  31

2

0

/ 2)(  and 



x

p eaxaxy  30

// 4)( . For )(xy p  to be solution to the differential equation. 

Substituting these in the given equation, we get 

xxxx

x

exeaaxaxaeaaxaeaxa

exyyy









32)(4)2(24

3242

2

321

2

031

2

030

2///

 

Equating corresponding coefficients on both sides, we get 

33,0422,044,24 3210100  aaaaaaa   

Then, 1,0,
2

1
,

2

1
3210  aaaa . 

Thus x

p exxyIP 
2

1

2

1
.. 2  

Thus the general (Or complete) solution is 

xx

pc exxxcxcexyxyIPFCy  
2

1

2

1
)3sin3cos()()(.. 2

21 . 

Example 9.7.3: Find the general solution of xy
dx

yd
sin

2

2

 . 

Solution: We have xyyOrxy
dx

yd
sinsin //

2

2

   ..............  (1) 

Here, we have xxF sin)(   

The symbolic form of the equation (1) is xyD sin)1( 2   

The corresponding auxiliary equation is 012 D  

iDDOrD  101 22 . 

The complementary function is given by )sincos()(. 21 xcxcxyFC c  . 



Now, to find the particular integral )(xy p , by the method of undetermined 

coefficients,  

Since xxF sin)(  , Let’s assume the trial solution to have the particular 

solution, be of the form )sincos()( 21 xaxaxxyp  as these terms appear in 

the C.F, therefore we multiply it by x . Then, we have 

xxaaxxaaxy p sin)(cos)()( 1221

/   and 

xxaaxxaaxy p sin)2(cos)2()( 2112

//  . For )(xy p  to be solution to the 

differential equation. Substituting these in the given equation, we get 

xxaxa

xxaxaxxxaaxxaa

xyy

sinsin2cos2

sin)sincos(sin)2(cos)2(

sin

12

212112

//







 

Equating corresponding coefficients on both sides, we get 

002,
2

1
12 2211  aaaa   

Thus xxyIP p cos
2

1
..   

Thus the general (Or complete) solution is 

xxxcxcxyxyIPFCy pc cos
2

1
)sincos()()(.. 21  . 

Example 9.7.4: Find the general solution of xxy
dx

dy

dx

yd
cossin744

2

2

 . 



Solution: We have 

xxyyyOrxxy
dx

dy

dx

yd
cossin744cossin744 ///

2

2

   ........  (1) 

Here, we have xxxF cossin7)(   

The symbolic form of the equation (1) is xxyDD cossin7)44( 2   

The corresponding auxiliary equation is 0442  DD  

2,20)2( 2  DOrD  

The complementary function is given by x

c ecxcxyFC 2

21 )()(.  . 

Now, to find the particular integral )(xy p , by the method of undetermined 

coefficients,  

Since xxxF cossin7)(  , Let’s assume the trial solution to have the 

particular solution, be of the form )sincos()( 21 xaxaxyp  . Then, we have 

xaxaxy p cossin)( 21

/   and xaxaxyp sincos)( 21

//  . For )(xy p  to be 

solution to the differential equation. Substituting these in the given 

equation, we get 

xxxaaxaaOr

xxxaxaxaxaxaxa

xxyyy

cossin7sin)34(cos)43(

cossin7)sincos(4)cossin(4)sincos(

cossin744

2121

212121

///







 

Equating corresponding coefficients on both sides, we get 

734143 2121  aaandaa  , solving both the equations for 
21 aanda , 

we obtain 



11 21  aanda . 

Thus xxyIP p sincos..   

Thus the general (Or complete) solution  of eequation (1) is 

xxecxcxyxyIPFCy x

pc sincos)()()(.. 2

21  . 

 

Example 9.7.5: Find the general solution of xexey
dx

yd xx 3sin2cos 23

2

2

 . 

Solution: We have 

xexeyyOrxexey
dx

yd xxxx 3sin2cos3sin2cos 23//23

2

2

   .......  (1) 

Here, we have xexexF xx 3sin2cos)( 23   

The symbolic form of the equation (1) is xexeyD xx 3sin2cos)1( 232   

The corresponding auxiliary equation is 012 D  

1101 22  DDOrD . 

The complementary function is given by )()(. 21

xx

c ececxyFC   . 

Now, to find the particular integral )(xy p , by the method of undetermined 

coefficients,  

Since xexexF xx 3sin2cos)( 23  , Let’s assume the trial solution to have the 

particular solution, be of the form  

)3sin3cos()2sin2cos()( 43

2

21

3 xaxaexaxaexy xx

p   Then, we have 

]3sin)32(3cos)32[(]2sin)23(2cos)23[()( 3443

2

1221

3/ xaaxaaexaaxaaexy xx

p 



 and 

]3sin)125(3cos)512[(]2sin)125(2cos)125[()( 3434

2

1221

3// xaaxaaexaaxaaexy xx

p 

For )(xy p  to be solution to the differential equation. Substituting these in 

the given equation, we get 

xexexaxaexaxae

xaaxaaexaaxaae

xexeyy

xxxx

xx

xx

3sin2cos)3sin3cos()2sin2cos(

]3sin)125(3cos)512[(]2sin)125(2cos)125[(

3sin2cos

23

43

2

21

3

3434

2

1221

3

23//







 

Equating corresponding coefficients on both sides, we get 

1126,0612;0124,1124 34341221  caaaaaaa . 

Solving for 4321 ,, aandaaa , we obtain 
30

1

15

1
,

40

3
,

40

1
4321  aandaaa  

Thus )3sin3cos2(
30

1
)2sin32(cos

40

1
. 23 xxexxeyIP xx

p   

Thus the general (Or complete) solution of equation (1) is 

)3sin3cos2(
30

1
)2sin32(cos

40

1
)()()(.. 23

21 xxexxeececxyxyIPFCy xxxx

pc  

 

 Test Your Progress 3 

Find the general solution of the following differential equations by 

finding the P.I.by Method of Undetermined Coefficients. 

1. xyy 3cos69//   2.  xeyyy  42 ///  3. 

331052 2///  xxyyy  



4.  tyy 123 ///    5.  xexyDD  22 )23(  6.  xy
dx

yd
cos2

2

2

  

7.  xey
dx

dy

dx

yd x sin65 3

2

2

   8.  xxy
dx

dy

dx

yd
sin2

2

2

  

9.  xxyDD cos)32( 32    10. xeyDD x sin)2( 2   

 

9.8. Method of Variation of Parameters 

 

Sometimes, F(x) is not a combination of polynomials, exponentials, or 

sines and cosines. When this is the case, the method of undetermined 

coefficients does not work, and we have to use another approach to find a 

particular solution to the differential equation. We use an approach called 

the method of variation of parameters. 

To simplify our calculations a little, we are going to divide the differential 

equation through by a, so we have a leading coefficient of 1. Then the 

differential equation has the form 

y″ + py′ + qy = F(x), 

where p and q are constants. 

If the general solution to the complementary equation is given by 

)()( 2211 xycxyc  , we are going to look for a particular solution of the form 



)()()()()( 21 xyxvxyxuxy p  . In this case, we use the two linearly 

independent solutions to the complementary equation to form our particular 

solution. However, we are assuming the coefficients are functions of x, 

rather than constants. We want to find functions u(x) and v(x) such that 

)(xy p  satisfies the differential equation. We have 

)()()()()( 21 xyxvxyxuxyp 
  ……………..  (1)

 

)()()()()()()()()( /

22

//

11

// xyxvxyxvxyxuxyxuxyp   

)()()()()()()()(())()()()(()( //

2

/

2

///

1

/

1

//

2

/

1

/// xyxvxyxvxyxuxyxuxyxvxyxuxyp   

Substituting into the differential equation, we obtain 

 qypyy ///

)()()()()()()()(())()()()(( //

2

/

2

///

1

/

1

//

2

/

1

/ xyxvxyxvxyxuxyxuxyxvxyxuy 

)()()()([)]()()()()()()()([ 21

/

22

//

11

/ xyxvxyxuqxyxvxyxvxyxuxyxup 

              

)]()()()([)]()()()([

)]()()()([)]()()()[()]()()([

/

2

//

1

/

2

/

1

/

/

2

/

1

/

2

/

2

//

21

/

1

//

1

xyxvxyxuxyxvxyxup

xyxvxyxuxqyxpyxyxvxqyxpyxyu




 

Note that 
21 yandy  are the solutions to the auxiliary equation, so the first 

two terms are zero. Thus, we have 

)()]()()()([)]()()()([)]()()()([ /

2

//

1

/

2

/

1

//

2

/

1

/ xFxyxvxyxuxyxvxyxupxyxvxyxu 

 

If we simplify this equation by imposing the additional condition 

0)()()()( 2

/

1

/  xyxvxyxu , the first two terms are zero, and this reduces to 



)()()()()( 2

/

1

/ xFxyxvxyxu  . So, with this additional condition, we have a 

system of two equations in two unknowns: 

0)()()()( 2

/

1

/  xyxvxyxu  

)()()()()( 2

/

1

/ xFxyxvxyxu   

Solving this system (by using Cramer’s rule Or any suitable technique) 

gives us 
)(

)()(

)(

)()( 1/2/

xW

xFxy
vand

xW

xFxy
u





 , which we can integrate to 

find vandu . Where, /

12

/

21/

2

/

1

21
)( yyyy

yy

yy
xW   

Substituting these in equation (1), we obtain the )(xyp . 

 

9.8.1. Working Method of Variation of Parameters 

 

Step 1: Solve the auxiliary equation and write down complementary 

function: )()()( 2211 xycxycxyc  . 

 

Step 2: Assume  )()()()()( 21 xyxvxyxuxyp  . Then, determine Wronskian  

)()()()(
)()(

)()(
)( /

12

/

21/

2

/

1

21
xyxyxyxy

xyxy

xyxy
xW  . 

 



Step 3: Find vandu  using the formulae 

 





 dx
xW

xFxy
vanddx

xW

xFxy
u

)(

)()(

)(

)()( 12 . 

 

Step 4: Then, )()()()()( 21 xyxvxyxuxy p   is the particular integral to the 

equation. 

 

Step 5: Add the complementary function and the particular integral to 

obtain the general solution to the non homogeneous differential equation. 

Example 9.8.1: Find the general solution of xy
dx

yd
sec

2

2

 . 

Solution: We have, )1(..................secsec //

2

2

xyyOrxy
dx

yd
  

Here, we have xxF sec)(   

The symbolic form of the equation (1) is xyD sec)1( 2   

The corresponding auxiliary equation is 012 D  

iDDOrD  101 22 . 

The complementary function is given by )sincos()(. 21 xcxcxyFC c  . 

Now, to find the particular integral )(xy p , by the method of variation of 

parameters, 

Let xxvxxuxyxvxyxuxyp sin)(cos)()()()()()( 21   



1sincos
cossin

sincos

)()()()(
)()(

)()(
)(

22

/

12

/

21/

2

/

1

21








xx
xx

xx

xyxyxyxy
xyxy

xyxy
xW

 

Now,  

xdx
xx

dx
xW

xFxy
vand

xxdx
xx

dx
xW

xFxy
u





















1

seccos

)(

)()(

)log(cos)log(sec
1

secsin

)(

)()(

1

2

 

xxxxxy p sincos)log(cos)(   

Thus the general (Or complete) solution of equation (1) is 

xxxxxcxcxyxyIPFCy pc sincos)log(cos)sincos()()(.. 21 
 

Example 9.8.2: Find the general solution of xy
dx

yd
2tan4

2

2

 . 

Solution: We have, )1(..................2tan2tan4 //

2

2

xyyOrxy
dx

yd
  

Here, we have xxF 2tan)(   

The symbolic form of the equation (1) is xyD 2tan)4( 2   

The corresponding auxiliary equation is 012 D  

iDDOrD 2404 22  . 

The complementary function is given by )2sin2cos()(. 21 xcxcxyFC c  . 



Now, to find the particular integral )(xy p , by the method of variation of 

parameters, 

Let xxvxxuxyxvxyxuxyp 2sin)(2cos)()()()()()( 21   

22sin22cos2
cos2sin2

2sin2cos

)()()()(
)()(

)()(
)(

22

/

12

/

21/

2

/

1

21








xx
xx

xx

xyxyxyxy
xyxy

xyxy
xW

 

Now,  

x

dxxdx
xx

dx
xW

xFxy
vand

xxx

dxxxdx
xx

dx
xW

xFxy
u

2cos
4

1

2sin
2

1

2

2tan2cos

)(

)()(

]2sin)2tan2[log(sec
4

1

)2cos2(sec
2

1

2

2tan2sin

)(

)()(

1

2

























 

)]2tan2[log(sec2cos
4

1

2sin2cos
4

1
2cos]2sin)2tan2[log(sec

4

1
)(

xxx

xxxxxxxy p





 

Thus the general (Or complete) solution of equation (1) is 

)]2tan2[log(sec2cos
4

1
)2sin2cos()()(.. 21 xxxxcxcxyxyIPFCy pc 

 

Example 9.8.3: Find the general solution of 
2

3

2

2

96
x

e
y

dx

dy

dx

yd x

 . 



Solution: We have, 
2

3
///

2

3

2

2

9696
x

e
yyyOr

x

e
y

dx

dy

dx

yd xx


    

……………..   (1)
 

Here, we have 
2

3

)(
x

e
xF

x

  

The symbolic form of the equation (1) is 
2

3
2 )96(

x

e
yDD

x

  

The corresponding auxiliary equation is 0962  DD  

3,30)3(096 22  DDOrDD . 

The complementary function is given by x

c exccxyFC 3

21 )()(.  . 

Now, to find the particular integral )(xy p , by the method of variation of 

parameters, 

Let xx

p xexvexuxyxvxyxuxy 33

21 )()()()()()()(   

xxxx

xxx

xx

exeexe
exee

xee

xyxyxyxy
xyxy

xyxy
xW

6666

333

33

/

12

/

21/

2

/

1

21

33
33

)()()()(
)()(

)()(
)(








 

Now,  

x
dx

x
dx

xe

ee
dx

xW

xFxy
vand

xdx
x

dx
xe

exe
dx

xW

xFxy
u

x

xx

x

xx

11

)(

)()(

log
1

)(

)()(

226

33

1

26

33

2






















 



)1(log)(
1

)log()( 333  xexe
x

exxy xxx

p  

Thus the general (Or complete) solution of equation (1) is 

)log1()log1()()()(.. 21

333

21 xxccexeexccxyxyIPFCy xxx

pc 
 

Example 9.8.4: Find the general solution of xey
dx

dy

dx

yd x log2
2

2

 . 

Solution: We have, xeyyyOrxey
dx

dy

dx

yd xx log2log2 ///

2

2


       

…………(1)
 

Here, we have xexF x log)(   

The symbolic form of the equation (1) is xeyDD x log)12( 2   

The corresponding auxiliary equation is 0122  DD  

1,10)1(012 22  DDOrDD . 

The complementary function is given by x

c exccxyFC )()(. 21  . 

Now, to find the particular integral )(xy p , by the method of variation of 

parameters, 

Let xx

p xexvexuxyxvxyxuxy )()()()()()()( 21   

xxxx

xxx

xx

exeexe
exee

xee

xyxyxyxy
xyxy

xyxy
xW

2222

/

12

/

21/

2

/

1

21
)()()()(

)()(

)()(
)(








 



Now,  

)1(loglog
log

)(

)()(

2

1
log

2
log

log

)(

)()(

2

1

2

2

2





























xxdxxdx
e

xee
dx

xW

xFxy
vand

x
x

dxxxdx
e

xexe
dx

xW

xFxy
u

x

xx

x

xx

 



























 xxxx

x
exexxex

x
xy xxx

p )1(log
2

1
log

2
)1(log

2

1
log

2
)(

22

 

Thus the general (Or complete) solution of equation (1) is 


















 xxxx

x
eexccxyxyIPFCy xx

pc )1(log
2

1
log

2
)()()(..

2

21

 

Example 9.8.5: Find the general solution of 
)1(

2
2

2

xe
y

dx

yd


 . 

Solution: We have, 
)1(

2

)1(

2 //

2

2

xx e
yyOr

e
y

dx

yd







    …………….   

(1)
 

Here, we have xexF x log)(   

The symbolic form of the equation (1) is 
)1(

2
)1( 2

xe
yD


  

The corresponding auxiliary equation is 012 D  

1,1012  DD . 

The complementary function is given by )()(. 21

xx

c ececxyFC  . 



Now, to find the particular integral )(xy p , by the method of variation of 

parameters, 

Let xx

p exvexuxyxvxyxuxy  )()()()()()()( 21  

211

)()()()(
)()(

)()(
)( /

12

/

21/

2

/

1

21












xx

xx

ee

ee

xyxyxyxy
xyxy

xyxy
xW

 

Now,  

)1log(
)1()1)(2(

2

)(

)()(

)1log(
11

11

)1(

1

)1()1)(2(

2

)(

)()(

1

2

x

x

x

x

x

xx

x

x
x

xx

xxx

x

x

x

edx
e

e
dx

e

e
dx

xW

xFxy
vand

eedx
e

e
edx
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Thus the general (Or complete) solution of equation (1) is 
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 Test Your Progress 4 

Find the general solution of the following differential equations by 

finding the P.I.by Method of Variation of parameters. 



1. 
2

/// 2
t

e
yyy

t

   2. xyy 2// sin3   3. ecaxya
dx

yd
cos2

2

2

  

4. xy
dx

yd
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2

2

   5. xxy
dx

yd
sin

2

2

   6. 
x

e
y

dx
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yd x

 2
2
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7. 
xe

y
dx

dy

dx

yd



1

1
23

2

2

 8. xeyyy x tan22 ///   9. xe
dx

dy

dx

yd x sin2
2

2

  

10. 
x

y
dx

yd

sin1

1
2

2


  

 

9.9 Summary 

 

Method for finding the complementry fuction C.F. and methods for finding 

P.I. in certain standerd cases is given. Method of variation of parameters 

and method of undetermined coefficent has been discussed to find P.I. for 

non stunderd cases. 

9.10. Terminal Questions 

 

1. Solve  

                  

2. Solve  

                    



3. Solve by method of variation of parameters 

i.                   

ii.                

4. Solve  

           
   

  
 

Ans.  

1.      
     

              

2.            
                     

3. (i.)                                                

(ii)                                         

4.            
                

9.11. Answers to Check Your Progress 

 

Test Your Progress 1 

 

(i) We have, 03468 2/2//  ttyytty . This equation is linear. Rewriting it in 

standard form gives 2/2// 3468 ttyytty  . With the equation in standard 

form, we can see that 23)( ttF  . So the equation is non homogeneous. 

 



(ii) We have, 3)(cos)sin( /2///2  yyxyxyx . This equation looks like its 

linear, but we should rewrite it in standard form to be sure. We get 

3)1(cos)sin( 2///2  yxyxyx . This equation is, indeed, linear. With 

3)( xF , it is non homogeneous. 

 

(iii) We have, yyxyy cos35 ///  . This equation is nonlinear because of the 

cosy term. 

 

(iv) We have,   08 3/2//  yxyy . This equation is nonlinear because of 

2// )(y  term. 

 

(v) We have, ttyytOrtytyt cos3)(sin03cos)(sin //////  . This is 

linear. With txF cos)(  , it is non homogeneous. 

Test Your Progress 2 

1. tt ececy 4

2

4

1     2. )2sin2cos( 21

3 xcxcey x    3. 

tctcy 4sin4cos 21   

4. xexccy 3

21 )(    5. )
2

3
2sin

2

3
cos( 32

2/

1 txctceecy tt    

6. xexcxccy )( 2

321   7. xxccxxccy 2sin)(2cos)( 4321   

8. xecxxccxxccy 54321 sin)(cos)(    9. xey x 3sin
3

2 2  

10. )3sin3cos4( xxey x   



Test Your Progress 3 

1. xececy xx 3cos
3

13

2

3

1      2. xx etexccy   2

21 2)(   

3. 12)2sin2cos( 2

21  xxxcxcey x   4. ttcecy tx

3

4
2 2

21   

5. )25.33(
2

1 22

21

xxx xexxececy    6. xxxcxcy sinsincos 21   

7. )cos3(sin
10

133

2

2

1 xxxeececy xxx    

8. )sin3(cos
10

1
)12(

4

12

21 xxxececy xx    

9. )sin(cos
4

1
)86189(

27

1
)2sin2cos( 23

21 xxxxxxcxcey x   

10. xeeccy xx sin
2

12

21   

Test Your Progress 4 

1.
 

tetececy ttt log21 
    2. 

xxcxcy 2

21 cos1sincos 
 

3. 
axaxacaxaxcy sin]sinlog)/1([cos)/( 2

21 
 

4. 
)tanlog(seccossincos 21 xxxaxcxcy 
 

5. 
x

x
x

x
xcxcy cos

4
sin

2
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2

21 
 

6. 
xxeexccy xx log)( 21 

 



7. 

xxxxx excexceeey 2

21

2 )()1()1log()( 
 

8. 
)tanlog(seccos)sincos( 21 xxxexcxcey xx 
 

9. 
xeeccy xx sin

2

12

21 
 

10. 
1cos)sin1log(sinsincos 21  xxxxxcxcy
 

 



Unit 10: Methods of finding particular integrals by inverse 

operator method 

 

Structure 

10.1. Introduction 

10.2. Objectives 

10.3. Case of exponential function 

10.4. Case of hyperbolic functions 

10.5. Case of trigonometric functions 

10.6. Case of a polynomial 

10.7. Case of combination of Veax

 

10.8. Case of combination of Vxm  

10.9. Summary 

10.10 Answers to exercises 

10.11 Terminal Questions 

 



10.1. Introduction 

 

Linear differential equations are those in which the dependent variable 

and its derivatives occur only in the first degree and are not multiplied 

together. Thus the general differential equation of the n
th
 order is of the 

form  

)(..............
2

2

21

1

10 xFyk
dx

yd
k

dx

yd
k

dx

yd
k nn

n

n

n

n

n










 

Where nkkkk ....................,,, 210 are real valued functions, and k0 is not 

identically zero. F(x) is function of ‘x’ only. 

If nkkkk ....................,,, 210 are all constants, then the equation is known as 

linear differential equation with constant coefficients. 

Operator D: Denoting 
3

3

2

2

,,
dx

d

dx

d

dx

d
 etc, by 32 ,, DDD  etc, so that 

yD
dx

d
yD

dx

d
Dy

dx

dy 3

3

3
2

2

2

,,  etc, the equation (5) above can be written in 

the symbolic form )()..............( 1

10 xFykDkDk n

nn   , i.e., f(D)y = F(x), 

where n

nn kDkDkDf   ..............)( 1

10 , i.e., a polynomial in D. 



Thus, the symbol D stands for the operation of differentiation and can be 

treated much the same as an algebraic quantity i.e., f(D) can be 

factorised by ordinary rules of algebra and the factors may be taken in 

any order. 

Let )(...........)()( 2211 xycxycxycy nnc   denote the general solution to 

the auxiliary equation. Then, the general solution of the non 

homogeneous linear differential equation is given by pc yyy  . Where 

cy is known as complementary function and py is called particular 

integral. 

In the preceding unit, we learnt how to solve non homogeneous 

equations with constant coefficients. Therefore, for non homogeneous 

equations of the form )(...........
2

2

21

1

10 xFyk
dx

yd
k

dx

yd
k

dx

yd
k nn

n

n

n

n

n










, we 

already know how to solve the auxiliary equation and to find a particular 

solution for the non homogeneous equation. We have seen two methods 

of finding particular integral. Now examine one more technique for this: 

the inverse operator method. 

Inverse Operator 

 



Definition 10.1.1: )(
)(

1
xF

Df
 is that function of x , not containing the 

arbitrary constants when operated upon by )(Df gives )(xF . 

)()(
)(

1
)(.,. xFxF

Df
Dfei 









.  

Thus )(
)(

1
xF

Df
 satisfies the equation )()( xFyDf   and is, therefore, its 

particular integral.  

Obviously, )(Df  and 
)(

1

Df
 are inverse operators. 

Definition 10.1.2:   dxxFxF
D

)()(
1

 

Let      yxF
D

)(
1

       . …………….   (1) 

Operating by D, 

dx

dy
xFeiDyxF

D
D  )(.,.)(

1
 

Integrating both sides w. r. t. x , dxxFy   )( , no constant being added 

as equation (1) does not contain any constant. 

Thus        dxxFxF
D

)()(
1

    

 



Definition 10.1.3: 



dxexFexF

aD

axax )()(
1

 

Let              yxF
aD




)(
1

   . …………..   (2) 

Operating by yaDxF
aD

aDaD )()(
)(

1
)(),( 


  

Or            )(.,.)( xFay
dx

dy
eiay

dx

dy
xF  . This represents a Leibnitz’s 

linear equation. 

 

    xadxa

eeFI 

 . , its general solution is given by 

 dxexFey xadxa

  

)( , no constant being added as equation (2) 

does not contain any constant. 

Thus    


 dxexFeyxF
aD

axax )()(
)(

1
    

 

Rules for Finding the Particular Integral 

)(..............
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It’s symbolic form is )()..............( 1

10 xFykDkDk n

nn   . Then,  



)(
)..............(

1
.

1

10

xF
kDkDk

IP
n

nn 



 

10.2. Objectives 

 

After reading this unit students should be able to: 

 Identify the method of particular integral to apply 

 Recognize the method of particular integral to solve the non 

homogeneous linear differential equations of higher order 

 Determine the particular integrals by using inverse operator 

method 

 

10.3. Case of Exponential Function 

 

When axexF )(  

Since   
xaax eaeD   

    xaax eaeD 22   

   kaxax eaeD 33   



   ...................... 

   ............................ 

axnaxn eaeD    
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axax eafeDfei )()(.,.   

Operating on both sides by 

axaxaxax e
Df

afeOreaf
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   ........................  (1),   provided 0)( af . 

If 0)( af , the above rule fails and we proceed further. 

Since ‘a’ is a root of auxiliary equation 

0..............)( 1

10  

n

nn kDkDkDf  

)( aD  is a factor of )(Df . Suppose )()()( DaDDf  , where 

0)( a . Then 
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If 0)(/ af , then applying equation (2) again, we obtain, 

0)(,
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1
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1 /

/

2  afprovidede
af

xe
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axax   .......................... (3) and so on. 

 

Note 10.3.1:  

Definition 10.3.1: If kxF )( , where ‘k’ is arbitrary constant. Then, 
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Definition 10.3.2: If xaxF )( , where ‘a’ is arbitrary constant. Then, 
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Example10.3.1: Find the general solution of 

2log7696 23

2

2

  xx eey
dx

dy

dx

yd
  

Solution: We have 

2log76962log7696 23///23

2
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  xxxx eeyyyOreey
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..............  (1) 

Here, we have 2log76)( 23   xx eexF  

The symbolic form of the equation (1) is 

2log76)96( 232   xx eeyDD  

The corresponding auxiliary equation is 0962  DD  

3,30)3(096 22  DDDD . 



The complementary function is given by x

c exccxyFC 3

21 )()(.  .  

Now, to find the particular integral )(xy p , by the inverse operator 

method , 

Consider, 
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Thus the general (Or complete) solution of equation (1) is given by,
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Example10.3.2: Find the general solution of 2
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Solution: We have 
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The corresponding auxiliary equation is 012 DD  
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The complementary function is given by 
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Now, to find the particular integral )(xy p , by the inverse operator 
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Consider, 
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Thus the general (Or complete) solution of equation (1) is given by,
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Example10.3.3: Find the general solution of xe
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Solution: We have , xx eyyyOre
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Here, we have xexF )(  

The symbolic form of the equation (1) is xeyDDD  )2( 23  

The corresponding auxiliary equation is 02 23  DDD  
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The complementary function is given by x
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Thus the general (Or complete) solution of equation (1) is given by,
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Example10.3.4: Find the general solution of xxey
dx

yd  35
2

2

  

Solution: We have xxxx eyyOrey
dx

yd   3535 //

2

2

...........  (1) 

Here, we have xxexF  35)(  

The symbolic form of the equation (1) is xxeyD  35)1( 2  

The corresponding auxiliary equation is 012 D  

1,11012  DOrDD . 

The complementary function is given by )()(. 21

xx

c ececxyFC  .  

Now, to find the particular integral )(xy p , by the inverse operator 

method , 

Consider, 

]1)3[(log

3

2

5
)(

]1[

1

]2[
5

3
)1(

1

)1(

1
5

)35(
)1(

1
)(

2

)3(log

2

22

2




















 

xx

p

xx

xx

xx

p

xe
xy

e
D

e
D

x

D
e

D

e
D

xy

 

Thus the general (Or complete) solution of equation (1) is given by,

]1)3[(log

3

2

5
)()()(..

221


 
xx

xx

pc

xe
ececxyxyIPFCy

 



Test Your Progress 1 

Find the general solution of the following differential equations by 

finding the P.I.by Inverse Operator Method. 

1. xxey
dx

dy

dx

yd
532 2

2

2

   2. xey
dx

dy

dx

yd

dx

yd 2

2

2

3

3

10375   

3. 15)( 23  xeyDD    4. xey
dx

dy

dx

yd 2

2

2

100256   

5. xey
dx

dy

dx

yd 2

2

2

5565    6. 2/24 )1( xeyDD   

 

 

10.4. Case of Hyperbolic Functions 

 

When )cosh()sinh()( baxOrbaxxF   

Since )cosh()]sinh([ baxabaxD   

          )sinh()]sinh([ 22 baxabaxD   

             )cosh()]sinh([ 33 baxabaxD   

           )sinh()]sinh([ 44 baxabaxD   

i.e.,    )sinh()()]sinh([ 22 baxabaxD   



             )sinh()()]sinh([)( 2222 baxabaxD   

In general, )sinh()()]sinh([)( 22 baxabaxD rr   

)sinh()()]sinh([)( 22 baxafbaxDf   

Operating 
)(

1
2Df

 on both sides, 

)sinh(
)(

1
)()sinh(

)sinh()(
)(

1
)sinh()(

)(

1

2

2

2

2

2

2

bax
Df

afbaxOr

baxaf
Df

baxDf
Df





 

Dividing by )( 2af , we obtain 

0)()sinh(
)(

1
)sinh(

)(

1 2

22
 afprovidedbax

af
bax

Df
. 

If 0)( 2 af , the above rule fails and we proceed further as follows; 

0)()sinh(
)(

1
)sinh(

)(

1 2/

2/2
 afprovidedbax

af
xbax

Df
. 

If 0)( 2/ af , 0)()sinh(
)(

1
)sinh(

)(

1 2//

2//

2

2
 afprovidedbax

af
xbax

Df
 



If 0)( 2// af , 0)()sinh(
)(

1
)sinh(

)(

1 2///

2///

3

2
 afprovidedbax

af
xbax

Df

, and so on 

Similarly, 

0)()cosh(
)(

1
)cosh(

)(

1 2

22
 afprovidedbax

af
bax

Df
. 

If 0)( 2 af , the above rule fails and we proceed further as follows; 

0)()cosh(
)(

1
)cosh(

)(

1 2/

2/2
 afprovidedbax

af
xbax

Df
. 

If 0)( 2/ af , 

0)()(cosh
)(

1
)cosh(

)(

1 2//

2//

2

2
 afprovidedbaxh

af
xbax

Df
 

If 0)( 2// af , 

0)()cosh(
)(

1
)cosh(

)(

1 2///

2///

3

2
 afprovidedbax

af
xbax

Df
, and so on 

Note 10.4.1: 

We can make use of the definitions of 

2
cosh

2
sinh

xxxx ee
xand

ee
x

 



  and then one can opt for the case of 



exponential to find the particular integral. 

Example10.4.1: Find the general solution of xy
dx

yd
2sinh4

2

2

   

Solution: We have xyyOrxy
dx

yd
2sinh42sinh4 //

2

2

   ..............  (1) 

Here, we have xxF 2sinh)(   

The symbolic form of the equation (1) is xyD 2sinh)4( 2   

The corresponding auxiliary equation is 0962  DD  

2404 22  DDD . 

The complementary function is given by )()(. 2

2

2

1

xx

c ececxyFC  .  

Now, to find the particular integral )(xy p , by the inverse operator 

method , 

Consider, 

x
x

xy

x
xxx

dxx
x

x
D

x

x
D

xy

p

p

2cosh
4

)(

2cosh
42

2cosh

2
2sinh

2
2sinh

2

2sinh
)4(

1
)(

2










  

Or, alternatively; use 
2

2sinh
22 xx ee

x


  



x
x

xy

x
xeexxexe

e
D

x
e

D

x
e

D
e

D

ee

D
xy

p

xxxx

xxxx

xx

p

2cosh
4

)(

2cosh
424442

1

222

1
)(

)4(

1
)(

)4(

1

2

1

2)4(

1
)(

2222

222

2

2

2

22

2










 















































 

Thus the general (Or complete) solution of equation (1) is given by, 

x
x

ececxyxyIPFCy xx

pc 2cosh
4

)()()(.. 2

2

2

1   . 

Example10.4.2: Find the general solution of xy
dx

yd
cosh

4

4

   

Solution: We have xyyOrxy
dx

yd v coshcosh /

4

4

   ..............  (1) 

Here, we have xxF cosh)(   

The symbolic form of the equation (1) is xyD cosh)1( 4   

The corresponding auxiliary equation is 014 D  

iDDDD  ,101,0101)( 2222 . 

The complementary function is given by 

)sincos()()(. 4321 xcxcececxyFC xx

c   .  

Now, to find the particular integral )(xy p , by the inverse operator 

method , 



Consider, 

x
x

dxx
x

x
DD

x
x

D

x
xyOr

x
x

xy

x
x

dxx
x

dxx
x

dxx
x

x
D

x

x
D

xy

p

p

p

sinh
4

cosh
)1(4

cosh
4

cosh
4

)(

sinh
4

)(

sinh
4

cosh
4

sinh
4
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4

cosh
4
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)1(

1
)(

223

3

4




















 

Or, alternatively; using 
2

cosh
xx ee

x


  

x
x

xy

x
xeexxexe

e
D

x
e

D

x
e

D
e

D

ee

D
xy

p

xxxx

xxxx

xx

p

sinh
4

)(

sinh
424442

1

442

1
)(

)1(

1
)(

)1(

1

2

1

2)1(

1
)(

3344

4










 









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



























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Thus, the general (Or complete) solution of equation (1) is given by,

x
x

xcxcececxyxyIPFCy xx

pc sinh
4

)sincos()()()(.. 4321   . 

Example10.4.3: Find the general solution of  

xxy
dx

dy

dx

yd

dx

yd
4sinh75cosh8375

2

2

3

3

   

Solution: We have , 



    

xxyyyyOr

xxy
dx

dy

dx

yd

dx

yd

4sinh75cosh8355

4sinh75cosh8375

//////

2

2

3

3




  ..............  (1) 

Here, we have xxxF 4sinh75cosh8)(   

The symbolic form of the equation (1) is 

xxyDDD 4sinh75cosh8)375( 23   

The corresponding auxiliary equation is 0375 23  DDD  

3,1,10)3()1( 2  DDD . 

The complementary function is given by xx

c ecexccxyFC 3

321 )()(.  .  

Now, to find the particular integral )(xy p , by the inverse operator 

method , 

Consider, 

3 2

2 2 2 2

3 2 3 2

1
( ) (8cosh 5 7sinh 4 )

5 7 3

1 1
8 cosh 5 7 sinh 4 ; 5 4

5 7 3 5 7 3

1 1
8 cosh 5 7 sinh 4

25 125 7 3 16 80 7 3

py x x x
D D D

x x Put D and D
D D D D D D

x x
D D D D

  
  

   
     

   
     

 



2 2

2 2

1 1
8 cosh 5 7 sinh 4

32 128 23 83

32 128 23 83
8 cosh 5 7 sinh 4

1024 16384 529 6889

32(5sinh 5 ) 128cosh 5 23(4cosh 4 ) 83sinh 4
8 7

1024(5 ) 16384 529(4 ) 6889

160sinh 5 128cosh 5 92cosh 4 83s
8 7

9216

x x
D D

D D
x x

D D

x x x x

x x x

   
 

 
   

 

 
   

 

 
   

inh 4

1575

160sinh 5 128cosh 5 92cosh 4 83sinh 4
( )

1152 225

5sinh 5 8cosh 5 92cosh 4 83sinh 4
( )

72 225

p

p

x

x x x x
y x

x x x x
Or y x

 
  

 
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Or, alternatively; use 
2

5cosh
2

4sinh
5544 xxxx ee

xand
ee

x
 




  



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







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
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

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


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7

72817592

7
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4)(
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1
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1
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1
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1
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1
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Thus the general (Or complete) solution of equation (1) is given by, 










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Example10.4.4: Find the general solution of xy
dx

dy

dx

yd
cosh254

2

2

  . 

Also find y when 01,0  xat
dx

dy
y . 

Solution: We have xyyyOrxy
dx

dy

dx

yd
cosh254cosh254 ///

2

2

   

..............  (1) 

Here, we have xxF 2cosh2)(   

The symbolic form of the equation (1) is xyDD cosh2)54( 2   

The corresponding auxiliary equation is 0542  DD  

iDDDD 


 2
2

20164
0542 . 

The complementary function is given by )sincos()(. 21

2 xcxcexyFC x

c  

.  

Now, to find the particular integral )(xy p , by the inverse operator 

method , 

Consider, 

5

cosh3sinh2
)(

5

cosh3sinh2
cosh

94

32
cosh

32

1
cosh

64

1
2

)cosh2(
)54(

1
)(

2

2

xx
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x

D

D
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D
x

D

x
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xy

p

p


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
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
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
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
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



 



Or, alternatively; use 
2

cosh
xx ee

x


  









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
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
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
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
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

x
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p

x
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e
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e
e
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e
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e
DD

xy

52

1
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1
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1
)(

10

1

)54(

1

)54(

1

2

2
)(

22

 

Thus the general (Or complete) solution of equation (1) is given by, 

5

cosh3sinh2
)sincos()()(.. 21

2 xx
xcxcexyxyIPFCy x

pc


    

…………..  (2) 

Now, using the  given conditions; 01,0  xat
dx

dy
y . From equation 

(2), 

5

3

5

3
0 11  cOrc . 

Again, from equation (2);  

5

11

5

3
,12)0()0(21
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5
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Thus, the particular solution of equation 1) is given by 

xxxx
e

yOr
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xxey

x

x

cosh3sinh2)sin11cos3(
5

5

cosh3sinh2
sin

5

11
cos
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
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Test Your Progress 2 

Find the general solution of the following differential equations by 

finding the P.I.by Inverse Operator Method. 

1. xy
dx

dy

dx

yd
sinh102

2

2

   2. x
dx

dy

dx

yd

dx

yd
cosh75

2

2

3

3

  

3. xxyDD 2coshsinh2)( 3     4. 

xy
dx

dy

dx

yd
3cosh50256

2

2

  

5. xy
dx

dy

dx

yd
2sinh65

2

2

  
 

 

10.5. Case of Trignometric Functions 

 

When )cos()sin()( baxOrbaxxF   

Since )cos()]sin([ baxabaxD   



          )sin()]sin([ 22 baxabaxD   

             )cos()]sin([ 33 baxabaxD   

           )sin()]sin([ 44 baxabaxD   

i.e.,    )sin()()]sin([ 22 baxabaxD   

             )sin()()]sin([)( 2222 baxabaxD   

In general, )sin()()]sin([)( 22 baxabaxD rr   

)sin()()]sin([)( 22 baxafbaxDf   

Operating 
)(

1
2Df

 on both sides, 
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Dividing by )( 2af , we obtain 

0)()sin(
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1
)sin(
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1 2
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


 afprovidedbax

af
bax

Df
. 

If 0)( 2 af , the above rule fails and we proceed further as follows; 
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
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If 0)( 2// af , 
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
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, and so on 

Similarly, 
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1
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1 2
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
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af
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Df
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If 0)( 2 af , the above rule fails and we proceed further as follows; 
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Example10.5.1: Find the general solution of xey
dx

dy

dx

yd x 22

2

2

cos2    

Solution: We have xeyyyOrxey
dx

dy

dx

yd xx 22///22

2

2

cos2cos2    

..............  (1) 

Here, we have xexF x 22 cos)(   

The symbolic form of the equation (1) is xeyDD x 222 cos)12(   

The corresponding auxiliary equation is 0122  DD  

1,10)1(012 22  DDDD . 

The complementary function is given by x

c exccxyFC  )()(. 21 .  

Now, to find the particular integral )(xy p , by the inverse operator 

method , 

Consider, 
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Thus, the general (Or complete) solution of equation (1) is given by,
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Example10.5.2: Find the general solution of xxy
dx

dy

dx

yd
2cos3sin34

2

2

   

Solution: We have 

xxyyyOrxxy
dx

dy

dx

yd
2cos3sin342cos3sin34 ///

2

2

   .........  (1) 

Here, we have xxxF 2cos3sin)(   

The symbolic form of the equation (1) is xxyDD 2cos3sin)34( 2   

The corresponding auxiliary equation is 0342  DD  



3,10)1)(3(033034 22  DDDOrDDDDD . 

The complementary function is given by xx

c ececxyFC 3

21)(.  .  

Now, to find the particular integral )(xy p , by the inverse operator 

method , 

Consider, 
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Thus, the general (Or complete) solution of equation (1) is given by,












 xx

xx
ececxyxyIPFCy xx

pc sincos
37

5cos55sin7

16

1
)()(.. 3

21 . 

Example10.5.3: Find the general solution of )cos(2

2
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 ntkxn
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Solution: We have )cos()cos( 2//2

2
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  ntkxnxOrntkxn
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xd
  

.........  (1) 

Here, we have )cos()(  ntkxF  

The symbolic form of the equation (1) is )cos()( 22  ntkxnD  

The corresponding auxiliary equation is 022  nD  

inDnD  022 . 

The complementary function is given by ntcntctxFC c sincos)(. 21  .  

Now, to find the particular integral )(tx p , by the inverse operator method 

, 

Consider, 
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Thus, the general (Or complete) solution of equation (1) is given by,

)sin(
2

sincos)()(..)( 21  nt
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t
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Example10.5.4: Find the general solution of 

xxy
dx

dy

dx

yd
cos4sin344

2

2

 , 0)0(,1)0( /  yy . 

Solution: We have 

xxyyyOrxxy
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dy
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cos4sin344cos4sin344 ///
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  ...  (1) 

Here, we have xxxF cos4sin3)(   

The symbolic form of the equation (1) is xxyDD cos4sin3)44( 2   

The corresponding auxiliary equation is 0442  DD  

2,20)2(044 22  DDDD . 

The complementary function is given by x

c exccxyFC 2

21 )()(.  .  

Now, to find the particular integral )(xy p , by the inverse operator 

method , 

Consider, 
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Thus the general (Or complete) solution of equation (1) is given by, 

xexccxyxyy x

pc sin)()()( 2

21     …………..  (2) 

Now, using the  first given condition; 1)0( y . From equation (2), 

11 c  

Again, from equation (2);  

xecxccexy

xexccxy

xx

x

cos)(2)(

sin)()(

2
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2

21
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Using the second condition 0)0(/ y ; 12120 2121  ccOrcc , put 

11 c then 
21 c  

Thus, the particular solution of equation (1) is given by 

xexxyxyxy x

pc sin)1()()()( 2    

 



Test Your Progress 3
 

Find the general solution of the following differential equations by 

finding the P.I.by Inverse Operator Method. 

1. tx
dt

dx

dt

xd
sin32

2

2

   2. xy
dx

dy

dx

yd 2

2

2

cos423 
 

3.
 

xy
dx

dy

dx
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sin256

2

2


 

4. xyDD cos4)( 3 
 

5. xxyD cossin2)1( 22   

 

 

10.6. Case of a polynomial 

. 

When mxxF )(  

In this case,   
.1)]([

)(

1
. mm xDfx

Df
IP  

. We expand 
1)]([ Df  in 

ascending powers of D as for as the term in 
mD  are zero, we need not 

consider terms beyond 
mD . 

Equivalently, 



When mxxF )( , ‘m’ being a positive integer. 

.1)]([
)(

1
. mm xDfx

Df
IP  

. To evaluate it, expand 
1)]([ Df  in ascending 

powers of D by binomial theorem as for as D
m
 and operate on x

m
 term by 

term. 

Example10.6.1: Find the general solution of 

xxey
dx

dy

dx

yd x  sin256 2

2

2

  

Solution: We have 
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  .........  (1) 

Here, we have xxexF x  sin)( 2  

The symbolic form of the equation (1) is xxeyDD x  sin)256( 22  

The corresponding auxiliary equation is 02562  DD  

iDDD 43
2

100366
02562 


 . 

The complementary function is given by 

)4sin4cos()(. 21

3 xcxcexyFC x

c  .  

Now, to find the particular integral , by the inverse operator 

method , 

Consider,  

)(xy p
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Thus, the general (Or complete) solution of equation (1) is given by,
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Example10.6.2: Find the general solution of 
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Solution: We have 
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Here, we have xxxxF 3cossin2)( 4   

The symbolic form of the equation (1) is xxxyD 3cossin2)1( 422   

The corresponding auxiliary equation is 0)1( 22 D  



)()(10)1( 222 TwiceiDTwiceDD  . 

The complementary function is given by 

)sin)(cos)()(. 4321 xxccxxccxyFC c  .  

Now, to find the particular integral , by the inverse operator 

method , 

Consider,  
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Thus, the general (Or complete) solution of equation (1) is given by,
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Example10.6.3: Find the general solution of 
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Here, we have )2sin(8)( 22 xxexF x   

The symbolic form of the equation (1) is )2sin(8)2( 222 xxeyD x   
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The complementary function is given by x

c exccxyFC 2
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Now, to find the particular integral , by the inverse operator 

method, 

Consider,  
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Thus, the general (Or complete) solution of equation (1) is given by,
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Test Your Progress 4 

Find the general solution of the following differential equations by 

finding the P.I.by Inverse Operator Method. 

1. ttx
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10.7. Case of combination of Veax  

 

When VexF ax )( ,  where V is a function of '' x . 

In this case,  V
aDf

Ve
Df

IP ax 



)(

1

)(

1
.  and then evaluate V

aDf


 )(

1
 

as in case of 10.3, 10.4, 10.5 and 10.6. 

 

Example10.7.1: Find the general solution of xexy
dx

dy

dx

yd x cos22
2

2

   

Solution: We have 

xexyyyOrxexy
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   ..............  (1) 

Here, we have xexxF x cos)(   

The symbolic form of the equation (1) is xexyDD x cos)22( 2   

The corresponding auxiliary equation is 0222  DD  
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The complementary function is given by )sincos()(. 21 xcxcexyFC x

c  

.  



Now, to find the particular integral , by the inverse operator 

method , 
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Thus, the general (Or complete) solution of equation (1) is given by,
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Example10.7.2: Find the general solution of 

xx xexey
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2

2
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Solution: We have 
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Here, we have xx xexexF 3sin)(    

)(xy p



The symbolic form of the equation (1) is xx xexeyDD 32 sin)34(    

The corresponding auxiliary equation is 0342  DD  
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Now, to find the particular integral , by the inverse operator 
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Consider, 
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Thus, the general (Or complete) solution of equation (1) is given by,














12

5

24
)cos2(sin

5
)()()(..

3
3

21 x
e

xx
e

ececxyxyIPFCy
xx

xx

pc . 

)(xy p



Example10.7.3: Find the general solution of xxy
dx
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Solution: We have xxyyOrxxy
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Here, we have xxxF sinh)(   

The symbolic form of the equation (1) is xxyD sinh)4( 2   
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Now, to find the particular integral , by the inverse operator 

method , 
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Thus, the general (Or complete) solution of equation (1) is given by,
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Test Your Progress 5 

Find the general solution of the following differential equations by 

finding the P.I.by Inverse Operator Method. 
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xeyDD x
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10.8. Case of combination of Vxm   

 

When VxxF m )( ,  where V is cosax or sinax. 

Then, axxOraxx
Df

IP mm sincos
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And 
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iaDf )(

1


, can be evaluated by the method mentioned in 10.6, the 

case of  polynomial then equating the real and imaginary parts, we get 

the required results.  

Remark 10.8.1: When VxxF )( , ‘V’ being any function of ‘x’. Then 

we use the formula, 
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This rule is applicable if 

i) Power of ‘x’ is one 

ii) V
Df


)(

1
 is not a case of failure 

iii) If the power of ‘x’ is one and V
Df


)(

1
 is a case of failure then 

do not apply xV rule. In this case we apply rule given by case 

10.7. 

Remark 10.8.2: When )()( xfxF  , being any function of ‘x’. Then 

)(
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1
. xf
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IP  . If )(.........))(()( 21 nmDmDmDDf  , resolving into 

partial fractions, 
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Equivalently,  



Resolve 
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Df
 into partial fractions and operate each partial fraction on 

f(x) remembering that 
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aD

axax )()(
1

 

Note: This method is general one and, can therefore, be employed to 

obtain a particular integral in any given case. 

Example10.8.1: Find the general solution of xxxy
dx
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cos3sin

2

2

   

Solution: We have xxxyyOrxxxy
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Here, we have xxxxF cos3sin)(   

The symbolic form of the equation (1) is xxxyD cos3sin)1( 2   

The corresponding auxiliary equation is 012 D  

1,1012  DD . 

The complementary function is given by )()(. 21
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Now, to find the particular integral , by the inverse operator 

method , 

Consider, 
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Thus, the general (Or complete) solution of equation (1) is given by,
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Example10.8.2: Find the general solution of xxey
dx
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dx

yd x sin2
2
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Solution: We have xxeyyyOrxxey
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..............  (1) 

Here, we have xxexF x sin)(   



The symbolic form of the equation (1) is xxeyDD x sin)12( 2   

The corresponding auxiliary equation is 0122  DD  

1,10)1( 2  DD . 

The complementary function is given by x
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Now, to find the particular integral , by the inverse operator 
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Thus, the general (Or complete) solution of equation (1) is given by,

]cos2sin[)()()(.. 21 xxxeexccxyxyIPFCy xx

pc   

Example10.8.3: Find the general solution of xxy
dx

yd

dx

yd
cos2 2

2

2

4

4

   

Solution: We have xxyyyOrxxy
dx

yd

dx

yd v cos2cos2 2///2

2

2

4

4

   ...  

(1) 

)(xy p



Here, we have xxxF cos)( 2  

The symbolic form of the equation (1) is xxyDD cos)12( 224   

The corresponding auxiliary equation is 012 24  DD  

)(0)1( 222 TwiceiDD  . 

The complementary function is given by 

xxccxxccxyFC c sin)(cos)()(. 4321  .  

Now, to find the particular integral , by the inverse operator 

method , 

Consider, 
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Thus, the general (Or complete) solution of equation (1) is given by,

  xxxxxxxccxxccxyxyIPFCy pc sin49cos
48

1
sin)(cos)()()(.. 324

4321 

 

Example10.8.4: Find the general solution of xexy
dx

dy

dx

yd x 2sin844 22

2

2

   

Solution: We have 

xexyyyOrxexy
dx

dy

dx

yd xx 2sin8442sin844 22///22

2

2

   ........  (1) 

Here, we have xexxF x 2sin8)( 22  

The symbolic form of the equation (1) is xexyDD x 2sin8)44( 222   

The corresponding auxiliary equation is 0442  DD  

2,20)2( 2  DD . 

The complementary function is given by x

c exccxyFC 2

21 )()(.  .  

Now, to find the particular integral , by the inverse operator 

method , 

Consider, 

 

)(xy p



dxxx
D

exx
D

exx
D

e

xex
D

xy

xxx

x

p

2sin
1

8)2sin(
1

82sin
)22(

1
8

2sin8
)2(

1
)(

222

2

22

2

2

22

2











 

 xxxxexy

xxx
x

x
e

dx
xx

xx
x

e

dxxxx
x

e

x
dxx

x
dx

x
x

xx
e

dx
x

x
x

x
x

exy

dx
xx

xx
x

D
e

dxx
xx

x
D

exy

x

p

x

x

x

x

x

p

x

x

p

2cos42sin)23()(

4

2sin

2

2cos
2sin

48

1
8

2

2cos
1

2

2cos
2sin

48

1
8

2sin2sin
8

1

4
8

8

2sin
2sin

22

2sin
)(

2

2sin

2
8

4

2cos
2sin

2
2cos

2
8)(

2

2sin
1

2

2sin
2cos

2

1
8

2
2

2cos

2

2cos1
8)(

22

2
2

2
2

2
2

2
2

2
2

2
2

22





































 








 
















































































































 



 

 

 

Thus, the general (Or complete) solution of equation (1) is given by,

 xxxxeexccxyxyIPFCy xx

pc 2cos42sin)23()()()(.. 222

21   

Example10.8.5: Find the general solution of axya
dx

yd
sec2

2

2

   

Solution: We have axyayOraxya
dx

yd
secsec 2//2

2

2

   ...  (1) 



Here, we have axxF sec)(   

The symbolic form of the equation (1) is axyaD sec)( 22   

The corresponding auxiliary equation is 022  aD  

aiDaD  22 . 

The complementary function is given by axcaxcxyFC c sincos)(. 21  .  

Now, to find the particular integral , by the inverse operator 

method , 

Consider, 

ax
aiDaiD

ax
aD

xyp sec
))((

1
sec

1
)(

22






  

Resolving into partial fractions, we obtain 
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Now, consider, 
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Changing i to –i, we have 
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Thus, the general (Or complete) solution of equation (1) is given by,
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a

x
axcaxcxyxyIPFCy pc coscoslog

1
sinsincos)()(..

221 

 

Test Your Progress 6 

Find the general solution of the following differential equations by 

finding the P.I.by Inverse Operator Method. 

1. xxy
dx

dy

dx

yd
cos2

2

2


   2. 

xxy
dx

dy

dx

yd
2sin23

2

2


 

3. xxy
dx

yd
cos24

2

2


   4. 

xxey
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yd x 2cos52
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2
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
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
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10.9 Summary 

It is again a method to find P.I. when methods for standerd cases are not 

aplicable to solve           . In this case use of integration is 

involved.  

10.10 Answers to Check Your progress 

Test Your Progress 1 
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Test Your Progress 2 
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Test Your Progress 3 
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Test Your Progress 4 
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Test Your Progress 5 
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Test Your Progress 6 
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10.11 Terminal Questions 

 

Solve  

1)               
 

2)         
 

    
 

3)               
        

4)                  

By Method of inverse operator. 

Ans- 

1)   =    
      

           
 

2)         
                            

3)   =    
       

           
        

4)                                       
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Unit-11 :  Equation Reducible to linear with Constant 

Coefficients 

 

Structure: 

11.1. Introduction 

11.2 Objectives 

11.3. Cauchy Linear Differential Equations 

11.4. Legendre’s Linear Differential Equations 

11.5 .Simultaneous Linear differential equation with Constant Coefficient. 

11.6. Summary 

11.7. Terminal Question   

 

 

 



2 
 

11.1 Introduction 

 

In this chapter we will study Cauchy homogeneous linear different 

equation with variable coefficients this types of differential equation 

consisting of three main terms first homogeneous second linear and third 

differential equation with variable coefficients. So now we explain all 

these terminology. 

1- Homogeneous means power of x in the coefficients are equal to the 

orders of the derivatives associated with them i.e. 

  
  

  
      

   
          

   
  and so on. 

2- Linear means dependent variable y and its derivatives appear in the 

first degree and there is no more terms not multiplied together. 

3- Different equation means dependent variable and its derivatives 

occurs in the equation.  

If all these properties comes together in a differential equation such 

types of equation is called homogeneous linear differential equation 

with variable coefficient such equations can be solve by reduction 

procedure of suitable substitution and transform the give linear 
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ordinary differential equations with variable coefficients to linear 

ordinary differential equations with constant coefficient after then 

we dicused Legendre’s linear differential equation and then 

simultaneous linear D.E.W. constant coefficient.  

 

11.2 Objectives:-  

After reading this unit you should be able to  

 Solve Chauchy’s linear differential equations 

 From the given equations we will be able to identify the given 

equation is Cauchy equation or not. 

 Solve simultaneous linear differential equation 

 Solve as illustrated in the problems of oscillation and electric 

circuits among other.  

11.3 . Cauchy Linear Differential Equations 

 

A differential equations is said to be Cauchy homogeneous linear 

differential equation with variable coefficient which is defend as 
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It can be expanded as 

    
 
   

   
     

   
     

     
     

   
     

     
           

  

  

   

   

   
      

Where a0 = 1 and 
   

   
 =y, so above equation becomes. 

   
   

   
     

   
     

     
     

   
     

     
           

  

  
   

   

   

            

Where ai’s are constants, x are variable and Q is the function of x and 

power of x in the coefficients are equals to the order of the derivative 

associated with them so it is called Homogeneous linear differential 

equation this types of equation was first used by Euler’s and Chauchy 

hence, because of their name it is called Eular Chauchy homogeneous 

linear differential equation with variable coefficients.  
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Such types of equation can be reduced to linear differential equation with 

constant coefficients by the substitution.  

Reduction Process 

                         
 

  
    

    
  

  
 

  

  
 
  

  
  

  

  
 
 

 
     

  

  
 

  

  
    

Origin differentiate, we have 
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Similarly 

   

   
 

 

  
 
   

   
  

 

  
 

 

  
 
   

   
   

 
 

  
 
   

   
  

   

   
  

  

  
  

Hence 

  
   

   
 

   

   
  

   

   
  

  

  
 

              

               

             

               

Therefore, we can write 
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Substituting these values in equation (1) we get a linear differential 

equation with constant coefficients which can be solved by the methods 

already discussed. 

Example 1 :- solve      

   
  

  

  
      

Solution:- Given equation is a Cauchy’s homogeneous linear different 

equation. So Put 

                     
  

  
 

 

 
      

  

  
           

 
 

  
              

   

   
         

Substituting these values in the given equation it reduces to  

                   

                

                 

which is a linear equation will constant coefficients. Its A.E. is D
2 

- 

2D+1=0 i.e.  

(D-1)
2
 =0 or  D = 1,1  
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So C.F is y= (c1+c2t) e
t
, where c1 and c2 are arbitrary constants. 

Now calculate PI = 
 

      
     

 
 

      
     

 
 

 
    

Therefore the complete solution is y= CF+PI== (c1+c2t) e
t 
+  

 

 
     

Now putting t= log x Hence y=                
 

 
    

Example.2:- solve      

   
  

  

  
        cos (log)   +   sin (log  )  

This equation in a cauchy`s homogenous liner differential equation we put 

                then we have  

 
  

  
            

   

   
                   

 

  
 

the given equation is transformed into  
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which in a liner differential equation with constant coefficient. Now the 

A.E. is  

                     

Hence C.F. in Given by  
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Hence the general solution in  

                                 
 

  
              

 

 
       

                       

                                        

 
 

  
                           

 

 
             

                    
   

   
   

  

  
                  

It is a cauchy`s homogenous linear diffintial equation.  we put 

                

       
  

  
             

   
          

therefore the given equation is changed in the form :  
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Therefore the general solution in given by - 
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11.3.1.Test your knowledge 

 

Solve the following differential equation - 

1.      

   
   

  

  
          

2.      

   
    

   

   
           

3.      

   
  

  

  
                  

4.      

   
   

  

  
                

5.                     

6.  
   

   
 

  

  
                   

Ans:- 

1.      
     

  
  

 
 

2.      
                          

  

 
     

 

  
    

3.                           
 

 
            

4.      
  

  

 
 

  

 
 

 

 
      

   

5.                
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6.             
  

 
 

11.4 Legendre’s Linear Differential Equations 

 

              
     

     
                    

 

   

 

Or 

             
     

     
              

     

     
   

     

  

  
              

     

     
      

              
     

     
              

     

     
       

  

  

           

Where P0 = 1 and 
   

   
 = y  

So above equation can be written as 
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Equation (1) and (2) both are same. Equation (2) is also a Legendre’s 

linear different equation. 

Reduction Process 

Let a+ bx = e
t
 

Taking log on both sides 

Log (a+ bx) = t log e 

Now consider 
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Again differentiate, we have 
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Similarly 

       
   

   
              )  

Substituting these values in equation 2, we get a linear different equation 

with constant coefficients, which can be solved by the methods already 

discussed. 

Example 1 : Solve 

       
   

   
        

  

  
       

Given equation is a Legendre’s linear D.E. put (5+2x) = e
t
 

                       
 

    
 

  

  
 

Now consider 

  

  
 

  

  
 
  

  
 

  

  
 

 

    
  

      
  

  
  

  

  
              

 

  
 

Again diff, we get        
   

   
           



17 
 

Putting all these values in given equation, it reduces 

4D(D-1)y+6.2Dy+8y=0 

               

             

Which is a linear equation with constant coefficients it’s A. E. is 

D
2
+2D+2=0 

  
          

 
 

     

 
      

So C.F. =                              

Hence the C.S. is y=                       

Putting t= log(5+2x), So, we have 

                                        

  
 

    
                           

Example 2 : Solve 
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Solution: Given differential equation is Legendre’s L.D.E. put x+1 = e
t
   

i.e.  

t = log(x+1) 

            
  

  
               

   

   
          

Substituting these values in the given equation it reduces to 

D(D-1)y + Dy +y = 4 Cos t 

(d
2
-D+D+1) y= 4Cos t 

Here A.E. is D
2
 + 1 = 0         D =   i 

C.F. is C1 Cos t + c2 Sin t  

So PI is    
 

    
        

 
  

  
       

  

 
       

 

 
                    

Therefore, the complete solution is 
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CS = CF+PI 

                           

                              

                                   

                         

11.5 Simultaneous Linear differential equation with 

Constant Coefficient 

 

Since we know that equations in which there is one independent variable 

and two or more than two dependent variables, such equations are called 

simultaneous linear equations.  Just like that if two linear ordinary 

differential equation with two or more dependent variables and a single 

independent variable then this types of equation is known as simultaneous 

linear ordinary differential equations. For example 

Let x and y are two dependent variable and t is the independent variable. 

Consider the simultaneous linear differential equation with constant 

coefficients.  
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where x, y and z are dependent variables and t is the independent variable.  

Working Process 

Step 1- Firstly we will convert the given equation into operator from. 

Step 2- Then solving both these equations with the help of elimination 

method. We get the value of x or y. 

Step 3- If the value of x (or ‘y’) is obtained then we will get the value of y 

by substitution method in any one of the given original equations. 

Example 1 :- Solve  
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Here x, y are independent variable and t is independent variable So it is 

simultaneous liner differential equation because it has two dependent 

variable and one independent variable  and both differential equation of 

degree one so it is linear and its coefficient are constant so it is 

simultaneous linear differential equation wish constant coefficients. 

Solution:- Given equation can                              be rewritten as in 

operator from 

                   
 

  
 

                                      

Or 

                                       

   

                                                  

Now we will eliminate t, for this multiply in equation (1) by (D-5) and 

then subtraction equation (1) from equation (2) 
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which is a linear equation with constant coefficients. It’s A.E. is  

            

   
            

   
 

     

 
     

So C.F =  e
bt

 [C1 Cost + C2 Sint] and P.I= 0 

So C.S = C.F + P.I 

x= e
bt
 [C1 Cos t C2 Sin t] 

Now we will obtained the value of y with the help of x. For this 

substituting the value of x and 
  

  
 in equation (1) we have.  

x= e
6t
 [C1 Cost + C2 Sint] 
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Ex.2: Solve the Simultaneous linear differential equations.    
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Whose general solution is 

                 
   

 
 

  

 
 

  

 
 

 

 
 

11.4.1.Test your Knowledge 

 

Solve the following Simultaneous  equations:- 

1. 
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2. 
  

  
         

  

  
        

                         

3.  
  

  
  

  

  
           

 
  

  
  

  

  
            

Ans:- 

1.                 
 

 
        

                
 

 
        

2.    
 

  
          

 

  
       

   
 

  
          

 

  
       

3.         
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11.6.Summary  

 

The idea of chauchy`s linear differential equation is introduced and 

method of solving it is givin by examples. then legendre`s Differential 

equation is introduced with examples. After that simultaneous liner 

equation with coefficient is introduced and method of solving it, is given 

by examples. In the end terminal questions are giving of each type for 

practice of the students. 

11.7.Terminal Question   

 

Solve the following differential equation . 

1.     
  

   
   

  

   
            

2.     
   

   
  

  

   
   

  

      
  

3.                        

4.       .
   

   
+     

  

  
                         

5.        .
   

   
+       
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6.  
  

  
          

2y 
  

  
 

  

  
    

7.             

3x+            

Ans:- 

1.  

2.       
  

 
 

 

  
          

 

  
 

 

  
           

3.                 
 

 
         

4.                                

5.                        
 

   
 

  
       

 

 
 

6.  

7.        
   

 

 
   

    
 

 
 

 

 
  

     
      

    
 

 
  

 

 
  +

 

 
  

 

 



Unit – 12 Linear differential equation of Second 

Order 

 

Structure: 

12.1. Introduction   

12.2. Objective 

12.3 . Method of reduction in equation  where one part of the  C.F. 

is known. 

12.4. Method to find out part of the complementary function 

12.5. Procedure for solving the given differential equation. 

12.6. Complete solution of the second order differential equation  by 

changing the dependent variable 

12.7. Complete Solution of the differential equation by changing 

 the independent varible 

12.8. Removable of the First degree term 

12.9. Summary 

12.10. Terminal Question   

 

 



1
dy

is
dx

12.1. Introduction   

 

An equation of the type 

   

   
  

  

  
 Qy = R                  Where P, Q, R 

are functions of x alone is called linear  differential 

equation of second order,  here  coefficient  of  

Note - If the coeffient P & Q are constant then it becomes linear  

differential equation with  constant  coeffient wich has been 

discussed earliar. 

12.2. Objective 

 

By reading the matter the student able be identify the type of 

differential equation & by the Method givin in each section the 

student can solve the given differential equation. 
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12.3 . Method of reduction in equation  where one part of 

the C.F. is known. 

 

       

Let y = u be the known part of the complementary 

function  

Then           

Now putting        

and 
   

   
   

   

   
  

  

  
 
  

  
  

   

   
 

 Putting the values of y,                   

  in equation  (1) 

We get 

     

Or            
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
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With the help of equation (2) and dividing by u we get 

   

   
  

  

  
 

 

 
 
  

  
 
  

  
 

 

 
 

Or          

We put                                             

 from (3)  we get 

          

   which is a linear differential equation of order one, its 

I.F. 

    

 

& so the solution of equation (4) is 
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d
Z


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From which we get 

    

And integrating we get the value of    & thus  we get the  

Solution y = .u  

This is the complete solution of equation   (1)  

Ex.1 :  Solve  

         

That        is one   solution in the complementary 

function. 

Solution:  Here       therefore putting         in    (1) 

 We get 
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d
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 From equation (4)  where 

     

 Here 
24 , 4 2, 0P x Q x and R     

 
   

   
      

 

   
         

  

  
   

 Or         

 Or   

       

Ex. 2:    Solve        

When   xey is one solution in the C.F. 

Solution :  Dividing the equation by x  we get 

        

 



0
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We put ,xy e then we get from  (1) 
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x
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 The complete solution is  

)log(. 1cxceuy x    

Ex. 3: Solve   .0.
2
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   is one solution . 

Solution :  dividing the equation by x
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Check your Progress 1 

Exercise- Solve the following differential equations 

1. y
dx

yd
xSin 2.

2

2
2  When xy cot is a solution. 

2. 0cos.cos)
2
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  When y = x is a solution. 

Ans. (1) cy = 1 + (C1 – x) cot x   (2)  y = C2x – C1 cos x 

 (3)  xxx exxexCeCy   )122
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12.4 Method to find out part of the complementary 

function of 
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 If mxey  in a solution then from (1)  

 02  mxmxms eePmem  



 Or .02  QPmm  

 In Particular if xey   is a solution there of 1 + P + Q = 0  & if  

 m = -1 then xe  will be a solution if 1 – P + Q = 0 

Rule 2 :    mxy  is a solution  

 Then  2

2

2
1 )1(&   mm xmm

dx

yd
xm

dx

dy
 

 Therefore from (1) we have  

 0)1( 11   mmm xQmxPxmm  

 Or   0)1( 2  QxmxPmm  

 In particular if m = 1 then y = x will be a solution if P + Qx = 0 

 &  Putting m = 2,  y =  x
2
 will be a solution  

 If 2 + P.x + Q x
2
 = 0. 

12.5 Procedure for solving the differential equation. 

 

 (i) We put the equation in the standard form 



 
2

2
.

d y dy
P Qy R

dx dx
    

 in which the coefficient of 
2

2

dx

yd
is one.  

(ii) if 1 + P + Q = 0 then xey  in solution 

 If 1 – P + Q = 0 then xey  is a solution 

(iii) if P + xQ = 0  then y = x is a solution. 

(iv) if  2 + 2Px + Qx
2
 = 0 then  y = x

2
 is a solution 

(v) Put y = u there reduced  equation will be  
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    & solve the linear equation in z & x.  
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 Here P = -x
2
,  Q = x  & so P + xQ = 0. 

 Therefore y = x in a part of the C.F. 



 & so u = x. Now putting y = xu    
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3 3
2 2

1. .
x x

Z x e x e dx C
 

   

 = - 
1

3

3

1

Ce
x




  (by putting  tx 3

3

1
  )   

 So we get 
2

1

2

3

3

1

1

x

eC

xdx

d
Z

x




 

 Or   

2

2

1 .
1 3

3

1

CdxxeC
x

x
  

  The complete solution is  

  .1 2

2

1

3

3

1

xCdxxeCxuy
x

    

 Ex. Solve  3

2

2
2 )1(2)1(2. xyx

dx

dy
xx

dx

yd
x   

Solution:   Dividing by  x
2
 the equation in the standard form  is 

 
   

xy
x

x

dx

dy

x

x

dx

yd








22

2 12
.

12
 

 Hence  
2

)1(2
.,

)1(2

x

x
Q

x

x
P





  

 and  P + x. Q = 0   Therefore  y = x is a part of C.F. 

 & so u = x.  Therefore putting y = ux the equation becomes 



 xx
x

x

dx

d
x

x

x

dx

d

dx

d
x 























 


.

)1(2)1(2
2

22

2

 

 Or   Z
dx

d
PuttingNowx

dx

d
x

dx

d
x 


.2

2

2

 

 We get  xzx
dx

dz
x  2  

 Or    12  z
dx

dz
 

 Which is linear & so the  I.F. = 2xe  

   the solution is  

    1

2 2

1

2 1
. .

2

x x xZ dx C Ce e e        

 Or    2

1 1

21 1

2 2

x xd
Z C or C e

dx
e


      

 Integrating  21
2

1

2 2

x x Ce
C

     

 Hence the complete solution is  

 .
2

1

2
2

2

2

1 xCx
exC

xy

x

  



Ex. : Solve .sin.)cot1(.cot
2

2

xeyx
dx

dy
x

dx

yd x

  

 Hence   P = - cot x , Q = - (1 – cot x) 

 &  So 1+P + Q = 0   therefore y = e
x
 is a  part of  

 The C.F. Putting   y  =  xeu .   

 
2 2

2 2
. , 2x xdy d d y d d

e and e
dx dx dx dx dx

  
 

  
       

   
 

 & So the equation   becomes 

 

























 





)cot1(cot2

2

2

x
dx

d
x

dx

d

dx

d
e x  

 Or .sin.)cot2(
2

2

x
dx

d
x

dx

d



 

 Putting Z
dx

d



we get 

 (2 cot ). sin
dz

x z x
dx

    which is linear 

 2 cot 2 l s
2

og in. . ( )
sin

x
x x xI F

x

e
e e 


     



    Solutiion is  

 
2 2

2

1 1

1
. sin .
sin sin 2

x x
xZ x

e e
dx C C

x x
e

 

     

Or  Z  = 1

21
sin sin

2

xx C xe  

Or 2

1

1
sin sin .

2

xd
x C x

dx
e

    Integrating 

1
2

2

2

1
cos (cos 2 sin )

2 2 1

xC
x x x Ce     


 

2 2
. sin ( sin cos )

ax
ax bx dx a bx b bx

b

e
e

a

 
  

 
  

    The complete solution is y = xe  

Or  1
2

1
cos (cos 2sin )

2 5

x x xC
y e x x C ee x     

Check Your Progress 2 

Exercise - Solve the following differential equations : 

1. 0coscos)cossin(
2

2

 y
dx

dy
xx

dx

yd
xx  



 Of which  y = x is a solution. 

2. xxy
dx

dy
x

dx

yd
sincot)cot1(

2

2

  

    (Hint   1 – P + Q = 0) 

Ans. (1) y = - xCxC 21 cos       

(2)     
1 1 (sin cos )xey C C x x   ).2cos22(sin

10

1
xx   

12.6 Complete solution of the second order differential 

equation  by changing the dependent variable 

 

 RQy
dx

dy
P

dx

yd
 .

2

2

 by changing the dependent . Variable (or 

equations which do not contain x directly). 

 The equation    which do not contain x directly are of the form 

 )1.....(..........0,
,

,
2

2









y

dx

dy

dx

yd
f          

To solve such equations we put  

   p
dx

dy
    and from (1)  we get  



 
2

2
.

d y dp dP dy dp
p

dx dx dy dx dy
    

    Putting in (1) we get  

    0),,.( yp
dy

dP
pf                   …………………..(2) 

 Now equation (2) can be solved for P  

 Let   )(&)( 11 yf
dx

dy
soyfp   

 Or      .
)()( 11

cx
yf

dy
ordx

yf

dy
 

Ex.: Solve  2

2

2

2

y
dx

dy

dx

yd
y 








     …………………(1) 

Solution :   Put  
2

2
& . .

dy d y dp dp dy dp
p so p

dx dx dx dy dx dy
     

      from (1) we get   22. yp
dx

dp
py  …………..(2) 

 We get    2p
dy

dz

dy

dp
                     from   (2)  

 y
y

z

dy

dz
ory

y

z

dy

dz
2

2

2

1
  



 Which is linear and so  

 I.F.   =   
2

2

2log log
2

dy
y yy

e e e y



     

       The solution in  

  2 2

12 ( )zy y y dy c   

 Or    p
2
y

2
 = 1

422

1

4

22
2

CyyporC
y

  

 Or   1

4 22 Cypy   

 Or  4

1 1
4

. 2 2 ( 2 )
dy y dy

z y y C or dx K C
dx y k

   


  

 Or Putting y
2
 = t     2ydy  =  dt 

 Or 2

1

2
sin

2

1

2

1
Cx

k

t
hordx

Kt

dt













  

 Or    2

2

2

2
1 )2(sin.2sin CxhkyorCx

x

y
h 







  

Ex. Solve )1.....(..........0)log1()log1(

2

2

2











dx

dy
y

dx

yd
yy  



 Put p
dy

dp

dx

dy

dy

dp

dx

dp

dx

yd
sop

dx

dy
..&

2

2









  

 0)log1(.)log1()1( 2  pyp
dy

dp
yyfrom  

 Or  0)log1()log1(  py
dy

dp
yy  

 

)2.(...............................
)log1(

)log1(

)log1()log1(

dy
yy

y

p

dp
or

py
dy

dp
yyOR








 

 Putting log y = t  &  so dt
y

dy
         from   (2)  

 dt
t

dt
t

t

p

dp

















1

2
1

1

)1(
 

 Or Integrating  Cttp log)1(log2log   

 Or 2)1(.loglog  tCtp  

 Or 2 2( 1) (log 1)tp ce t Cy y            

 Or 2

12
(log 1)

(log 1)

dy dy
Cy y or c dx

dx y y
  


 



 Or integrating we get 

  
1

)1(log

1
CCx

y



   

 Or (1- log y)  =  
1

1

CCx
 

Check Your Progress 3 

Ex.  Solve the following differential equations : 

1. baxxyAns
dx

dy

dx

yd









 22

2

2

2

.1  

2. CxdeCyAns
dx

dy

dx

dy

dx

yd
y 








 2.02

2

2

2

 

3.  xx eabeAnsyy
dx

dy

dx

yd
y 








 log.log2

2

2

2

 

12.7 Complete Solution of the differential equation by 

changing  the independent variable 

 

 tindependenthechangingbyRQy
dx

dy
P

dx

yd
 .

2

2

 

 Variable.   ……………………..(1) 



 We change the independent variable from x to z with the help 

of Z = f(x). 

 Then 

 
22 2 2

2 2 2
. .

dy dy dz d y d y dz dy d z
and

dx dz dx dx dz dx dz dx

 
   

 
 

 Putting  these values in  (1) we get  

 RQy
dx

dZ

dZ

dy
P

dx

zd

dz

dy

dx

dz

dz

yd


















...

2

22

2

2

 

 Or  RQy
dz

dy

dx

Zd

dx

dZ
P

dx

dz

dZ

yd


















2

22

2

2

 

 Or 

2

22

2 2 22
. ............(2)

dz d z
p

dx dxd y dy Qy R

dz dzdz dz dz

dx dx dx

 
 

   
     
     
     

 

 Now putting   
212

2

2

1 ,

.
























dx

dz

Q
Q

dx

dz

dx

zd

dx

dz
P

P  

    and .
21











dx

dz

R
R  



  from  (2) we have  

    
2

1 1 12
...................(3)

d y dy
P Q y R

dz dz
    

 Hence   
111 ,, RQP  are functions of x can be expressed a function 

of Z with the help of z = f (x). 

Case 1:                                             
   

   
 

 
  

  
   

   
 

  
 
  

  
   

  

  
                      

  

  
  

      The solution is 

  

  
                               

equation (3) becomes 
   

   
                                       

                                                                             

                          
 

  
                                           

                                  



case - 2. We choose Z such that Q1 = a
2
 = costout 

 Or Q
dx

dZ
aa

dx

dz

Q




















2

2
 

 Or dx
a

Q
Zordx

a

Q
dZ   

Note: Hence Q is taken in such a way that Q remain the whole Square 

of a  

function without surd and its negative sign is ignored we 

choose Z such that  

2

22

&.
dx

zd
Zfindand

dx

dz
findtheseQ

dx

dz









then find P1, Q1, R1 etc. 

Ex.: Solve  0cos4cot 2

2

2









 xecy

dx

dy
x

dx

yd
…………..(1) 

OR 04.cos.sin.sin
2

2
2  y

dx

dy
xx

dx

yd
x  by changing the 

independent variable  

Solution:  

From (1)   0,cos4,cot 2  RxecQxP  



We choose Z such that  

xec
dx

dz
orQ

dx

dZ 2

22

cos4. 
















 

Or 
2

tanlog2cos2 xZorxec
dx

dz
  

0
cos4

cotcos2cos.cot2
.

22

2

2

1 
















xec

xxecxecx

dx

dz

dx

zd

dx

dz
P

P  

 1
21 











dx

dz

Q
Q  

Hence the transformed equation is 1112

2

RyQ
dz

dy
P

dz

yd
  

 iDoryDory
dz

yd
 0)1(0 2

2

2

 

)(cos 21 CzCyissolutionThe   

Or   y = C1 cos  (2 log tan x/2 +C2) 

Ex:    Solve  
2

6 5 2

2 2

1
. 3 .
d y dy

x x a y
dx dx x

    



Solution : Dividing by x
6
 the equation is  

 
86

2

2

2 1
..

3

x
y

x

a

dx

dy

xdx

yd
  

 
86

2 1
,,

3

x
R

x

a
Q

x
P   

 We choose Z such that 
6

22

x

a
Q

dx

dz









 

 Or 
6

2
1

xdx

dz









   (taking a = 1) 

 Or 
42

2

23

3
&

2

11

xdx

zd

x
Zor

xdx

dz 
  

2

2

1 1 12 2 2

.

; &

d z dz
P

Q Rdx dxP Q R
dz dz dz

dx dx dx



   
     
     
     

 

2

3

6

2

12

3

34

1 1
,0

1

133

a

x

x

a

Q

x

xxx
P 









































  

   & R1 = z
x

x

x 2
1

1

1

2

6

8

  



    









22

1

x
z  

 Therefore the transformed  equation is 

  1112

2

RyQ
dz

dy
P

dx

yd
  

 Or  
2

2 2 2

2
2 2

d y
a y z or D a y z

dz
     

  The C.F.  =  C1 cos (az + C2) 

 &  P.I.  =   

2

122

22

2

)2(.)(.
)(

2

a

z

zDa
aD

z







 

 

 The solution is  

 y  = C.F. + P.I. = 
22221

1

2
cos

xax

a
CC 








  

(on putting z = - 
22

1

x
 

Ex.: Solve  xy
dx

dy
xx

dx

yd 2

2

2

sin2)cotsin3(    

    = 2, sincosxe x  



Solution: Hence P =   xQxx 2sin2,cotsin3   

  And R = 2sincosxe x  

  We choose z such that .

2

Q
dx

dz









 

 Or We take x
dx

dz
thereforex

dx

dz
sinsin 2

2









 

 Or z= -cos x   &  x
dx

zd
cos

2

2

  

 

2

2

1 2 22

.
cos (3sin cot )sin

3
sin

d z dz
P

x x x xdx dxP
xdz

dx


 

   
 
 
 

 

 2
sin

sin2
2

2

21 











x

x

dx

dz

Q
Q  

 and  
2

1 2 2

.sin

sin

cosx
co

z
sxR x

R e
xd

e
e

z

dx


   

 
 
 

 

     ( 0cos xz   

 & so the transformed  equation is  



 
2

1 1 12

d y dy
P Q y R

dz dz
    

 Or 
z

ey
dz

dy

dz

yd
 23

2

2

 

 Or 
z

eyDD  )23( 2  

0)1()2(023.. 2  DDorDDisEA  

 Or D = -2, -1 

 & so the C.F. = 
z

eCeC
2

2

2

,


  

 And   P.I.  =  
2

1

3 2 6

z
z

e
D D

e 
 

 

 Therefore the complete solution is  

 
zzz

eeCeCy
6

12

21 


 

 Or 1 2

1

6

cosx cosx cosxe ey C eC    

 



12.8. Removable of the First degree term 

 

 (Reduction to Normal form) 

When we fail in obtion a part of the C.F  

then the differential equations 
   

   
  

  

  
              

may be solved by Removing the first derivative. We do it as follos :  

We put       

then                
  

  
  

   

  
    

  

  
 

   

   
   

    

   
  

  

  
 
   

  
   

   

   
 

and then equation (1) becomes 

   
    

   
  

  

  
 
   

  
   

   

   
    

    

   
  

   

  
         

or     
   

   
      

 

  
 
   

  
 
  

  
   

    

   
  

   

  
        

       
    

   
  

   

  
         



                                         

We choose     such that the first derivative is removed   

      
 

  
 
   

  
           

        
   

  
  

 

 
                                        

       
 

 
                          

 
                      

then the above equation becomes  

   

   
 

 

  
   

    

   
   

   

  
      

 

  
                    

          
   

  
    

 
        

 

 
    

 

 
      

        
    

   
  

 

 
  

   

  
 

 

 

  

  
    

  
 

 
   

 

 
     

 

 
 

  

  
    

 
 

 
     

 

 
  

  

  
 



Putting these values in (3) we get  

   

   
   

 

 
   

 

 

  

  
   

 

 
     

 

  
 
     

 

        
   

   
     

 

 
   

 

 

  

  
     

 

 
    

 

      
   

   
                                                 

              
 

 
   

 

 

  

  
             

 
         

The reduced equation (4) is called a differential equation in normal 

form. 

Ex.1.  Solve  
   

   
   

  

  
             

 

                          
 

to remove the first derivative we choose 

    
 
                

 

Putting        the equation after removing the first derivative 

becomes  



   

   
                               

            
 

 
   

 

 

  

  
                   

   
 

  
 

   

      

We get for (1)   
   

   
                       

                                     

        
      

   

           
 

    
       

               
      

     

                                  

         
    

      
       

Ex.2.  Solve 
   

   
      

  

  
            

To remove the first derivative we choose  



     
 
                              

                                                

   

   
                                 

            
 

 
   

 

 

  

  
                 

     
 

  
 

       

    
       

                        
   

   
       

                               

                        

           
  

    
 

  

 
           

                 
 

 
    

                                

                       
 

 
        



Ex.3. solve 
   

   
   

  

  
            

 

 
  

 

                       
 
 
  

 

To remove the first derivative we choose  
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1. Solve 
   

   
   

  

  
                             

                     

2. Solve    
   

   
        

  

  
                

by removing the first derivative. (Hint divide   ) 

3. 
   

   
 

 

 
 
  

  
   

     

 
 

4. Solve 
   

   
 

 

 

  

  
     

 

       

5.      

   
        

  

  
               

12.9. Summary 

 

First  the method of reduction then been discussed when one part of 

the C.F. is known. Then complete           of 
   

   
   

  

  
    



   has been discussed by chaing the dependent variable and by 

chaenging the independet variable. In the end the mehead of solving 

the above diffrential equaction by romoving the first derivative (or 

norml form hes bing discussed.  

12.10. Terminal Question   

 

Solve the the following different equation. 

1)      

   
   

  

  
                                      

2)      

   
  

  

  
                                 

                               
 

  
             

           
 

 
             

3) Solve        
   

   
        

  

  
              

4)    
   

    
         

  

  
             

5)                  
   

   
       

  

  
       

                

6) Solv    
   

   
     

  

  
     

 

  
  

 


