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1.1. Introduction

The entire field of engineering and science — heat, light, sound, gravitation,
magnetism, fluid flow, population dynamics and mechanics are described by
differential equations. Other modern technologies such as radio, television,

cars and aircraft all depend on the mathematics of differential equations

Differential equations play an important role in modeling virtually every
physical, technical or biological process, from celestial motion to bridge
design to interactions between neurons. Further applications are found in
fluid dynamics with the design of containers and funnels in heat conduction
analysis with the design of heat spreaders in microelectronics, in rigid-body
dynamic analysis, with falling objects, and in exponential growth of current
in an R-L circuit. This unit introduces first order differential equations — the
subject is clearly of great importance in many different areas of science and

engineering.

1.2 Objectives

After reading this unit students should be able to:

e Define and understand the differential equation and its types



¢ Find the order and degree of a differential equation

e Form the differential equation of given function

e Solve the given differential equation

e Understand the geometrical meaning of differential equation
e Solve the initial value problems

e State the existence and uniqueness theorems

1.3 Definition of Differential Equation

An equation which contains the independent variable, dependent variable
and its derivatives is called a differential equation.

Equivalently,

An equation involving dependent and independent variables and the
differential coefficients (derivatives) of dependant variable with respect to
one independent variables is called a Differential equation.

The general first-order differential equation for the function y = y(x) is

written as % = f(x,y), where f(X, y) can be any function of the independent
variable x and the dependent variable y.

For Example:

3ﬂ+x=cosy

1) dx



2
d—Z’+2ﬂ—5x = COSecy
2) dx dx

3
PR L
3) dx dx

X

+5x=secy+e

dy
2 _5y=7
4) dx y

2
d Z—3ﬁ+cosy=8x
5) dx dx

1.4 Types of differential equations

A differential equation is an equation for a function that relates the values of
the function to the values of its derivatives. An ordinary differential equation
(ode) is a differential equation for a function of a single variable, e.g., x(t) or
y(t), while a partial differential equation (pde) is a differential equation for a
function of several variables, e.g., v(Xx, y, z, t). An ode contains ordinary
derivatives and a pde contains partial derivatives. Typically, pde’s are much

harder to solve than ode’s.

There are two types of differential equations, namely



I. Ordinary Differential Equations (ODE’s)

Ii. Partial Differential Equations (PDE’s)

. Ordinary Differential Equations (ODE’s):

Ordinary Differential Equations (ODE’s): A differential equation involving
derivatives of the dependent variable with respect to only one independent

variable is called an ordinary differential equation (ODE’s).
Equivalently,

ODE is an equation involving an unknown function y of a single variable t

together with one or more of its derivatives y’, y” etc.

2 3
Example 1.4.1: 2%4{%) =0 is an ordinary differential equation.
X X

i. Partial Differential Equations (PDE’s):

Many functions depend on more than one independent variable. Of course,
there are differential equations involving derivatives with respect to more

than one independent variables, called partial differential equations (PDE’s).

2
Example 1.4.2: % :9(%) is partial differential equation.
X



1.5 Order and degree of differential equations:

1.5.1 Order of a differential equation:

A differential equation can be classified according to its order and degree.
Order of a differential equation is defined as the order of the highest order
derivative of the dependent variable with respect to the independent variable
involved in the given differential equation.

Consider the following differential equations:

. j—y:ex, this ODE involves highest derivative of first order.
X

Therefore order is one

2
i, (; 2’+ y =0, this ODE involves highest derivative of second order.
X

Therefore order is two.

dy  ,(d?y : . ] ] ] ..
. —2+x =sinx, this ODE involves highest derivative of

dx? NG

third order. Therefore order is three.

1.5.2 Degree of a differential equation:



Degree of a differential equation To study the degree of a differential
equation, the key point is that the differential equation must be a polynomial
equation in derivatives, i.e., y', y”, y” etc. Consider the following

differential equations:

3 2.2
Iv. d—2/+2 d 2/ —ﬂ+y:0
dx dx dx

2
V. (ﬂj +ﬂ—sin2y:0
dx dx

Vi. ﬂ+sin[ﬂj:0
dx dx
We observe that, in the above equation (iv) is a polynomial equation in y"’,
y" and y’, equation (v) is a polynomial equation in y’ (not a polynomial in y
though). Degree of such differential equations can be defined. But equation
(vi) is not a polynomial equation in y' and degree of such a differential
equation cannot be defined. By the degree of a differential equation, when it
is a polynomial equation in derivatives, we mean the highest power (positive
integral index) of the highest order derivative involved in the given
differential equation. In view of the above definition, one may observe that
differential equations (i), (ii), (iii) and (iv) each are of degree one, equation
(v) is of degree two while the degree of differential equation (vi) is not

defined.



Note: Order and degree (if defined) of a differential equation are always

positive integers.

1.5 Test Your Progress

Find the order and degree, if defined, of each of the following differential
equations:

I ﬂ—cosx=0

dx

Lo dly o fdy) (dy
i, diloxy—2+x 2| -y = |=0
Xydxz +X(dxj N ax

3

d’y

+yiie’ =0
ji. o

d'y

dx*

vii. v, <Y sin(y") =0
viii. y'+5y=0

ix Y +3y’=0

v (y"J +cos(y')=0

XI. y” = cos3x +sin3x

i, V) Y=

y/// +2y// +y/ =0.




1.6 Solution of Differential Equation

In earlier topics, we have solved the equations of the type:

X+1=0 e Q)

sin2x—-cosx=0 ... (2)

The solutions of equations (1) and (2) are numbers, real or complex, that will
satisfy the given equation i.e., when that number is substituted for the
unknown X in the given equation, L.H.S. becomes equal to the R.H.S.

Now consider the differential equation,

In contrast to the first two equations, the solution of this differential equation
is a function ¢ that will satisfy it.
i.e., when the function ¢ is substituted for the unknown y (dependent

variable) in the given differential equation, L.H.S. becomes equal to R.H.S.
The curve y=¢(x) is called the solution curve (integral curve) of the given
differential equation.

Consider the function given by

y=¢(x)=asin(x+b)  .......... 4

where a, b € R. When this function and its derivative are substituted in

equation (3),



L.HS.=R.H.S.

So it is the solution of a differential equation (3).

Let a and b be given some particular values say a=2 and b :%, then we get

a function y:¢l(x):25in(x+%j ........... (5)

When this function and its derivative are substituted in equation (3) again
L.H.S. = R.H.S. Therefore ¢, is also a solution of the equation (3).

Function ¢ consists of two arbitrary constants (parameters) a and b, it is
called general solution of the given differential equation.

Whereas function ¢, contains no arbitrary constants but only the particular
values of the parameters a and b and hence is called a particular solution of
the given differential equation. The solution which contains arbitrary
constants is called the general solution ( or primitive) of the differential
equation.

Thus,

The solution free from arbitrary constants i.e., the solution obtained from the
general solution by giving particular values to the arbitrary constants is

called a particular solution of the differential equation.



For example:

1. The solution formula y=ce™ , which depends on the arbitrary
constant C, describes a family of solutions and is called a general
solution.

2. The graphs of these solutions, drawn in the figure, are called solution

curves.

Lk
i
f

LY

_|_'|

Figure

3. Given the value of the solution at a point, we can determine the

unique particular solution.

Example 1.6.1: Verify that the function y=e> is a solution of the

2
differential equation 9 Y+ & gy 0.
dx®  dx

Solution: Given functionis y=e .............. (1)



Differentiating both sides of equation (1) with respect to x , we get

ﬂ__ -3x 2
ol e e ()

Now, differentiating (2) with respect to x, we have

d’y 3
Y _ge 3
oo =% 3)
2
Substituting the values of f'szy, % and y from equations (3), (2) and (1) in

the given differential given equation, we get

2
LHS :d—3+ﬂ—6y =9e ™ -3 —6(e™) =9 -9e™ =0=RHS.
dx® dx

Example 1.6.2: Verify that the function y=acosx+bsinx, where a, b € R

2
is a solution of the differential equation 3 Y y=0.
X
Solution: Given function is y=acosx+bsinX............... Q)

Differentiating both sides of equation (1) with respect to x , we get

ﬂ:—asin X+bcosx (2)
dx

Now, differentiating (2) with respect to x, we have

2

d°y
dx?

=-acosx—hsinx L 3)



Substituting the values of 3;2’ and y from equations (3) and (1) in the given

differential given equation, we get

2

LHS:%+y:—acosx—bsinx+acosx+bsinx:0:RHS.
X

Example 1.6.3: Verify that the function x+y=tany, is a solution of the

differential equation y? %+ y>+1=0.
X

Solution: Given functionis x+y=tan™y ...

1)
Differentiating both sides of equation (1) with respect to x , we get
2 2
O S TP 0 S I S & S @
dx 1+y° dx dx(1+y dx y

Substituting the values of j—i’ and y from equations (2) and (1) in the given

differential given equation, we get

2

LHS = y? jy +y?+1l= y{_1+ y

o : ]+y2+1:O:RHS.

Note: The particular solution satisfying the initial condition y(x,) =y, is the
solution y(x)=y whose value is y,when x=x,. Thus the graph of the

particular solution passes through the point (x,,y,) in the xy-plane. A first-




order initial value problem is a differential equation y’'=f(x,y) whose

solution must satisfy an initial condition y(x,)=y,.

1.6 Test Your Progress

In each of the following exercises, verify that the given functions (explicit or

implicit) is a solution of the corresponding differential equation.

1. y=e*+1 Yy —y' =0 2. y=x*+2x+Cc

y' —2x-2=0
3. y=cosx+cC Yy +sinx=0 4. y=1+x* ; y’:lf;z
5. y=Ax Xy =y (x=0).

6. y=xsinx DXy =y xxXE—y?; (x#0, x> y).

2
7. xy=logy+c oyl =Y
1-xy

; (xy=1).

8. y—cosy=x . (ysiny+cosy+x)y =vy.

9. y=+a’-x*; xe(-a, a) . (x+y)y =0; (y=0).




1.7 Formation of Differential Equation

We know that the equation, x*>+y? +2x—4y+4=0........... (1). This represents

a circle of centre at (-1, 2) and radius 1 unit.

Differentiating equation (1) with respect to x, we get

dy  x+1

2y F 2 e, (2), which is a differential equation. We will
X =Y

find later on that this equation represents the family of circles and one
member of the family is the circle given in equation (1). This leads to the

concept of formation of the differential equation.

Procedure to form a differential equation that will represent a given

family of curves.

(i)  If the given family F, of curves depends on only one parameter

then it is represented by an equation of the form

For example, the family of parabolas y? =ax can be represented by an

equation of the form f (x, y, a) : y* =ax.



Differentiating equation (1) with respect to x, we get an equation

involving y', y, X, and a, i.e., gxy,y,a)=0 ... .. 2)

The required differential equation is then obtained by eliminating a from

equations (1) and (2) as FX,yv,¥)=0. s . 3)

(i)  If the given family F, of curves depends on the parameters a, b
(say) then it is represented by an equation of the from

F, (x,y,a,b)=0 ... 4)

Differentiating equation (4) with respect to x, we get an equation involving
Y, X, y,ab,
.e., g(x,y,y,a,b)=0...... (%)

But it is not possible to eliminate two parameters a and b from the two
equations and so, we need a third equation. This equation is obtained by

differentiating equation (5), with respect to x, to obtain a relation of the form

The required differential equation is then obtained by eliminating a and b

from equations (4), (5) and (6) as

F(X,y,y,y)=0....... (7)



Note: The order of a differential equation representing a family of curves is
same as the number of arbitrary constants present in the equation

corresponding to the family of curves.

Example 1.7.1: Form the differential equation representing the family of

curves y = mx, where, m is arbitrary constant.

Solution: We have, y=mx........... (1)

Differentiating both sides of equation (1) with respect to x, we get % =m

Substituting the value of m in equation (1) we get y = xg—y Or x%— y=0,
X X

which is free from the parameter m and hence this is the required differential

equation.

Example 1.7.2: Form the differential equation representing the family of

curves
y =asin (X +b), where a, b are arbitrary constants.
Solution: We havey =asin(x +b) ...... 1)

Differentiating both sides of equation (1) with respect to X, successively we

get




Y ACOS(X+D) evrvieriiiiiiiiienn, (2)
dx

2

d’y =-asin(X+b) .cooerrrrirnn (3)

X2

Eliminating a and b from equations (1), (2) and (3), we get

From equation (1), sin(x+b) :%, substitute this in equation (3) we obtain

d?y y d?y
dx? =—a(g)=—y of dx? +y=0

Which is free from the arbitrary constants a and b and hence this is the

required differential equation.

Example 1.7.3: Form the differential equation representing the family of

parabolas having vertex at origin and axis along positive direction of x-axis.

Solution: Let P denote the family of above said parabolas (see Figure) and

let (a, 0) be the

focus of a member of the given family, where a is an arbitrary constant.

Therefore, equation of family P is



o
r

r
X<

0

Substituting equation (2) in equation (1), we obtain the required differential

equation as,

d d d
y2=2Xyd—i or 2xyd—i—y2=0 or 2xd—§—y=o.

Example 1.7.4: Form the differential equation representing the family of

ellipses having foci on X-axis and centre at the origin.

Solution: We know that the equation of said family of ellipses (see Figure)

IS



m|><
N
+
cr|<
N
I
H

P B \\
Ne—————— X
L
'\_.ll'

Figure

Differentiating equation (1) with respect to x, we get

2
ydy__x o oydy b )

2% ﬂﬂ:o Or > q
a xdx a

a? | b dx b? dx

Differentiating equation (2) with respect to x, we get

2

dzy (dy) d
X{ydxz{dij }y(dij dy (dyY] (d
=0 Or xy Z+(—yj —y(—y)zo

X dx dx dx

2 2
or {yd_zy{d_yj }z(d_vjzo
dx dx x \ dx
Example 1.7.5: Form the differential equation of the family of circles

touching the x-axis at origin.



Solution: Let C denote the family of circles touching x-axis at origin. Let (0,
a) be the coordinates of the centre of any member of the family (see the

following Fig). Therefore, equation of family Cis x> +(y-a)*=a® Or

Figure

where, a is an arbitrary constant. Differentiating both sides of equation (1)
with respect to x, we get

x+ygx
2x+2yﬂ=2aﬂ Or x+yﬂ:aﬂ Or a= X s (2)
dx dx dx  dx dy
dx

Substituting the value of a from equation (2) in equation (1), we get

dy
S
X* +y? =2y X

dy

dx



dy dyj
Or (x*+y?)=2=2y| x+y-=2
( y )dx y( ydx

dy dy
Or (x?+y?)L—2y*=2=2
( y )dx y dx o

2 2\dy ﬂ_ 2xy
Or (x -y )&_ny Or dx_m

This is the required differential equation of the given family of circles.

1.7 Test Your Progress

In each of the following exercises, form a differential equation representing

the given family of curves by eliminating arbitrary constants a and b.

1.1. 5+%:1 2. y*=a(®*’-x*) 3. y=ae*+be™ 4.
a

y =e*(a+bx)

5. y=e*(acosx+bsinx).

6. Form the differential equation of the family of circles touching the y-axis
at origin.

7. Form the differential equation of the family of parabolas having vertex at
origin and axis along positive y-axis.

8. Form the differential equation of the family of ellipses having foci on y-

axis and centre at origin.




9. Form the differential equation of the family of hyperbolas having foci on
x-axis and centre at origin.

10. Form the differential equation of the family of circles having centre on y-
axis and radius 3 units.

11. Find the differential equation, which has y=ae* +be™ as the general
solution?.

12. Find the differential equation, which has y=x as its particular solution?.

1.8 Geometrical meaning of a differential equation

Let y(t) be a solution of the ODE vy = f(t,y). The graph of the solution y(t)
is called a solution curve. For any point (t,, y,) on the solution curve

y(t,) =y, and the differential equation says that y(t,) = y(t,, y(t,)) .

The LHS is the slope of the solution curve, and the RHS tells us what the

slope is at (t,, y,) -

1.8.1. Direction Field for y’ = f(t,y):

Draw a line segment with slope f(t;,y;)attached to every grid point (t,y;)in

a rectangle R where f (t, y) is defined R={ (t,y))a<t<bandc<y<d}.

The result is called a direction field.




Figure

Geometric interpretation of Solution is,

Direction field provides information about qualitative form of solution

Ccurves.

Finding a solution to the differential equation is equivalent to the geometric
problem of finding a curve in ty-plane that is tangent to the direction field at

every point.
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1.9. Initial value problems (IVP)

A differential equation is an equation involving a relation between an
unknown function and one or more of its derivatives. Equations involving
derivatives of only one independent variable are called ordinary differential
equations and may be classified as either initial-value problems (I\VVP) or

boundary-value problems (BVP).

The distinction between the two classifications lies in the location where the
extra conditions are specified. For an initial value problem (IVP), the
conditions are given at the same value of x, whereas in the case of the
boundary value problem (BVP), they are prescribed at two different values

of x.

An initial value problem is a differential equation (of any order) together
with initial conditions that must be satisfied by the solution of the

differential equation and its derivatives at the initial point.

For example:

) Consider the differential equation, % =x*-vy? y()=1.Here x=0

Is the initial point.



2
i)  Consider the differential equation, zXZ:—yx, y(0)=2, y'(0)=1.

Here x=0is the initial point.
Equivalently,
Initial Value Problem:

The problem of finding a function y of x when we know its derivative and its

value vy, at a particular point x=0 is called an initial value problem.

This problem can be solved in two steps.

1. Find the general solution of the given differential equation.

2. Using the initial data, plug it into the general solution and solve for C.

Consider the problem of finding a function y(t) that satisfies the following

ordinary differential equation (ODE):

ﬂ:f(t, y), a<t<b. The function f(t,y)is given, and we denote the

dt

derivative of the sought function by y’(t):% and refer to ‘t’ as the

independent variable. Earlier we dealt with the question of how to

approximate, differentiate or integrate an explicitly known function.



Here, similarly, the function f(t, y) is given and the sought result is different
from f(t, y) but related to it. The main difference though is that f(t, y)
depends on y(t), and we would like to be able to compute y(t) possibly for

all ‘t’ in the interval [a, b], given the ODE which characterizes the

relationship between the function and some of its derivatives.

Example 1.9.1: The function f(t, y)=-y+t defined for t > 0 and any real
y(t) gives the ODE y’(t):%:—yﬂ, t>0. You can verify directly that for

any scalar o the function y(t)=t-1+ce™ satisfies the ODE. If it is given, in
addition, that y(0)=1, then 1=0-1+0e® , hence a = 2 and the unique

solution is y(t) =t-1+2e™.
Boundary Value Problem:

It is a differential equation together with a collection of values that must be
satisfied by the solution of the differential equation or its derivative at no

fewer than two different points.
For example:

) Consider the differential equation,

2
ay qdy

3 Ty =c0sx, y(0)=1and y'())=2.



i)  Consider the differential equation, zxz’:—yx, y(0)=2, y@) =1.

Example 1.9.2: Show that the function y:(x+1)—%ex IS a solution to the

first-order initial value problem gy =y—X, y(O)——

Solution: Consider, j =f(XY)=Y=X e (1)
From the function, y=(x+1)—lex Y L (2
3 dx 3

Substituting the values of g_y and yfrom equation (2) in equation (1), we
X

obtain

dy

=y—-X :>l—leX :(x+1)—1eX —x:l—leX
dx 3 3 3

Thus, LHS = RHS.

The function satisfies the initial condition because

(x+1)——e = y(0)=1-

OOIH
ooII\)

The graph of the function is shown in the following Figure.



Figure

Slope Fields, Viewing Solution Curves:

Each time we specify an initial condition y(x,)=y, for the solution of a
differential equation y’ = f(x,y), the solution curve (graph of the solution) is
required to pass through the point (x,,y,) and to have slope f(x,,y,)there.
We can picture these slopes graphically by drawing short line segments of
slope f(x,y) at selected points (x,y) in the region of the xy-plane that
constitutes the domain of f. Each segment has the same slope as the solution
curve through (x,y)and so is tangent to the curve there. The resulting picture
is called a slope field (or direction field) and gives a visualization of the
general shape of the solution curves. The following Figure (a) shows a slope
field, with a particular solution sketched into it in Figure (b). We see how
these line segments indicate the direction the solution curve takes at each

point it passes through.
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Figure (a)

The particular solution curve
. 2
through the point [0, 5)

dy
dx

Slope field for

1.10 Statements of Existence and Uniqueness Theorems

In ODE theory the following questions are naturally arising :

e Given an initial value theorem (I\VVP) is there a solution to it (question

of existence)?

If there is a solution is the solution unique (question of uniqueness)?

For which values of x does the solution to initial value theorem (I\VP)

exists (the interval of existence)?



The fundamentally important question of existence and uniqueness of
solution for initial value theorem (IVP) was first answered by Rudolf
Lipschitz in 1876 (nearly 200 years later than the development of ODE). In
1886 Giuseppe Peano discovered that the initial value theorem IVP has a
solution (it may not be unique) if f is a continuous function of (x, y). In
1890 Peano extended this theorem for system of first order ODE using
method of successive approximation. In 1890 Charles Emile Picard and

Ernst Leonard Lindel6f presented existence and uniqueness theorem for the

solutions of initial value theorem (IVVP). According to Picard Lindelof

theorem if f and Z—f are continuous functions of x, y in some rectangle:{(x,
y

y): a < x < fB; y <y < 4§} containing the point (x,,y,)then in some interval
X, —O<X<X,+5 (6>0) there exists a unique solution of initial value

problem (I\VP).
Equivalently,

In addition to its intrinsic mathematical interest, the theory of ordinary
differential equations has extensive applications in the natural sciences,
notably physics, as well as other fields. The existence and uniqueness of a
solution to a first-order differential equation, given a set of initial conditions,

Is one of the most fundamental results of ODE.



We will investigate solutions to the differential equation,

dy _ _
E = f (t! y)’ y(to) - yO """""" (1)

wheret € R,y € R", and f(t, y)is defined and differentiable (of class C", r >

1) in a domain U of R x R". A solution will be a function ¢ : R — R" n,

where

o) = T(t, o)), @)=Yy .orrrenn. (2)

We will state the following theorems, which guarantee the existence and

unigueness of the solution for any equation of the form (1).

Theorem 1.10.1: (The Existence Theorem).

Suppose the right-hand side y of the differential equation %: f(t, y)is

continuously differentiable in a neighbourhood of the point (t,,y,) € R x R".
Then there is a neighbourhood of the point t, such that a solution of the

differential equation is defined in this neighbourhood with the initial

condition ¢(t,) =y, where y is any point sufficiently close to y,. Moreover,

this solution depends continuously on the initial point y.

Theorem 1.10.2: (The Uniqueness Theorem).



Given the above conditions, there is only one possible solution for any given
initial point, in the sense that all possible solutions are equal in the

neighbourhood under consideration.

1.11 Summary

In this unit, we studied the definition of differential equation and its various
types. We also saw the order and degree of differential equations and its
solution approaches. We also studied formation of differential equations and
its geometrical interpretation. The initial value problem and boundary value

problem are discussed with existence and uniqueness theorems.

1.12 Terminal Questions

1. Find the differential equation of the curve.x? + y% = ¢

2. Find the differential equation of the curve as y? = x

3. Find the order and degree of the differential equation (32732’)2 +

d
C)*+y=0
1.13. Answers to exercises

1.5Test Your Progress



. Order 1 and degree 1
i. Order 2 and degree 1
ii.  Order 3 and degree 1
Iv.  Order 4 and degree 1
V. Order 1 and degree 1
vi.  Order 4 and degree 1
vii.  Order 2 and degree 2
viii. Order 2 and degree 1
iX.  Order 2 and degree 3

X. Order 3 and degree 1

1.7Test Your Progress

d’y
1. SY-0
d’y (dy)"  dy
2 — | -y—=>=0
Xydx2 +X(dxj ydx

3 y'-5y +6y=0
4, y"—ay' 14y =0
5. y"-2y' +y=0

ﬂ_ y2_X2
Cdx 2xy







Unit —02: Methods of solution of a differential equation of first
order and first degree
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2.8 terminal Questions
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2.1 Introduction

Ordinary differential equations find a wide range of application in biological,
physical, social and engineering systems which are dynamic in character.
They can be used to affectively analyze the evolutionary trend of such
systems, they also aid in the formulation of these systems and the qualitative
examination of this stability under and adaptability to external stimuli.
Ordinary Differential Equation: A differential equation which contains only
one independent variable and the derivatives are with respect to this
independent variable only is called ordinary differential Equations.

For Example:

2

2
1. d—¥—5ﬂ+y:sinx 2. d—2/+4y:0 3. ﬂ+y=logx
dx dx

dx dx

The general first-order differential equation for the function y = f (x) is written

as %: f(x,y) , where f(x,y) can be any function of the independent variable

x and the dependent variable y.

OR
Any differential equation of the first order and first degree can also be written
in the form

M (X, y)dx+ N(x,y)dy=0.



Example 2.1.1: The differential equation

Y _X=3Y this can also be written as (y—2x)dx— (x—3y)dy =0

dx y-—-2x

Existence of a solution: The general solution of the equation %: f(x,y) ,If
X

it exists, has the form f(x,y, C) =0, where C is an arbitrary constant. Under

what circumstances does a general solution exist? We have the following

theorem.

Theorem 1: A general solution of g_y = f(x,y) exists over some specified
X

region R of points (x, y) if the following conditions are met:

a) f(x,y) is continuous and single-valued over R

b) ‘Z—f exists and is continuous at all points of R
y

The general solution f(x, y, C) = 0 of a differential equation %: f(x,y) over

some region R consists of a family of curves, called the integral curves of the
differential equation, (one curve for each possible value of C, each curve
representing a particular solution), such that through each point in R there

passes one and only one curve of the family f(x,y, C)=0.



2.2. Objectives

After reading this unit students should be able to:
e Understand and apply the different methods of solution of differential
equations of first order and first degree
e Solve the separable, homogeneous and non homogeneous first order

and first degree ODE’s

2.3. Methods of solution of differential equations of first order
and first degree

1) Method of Separation of variables

i) Method of solving the reducible to separable form

1ii) Method of solving the Homogenous ODE

iv) Method of solving the Non-Homogenous (Reducible to homogeneous)

ODE

2.4. Method of Separation of Variables

If %: f(x,y) can be expressed as a product % — f(x)-g(y) ,Where f(x) isa

function of x



and g(y) is a function of y, then the differential equation %: f(x,y) issaid

to be of variable

separable form. The differential equation % = f(x,y) then has the form

Y tx-9(y) it
dx

can be written as - % — f(x)-dx , then it becomes separable equation.

g(y)

The method of solution of it is, by integrating both sides

e, ji =j f(x)-dx +C . Where C is the arbitrary constant.
g(y)

Example 2.4.1: Solve the differential equation %:X—”, y#2.

X 2-Yy
Solution: Consider,

dy x+1

dx 2-y’

(2—y)dy =(x+1)dx (Variable Separable Form)
Integrating, we obtain

[@-y)dy = [(x+Ddx+C

2 2

y
2y ——=—+X+C
Y 2 2

This is the required general solution.

dy 14y’
dx 1+ x2

Example 2.4.2: Solve the differential equation

Solution: Consider,



dy 1ty
dx 1+x?
dy dx .
S = > (Variable Separable Form)
1+y® 1+X
Integrating, we obtain

d d
J.1+)3//2 =I1+))(<2 e

tan'y=tan'x+C
Ortan'y—tan'x=C

This is the required general solution.

Example 2.4.3: Solve the differential equation x% =coty
X

Solution: Consider,

xﬂ=coty

dx

s tanydy = 1dx (Variable Separable Form)
X
Integrating, weobtain,
J'tan ydy = J‘ldx+ logC
X
log(sec y) =log x +logC

or XY _¢
X

This is the required general solution.

Example 2.4.4: Solve the initial value problem %+ (L+y?) =0 with y(0)=0

Solution: Consider,



ﬂ+(l+ y?)=0
dx
dy 2
Rt Ap—]
i d+y7)
dy
@+y?)
Integrating, we obtain
dy
=—|dx +C
I(1+y2) J
stanTty=-X+C )]

=—dx (Variable Separable Form)

Now, using the given initial conditions as y(0)=0, equation (1) becomes
tan'y=—x+C =tan"0=-0+C Or C=0

Thus, the required particular solution is tany=—x Or tan"y+x=0
Example 2.4.5: Solve the differential equation M% —J4—x

Solution: Consider,

ﬁdy = ‘/ﬂ dx (Variable Separable Form)
X

Or ﬁdy = [%—1} dx, Integrating

jﬁdy:j(%—lex+C

Or Zy:"2 :2Jx’1’2dx—x+C

Or gy3’2 =4x"2 —x+C

This is the required general solution.



Method of Reducible to Separation of VVariables

Some differential equations may not appear in variable separable form
initially but through appropriate substitutions, then it can be made variable

separable form.

Example 2.4.6: Solve the differential equation x jy Y =2X1-Xx%y?

X

Solution: Consider,

xgy +Y = 2X1=X2Y2 e )]

dx
Substitute xy =v then differentiating with respect to x, we get

Equation (1) becomes

? = 2x/1-V?, this is in variable separabe forn in terms of x and v
X

v =2xdx, integrating, we obtain
1-Vv?2

J' av :IZde+C
1-V?

2
g sin‘lv:z[x—}c
2

Or sin™*(xy) = x* +C is the required general solution.



2.4 Test Your Progress

Solve the following ODE’s
1) MBI
dx

dy 2x
y’

||)

i) dy _1-cosx
dx 1+CosX

iv) Y _gr
dx

V) W _exsinx
dx
; dy
Vi) xyd— =(x+2)(y+2)
X

Vi) (e* +e)dy = (e* —e*)dx

Viil) x(x? —1)%:1 with y(2) =0
X

iX) %z ytanx with y(0) =1
X

X) ﬂ: Yy COS X

with y(0) =1
dx 1+2y? v

XI) =(x+Y)?




2.5. Solution of Homogeneous equations

A function f(x, y) is said to be homogeneous function of degree n if
f(Ax, Ay) = 2" f(x, y) for any nonzero constant A.

Consider the following functions;

) f(x y)=y*+2xy

By the definition of homogeneous functions;

f (X, AY) = 22y° + 2(AX)(Ay) = P (Y* +2xy) = 2 T (X, )

This implies that the given function f(x, y) is a homogeneous function of
degree 2.

i) f(x, y)=2x-3y

By the definition of homogeneous functions;

f (X, Ay) =2Ax =34y = A1(2x—3y) = Af (X, y)

This implies that the given function f(x, y) is a homogeneous function of
degree 1.

iii) f(x, y)=cosY
X
By the definition of homogeneous functions;

f(Ax, Ay) = cosl = cosﬂ = cosl =221(x, y)
X AX X



This implies that the given function f(x, y) is a homogeneous function of
degree 0.

IV) f(x,y)=sinx+cosy

By the definition of homogeneous functions;

f (A, Ay) =sin Ax+cos Ay = A" f (X, y)

This implies that the given function f(x, y) is not an homogeneous function.
Equivalently,

Therefore, a function f(x, y)is a homogeneous function of degree n if
f(x,y)=x"f(y/x)Or f(x,y)=y"f(x/y).

Consider the following functions;

i) f(x,y)=y*+2xy= xz[(y/x)2 +2(y/x]: x> f (y/x)

Or f(x,y)=y?+2xy=y?[l+2(x/y)]=y?f(x/y).

Therefore, f(x, y) is a homogeneous function of degree 2.

i) f(x, y)=2x-3y=x[2-3(y/x)]=xf (y/x).

Or f(x, y)=2x-3y=y[2(x/y)-3]=xf (x/y)

Therefore, f(x, y) is a homogeneous function of degree 1.

i) f(x,y) :cos%:xof(y/x)

Therefore, f(x, y) is a homogeneous function of degree 0.

IV) f(x, y)=sinx+cosy=x"f(y/x) Or f(x, y)=sinx+cosy=y"f(x/y)



Therefore, f(x, y) is not a homogeneous function.

2.5.1. Method of Solution of Homogeneous equations:

If the differential equation % = f(X%Y)=X"T(Y/X) wvrrerrrnennn (1) is

homogeneous of degree zero. Then,

I Substitute y =vx, on differenti ating w.rt x, we obtain % =V+ x% :
X X

ii. Put the value of % =V+ x? in equation (1)
X X

ii.  Simplified equation reduces to the variable separable form in terms
of v and x

iv.  Integration leads to the general solution in terms of v and x

V. Substitute v = % in the solution obtained in step (iii) gives the

required general solution of the equation (1).
Note: If the homogeneous differential equation is in the form

o _ f(x,y)=y"f(x/y)where, f(x,y)is homogeneous of degree n., then we

dy

make a substitution v=2 i.e., x=vyand we proceed further to find the
y

general solution as discussed above.



dy _ x*+y*
Example 2.5.1: Show that the differential equation—> ==
dx X% +xy

IS

homogeneous and solve it

Solution: Consider,
dy  x*+y°
dx X% +xy

dy  x*fL+(y/x)

LA —x°F(y/
dx  x*[l+y/x] i)

RHS is a homogeneous function of degree zero. Therefore, equation (1) is a
homogeneous differential equation.

To solve equation (1), let’s substitute y =vx . Then,
on differentiating w.rit x, we get — i =VAX— e, (2)

Substitute equation (2) in equation (1) , we obtain,

dv  x?+v3x?

VEX— = —
dx  xZ+x%
dv  1+4V? 1+vZi—v—v?
Or X—= -V =
dx 1+v 1+v
dv _1-v
dx C14v

This is in variable separable form

" H—Vdv_%, int egrating
1-v X

j“—"d - —+IogC



J—dv+ —dv log x+logC
—log(1-v) + Iog =logx+logC

Example 2.5.2: Show that the differential equation (x—y)dy —(x+y)dx=0 IS

homogeneous and solve it
Solution: Consider,
(X=y)dy —(x+y)dx=0
RHS is a homogeneous function of degree zero. Therefore, equation (1) is a
homogeneous differential equation.
To solve equation (1), let’s substitute y =vx . Then,

on differenti ating w.r.t x, we get gy =V+ xﬂ .......................... (2)
dx dx

Substitute equation (2) in equation (1) , we obtain,

This is in variable separable form



1-v
C1+v?

J'llJ:\;/z dv = Id—;+ logC

dv = % int egrating
X

1 \Y;
dv— dv=logx+logC
~[1+v2 J.1+v2 9 9

tan‘lv—%log(1+ v?)=log x+logC

Or tan™v+log =log Cx

1
V1+V?
Now, substitute v :% we get

“fm s

or tan{lj +log S S log Cx
X X2 +yZ

=log Cx

X <

This is the required general solution of the given homogeneous differential

equation (1).

Example 2.5.3: Show that the differential equation xcos(%j% = ycos[%}r X

iIs homogeneous and solve it

Solution: Consider,

xcos(ljﬁ = ycos(lj+ X
X ) dx X

y
COS| — |+ X
dy y (xj

or L= AT (1)

0 ycos (yj
X



dx XCOS (yJ COS(y]
X X

RHS is a homogeneous function of degree zero. Therefore, equation (1) is a

x(y/xcos(yjﬂ] (y/xcos(y)ﬂj
dy X X % (ylx)

homogeneous differential equation.
To solve equation (1), let’s substitute y =vx . Then,

on differenti ating w.r.t x, we get dy =V+ xﬂ .......................... (2
dx dx

Substitute equation (2) in equation (1) , we obtain,

dv  vXCosv+ X
VEX—=————

dx XCOSV
dv vcosv+1 VCoSV+1—-vcosv
Or X—=—r— V=
dx CosV CosV
dv 1
X— =——
dx cosv

This is in variable separable form

. cosvav :%, int egrating
X

Icosvdv: I%+ logC
X
- sinv=1log x+logC

sinv = log(C x)

Now, substitute v =% we get

sin(%) =log(C x)



This is the required general solution of the given homogeneous differential

equation (1).

Example 2.5.4: Show that the differential equation 2ye*dx+(y—2xe*’?)dy =0
Is homogeneous and solve it

Solution: Consider,

2ye*Vdx + (y—2xe*¥)dy =0

xly
OI‘ j—iz% ................................. (1)
2(x/y)e* -1
:y( ( y)X/y ):yof(X/y)
2ye

RHS is a homogeneous function of degree zero. Therefore, equation (1) is a

homogeneous differential equation.
To solve equation (1), let’s substitute x=vy . Then,

dv (2)

on differenti ating w.rt x, we get vy Y
dy dy

Substitute equation (2) in equation (1) , we obtain,

dv_ 2vye' -y 2ve' -1

V+y—
dy 2ye" 2e"
dv  2ve' -1
+y—-=
dy 2e"
dv  2ve' -1 2ve' —1-—2ve'
Oor y—= —v=
dy 2e" 2e"
Oor dv. -1

dy 2e'



This is in variable separable form

y -t
dy 2e"’
dy

2e'dv =——, integrating
y

ZJ'eVdv =—.[d—;/+logC

. 2e"=—logy+logC
2e" =log(C/y)

Now, substitute v=> we get
y

2e™Y =log(C/y)
This is the required general solution of the given homogeneous differential

equation (1).

Example 2.5.5: Show that the differential equation
ydx + xlog(y/ x)dy —2xdy =0 1S homogeneous and solve it.

Solution: Consider,

ydx + xlog(y/x)dy —2xdy =0
Or  ydx =[2x—xlog(y/x)]dy

or ¥_ Y (1)
dx 2x—xlog(y/x)

dy y 0
S = =x f(y/
dx  x(2—log(y/x)) Ty

RHS is a homogeneous function of degree zero. Therefore, equation (1) is a

homogeneous differential equation.



To solve equation (1), let’s substitute y =vx . Then,

on differenti ating w.r.t x, we get gy =V+ xﬂ .......................... (2)
dx dx

Substitute equation (2) in equation (1) , we obtain,

dv VX v
VA+X—= =
dx 2x-xlogv 2-logv
dv v
" X—=
dx 2-logv
dv_v-2v+vlogv _vlogv-v
dx 2—logv 2—logv
Xﬂ_v(logv—l)
dx 2-logv

-V

Or x

Or

This is in variable separable form

2—logv dv dx

: v(logv-1) X

r Mdv = _%, integrating
X

v(1l-logv)
ILJr av =—J‘ﬂ+logc
v(l-logv) v X

; J'L+Iogv+logx =logC
v(1-logv)

Now, substitute v=2 we get
X

This is the required general solution of the given homogeneous differential

equation (1).



Example 2.5.6: For the differential equation

y
X

ay +cosec(y/x)=0; y=0when x=1, find
X

the particular solution satisfying the given condition.
Solution: Consider,

d—y—1+cosec(y/x) =0

dx x

or oY cosec(y/x) = X0 (Y/X)ormmm M
dx X

RHS of equation (1) is a homogeneous function of degree zero. Therefore,
equation (1) is a homogeneous differential equation.

To solve equation (1), let’s substitute y =vx . Then, Substitute equation (2) in

equation (1) , we obtain,

dv
V + X— =V — COS ecv
dx

dv
‘. X— =V —COSecVv —V
dx

dv
Or Xx— = cosecv
dx

This is in variable separable form

) dx . )
. sinvdv=—, integrating
X

jsinvdv=jd—:+logc

—cosv=1logxC



Now, substitute v=2 we get
X

—cosy/Xx=1logxC......ccceeurenn. (3)
This is the required general solution of the given homogeneous differential
equation (1).
Now, to find the particular solution, using the given initial conditions;
y=0when x=1,
From equation (3), we get logC =-10r C =1/e.
Therefore, the require particular solution is given by

1
—cosy/x=logx+log=
e

Or —cosy/x=Ilogx-1

2.5 Test Your Progress

1. Which of the following are the homogeneous differential equations?
(i) (4x+6y+5)dy—(3y+2x+4)dx=0

(i) (y)dx—(x* +y*)dy=0

(i) (x* +2y?)dx+2xydy =0

(iv) y*dx+(x* —xy—y*)dy=0




2. Show that the given differential equation is homogeneous and solve each of

them.

N dy X+
(i) ="
X X

(i) (x—y)ﬂ:x+2y
dx

2 2
(i) Y =XV
dx 2%y

(iv) [xcos(y/x)+ ysin(y/x)]ydx = [ysin(y/x) —xcos(y/ x) |xdy
dy .
(V) x=Z—y+xsin(y/x)=0
dx
(Vi) (2xy + y2)—2x2%:0; y=2when x=1
X

Xﬂ_y:+
(vii) dx log y —log x

2.6. Equations reducible to Homogeneous form (Non-
Homogeneous ODE’s of first order)

The differential equation of the form dy _ax+by+e () is called
dx a,x+b,y+c,

non homogeneous equation.

The method of solution involves following two types



b

b ot
b,

Type 1: If i:b_l’ if however %:

2 2 2

=m(say) then the differential equation

becomes of the form dy _m@x+by)+e, (2). To solve this equation,
dx ax+by+c,

we substitute the common expression ax+by =v, on differentiation we get

dy _dv

- a The transformed equation will be solved by the method of

variable separable.

Type 2: If 2 B then we substitute x=X +h and y=Y +k,where hand k are
2 2

arbitrary constant to be so chosen as to make the given equation
homogeneous. With the above substitutions, we get dx=dX and dy=dyY , SO

that & = 9 This reduces the equation to homogeneous form.

dx
Hence, the given equation becomes

dy _ aX+bY+(@h+bk+c)
dX a,X+b,Y +(a,h+b,k+c,)

Now, choose N @d Kgych that &N +Pk+¢,=0 gnq ah+bk+c, g

Then, the differential equation becomes

dy aX+hbY

— = , which is homogeneous.
dX a,X +b,Y



Now, this equation can be solved as in case of homogeneous equations by
substitutingY =VX . Finally, by replacing X by (x—h)and Y by (y-k)we shall

get the solution in original variables xand y.

Illustrations on Type-1, non homogeneous ODE’s of first order:

dy _ X+ y+3
Example 2.6.1: Find the solution of the differential equation @ 2X+2y+1

dy ~ Xx+y+3
Solution: We have, 9 2x+2y+1

Equation (1) is a non-homogeneous ordinary differential equation of Type 1

Here, & -1 0 _1
a, 2 b, 2
) ﬂ_ X+y+3

Tdx 2(x+y)+1

dy _dvig dy_av

X+y=v= 1+
Put dx dx dx dx

Equation (1) gives, &Y 1= Y*3 o Qv _ V=3
dx 2v+1 dx 2v+1

Or %: v+3 +1
dx 2v+1
_V+3+2v+l
v+l
dv.3v+4
dx 2v+1

This is in variable separable form



v+1
v+4
(2 5/3

dv =dx

3 3v+4
J'(z— 5/3 Jdv:jdx+C
3 3v+4

2 51
—Vv——x=log(3v+4)=x+C
3V~ 3%3d )

Jdv = dx, integrating

Or %v—glog(3v+4) =x+C
Substitute x+y=v, we get
%(x+ y) —glog[3(x+ y)+4]=x+C is the required general solution.
dy ~ 2x+y-1

Example 2.6.2: Find the solution of the differential equation 9 4x+2y-4

dy ~ 2x+y-1
Solution: We have, @ 4x+2y-4

Equation (1) is a non-homogeneous ordinary differential equation of Type 1

Here, ﬁ:gzlzﬂzi
a, 4 2 2

Cdy  2x+y-1
Cdx o 2(2x+y)-4

2X+y=v=> 2+ﬂ:ﬂ rﬂ:%—
Put dx dx dx dx

dv v-1 or dv. v-1

Equation (1) gives, —-2= — = 2
g ()g dx 2v-4 dx 2v—4Jr




dv v-1+4v-8

dx 2v—4
or @ _ 5v-9
dx 2v-4

This is in variable separable form

2v-4
5v-9
2 2/5
(E_SV—9

J.(é— 5\2//_59jdv = Idx+C

2 2 1
—v——x=log(5v-9)=x+C
VT xE o )

dv = dx

]dv = dx, integrating

2 2
Or —v——1Ilog(5v-9)=x+C
e o ) =X+
Substitute 2x+y=v, we get

§(2x+ y) —%Iog[5(2x+ y)—9]=x+C is the required general solution.

QX: X—Yy+6
Example 2.6.3: Find the solution of the differential equation @ 3x-3y+4

dy  x-y+6
Solution: We have, dx 3x-3y+4

Equation (1) is a non-homogeneous ordinary differential equation of Type 1

Here,i=1:ﬂ:__1=l
a, 3 b, -3 3
L dy  x-y+6
“dx 3(x-y)+4
X=y=V= _y v rﬂzl—y

Put dx dx  dx dx



Equation (1) gives, 1- 3 = V6 o dv_,_ v+6
dx 3v+4 dx v+4

dv. 3v+4-v-6

dx v+4
Or @ _ 2v-2
dx 3v+4

This is in variable separable form

v+4
2v—-2

dv =dx

j(3+—jdv _[dx+C

§(3v+7log(v—1)): x+C

l(3+ Ljdv = dx, integrating

Or gv+ log(v—-1)=x+C
Substitute x—y=v, we get

g(x— y)+%|og[(x— y)—1]=x+C is the required general solution.

Ilustrations on Type-2, non homogeneous ODE’s of first order:

dy _x-3y-7
Example 2.6.4: Find the solution of the differential equation dx x—4

dy x-3y-7
Solution: We have, dx  x—4

Equation (1) is a non-homogeneous ordinary differential equation of Type 2,

since



Let’s substitute x=X +h and y=Y +k, where h and k are arbitrary constants.

Then,

we get dx=dX and dy =dy , so that dy _dv
dx dX

Thus, the given equation (1) becomes

dY  (X+h)=3(Y +k) =7 X -3¥+(h-3k-7) @
R Yot

Now, choose h and k such that h—-3k-7=0 and h-4=0, this implies that h =

4and k =-1

Then, the differential equation (2) becomes,

Y

X(l_?’{XD
Y _ X -3¢ _ CXOFQY I X) oo, (3), which is
dX X X

homogeneous in terms of X and Y of degree zero.

dy dv

Now, substitutingY =VX = —=V +X —
dX dx -

Therefore, Equation (3) reduces to

V+Xd—V:1—3\/ Or Xd—V:1—4V
dX dX

This is in variable separable form



dv dXx .
. ———=—, Integrating
1-4/ X
I—@i—: EIZ--JrlogC
1-4v X

- % log(1-4V) =1logCX

1

Or logCX =log———

J 9(1—4V)1’4
x-_ &
(1-4v)¥*

Now, Substitute V =§ then put X =Xx—4 and Y =y+1, we get

X:% Or X—4:%
(1_4Yj 1—4(y+j
X X—4
orx—4=C%=% o c_x_ay-s
X—4y -8

This is the required general solution of the equation (1).
dy  2y+6

Example 2.6.5: Find the solution of the differential equation 9X x+y+l

dy ~ 2y+6
Solution: We have, 9 x+y+1

Equation (1) is a non-homogeneous ordinary differential equation of Type 2,

since
a_0.b _2
a, 1 b, 1

Let’s substitute x=X +h and y=Y +k, where h and k are arbitrary constants.

Then,



we get dx=dX and dy=dy, so that dy _dv.
dx dX

Thus, the given equation (1) becomes

d_Y_ 2(Y +k)+6 Y +(2k+6) ©)
v (X+h)+(Y+k)+1_ X EY H(hokad)

Now, choose h and k such that 2k+6=0 and h+k+1=0, this implies that h =

2and k =-3

Then, the differential equation (2) becomes,

dY _ 2 X@YIX) gty

— = = = (3), which is homogeneous
dX X+Y Y
X(1+Xj

in terms of X and Y of degree zero.

dy dv

Now, substitutingY =VX = —=V +X —
dX dx -

Therefore, Equation (3) reduces to

vexdV_ v
dX 1+V
2
orxV_ &V, V-V-VE V(@-V)
dX 1+V V+1 @+Vv)

v v@-v) Vvi-v

dX  (1+V)  V+1

. dv.  VvZi-v
e, X—=-—
dX V +1

This is in variable separable form



g (\/2+1) dV:—d—X, Integrating
V-V X

.[—(\\//;Li)sv = —jd7x+ logC

; J.(\/L—l —\%)dv = Iog[%}

2log(V —-1)—logV = Iog(%)

Or Iog{(\/%l)z} = Iog(%)

2
Or C= x{u}
Y
. Y
Now, Substitute V =~ then put X =x-2 and Y =¥ +3, we get

[
Y /X XY

Or C =(X—2)|:[(y+3)_(x_2)]2:|

(x=2)(y+3)
This is the required general solution of the equation (1).

Example 2.6.6: Find the solution of the differential equation

ﬂ_(2x+ y—1j2
dx X—2

ﬂ:(2x+ y—1j2 "
Solution: We have, 9 x—2

Equation (1) is a non-homogeneous ordinary differential equation of Type 2,

since



Let’s substitute x=X +h and y=Y +k, where h and k are arbitrary constants.

Then,

we get dx=dX and dy =dy , so that dy _dv
dx dX

Thus, the given equation (1) becomes

dY (22X +h)+ (Y +K)-1) (2X+Y +@2h+k-D)) @
" X ah—2 - Y R

Now, choose h and k such that 2h+k-1=0 and h-2=0, this implies that h =

2and k =-3

Then, the differential equation (2) becomes,

2 2
d_YZEZX ”j :(X(Z”’Xj CXOEOIX) o (3), which is
dX X X
homogeneous in terms of X and Y of degree zero.

Now, substituting Y =VX = av =V + X Ll
dX dx -

Therefore, Equation (3) reduces to

V+xd—V=(2+v)2 or x V. _veiavia
dx dXx

Or Xd—V:(V +§)iiﬂ
dX 2 2

This is in variable separable form



: av _ X Integrating
(V +3ji [ ﬂ X
2 2
J dv _ dX +logC

T

2 (2 +3/2
Or —tan?| =—"|=log XC
N ( 7 j ’

Now, Substitute V =§ then put X =x=2 and Y =y+3, we get

2 (2Y/X+3/2)_
ﬁtan N J log XC
2 gany Y +3X) ) _
Orﬁtan vl j log XC
2 [ >y +3)+3(x-2)) | _ _
Orﬁtan [ X247 J logC(x—2)
OR

Y(X):%{ﬁx tan(g(log\x\+cj—3x}
Substitute X =x—2and Y =y+3,we get

y(X) = %{ﬁ(x - 2)tan(g(log\x -2+ CJ ~3(x - 2)} -3

This is the required general solution of the equation (1).



2.6 Test Your Progress

Find the solutions of the following differential equations.

(i)

(if)

(iii)

(iv)

(V)

(vi)

(vii)

(viii)

(ix)

dy x+y+1
dx x+y-1

dy  x+y+3
dx 2x+2y+1

dy 6x-4y+3
dx 3x-2y+1

(4x+6y+5)%:3y+2x+4
X

(12x+5y-9)dx+ (5x+2y-4)dy =0

dy 2x-y+1
dx x+2y-3

(2x+y+1Ddx+ (4x+2y—-1)dy =0

dy 3y+2x+4
dx 4x+6y+5

(2x+4y+3)dy = (2y + x+1)dx




2.7 Summary

In this unit, we studied the method of solving the differential equation in
which variables are separable and homogeneous equation and method of
solving them. We also studied the equation which are reductive to the

homogeneous from.

2.8 Terminal Questions

1. Solve the differential equations.

b) {xcos(%) + y sin (%) }y—{ysin(y) — X COS (%)}x.j—z =0

X

dy

c) ==e Y +x%e”
dx

d) (x2—y?dx + 2xydy = 0)

2.9. Answers to exercises

2.4 Test Your Progress

i) y=x*+logx+C

3
i)Y —x*+c
3



i) y=tanx—x+C

V) e*+e” =C
er .
V) y=?(smx—cosx)+C

Vi) (y+2)—log(y+2)° =x+logx*>+C

Vi) y=logsechx+C

I(x+1)?*(x-1)°
2X

viil) y= Iog{
iX) y* =logsec® x+1

X) logy+y? =sinx+1

Xi) y=tan(x+c)—x

2.5 Test Your Progress

1. (iv) is the only homogeneous differential equation

2. (1) y=log(Cx)*

(i) log(x* +xy +y?) = 2\/§tanl(x+2y}+c

J3x
(iii) x*—y*=Cx
sec
(iv) c=—=X
Xy
y y

(V) Cx=cosec>—cot>
X X



2%

. . 1 . .
(vi) General Solution: C ==e*/Y and Particular Solution:xe? =1
X

(vii) C=X—y2

2.6 Test Your Progress

(i) e =C(x+y)

(i) 2y~ log(ax+3y+4)=2+c

(iii) Ce””” =3x—2y+3
(iv) 14(2x +3y) —9log|(14x + 21y + 22)| = 49x +C

(V) 6x*+5xy+y? —9x—4y=C

-4 (o2

(vii) x+2y+logl2x+y-1=C

(viii) 14(2x+3y)—9log|(14x + 21y + 22)| = 49x + C
(ix) 4x+8y+5=Ce™™

(X) Ce” =3x-2y+C

2.7 Test Your Progress

i) y(x*-)=x+C

X3

X
i) y—=—+C
)yx—l 3



1
oy Slogx
i) yx2 Y oe'tC

iv) y(x*-1)=x+C

V) ye¥ =x+C
4 4
. , X'logx x
= -—+C
V) Y= e

vii) xe¥ =tany+C

viii) y=tanx+C+/tanx

2

ix) 2y =x"logx* + X’ cos(XiJ +Cx°

X) 2ylogx+cos2x=C
Xi) ysec’ x=secx—2
Xii) y(d+ x2)=tan1x—%

2.8 Test Your Progress

6 5 4

ceen 3 , X 2X7 X
iii 1+xX)" =—+—+—+C

A

2% ex2

X'e
—S_iC

iv) tan™y-e* = P




v) y°cos? x:_?zcos5 x+C

siny®

v (x+1)°

:1(x+1)2+C
2

vii) e%e® =e® (e*-1)+C

viii) xlogy = xe* —e* +C

oy =2

|X)F:7+3

x) x* —y® =3y>sinx



Unit —03: Linear differential equation

Structure
3.1. Introduction
3.2. Objectives
3.3. Linear differential equations of first order and first degree
3.4. Bernoulli’s differential equation (Or Non linear equations of
first order and first degree)
3.5. Summary
3.6 Terminal Questions

3.7 Answers to exercises



3.1. Introduction

The ordinary differential equations may be divided into two large
classes, namely, linear equations and non-linear equations. Whereas non-
linear equations are difficult in general, linear equations are much
simpler because then solutions have general properties that facilitate
working with them, and there are standard methods for solving many
particularly important linear differential equations.

In the previous unit, we had learnt how to solve variable separable form,
homogeneous and non homogeneous differential equations of first order
and first degree. In this lesson we will learn how to solve linear, non
linear ( i.e., Bernoulli’s Equation) , exact and non exact ODE’s which

are very useful in various physical and Engineering applications.

3.2. Objectives

After reading this unit students should be able to:
e Understand and find the solution of linear differential equations of
first order and first degree
e Solve the Bernoulli’s equation ( Or Non linear differential

equations) of first order and first degree



e Solve the exact differential equations of first order and first
degree
e |dentify the integrating factor to Solve the non-exact first order

and first degree ODE’s

3.3. Linear differential equations of first order and first
degree

A first-order linear differential equation is one that can be written in the
form &
orm &+ P(X)y =Q(X) .

Where P and Q are continuous functions of x. Equation (1) is the linear
equation’s standard

form.

Equation (1) is linear (in y) because y and its derivative % occur only to
X

the first power, they are not multiplied together, nor do they appear as
the argument of a function (such as siny, e, or \/%).

Example 3.3.1: Put the following equation in standard form:

x e +3y

dx



Solution: Consider, x% =x%+3y
X

Dividing by x

Which is in the standard form %+ P(x)y =Q(x) with P(x):—g and

Q(x) =x, So the
minus sign is part of the formula for P(x).

3.3.2. Solving Linear Equations:

We solve the equation %+ Py=Q
X

by multiplying both sides by a positive function v(x) that transforms the
left-hand side into
the derivative of the product v(x)-y. We will show how to findv(x)in a

moment, but first we
want to show how, once found, it provides the solution we seek.

Here is why multiplying by v(x) works:
Original equation in standard form is %+ P(X)Y=Q(X) cverrreerreennn (1)

Multiply by positive v(x), we obtain



v<x>%+ POOV(X)Y = QX)V(X)

v(x) Is chosen to make vﬂ+ Pvy = i(v.y)
dx dx

d
5 V00-y)=v00Q()
Integrating w. r. t *x’

(V9 y)= [v(x)Q(x) dx

1
V=103 [VOIQEY X v (2)

Equation (2) expresses the solution of Equation (1) in terms of the
functions v(x)and
Q(x). We call v(x)an integrating factor for Equation (1) because its

presence makes the

equation integrable.

Remark 3.3.1:
Why doesn’t the formula for P(x) appear in the solution as well? It does,
but indirectly,

in the construction of the positive function v(x). We have

The condition imposed on v(x) is %(v(x)-y(x)):v(x)%+ PO)V(X)y(X)




By using the product rule of derivatives

dv

dy
CoVIX) — e
( )dx+ydx

- v(x)% +POOV(Y(X)

or y% = P()V(X) (%)

This last equation will hold if %: P(x)v(x) , which is in variable

separable form

v =P(x)dx; v(x)>0

v(X)
Integrate both sides

ﬂ—jp(x) dx

v(X) -

Or logv(x) = _[ P dx
Taking exponentiation on both sides to solve for v(x).

e —el™ o v=el™ (3)

Thus a formula for the general solution to Equation (1) is given by
Equation (2), where v(x)is given by Equation (3). However, rather than
memorizing the formula, just remember how to find the integrating
factor once you have the standard form so P(x) is correctly identified.

Any anti derivative of P works for Equation (3).




To solve the linear equation %+ P(x)y =Q(x), multiply both sides by the

JP0% and integrate both sides,

integrating factor v(x) =e
When you integrate the product on the left-hand side in this procedure,
you always obtain

the product v(x)y(x) of the integrating factor and solution function y(x)

because of the way v(x) is defined.

Remark 3.3.2: Here, it is observed that if the function Q(x)is identically

zero in the standard form given by the equation (1), the linear equation is

separable and can be solved by the method of variable separable form.
Y Py =Qu)

dx

If Q(x)=0, then we get

d_y+ P(x)y=0
dx

Or ay =—-P(x)dx
y

This is in variable separable form.




Example 3.3.1: Solve the equation x% =x*+3y, x>0.

Solution: Let’s first put the given equation x% =x*+3y, x>0 inthe
X

standard form as%—§ VA= IR (1) so thatitis linear and
X X

P(x) = _g is identified.

The integrating factor is

V(X) = e_[P(x)dx _ ej—(3/x)dx

_ 1
—e 3logx -

X3

Now, we multiply both sides of the equation (1) by the integrating factor

viz., v(x) and then integrate

1 dy 3 1
Or : — =—
x® dx x* y X2
d 1 1 . ]
or—| — = —, Integratin
dx(x3 yj X2 J J
1 1
Pl s
1, 1.



Solving this last equation for y gives the general solution:

yzx?’(—lJerz—x2 +Cx3, x>0

X

Example 3.3.2: Solve the equation x* %Jr(x—Z)y =x%e?'*,

Solution: Let’s first put the given equation x %+ (x-2)y=x*"?"*inthe
X

standard form as%{x_zjy —e 2,
X

X2

X~ 2js identified.
X

P(x) =

The integrating factor is

Jxx;zzdx _ ej‘()l(—xzzjdx

v(x)=¢
2
log|X|+=
— X
2 2
—e"Mlex = xe*

(1) sothatitis linear and

Now, we multiply both sides of the equation (1) by the integrating factor

viz., v(x)and then integrate



XeZ/x (ﬂﬁ- X—2 yj — XGZ/X972/X

dx X
dy x-2

Or xe®* .| ==+ =
(dx x° yj

Or%(xyez’x)zjxdx, integrating

2

X
x-y-e*="—+C

y 2

Solving this last equation for y gives the general solution:

x C
:e—2/x 2=
g (2 xj-
dy

Example 3.3.3: Solve the equation xlog S 2log x.

Solution: Let’s first put the given equation xlog x% +y=2logx in the
X

.................. (1) sothatitis linear and

< | N

standard form asﬂ+ ! y=
dx \ xlogx

P(x) = is identified.

xlog x

The integrating factor is

I 1 dx I(UXde
xlogx — @ logx

— eIog(logx) — IOg X

v(X)=e



Now, we multiply both sides of the equation (1) by the integrating factor

viz., v(x)and then integrate

dy 1 2
log x| —+ y |=—log x
dx | xlogx X

Or i[y(log x)]= 2 log x, int egrating
dx X

y(log x):jélog xdx +C

Or y(log x):2.[§log xdx +C

2
y(logx)= %+C

Or y(logx)=(logx)? +C

Solving this last equation for y gives the general solution:

C
y=logx+——
log x -

Example 3.3.4: Solve the equation (x+ y+1)% =1.
X

Solution: Let’s first put the given equation (x+ y+1)% =1 in the
X

standard form asﬂ= ! Or%=x+y+10r%—x=y+l
dx (x+y+1 dy d

.................. (1) sothatitis linear and P(y)=-1is identified.

The integrating factor is



P(y)dy —1dy
v(X) = ej = ej
= e_y
Now, we multiply both sides of the equation (1) by the integrating factor

viz., v(x)and then integrate

e” Lg—i - xj e (y+1)

Or di[xe‘y]: e¥(y+1), integrating

[xe‘y]zje‘y(y +1)dx +C
Or xe 7 =—(y+1e™’ +Ie‘ydy+C

xe’ =—(y+e”? —e”? +C
Solving this last equation for x gives the general solution:

x=-y—2+Ce’.

Example 3.3.5: Solve the equation (1+y?) +(x—e“’”ly)% =0.

Solution: Let’s first put the given equation (1+y?)+ (x—eta”ly)% =0 in
the standard form as (1+ y2)3—§+ (x—e™ ¥)=00r (1+ yz)j—;+ x=ge¥"V

dx X gy

— . 1 that it is linear and P(y) =-1i
Ordy+ ) ey (1) so thatitis linear and P(y) IS

identified.

The integrating factor is



[Py Jip
v(x)=¢ =g

tanly

=€
Now, we multiply both sides of the equation (1) by the integrating factor

viz., v(x)and then integrate

tanly dx X tan"ly e y
e —+ o | = e >
dy (1+y7) d+y")

. . tan"ly . .
i(xetan y): gtn y( € } mtegratlng

dy @+y?)
) tan"ly B
xet@ 'y :Ie—zetan y dy+C
d+y%)
. 2tanly
Or xe™ ¥ = dy +C
e @

. Xetan’ly :%eZtanly e

Solving this last equation for x gives the general solution:

X = %eta”_l YyCe ™Y

Example 3.3.6: Find the particular solution of 3x%— y=logx+1 x>0,
X

satisfying y(1) =-2.



Solution: Let’s first put the given equation 3x%— y=logx+1, x>0 in
X

the standard form as & - Ly _logx+1 . (1) so that it is linear
dx 3x 3x

and P(x)=—-—Lis identified.
3x
The integrating factor is

1
v(x)=el " =gl "

1/3
X

Now, we multiply both sides of the equation (1) by the integrating factor

viz., v(x)and then integrate

X—1/3(ﬂ_i yj _ X—1/3(|Og X+lj
dx 3x 3X
d

or d—(yx‘“3): %(Iog x+1)x*"3, integrating
X

yx ' = %j(log X +1)x*3dx +C

-1/3 -1/3

1 X X
Or yx* == (logx+1 3
yx 3{( gx+1)———+3]

dx}+C
X

Or yx *? = [— (logx +1)x 3 +Ix‘4’3dx]+ C
Or yx ** = [— (logx +1)x '3 —3x‘1’3]+ C
Solving this last equation for y gives the general solution:

y =[-(logx+1) 3]+ Cx"® Or y=[-(logx+4]+Cx"* Or y=Cx"®—logx—4



Now, let’s use the given initial conditions as; when x=1and y=-2 in the
equation (2), we get
—2=—(0+4)+C = C =2. Substituting the value of C in equation (2) gives

the particular solution given by y=2x"®-logx—-4.

Example 3.3.7: Find the particular solution of %+ ycot X = 4XCosecx ,
X
satisfying y(%) 0.

Solution: Consider , %+ YCOtX = 4XCOSECX  vvvvrvrerrersrnnns (1) thisis linear
X

and P(x) = cotx s identified.

The integrating factor is

V(X) _ eJ.P(x)dx _ eJ.cotxdx

— eIogsinx — Siﬂ X

Now, we multiply both sides of the equation (1) by the integrating factor

viz., v(x) and then integrate

sin x(%+ y cot xj = (4xcosecx)sin x

Or sin xﬂ+ y CoS X = 4X
dx

Or di(ysin X) =4x, integrating
X

ysinx=4.|.xdx+C

ysinx=2x*+C



Solving this last equation for y gives the general solution:

_2x*+C
sin x

Or y=(2X* +C)COSECX uvrrrerrrvrrenns (2

Now, let’s use the given initial conditions as; when x = % and y=0 inthe
equation (2), we get

2 2

O=%+C =C =—%. Substituting the value of C in equation (2) gives

2
the particular solution given by y = (2x* —%)cosecx.

3.3 Test Your Progress

Solve the following differential equations:
i) (xz—l)%+2xy:1

dx
i) x(x—l)ﬂ—yzxz(x—l)2

dx

1
iii) xﬂ+ ylogx=exx1 2%
dx

iv)  (X° —1)y+ 2xy =1
dx

d
V) d—i+2xy=e

—X2




Vi) xﬂ+2y—x2 logx=0
dx

vii) dx+xdy =e ¥ sec’ ydy

. dy
SIN2X—=—y =tanXx
Viii) i y

' ﬂ—(gjy—x+lsin(i)
1X) dx x X x>

ﬂ+ y  sin2x
dx xlogx logx

xi)  Solve %+2ytanx=sin x. Given that y =0 when x=%
X

.. dy 1
xii)  Solve (1+x*)—L+2xy =
) ( )dx X 1+

. Giventhat y =0 when x=1
X

3.4. Non-linear ( or Bernoulli’s ) differential equations

Definition 3.4.1:

An equation of the form %Jr P(X)Y=Q(X)Y" eeeerrrenne (1), where P and Q

are functions of x only and “n’ is a real number.

Case 1: If n=1then equation (1) can be written as

% +[POY=QU)]Y =0 e 2)



This is of variable separable form, therefore its general solution is given
by
jﬂq(P—Q)dx:c .
y
Case 2: If n=1then divide the equation (1) by y", we obtain

g g_y FPOOY™ ZQX) evreereineererssnenn (3)
X

Put y*" =u

Differentiate with respect to x; (1-n)y™ % = 3—?( .

Equation (3) gives: ‘;_‘X’+(1_n)p.u _ (1—n)Q. This is linear differential

equation in u and x

Therefore, Integrating factor = /™™

. . . —mPdxe (1-n .eJ.u—n)de
Its general solution is given by ued ¢ PefEme
To get the general solution of equation (1), substitute y*" =u.

Example 3.4.1: Solve the equation %Jr ycot x = y?sin? xcos? x.
X

Solution: Given equation %+ yCot X = y*Sin® XCOS% X .uvevurnnee. (1) is
X

Bernoulli’s equation.



Dividing equation (1) by y*, we obtain yz%Jricotx =sin’ xcos® X

Xy
..................... ()
putl Ly LU _dupg 1dy du
y y=dx dx y© dx dx

Equation (2) gives,

du . )
——4ucot X =sin“ Xcos” x
dx

Or z—u—ucotx=—sin2xcoszx ................................... (3)
X

This is linear equation in uand x with P(x) =—cotxis identified
The integrating factor is

—Icotxdx

V(x) = eIP(x)dx

— 199N — cosecx

Now, we multiply both sides of the equation (3) by the integrating factor

viz., v(x) and then integrate

du ., )
COS ecx d——ucotx =(—sm X C0S x)cosecx
X

du . 2
Or cosecx — —ucot xcosecx = —Sin XCos“ X
X

d : . i
Or d—(ucosecx):—coszxsmx, int egrating
X

U COSECX = J‘cos2 X (—sin x)dx +C

s x

(0]
ucosecx = +C




Substitute % =u, We get

s® x

1 cosecx = 5%, ¢ s the required general solution of the given

y

differential equation (1)

Example 3.4.2: Solve the equation %H Yyt
X —X

Solution: Given equation %H&Z: XYY i (1) is Bernoulli’s
X —X

equation.

Dividing equation (1) by y“2, we obtain y 2% X vz _y

dx 1-x?
..................... (2)
Put y1/2 —u jlyfl/zﬂ:d_u Or y*l/zﬂzzd_u
2 dx dx dx  dx
Equation (2) gives,
2d—u+ X2u=x
dx 1-x
or M X X 3)

dx  20-x%) 2

This is linear equation in uand x with P(x):ﬁis identified

The integrating factor is



X
v(x)=el " RE=h

1 X
= eEJ‘ (1_X2)dx

T “Lioga-x?
_e 2 tdt _e 4Iog(:L X7)
B 1
- (1_X2)1/4

Now, we multiply both sides of the equation (3) by the integrating factor
viz., v(x) and then integrate

S S U S . B
A-xH)" | dx  2(1-x?) 2\ (1-x?)Y*

1 d—u+ X U X
(1_ X2)1/4 dX 2(1_ X2)5/4 2(1_ X2)l/4

d {L} 1 x Integrating

Or

dx (1—x?)7 :E(l_xz)lm’
i u 11 X
———— |==|————dx+C
_(1—X2)l/4_ 2_.-(1_)(2)1/4
B ] _ _ y2)\31/4
ST O I e
| =-x)""] 2 2 3/4
or ﬁ:—sa—xz)“’uc
—X

Substitute y“? =u, we get

1/2

Hw=—3(1—x2)3"‘+c Or y"? =-3(1-x*)+C(@1—x*)"* is the required
—X

general solution of the given differential equation (1).

Example 3.4.3: Solve the equation %Hsin 2y =x°cos® y
X



Solution: Given equation %+ XSiN2y = X>C0S% Y vovvvennnns (1) is
X
Bernoulli’s equation.

Dividing equation (1) by cos” y, we obtain sec? y%+2xtany =x°
X

..................... (2)
Puttany =u = sec? yﬂ _du
dx dx
Equation (2) gives,
L T R (3)

This is linear equation in uand x with P(x) =2xis identified.

The integrating factor is

V(X) _ eJ.P(x)dx _ eZJ.xdx

2£§) X2

Now, we multiply both sides of the equation (3) by the integrating factor

viz., v(x)and then integrate

e (d_u+ 2xuj —e¥'x3
dx

X
2 2
ue* :.[eX x?xdx+C

Or di(uexz ): e’ x3, Integrating

ue* = %exz (x> -1 +C



Substitute tany =u, we get

2

x? -1 2

X° -1

tanye” =%exz (x*-1)+COrtany= +Ce™ Ory =tan‘1{ +Ce‘x2} IS

the required general solution of the given differential equation (1).

Example 3.4.4: Solve the equation %(XZW +xy)=1

Solution: Given equation %(xzy?’ +xy)=1 can be written as
X

%:(Xzys +xy)

dy
Or g—;—xy: XY i (1) is Bernoulli’s equation.
. i ) . 1ldx 1 3
Dividing equation (1) by x*, we obtain Fay )Ty s (2)
X“dy X
Put L-u :>_—;L%=d—u
X X“dy dy
Equation (2) gives,
—d—u—yu:y3 or d—u+yu=—y3 ................................... (3)
dy dy

This is linear equation in uand y with P(y) =—yis identified.

The integrating factor is

V() =l " Zel e



Now, we multiply both sides of the equation (3) by the integrating factor

viz., v(x)and then integrate.
eyz/z d_u+yu :_ey2/2y3
dy

Or di(eyz’zu):—eyz’zy3,Integrating
y

ue’’? :_Iey2’2y3dy+C

ue¥’2 =—y%e¥? 122 1 C
Substitute £ = u , We get
X

i-eyZIZ
X

——y%’2 1 2e"12 4 C Or £ ——y?+2+Ce ' is the required
X
general solution of the given differential equation (1).

Example 3.4.5: Solve the equation % — (sin x—sin y) X

cos 'y

Solution: Given equation % — (sinx-siny)>X can be written as
X cos y

Ccos y% = (sin XC0S X —Sin y cos x) Or cos y%min Y COS X = Sin X COS X
X X

..................... (1) 1s Bernoulli’s equation.

Put siny=u :>cosyﬂ:d—u
dx dx

Equation (1) gives,

du :
G TEOSXUSSINXCOSX o (2)
X



This is linear equation in uand x with P(x) =cosxis identified.

The integrating factor is
P(x)dx cosxdx ;
v(X) = eI = ej =e™"

Now, we multiply both sides of the equation (2) by the integrating factor

viz., v(x)and then integrate.

inx [ AU inx (s
e*" (d——cos xu | =e""*(sin xcos x )
X

or %(u e5™ )= e*"™ (sin xcos x ), int egrating

uet™ = _[eS‘”X(sin xcos x )dx+C

sinx sinx

ue =jsin x-e"*.cosxdx+C

Orue™ =™ (sinx—-1)+C
Substitute siny =u, we get

sin yesinX — eSinX(Sin X—l) +C Or sin y= (Sln X—l) +Ce—3inx Or y :Sin—l[sin X_1+Ce—sinx]
is the required general solution of the given differential equation (1).

Example 3.4.6: Solve the equation

dy vy

Folav y2xsin x, x > 0 with initial condition y(z) =1
X X
Solution: Given equation %Jr% = VPXSINX  cvevviiiieie, (1) is

Bernoulli’s equation.



Dividing equation (1) by y?, we obtain iﬂ+—_ xsin x
y* dx  xy

Equation (2) gives,

du 1 du 1 3)

—— 4+ U =XSINX OF —— =2 U ==XSINX  teetrterieeeeeeeeeeeearaenrenanns
dx x dx x

This is linear equation in uand x with P(x)=_71is identified.

The integrating factor is

ejp(x)dx _ efjédx

v(x) =

— e—logx =
X

Now, we multiply both sides of the equation (3) by the integrating factor

viz., v(x) and then integrate.

:—_[sm xdx+C

X
u
—=cosx+C
X



Substitute % =u, we get

1/—y:cosx+c: o SV B (4) is the required general

X Xy
solution of the given differential equation (1).
Now, let’s use the given initial conditions as; when x=zand y=1 in the

equation (4), we get

1 cosr+c=c=ti1 Substituting the value of C in equation (4) gives
T T

the particular solution given by L o cosx+ i,
Xy T

3.4 Test Your Progress

Solve the following differential equations:

d

dy 2
i X—=+Yy=Yy"logXx
ii) dx y=Yy log
gy 2y X
) a 1ex y?

iv) %WL(than‘1 y— x3X1+ yz): 0

dy sin xcos? X
V) 2 _ytanx=—""7"=

dx y




vi)  2ycos yz%—isin y? =(x+1)°

X+1

@ _ ex‘y(eX —ey)

Vi)
dy x
viii)  X—=+ylogy=xye
dx
iX) xyz%—Zy3 =2x°. Given that y(1) =1
2 5 dy

Xy —X d—:y4 cosx. Giventhat y(z)=r
X

3.5 Summary

In this unit, we studied the liner differential equation of first order and
first degree and method of solving them. We have also seen the
Bernoulli’s differential equation 1.e. equation which are reducible to

linear from and its solution.

3.6 Terminal Questions

1. Solve the following differential equations

dy
A. S —mx+ny+q



W _ 32 _
B.dx—xy Xy

. dy _
C. sin. —t 3y = cosx

D. (cosx)dy = y(sin — y)dx.
3.7 Answers to exercises

3.3 Test Your Progress
i) y(x*-1)=x+C

X3

L X
i) y—=—+C
) yx—1 3

1
i) 2 = +C
iv) y(x*-1)=x+C
V) ye¥ =x+C

x*logx x*
-+
4 16

vi) yx° =
vii) xe’ =tany+C

viii) y=tanx+C+/tanx

2

ix) 2y =x’logx* + x? cos(i} +Cx?
X

X) 2ylogx+cos2x=C



Xi) ysec’ X =secx—2

Xii) y(L+x*)=tan™ x—%

3.4 Test Your Progress

L1 5
I =—+C
)X5y5 2X2
.. 1 —logx 1
i) —= I _Zic
Xy X X
6 5 4
v 3 , X0 2X7 X
i 1+X)" ' =—+—+—+C
A e
iv) tan”y-e* = S
2 2

v) y?cos® x = _?Zcos5 x+C

H 2
Vi) >INy - :l(x+1)2 +C
(x+D)° 2

vii) e’e® =e® (e* -1)+C

viii) xlogy =xe* —e* +C

oy =2
IX)F=7+3

x) x® —y® =3y?sinx
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4.1. Introduction

The ordinary differential equations first order and first degree has
different forms according to their nature, namely, exact differential
equations and non-exact differential equations. Whereas non-exact
equations are difficult in general, exact equations are much simpler
because the solutions of exact differential equations are solved by using
direct testing of necessary condition of exactness and formula for general
solution, and there are standard methods ( i.e., integrating factors ) for
solving many particularly important non exact differential equations.

In the previous unit, we had learnt how to solve variable separable form,
homogeneous, non homogeneous and linear and non linear differential
equations of first order and first degree. In this unit we will learn the
techniques for solving analytically some special forms of ODE’s namely

exact and non exact, which are useful in various applications.

4.2. Objectives

After reading this unit students should be able to:
o Solve the exact differential equations of first order and first

degree



o Find the integrating factors in different forms
o Identify the suitable integrating factor to solve the given non-

exact first order and first degree ODE

4.3. Exact differential equations of first order and first
degree

Definition 4.3.1: A differential equation M(x,y)dx+N(x,y)dy=0. Where
M and N are functions of x, y is called an exact differential equation if
there exists a function f(x, y)having continuous first order partial

derivatives such that m _a and N ::% for such a function f, we write

OX

Mdx + Ndy = df where df stands for df =?dx+%dy.
X

Equivalently,

A differential expression M(x,y)dx+N(x,y)dyis an exact differential in a
region R of the xy-plane if it corresponds to the differential of some
function f(x, y) defined on R.

A first order differential equation of the form M(x,y)dx+ N(x,y)dy=0is

called an exact differential equation if the expression on the left hand side

is an exact differential.



The criterion for an exact differential:
Let M(x, y)and N(x, y) continuous and have continuous first partial
derivatives in a rectangular region R defined by a<x<b,c<y<d. Thena

necessary and sufficient condition for M(x, y)dx+ N(x, y)dy to be exact

differential is @:@.
oy oX

Theorem 4.3.1: The Necessary and sufficient condition for the

differential equation Mdx+ Ndy =0to be exact is %Vl _ N

ox

Proof: By the definition of an exact differential equation, there exists a

function f(x, y) having continuous partial derivatives such that M :%
of
............. 1)and N==—.............(2
(1) Y (2)

Differentiate equation (1) partially with respect to y and equation (2)

2 2
partially with respect to x, we obtain, M_If qpgN_F
oy 0y-oXx OX OX-oy

For the functions having continuous first order partial derivatives it is true

2 2
that ot _of
o0y-0X OX-oy
oM ON



Now, let us suppose that oM _N
oy oX

To prove: Mdx+ Ndy =0is an exact differential equation.

Let F(x, y) =_|.M dx [where J. M dx means while integrating keep ‘y’
y y

constant].

2 2
Consider M_ON_oF _OF
oy OXx oy-ox ox-oy

ON  O%F
- — — =
X OX-dy

Oré N—a—F =0
OX oy

As N —% =¢(y) (say) as it does not contain terms of x

N =%F+¢(y)

M dx+ N dy :Z—idx+(%+¢(y)jdy
oF
OX
= dF +¢(y)dy = d(F +y (y)) where d[y (y)] = 4(y)dy

Now, _ dx+%dy+¢(y)dy

Therefore, Mdx+ Ndy =0is an exact differential equation.
Thus, the general solution of it is given by,

F(xy)+[#(y)dy =c where F(x, y)= [Mdx

Keeping y constant



#(y)=N —%F, where ¢(y) is independent of x (i.e., free from x).

Hence, the general solution of an exact differential equation is given by

jM dx+j¢(y)dy=c

Keepingy constant

Equivalently, J.M dx + I(Terms of N free fromx)dy =C

Keepingyconstant

Note 4.3.1: The general solution of an exact differential equation can also
be given by

J.Ndy+_|.¢(x)dx:C.

Keepingxconstant

Equivalently, J. N dy + I(Terms of M free fromy)dx=C

Keepingxconstant

Example 4.3.1: Solve the differential equation
(x? —4xy —2y?)dx + (y? —4xy —2x?)dy =0

Solution: Given equation is (x* —4xy —2y*)dx+(y* —4xy —2x*)dy =0

Here, M =(x?-4xy—-2y?)  and N =y? —4xy —2x*
oM ON
M - 2o 4y ax
oy y OX y

% N _ Given equation is an exact differential equation.
X

.. The general solution of it is given by



IM dx + I(Terms of N free fromx)dy =C

Keepingyconstant

= j(x2—4xy—2y2)dx+jy2dy:C

Keepingy constant

X3 X2 y3
s =4y = |-2y*x+| 2 |=C
X3 y3
Or ——-2x’y-2y*’x+|Z-|=C
C-zy-ayn| 4]
Example 4.3.2: Solve the differential equation

(y2e® +4x%)dx+ (2xye? —3y?)dy =0

Solution: Given equation is (y%®" +4x%)dx +(2xye”" —3y?)dy =0

2

Here, M =y%¥ +4x° and N =2xye¥ -3y
M _ y2eY (2xy) +2ye” - N _ 2xye™’ (y?) +2ye"’
oy OX

=2ye™ (xy? +1) =2ye™ (xy? +1)

% N _ Given equation is an exact differential equation.

. The general solution of it is given by

I M dx + I(Terms of N free fromx)dy =C

Keepingy constant

= J'(yzeXy2 +4x3)dx—3J.y2dy:C

Keepingy constant

Ak

2
or e¥ +x'-y’=C



Example 4.3.3: Solve the differential equation
(2xy + y —tan y)dx + (x> —xtan® y +sec® y)dy =0

Solution: Given equation is (2xy +y —tany)dx+(x* +x—xsec’ y)dy =0

Here, M =2xy+y-tany  and N =x°+Xx—xsec’y
.'.ﬂ=2x+1—seczy .'.®=2x+1—3eczy
oy OX
=2ye" (xy? +1) =2ye" (xy? +1)

%V' = ‘2—N = Given equation is an exact differential equation.
X

. The general solution of it is given by

IM dx + I(Terms of N free fromx)dy =C

Keepingyconstant

= I(ny+y—tany)dx:C

Keepingyconstant

X
2
Or x°y+xy—xtany=C

2
Zy( J+xy—xtany:C

4.3 Test Your Progress

Solve the following differential equations
) X(L+ y?)dx+ y(@1+x*)dy =0
i) (x* —ay)dx = (ax— y?)dy

i) ysin2xdx —(y? +cos”x)dy =0




V) (LreY)dx+eY1-X)dy =0
y

V) (L+e”)cos xdx +e” sinxdy =0

Vi)  (2x® +6xy—y?)dx+(3x* —2xy + y*)dy =0
Vi) (y%e¥ +4x%)dx+ (2xye®’ —3y?)dy =0
viil)  (xe¥ +2y)dx+ye?¥dy=0

xdy — ydx

IX)  xdx+ydy =——=
x> +y

X) (2xy + y —tan y)dx + (x* —xtan® y +sec® y)dy =0

4.4. Non exact differential equations and Integrating
factors

It is sometimes possible that even though the original first order
differential equation M(x,y)dx+ N(x,y)dy=01is not exact, but we can
multiply both sides of this differential equation by some function [say,

f(x,y)] so that the resulting differential  equation
f(x, Y)YM(x, y)dx+ f(x,y)N(x,y)dy=0 becomes exact. Such a function
(or factor) f(x,y)is known as an integrating factor for the original

differential equation M (x, y)dx+N(x,y)dy =0.




Sometimes a differential equation which is not exact, can be made so
on multiplication by a suitable factor called an integrating factor.
Remark: It is possible that we lose or gain solutions while multiplying
an ordinary differential equation by an integrating factor.

For Example: consider the  first order differential equation

ydx—xdy =0, which is clearly non-exact. But observe that if we

multiply both sides of this differential equation by the factor % the

dx X

resulting ODE becomes 7——2dy =0which is exact.

The rules for finding integrating factors of the equation

M (x, y)dx+ N(x, y)dy =0are as follows.

4.4.1 Integrating factors found by Inspection:

In a number of cases, the integrating factor can be found after
regrouping the terms of the equation and recognizing each group as
being a part of an exact differential. In this connection the following
integrable combinations prove quite useful.

) xdy + ydx = d(xy)

i) xdy—zydx:d(lj
X X



iy Xy oy d[mgPD
Xy X

Vi)

Example 4.4.1 (i): Solve the differential equation
(ye*dx —e*dy) + 2xy*dx =0.
Solution: We have (ye*dx—e*dy)+2xy’dx=0. Here, we can observe that

the terms ye* and e*dy should be put together.

L YT | oydx=0 OF d(e—}erdx:O. Integrating, we obtain
y y

€ ix?=c isthe required general solution.
y

Example 4.4.1 (ii): Solve the differential equation
xdy — ydx +a(x’® + y*)dx =0.
Solution: We have xdy—ydx+a(x*+y*)dx=0. Here, we can observe that

the terms xdy — ydx and (x? +y?) should be put together.



_ Xdy — ydx

X* +y?

+adx=0Or d(tan‘l Xj +adx =0 Integrating, we obtain
X

(tan‘l Xj+ax =C Is the required general solution.
X

Example 4.4.1 (iii): Solve the differential equation

a®(xdy — ydx) _

xdy + ydx =
y+y X2+ y?

2
Solution: We have xdy + ydx =w. Here, we can observe that the
X" +y

all terms are already combined together.

-od(xy) =a2d(tan‘1 %) Integrating, we obtain

xy =a’ tanl(l}rc is the required general solution.
X

4.4.2 Integrating factor of a Homogeneous Equation:

If M(x,y)dx+N(x,y)dy=0be a homogeneous equation in x and y, then

IS an integrating factor provided Mx+ Ny =0.
Mx + Ny

dy:y—xﬂ.

Example 4.4.2(i): Solve the differential equation x+ Y i

Solution: Given equation is x+ y% = y—xﬂ ............................. (1)
X



dy
Or x—=+y—=y-X
dx ydx y

Or (x+ y)ﬂ: y—X
dx
Or (y—=x)dx—(X+y)dy=0 .cccoecvrrrrrrrrnn (2)

Here, M =y—x and N =—(x+Y)

.'.ﬂzl and @:—1
oy OX

Mo

oy X
Thus, given equation is non-exact differential equation.
But equation (1) is homogeneous differential equation.
Now, Consider Mx+Ny=x>—xy+xy+Yy*=x*+y?#0

11
Mx+Ny x*+y?

.. Integrating factor =

Multiplying equation (1) by the integrating factor ——— we get
X" +y
A YA A VI (3) is exact, because
X" +y X" +y
y—X X+Yy
Ml:x2+y2 and Nl:_x2+y2

LMy (YO -(y-x)@y) X2y -yt
oy (x* +y%)? (x* +y?%)?

ON, _ (X" +y*) D)+ (x+y)(2y) _x* +2xy -y’
8X (X2+y2)2 (X2+y2)2

as



. oM, N,
oy X

Hence, the general solution of the equation (3) is given by,

I M, dx + J' (Terms of N, free from x) dy =C

yconstant

y—X _
_[ (xz +szdx_C

yconstant

1 X
Ory .[ (X2+y2jdx—sz+y2dx=c

yconstant

This is the required general solution of the given equation (1).

Example 4.4.2(ii): Solve the differential equation xydx —(x* +2y*)dy=0.
Solution: Given equation is xydx —(X* +2y*)dy =0 ...ccccevvvrerrerineennnnn, @)
Here, M =xy and N =—(x*+2y?)

oM oN

S.—=X and — =-2x
OX

oM N

'8y P

Thus, given equation is non-exact differential equation.

But equation (1) is homogeneous differential equation.



Now, Consider Mx+ Ny =x*y—x’y—2y® =-2y* =0

.. Integrating factor = 1 1
Mx+Ny 2y

3

Multiplying equation (1) by the integrating factor 2_—y13 we get

—%(xydx)+2—13(x2+2y2)dy=0 .................. (3) is exact, because as
y y
X% +2y?
M, —ﬁs and N, =- 5 3y
y

COM; _ (2y*)(=x) +xy(6y?)

Yy (2y*)?
C=2xy+6xy° X
Wy

and

ON, _ (2y°)(2x) - (x* +2y*)(0)

OX (2y*)?
Ayt x
4y° y?

C M, aN,

oy X

Hence, the general solution of the equation (3) is given by,

I M, dx + I (Terms of N, free from x) dy =C

yconstant

- 1
| [zﬁjdmj;dy —C

yconstant

Or — 12 j xdx+J%dy:C

y yconstant



2

_ix_+|ogy:(:

2y? 2
XZ

Orlogy- =C
gy 1y?

This is the required general solution of the given equation (1).

Example 4.4.2(iii): Solve the differential equation
(x*y —2xy?)dx —(x* —3x*y)dy =0.

Solution: Given equation is (x*y—2xy*)dx—(x* —3x*y)dy =0

Here, M =x*y—2xy® and N =—(x*>-3x%y)

SM e —4xy and N _ 3¢ +6xy
oy OX

oM oN
L —E—

oy OX
Thus, given equation is non-exact differential equation.
But equation (1) is homogeneous differential equation.
Now, Consider Mx+ Ny = x®y —2x?y? —x®y +3x*y* =x°y* #0

1

2,2

.. Integrating factor = =
Mx+Ny X7y

Multiplying equation (1) by the integrating factor we get

X2y2



Xz—lyz(xzy—2xy2)dx—ley2 (X} =3x*Y)dy =0 .ccoeerrrenenn, (3) is exact, because

as Mlzi—g and le—inr—
y X y
6M1=—i2 and
oy y
N, __1
ox y?
. oM, _ oN,
oy X

Hence, the general solution of the equation (3) is given by,

.[Mldx+.|.(l'erms of N, free from x) dy =C

yconstant

| [i—gjdmj%dy:c

yconstant y X

Or 5—2Iogx+3|ogy:C
y

This is the required general solution of the given equation (1).

Note: If the given differential equation M(x, y)dx+N(x,y)dy =0 is
homogeneous and exact then solution of differential equation is factor of

Mx+Ny=C.




443 Integrating factor for an Equation of the type

f.(x, y)ydx+ f,(x,y)xdy =0

If the equation M (x, y)dx+ N(x, y)dy =0be of this form, then Mx—Ny IS an
integrating factor ( Provided M dx—Ndy=0).

Example 4.4.3(i): Solve the differential equation

1+ xy)ydx + (1—xy)xdy =0.

Solution: Given equation is (1+xy)ydX +L—Xy)XdY =0 ..cccvevrrrireereerreennn @

Here, M =y+xy?and N =x-x%y

.'.%:1+2xy and @:1—2xy
oy OX

oM oN
L —E—

oy oX
Thus, given equation is non-exact differential equation.
But equation (1) is of the form f,(x,y)ydx+ f,(x,y)xdy =0.
Now, Consider Mx— Ny = yx+ x*y* —xy + X*y* = 2x°y* #0

1
Mx—Ny 2x%y?

.. Integrating factor =

Multiplying equation (1) by the integrating factor lez we get



—=(y+ xyz)dx+F1y2(x—x2y)dy:0 .................. (3) is exact, because as

1 1 1 1
1 =5 +— and Nj=————
2X°y  2x 2xy° 2y
M 1- 2 and M, 1- 2
oy 2X°y OX 2X°y
oM, ON;
oy OX

Hence, the general solution of the equation (3) is given by,

I M, dx + J' (Terms of N, free from x) dy =C

yconstant

11 1
[ [szy +5jdx—j2—ydy=c

yconstant

Or 1(_—1+Iogx—log y]:C
2\ xy

Or —i+logizc1
Xy y

Or Iogﬁ—i:C1

y Xy

This is the required general solution of the given equation (1).

Example 4.4.3(ii): Solve the differential equation

(x*y? +x)dy + (x*y® — y)dx =0.



Solution: Given equation is

(x*y* +x)dy + (x*y® —y)dx =0 Or (x*y? —1)ydx+ (x*y* +1)xdy =0

Here, M =x*y*—y and N =x’y*+x

M =3x’y?—1and N =3x%y? +1
oy OX

oM oN
L —E—
oy OX
Thus, given equation is non-exact differential equation.

But equation (1) is of the form f (x,y)ydx+ f,(x,y)xdy =0.

Now, Consider Mx—Ny = x%y® —xy —x’y® —xy =—2xy #0

- Integrating factor = t 1
Mx—Ny  2xy

Multiplying equation (1) by the integrating factor —% we get

_—1(x2y3—y)dx—i(x3y2+x)dy=0 .................. (3) is exact, because as
2xy 2xy
2 2
M, = L and N, = Xy_ 1
2 2X 2 2y

M _yand M

oy OX
_ M, oN;
oy ox

Hence, the general solution of the equation (3) is given by,



IMldx+IUerms of N, free from x) dy =C

yconstant

-xy* 1 1
_[ E >;y +§jdx—'|'2—ydy:0

yconstant

2,2
Or ( Xy +—Iogx—%logyjzc

4 2
2,,2
Or 1(—)( y +IogﬁJ:C
2 y
2,,2
Or (Iogi—X y J: 1
y

This is the required general solution of the given equation (1).

Example 4.4.3(iii): Solve the differential equation
(X2y? +xy +1) ydx + (x*y* —xy +1)xdy =0.

Solution: Given equation is (x*y? +xy +1)ydx + (x*y? —xy +1)xdy =0

Here, M =x*y’+xy’+y and N=x’y* —x’y+x

aM 2.2 aN 2,2
So—=3Xy +2xy+1 and — =3Xx —-2xy+1
oy y Xy o y Xy

MmN
L

Thus, given equation is non-exact differential equation.

But equation (1) is of the form f,(x, y)ydx+ f,(x,y)xdy =0.



Now, Consider Mx—Ny = x%y® +x°y? + xy = x’y? + x°y? —xy =2x°y* #0

1

.. Integrating factor = =
Jraing Mx—Ny 2x*y?

Multiplying equation (1) by the integrating factor ley we get

M=x’y’+xy’+y and N =x%y* —x*y+x

%(x2y3+xy2+y)dx+—1 S(CY? =Xy +X)dy =0 o (3) is exact,
2X y 2X y
because as M, =Y + -+ 12 and N,=X- L1, 1

2 2x 2X°y 2 2y 2xy?

oMy 1 1 N 11

oy 2 2x%y? Ty 2 2x3y?
_ oM, oN;
oy ox

Hence, the general solution of the equation (3) is given by,

I M, dx + J' (Terms of N, free from x) dy =C

yconstant

1 1
j [%+2x e yjdx _[—dy C

yconstant
ﬁ+£logx—i —llogy:C
2 2 2xy ) 2

Or 1(xy+|ogx—i—log yj:
2 Xy

This is the required general solution of the given equation (1).



4.4.4 (a) If the differential equation M(x,y)dx+N(x,y)dy =0 IS non-exact
and there exists a continuous single variable function f(x) such that

oM ON

OX

f(x)zﬁyT then o™ is an integrating factor of

M (X, y)dx+ N(x,y)dy=0.
Equivalently,

In the equation M(x, y)dx+N(x,y)dy =0,

if %:f(x)(say)[ ie., function of x only], then &' is an

integrating factor.

Example 4.4.4(a) (i) Solve the differential equation

1

(xy? —e*)dx—x2ydy =0

1

Solution: Given equationis  (xy? —e*)dx—X2ydy =0......ccccoovwremn.... ()]

1

Here, M =xy?—e* and N=-x%y

oM oN

S.—=2xy and —=-2
oy Xy o Xy
oM  ON

L
oy oX

Thus, given equation (1) is non-exact differential equation.



Now, consider

™M _aN
¥ _x_ 2xy+22xy = 4x2y __ 4l f(x). (i.e., function of only x)
N —-X°y -X°y X
1
Therefore, Integrating Factor (1 F) el _g fie =g oo :%
X

Multiplying the given differential equation by the Integrating Factor (I F)

=1

X4

, We get

1 - 1 21 s
F(XV2 —exg)dx—F(xzy)dy=0 Or[%——4ex3 ]dx—(ljdyzo is an exact

X X2

1

2 3

. . . ex
differential equation. Because as M, :y_s_ ;
X X

and N, =-- gives
X

oM, 2y oN, (_Zj:ﬂ M, _aN,
x° oy  oXx

y e ™M %

The general solution is given by

J.Mldx+I(Terms of N, free from x) dy =C

yconstant




This is required solution of given differential equation (1).

Example 4.4.4(a) (ii) Solve the differential equation

3 2

y© X 1 2
dx+=(x =0
[y+3+2J +4( + Xy )dy

Solution: Given equation is

y3 X2 1 )
Here, M=y+Z—+— and N==|x+
y 3 2 4( o )

oM ) oN 1 2
So—=1+y° and —==(1+
oy Y OoX 4( y )

Mo

oy X
Thus, given equation (1) is non-exact differential equation.
Now, consider

oM  ON , 1 . 3 )
oy ax MY oAy @y

T =— = === f(x). (i, function of only x)
Z(X"‘Xyz) 2(14‘ y*)

3
|
Therefore, Integrating Factor (1 F) :ejf(x)dx = eIX " gllox _ @

Multiplying the given differential equation by the Integrating Factor (I F)

=x*, we get



2

3
x3(y+y?+x?jdx+%x x*(x+xy? Jdy =0 is an exact differential equation.

3,,3 5 4 4.2

Because as Ml=x3y+X3y +X? and N1=X7+X4y gives

3, o3y,2 aMlzﬁ

L=x* +x*y*and Ny _y +x’y? =
OX oy OX

The general solution is given by

J'Mldx+j(Terms of N, free from x) dy =C

yconstant

3

3 5
| (x3y+ x3y +X?de=c

yconstant
4 4,3 6
XY XY X |_¢
4 12 12
Or 3x*y+x*y*+x°=C,
Or x*(By+y*+x*)=C,

This is required solution of thegiven differential equation (1).

Example 4.4.4(a) (iii): Solve the differential equation
(3xy —2ay? )dx + (x2 — 2axy)dy =0
Solution: Given equation is

(3xy—2ay2)dx+(x2 —2axy)dy T )]

Here, M =3xy—2ay® and N =x*—2axy

aﬂ:Sx—4ay and a—N=2x—2ay
oy OX



oM oN
L —E—
oy oX
Thus, given equation (1) is non-exact differential equation.

Now, consider

oM _oN
o X _ 3x—4<';1y—2x+2ay _Xxz2ay 1 f(x). (i.e., function of only x)
N X —2axy X(x—2ay) X

Therefore, Integrating Factor (I F) el 100 eJidx =g =x
Multiplying the given differential equation by the Integrating Factor (I F)
=x, we get

x(3xy —2ay? Jdx + x(x? —2axy Jdy =0 is an exact differential equation.
Because as M, =3x’y-2axy®> and N, =x’>-2ax’y gives

oM, oM, N,

oy OX

=3x* —4axy and %=3x2 —daxy =
X

The general solution is given by

J'Mldx+I(Terms of N, free from x) dy =C

yconstant

J(szy— 2axy? ix =C

yconstant

3 2,,2
3X y+2axy _c
3 2

Or 6x°y+6ax’y*=C,

Or x*y(x+ay)=C,

This is required solution of the given differential equation (1).



Example 4.4.4(a) (iv): Solve the differential equation

(X2 + y2 +2x)dx +(2y)dy =0

Solution: Given equation is  (x? +y? +2x)dx+(2y)dy =0............. (1)
Here, M =x*+y?+2x and N =2y

oM oN

so—=2y and —=0
oy OX

LM N

N

Thus, given equation (1) is non-exact differential equation.
Now, consider

oM oON

Oy X2y,
N 2y

Therefore, Integrating Factor (1 F) =el ®% /"™ _¢*
Multiplying the given differential equation by the Integrating Factor (I F)
=e*, we get

e*(x2 + y? +2x)dx+e*(2y)dy = 0 is an exact differential equation. Because
as M, =e*(x*+y*+2x) and N, =2ye* gives

oM,

oM, oN,

=2ye* and %:Zyexz— —
ox oy  ox

The general solution is given by



J.Mldx+I(Terms of N, free from x) dy =C

yconstant

I(xz +y? +2x)exdx =C
y—constant

Ixzexdx+ Jyzexdx +2 Ixexdx =C
y—constant y—constant y—constant

Or x%*-2 Ixexdx+ y2e* +2(xe* —e*)=C,

y—constant
Or x%e*—2(xe* —e*)+y’e* +2(xe* —e*)=C,
Or x’e* +y%*=C, Or e*(x*+y*)=C,

This is required solution of the given differential equation (1).

4.4.4 (b) If the differential equation M(x,y)dx+N(x,y)dy=0 IS non-exact
and there exists a continuous single variable function f(y) such that

oN oM

f(y):¥ then '™ is an integrating factor of

M (X, y)dx+ N(x,y)dy=0.
Equivalently,
In the equation M(x,y)dx+N(x,y)dy =0,

oN oM

If aXM—ay: f(y)(say) [ i.e., function of y only], then e

J'0% s an

integrating factor.



Example 4.4.4(b) (i) Solve the differential equation
(Bx%y* +2xy)dx + (2x°y® —x*)dy =0

Solution: Given equation is

(Bx%y* +2xy)dx + (2x°y® = x*)dy =0 ...ovverrneee, (1)

Here, M =3x’y*+2xy and N =2x’y®-x°

@:12x2y3 +2x and @:6x2y3 —2X
oy ox

Mo

oy ox

Thus, given equation (1) is non-exact differential equation.

Now, consider

oN oM

ox oy  6x’y®—2x-12x°y® —2x

Mo xy(3xy* +2)
2.,3 3
_ X y3—4x :—2)((3)(y3 *2) _z2_ f(y). (ie., function of only y)
Exy*+2)  xy@Gxy'+2) y

2
~[Zay
Therefore, Integrating Factor (1 F)=e) '@ —¢ Iy _ gomoy -1

y

Multiplying the given differential equation by the Integrating Factor (I F)

_1
T2

, We get
y



2
%(S&xzy4 +2xy)dx +i2(2x3y3 —x?)dy =0 Or (3x%y® +%)dx + (2x3y—x—2)dy =0
y y y y

IS an exact differential equation. Because as M, =3x’y? +2* and
y

2
N1:2x3y—x—2 gives 6M1:6x2y—2—)2( and %:Gﬁy—z—f _, M, _ N,
y OX y oy OX

The general solution is given by

ledx+j(Terms of N, free from x) dy =C

yconstant

J' [3x2y2 +dex =C

yconstant y
3,2 2
3x°y +2L _C
3 2y
2
or [x3y2+x—]:C
y

This is required solution of given differential equation (1).

Example 4.4.4(b) (ii) Solve the differential equation
(2x*y +e*)ydx —(e* + y*)dy =0

Solution: Given equation is

(2x2y +e)ydX — (¥ + y2)AY =0 .o, (D
Here, M =2x’y*+e*y and N :—(eX + y3)

.'.y=4x2y+eX and 8—N=—eX
oy OX



oM oN
L —E—
oy oX
Thus, given equation (1) is non-exact differential equation.

Now, consider

oN oM

ox oy —e —4x’y—e’
M 2x’yi+ely
=20 —4xPy  -2(e*+2x%y) -2
T 2yire’y  yEe +2x%y) Yy

= f(y). (i.e., function of only y)

1

2
—| Zdy
Therefore, Integrating Factor (1 F) el _g Iy =g ==

y

Multiplying the given differential equation by the Integrating Factor (I F)

%[(ZXZy2 +exy)]dx—%(eX +y*)dy =0 Or (2x* +e7)dx—(%+ y)dy =0 is an

exact differential equation. Because as M, = (2x* +e—) and N, = —(e—2+ y)
y y

gives M, __¢& and %z—e—z :>6M1:%
oy OX y oy X

The general solution is given by

J.Mldx+I(Terms of N, free from x) dy =C

yconstant



j (2x? +%)dx—.[ydy =C

yconstant
3 X 2
3 y 2

This is required solution of given differential equation (1).

Example 4.4.4(b) (iii) Solve the differential equation
(X+y+1)ydx +(x+3y+2)xdy =0

Solution: Given equation is

(X+y+Dydx +(X+3y+2)Xdy =0 ..oeevvererirnene (D

Here, M=xy+y>+y and N =x*+3xy+2x

%=x+2y+1 and @=2x+3y+2
oy OX

Mo

oy ox

Thus, given equation (1) is non-exact differential equation.

Now, consider

aN_om
oX oy 2X+3y+2-x-2y-1
M Xy +y2+y
__x+y+l 1 f(y). (i.e., function of only y)
y(x+y+1) vy

1
=dy
Therefore, Integrating Factor (I F) BNE =er =Y =y



Multiplying the given differential equation by the Integrating Factor (I F)

=y, we get

(X+y+1)y?dx+(x+3y+2)xydy =0 Or (xy® + y°* + y?)dx + (x*y +3xy* + 2xy)dy =0
Is an exact differential equation. Because as M, =xy® +y®+y* and

N, =X’y +3xy’ +2xy gives

oM

1

=2xy +3y” +2y and %:2xy+3y2+2y :%:%

oy ox

The general solution is given by

IMldx+I(Terms of N, free from x) dy =C

yconstant

'[ (xy?+y>+y*)dx=C

yconstant

2,2
(xzy +yiX+ ysz:C

This is required solution of given differential equation (1).

4.4.5 For the equation of the type
x*y® (mydx+nxdy)+x* y* (m* ydx+nt x)dy , then an integrating factor is

1 1
X"y*. Where a+r:+1:b+lr:+1 and a anlwlzb +nll<+1




Example 4.4.5 (i) Solve the differential equation
(xy +2x%y?) ydx + (xy —x*y*)xdy =0

Solution: Given equation is

(XY + 2X%y?) yoX + (Xy = X2Y2)XAY =0 oovvevrrenees )]
Here, M =xy>+2x*y® and N =x*y—x%y?

LS. —— =2Xy +6X and — =2xy—3x
oy Xy y o Xy y

Mo

oy ox

Thus, given equation (1) is non-exact differential equation.

Now,

Equation (1) can be written in the form

x2y° (mydx+nxdy)+x* y* (m* ydx+n* x)dy as
xy(ydx + xdy) + x*y? (2ydx — xdy) =0

with a=b=1, m=n=1and a'=b'=2, m'=2,n' =-1

1 1
Where a+h+1:b+k+1 and a +fl1+1:b +I1<+1
m n m n

N l+h+1:1+k+1 and 2+h+1:2+k+1
1 1 2 -1

on solving we obtain
h—-k=0and h+2k+9=0 =>h=k=-3

1

3,3 °

X"y

~. Integrating factor = x"y* = x?y~® =



Multiplying the given differential equation (1) by the Integrating Factor (I

F) =1 we get

X3y3 !

%(xy+2x2y2)ydx+ 31 ~(xy —x*y*)xdy =0 Or (é+2]dx+(%_1]dy=0
Xy X"y X'y X Xy -y

is an exact differential equation. Because as M, :(é+g] and
X7y X

N1=(%—£J gives oM, _ ;12 and M _ ;12 _ M, _ N,
Xy< 'y oy Xy ox X%y oy OX

The general solution is given by

J.Mldx+I(Terms of N, free from x) dy =C

yconstant

1 2 1
[ o

yconstant

(_—1+2Iong—logyzc
Xy

2
Or Iog(x—j—i =C
y) Xy

This is required solution of given differential equation (1).

Example 4.4.5 (ii) Solve the differential equation
(x*y +y*)dx+(2x> +4xy*)dy =0
Solution: Given equation is

Py + y )X+ (2% +4xy°)dYy =0 oovrce, (D



Here, M =x’y+y* and N =2x>+4xy®

'.ﬂ:x2+4y3 and ﬂ:6x2+4y3
OX

oM ON

e

oy OX

Thus, given equation (1) is non-exact differential equation.

Now,

Equation (1) can be written in the form

x2y° (mydx+nxdy)+x* y* (m* ydx+n* x)dy as

x2y° (ydx + 2xdy) + x° y® (ydx + 4xdy) =0

with a=2,b=0,m=1,n=2 and a'=0,b*'=3, m' =1, n*' =4

1 1
Where a+h+1=b+k+l and a +r11+1=b +I1<+1
m n m n

- 2+h+1 0+k+1 and 0+h+1 3+k+1

12 1

on solving we obtain

2h—k=-5 and 4h—k =0 :»h:% and k =10

~. Integrating factor = x"y* = x>2y*°,

Multiplying the given differential equation (1) by the Integrating Factor (I
F) =x*%y*, we get

5/2 10

(x2y + y)dx+x>2y*(2x% + 4xy*)dy =0 Or (x*2y" + x> 2y )dx + (2x*2y"* + 4x""?y*®)dy =0
IS an exact differential equation.



Because as M, =(x*"?y"+x>?y*) and N, =(2x"?y" +4x"?y") gives

%:11X9/2y10+14x5/2y13 and %ZZXE_ 1y 10 7 4 13
X

:11)(9/2 le +14X5/2y13
oM, oN,
=N =L
oy OX

The general solution is given by

J'Mldx+j(Terms of N, free from x) dy =C

yconstant

J‘ (X9/2y11 n X5/2y14)dx -C

yconstant

112 712
1| X 14| X
+ =C
y (11/2} y [7/2j
1112 | 2 14,712 _C

2
Or —y " x"“+—=y"X
11y 7y

2 3
Or 2y"'x’"? AN B G
11 7

This is required solution of given differential equation (1).

4.4 Test Your Progress

Solve the following differential equations.
1) ydx—xdy+logxdx=0
i) ydx—xdy +3x?y%e* dx =0

i) 2ydx +x(2log x—y)dy =0




V) (y*+2y)dx+(xy® +2y* —4x)dy =0
Vi) (2y® +2)dx+3xy*dy =0

Vii) (x® —2y?)dx +2xydy =0
viii) 2xydy — (x> +y* +1)dx =0
IX) (y+y?)dx+xydy =0

X) (x®+xy*)dx+2y’dy=0

Xi) (xy® + y)dx+2(x*y* + x+y*)dy =0

(y* +2y)dx+ (xy® +2y* —4x)dx =0

4.5 Summary

In this unit, we studied criteria for an exact differential equation and non
exact differential equation and to find Integrating factors in different
cases to make the equation exact. We also studied how to find the

integrating factor by inspection of the differential equation.



4.6 Terminal Questions

1. Solve the following differential equation.

A, (x? —ay)dx = (ax — y?)dy.

B. (1+e§>dx+e§(1—§)dy=0

C. (e”+1)cosxdx+eYsindx=0

D. y(axy+e*)dx—e*dy=0

E. cos(x+y)dy=dx (hintputx+y=t)
d

ay _ 2
F. dx—(4x+y+1).

4.7. Answers to exercises

4.3. Test Your Progress
1) @+x*)@1+y?)=C
i) x*-3axy+y*=C
1ii) 3ycos2x+2y®+3y=C
V) x+ye*'¥ =C
V) (e’ +1)sinx=C
Vi) 2x° —9x*y-3xy* +y* =C

vii) ¥ +x*—y*=C



viii) eV +y*=C

IX) x*+y®+2tan*(x/y)=C

X) x’y+(y—tany)x+tany=C
4.4, Test Your Progress

1) y+cx+logx+1=0
.y X 3
1) —+e* =c

y
i) 4ylogx=y*+c
iv) 3logx—(y/x)’ =c
V) [y+%jx+y2=c

) 2.,3 2 _
vi) XY Xt =c

o X ty?=cx?
vii)
3 2 _
viiiy X Y l=cx
iX) X+Xy=C

X) (x2 +vy* —1)eX2 =C



Unit —05: Differential equation of the first order but not of
the first degree

Structure
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5.2. Objectives

5.3. Equations Solvable for p
5.4. Equations Solvable for y
5.5. Equations Solvable for x
5.6. Clairaut’s Equation

5.7. Singular Solutions

5.8. Summary

5.9 Terminal Questions

5.10 Answers to Exercises




5.1 Introduction

As j—ywill occur in higher degrees, it is convenient to denote j_y by p.
X X

Such equations are of the form f(x,y, p) =0, which is not of first degree,
is called a differential equation of first order and higher degree, the
general form of first order and nth degree differential equation is

P +a P T+, P s +a,_,p+a, =0(n>1)
Where a;, a,, ccocooverereinenensy a, are functions in x and y. Now we shall

discuss the solution of the above differential equation in the following
three cases.

(i.) Equations solvable for p

(ii.)  Equations solvable for x

(iii.) Equations solvable for y

5.2. Objectives

After reading this unit students should be able to:
e Solve the Differential equations of the first order but not of the

first degree,



e Recognize and solve the equations solvable for x, y and p
e Identify and solve the Clairaut’s equation

e Find the singular solutions of the given ODE’s

5.3 Equations solvable for p

Let p"+a,p" +a,p " +.ereeeie, +a,p+a =0(n>1
.......................... (1) be the differential equation of first order and n"

degree. If it can be solved for ‘p’ then equation (1) can be resolved into

‘n’ linear factors in ‘p’. Then, we have

SR AC)) [ il PYC5')) RESRIS [p-f,(xy)]=0

=p-f,(Xy)=0 p-f,(%YyY)=0, e p—f.(x,y)=0, where p:%
Yy, Y o _

= 5 = Y 2= TN, o= f06y)

Solving each of n differential equations, we get ‘n’ solutions. Let them
be

F(xy,c)=0 F(x,y,c,) =0....c.c...... F.(x,y,c,)=0

Thus, the solution of equation (1) is given by

F (X Y,C)xF (X, Y,C) X v xF,(x,y,c,)=0

But equation (1) is of first order differential equation.

Therefore, the solution of equation (1) is given by



F (X Y,C)xF, (X, ¥,C) X.coouvernee. xF. (x,y,¢)=0 by taking c, =c, =........ =C

Example 5.3.1: Solve the differential equation dy_ox_x_y
dx dy y x
LA .. dy dx x vy
Solution: Given equation is  —=—— == —Z. ..
dx dy y x
dy 1 x vy 2 y
L= ——==_2 Z_Z21-1=0
Using g = P gives P~ 5= 7 Or +p(x yj
. X _O
Factorising leads | P+ p‘; =
:>(p+¥j=0 ..................... (2)and(p—§]=0 ....................... (3)

From equation (2), we have

Q+X:O Or xdy+ydx=0

dx x
Or d(xy) =0, integrating we obtain

Xy=¢C
From equation (3), we have

ﬂ—5=0 Or xdx—ydy=0
dx vy
Integrating , we obtain

x?—y?=¢

Thus, ¥ =¢ Or X =¥* =¢ congtitute the required solution.



Example 5.3.2: Solve the differential equation %(%+ yj =X(X+Y).

Solution: Given equation is g—(j—+ yj=x(x+ 1Y) IR (1)

d
Using g = P gives P(P+Y)=X(x+)

Factorising leads to PP +py—X"=xy=0 gp p*—x’+py-xy=0
or (P+X)(pP-x)+y(p-x)=0

or (P—X)(p+x+y)=0

From equation (2), we have

2
%— x =0 Or dy = xdx, integrating , we obtain y = X?+c
X

: dy oor M.v_
From equation (3), we have g, F*+¥ =Y ©F  +¥y==X

This represents the linear differential equation of first order and first

degree.

~. Integrating factor =1.F N



It’s general solution is given by
ye* =I(—x)exdx+c Or ye*=—xe*+e*+c Or y=(1—x)+ce ™

2

Thus, y:%+c and y=(1-x)+ce™* constitutes the required solution.

2
Example 5.3.3: Solve the differential equation y(%) +(x— y)%—x:o

2
Solution: Given equation is y(%) +(x—y)%—x=0 .................. (1)

dy
Using g, = P gives YP* +(x=y)p—x=0

Factorising leads to  YP* = PY+Xp—x=0
or Py(p-D+x(p-1)=0

or (P=D(py+x)=0

From equation (2), we have

%—1:00r dy = dx, integrating ,we obtain y=x+cOr y—x=c¢
X

dy_ X

- W x=00
From equation (3), we have Y ™X=% 2 4 =77

2 2

. YT X
dy + xdx =0, Integrating, we obtain =——+-—=¢
Or Yay g g >t



2 X2

_x=c and 2 +2 —¢ constitutes the required solution.
Thus, ¥ =X > + 5 q

5.3 Test Your Progress

Solve the following differential equations (Equations Solvable for ‘p’)
) p>+2pycotx—y> =0
i) x(p*+)=("+y*)p
) xyp?+(x*+xy+y?)p+(x*+xy)=0
V) pP+(2x-y*)p*=2xy"p
V) xy?(p?+2)=2py’+x°

vi) Xp®> —2yp+x=0

5.4. Equations Solvable for vy

Let f(XY,P)=0.cerrrrererene. (1) be given differential equation. If equation

(1) cannot be resolved into linear factors in ‘p’ and if it can be put in the

form y=f,(X,p) cervverrrnnn (2) then we say that equation (1) can be solved
for y. Differentiating equation (2) with respect to 'x* we get a

differential equation in two variables x and p of the form

_dy_ dr
p=Y _¢(x, b dxj ........................ ®3)



Now, it may be possible to solve this new differential equation in 'x' and
.

Let its solution be F(x,p,c)=0...cccecevrvrenncn (4).

Eliminating ‘p’ from equations (2) and (4), we obtain the required

general solution of the equation (1) in the form F(x,y,c)=0. Where ‘c’ is

arbitrary constant.

Note 5.4.1:

0] In case elimination of p is not possible from equations (1) and
(2) for x and y and obtain x=F,(p,c), y=F,(p,c) as the required
solution, where 'p'is the parameter.

It is called a solution in the parametric form.

(i)  The solution which does not contain an arbitrary constant is
called singular solution.

(iii)  The solution which does not contain 'x' i.e., in the form

f(y,p)=0 and if it is solvable for 'p' we get p=¢(y) which
can be solved by using variables separable method. If it is

solvable for 'y' it can be written in the form which can also be




solved by using variables separable method.
(iv) If given differential equation is homogeneous in 'x' and 'y’
then it can be written in the form f(p, y/x) =0, this equation

can be solved using method of solving homogeneous equation.

Example 5.4.1: Solve the differential equation y+ px = x*p?

Solution: Given equation is  y+ px=x*p? Or y=x*p*— px
Equation (1) is a differential equation solvable for Y’

Differentiating equation (1) with respectto X

dy dp 4 27143 dp :| dy
—=|2p—X 4x°) |—| —(x : ==
i [pdx +p( )} [dx()w,usmgp ™

:>p—4p2x3+p+x@—2px4%=0
dx dx
_ 3 dp . 3y _
= 2p(1 2px)+xd—(1 2px°)=0
X

= (1—2px3)+(2p+xd—pj=0
dx

= (1-2px*) =0.ccereereee. (2) and [2p+x%j:0 ................... (3)




dp
Here, equation (2) is discarded as it does not contain |y, and it gives

singular solution.

dp o 2dx __dp

From equation (3), we obtain 2P =X dx X 0 integrating,
dx dp ) c

ZI—:—I—+Iogc:>2logx+Iogp:Iochrx p=CcOrp=— ... (4)
X p X

Eliminating ‘p’ from equations (1) and (4) gives the general solution of
the equation (1).

ie, y=x*'p®—px

] . C _4c2 C) - C
Using, P=52 = Y=X|32) "X 2 )¢

_2_C : .
Thus, Y=¢ =7 . Where ‘¢’ is arbitrary constant.

Example 5.4.2: Solve the differential equation y=x+atan™ p

Solution: Given equationis y=x+atan™p ...cccoce...... (1)

Equation (1) is a differential equation solvable for Y’
Differentiating equation (1) with respect to X

dy a dp dy
e 4
dx = 1+ p?dx:Using P=ax

b _, p+p’=1+ pﬁa%
X

=p=1+ —
P 1+ p? dx




dp

=0r 1+p°+a—-p-p°=0Or (1+ p2)+a%— p(L+ p?)
dx dx

= (1+ p2)+(1— p+a%]=0
dx

= 1+ Pp?)=0.ccverreree. (2) and (1—p+a3—§j:0 ................... (3)

Here, equation (2) is discarded as it does not contain 5, and it gives

singular solution.

From equation (3), we obtain,

dp adp dp -1 :
(- p)+a& OV—KZ(D—D Or (p-1) :;dx’ Integrating,

d_pz—ljdx+c:>log(p—1)+§=c Or (p-1)=e 2 Orp=e @+l
(p-) a a

Eliminating ‘p’ from equations (1) and (4) gives the general solution of
the equation (1).

ie, y=x+atan™p

X
c——

Using, P=¢ "1

X
c—=

-1 a . .
Thus, Y=X+atan (e +1]. Where ‘c’ is arbitrary constant.

Example 5.4.3: Solve the differential equation (8p°-27)x=12p°*y



(8p° -27)x

Solution: Given equationis  (8p®-27)x=12p*y Or y= 12y’

2px  9x
= — 1
3 4p? @)

Equation (1) is a differential equation solvable for Y’
Differentiating equation (1) with respectto X

dp
2_2 el
Q:z{p-kxd—p}_g P Xde dy

dx 3 dx | 4 p* , using p:&

Multiplying by 12p°*

12p° :8p4[p+x%}—27[p2 —2Xp%:|
dx dx

:>2xp$(4p3 +27)-p*(4p®+27)=0
X
or (4p° +27)(2xp%— p?) =0

X

— (APP427) =0 (2) 2pP_p2z- (3)



dp
Here, equation (2) is discarded as it does not contain . and it gives

singular solution.

dp
From equation (3), we obtain 2Xp&‘ p*=0 separating the variables

and integrating,
ZJ‘@:I%HOQC = 2logp-logx=logc
p X

2 2

or Iog(%jzlogc OrpT=c OF P=VXC wreeeeeeceeeeenn, (4)

Eliminating ‘p’ from equations (1) and (4) gives the general solution of
the equation (1).

. 2px  9x
|.e., y:T—4p2

2x/xc 9x 2xJxc 9
_ Ory 3 _

3 4xc 4c

Using, P=Vx¢ = y= 1

ZXM

Thus, Y= 3 ~C Where ‘c;’ is arbitrary constant.

Example 5.4.4: Solve the differential equation y =2px+ p"

Solution: Given equationis y=2px+p" (1)

Equation (1) is a differential equation solvable for ¥’

Differentiating equation (1) with respectto ¥



dp n-1 dp dy
— =2 X— [+hp" " — ; ==
dx { P dx}r P dx] using P =g,

= p= 2{p+x$j+np“£}

= p+(2x+ np”l)g—z =0

Or p%Jr2x=—np”’l Or %Jrgx=—np”’2
dp © dp p

This represents linear equation in terms of x and p.

2
Zdp
- LF :ejp

2
— eIogp — p2

Its general solution is given by

n+1 n-1
p

P corx=-
n+1 (n+1)

-2

xp® =I—np”’2 p’dp+c Or xp®> =-n +cp

Substituting the value of x from equation (2) in equation (1), we get

n-1 _ n B
y=2p[— i +cp2]+ p" Or y:2( P +EJ+ p ory= 28 10 g
1 n+l p p 1+n

An equation (2) and (3) constitutes the required general solution.

5.4 Test Your Progress

Solve the following differential equations (Equations Solvable for ‘y’)




1) Xp® —2py+x=0

i) Xp® —2p’y+4x* =0
)  y=xp*+p

IV)  y—2xp=tan"(xp?)

V) y = psin p+cos p

4
Vi) xz(%j +2x(%)—y:0
X X

5.5. Equations solvable for x

Let (XY, P)=0.eerrernneee. (1) be given differential equation. If equation
(1) cannot be resolved into linear factors in ‘p’ and if it can be put in the
form x=f,(y,p) covervvrrennn. (2).

Then we say that equation (1) can be solved for x. Differentiating
equation (2) with respect to 'x' we get a differential equation in two

variables x and p of the form

1_dx_ L 3
Y ¢(y,p, J (3)



Now, it may be possible to solve this new differential equation in 'y' and
.

Let its solution be F(y,p,c)=0...cccceeveuu..c.... (4).

Eliminating ‘p’ from equations (2) and (4), we obtain the required
general solution of the equation (1) in the form F(x,y,c) =0. Where ‘c’ is

arbitrary constant.

Note 5.5.1:

1) This method is especially useful for equations which do not
contain y.

i) Ifitis not possible to eliminate ’p’ from equations (2) and
(3)[i.e., elimination is not feasible) then equations (2) and
(3)together represent the general solution of equation (1) in
terms of p. Where ‘p’ may be regarded as a parameter.

Suppose that the given differential equation does not contain ‘y’ i.e., in
the form f(x, p)=0. If it is solvable for ‘p’ then it may be written as
p =¢(x) which can be solved by variables separable method. If it is

solvable for 'x', it may be written as x=¢(p) which can also be solved as

explained above.




Example 5.5.1: Solve the differential equation p°®—4xyp +8y* =0
Solution: Given equation is  p®—4xyp +8y* =0

Equation (1) is a differential equation solvable for X

g x=%{p72+8?y} .......................... (1)

Differentiating equation (1) with respectto Y’

dp 2 dp
2 R Y —V—
| B AP 2 R
&y =2 ¥ o7 |, using P=x
d d
- pdf;y—pz p—yds
~ o 2.2 .
:E_Z 2 +8. 0’ , multiplying by 4Y"P", we obtain

d d
ay*p=p| 2py =P - p? |+8y?| p—y—>
dy dy
dp 3 2 2 3y _
:Zyd—y(p —4y°)+p(4y -p°)=0

Or(Zyg—p— p](p3—4y2)=0
y

= (p®=4y*)=0.oeeerere. (2) and (Zyg—S—pJ:O ................... (3)



dp
Here, equation (2) is discarded as it does not contain dy and it gives

singular solution.

: _ dp dp _dy :
From equation (3), we obtain 2~ P=00r2=7"="" integrating,
dp _ pdy p’ 2
ZI—:I—+Iogc:>2Iogp—Iogy:Iochr—=c Or p*=cy .ccoveenn. (4)
p y y

Eliminating ‘p’ from equations (1) and (4) gives the general solution of

the equation (1).

2
ie., x:l{p—+8—y} p® —4xyp +8y> =0
ALy p

: 2 _ [P Y _Cip)¥
Using , pe=cy= x—4(c+ﬂJ_4[c+8 CJ_4+2\/:

Thus, ¥=5+2|/ . Where *c’ is arbi
, 4 c - ere "'c’ 1s arbitrary constant.

Example 5.5.2: Solve the differential equation p= tan(x—“ppzj

Solution: Given equationis p =tan(x_1+pp2j

Y - P
- Or x=tan™ p+

1+p 1+p2 ............................ (1)

=tan" p=x-—

Equation (1) is a differential equation solvable for X



Differentiating equation (1) with respectto Y’

(1+p)dp 2ﬁdp

d |1 dp dy o dy
dy |1+p*dy (l+ p?)? , using P =3,
dp dp
1+ p?)—-—2p* -~
1| 1w e . oz |
D |1+ p? d_y+ 1+ p?)? , multiplying by PA+P")" we obtain

a+p52=pa+p59£+pa+p2—2p599
dy dy

dp
Or Zpd—yZ (L+P*)* This is in variable separable form

. 2pdp
- (1+p?)

= dy, Integrating, we obtain

2p
Sieroalbl

~(1+p*)*t=y+c
Or y=c—-(1+p>)™

P
+p

The general solution of equation (1) is given by x =tan™ P+ o2 and

y=c—@@+p?)*

Example 5.5.3: Solve the differential equation p*x—bp=a



a b
PO

P p

Solution: Given equationis p°x—bp=a Or p’x=a+bp Or x=

Equation (1) is a differential equation solvable for *

Differentiating equation (1) with respectto Y’

dx_[-3a 2bfdp _dy
dy__ p4 p3_dy’ using p_dX

_3a_2_b % Or _3a_2_b %:1
4 S_dy p3 pZ dy

p L P p
Or (~3ap* ~2bp* o =0y This is in variable separable form
Integrating, J (~3ap™—2bp* Hp = [dy +c

or —3aj p’3dp—2bj pldp=y+c

This gives the general solution of the equation (1).

5.5 Test Your Progress

Solve the following differential equations (Equations Solvable for ‘X”)
1) pP°-(y+3)p+x=0

i) y=2px+y?*p°




i) ply+2px=y
IV) x—yp=ap?

V) 4xp®+4yp—-y* =0

5.6. Clairaut’s equation

Differential equation of the form y=px+f(p)..cccounn.... (1) is called

Clairauts equation.
Clairauts equation is solvable for ‘y’.
Differentiating with respect to ‘x’, we obtain

dy dp / dp dy / dp
dx deerr (p)dx dx ( " (p))dx+p

Using ng—y we obtain (x+ f’(p))g—zzo

)
X

Here, Equation (3) is discarded as it gives singular solution. Therefore to
find the general

solution of equation (1), let’s solve equation (2).



g—pzo =dp=0, integrating jdp:cOr P=C.oerrrerrnnn (4), where ‘¢’ IS
X

arbitrary constant.
Now, eliminating ‘p’ from equations (1) and (4), we get y=cx+ f(c),
which is the general

solution of the Clairaut’s equation given by (1).

Note 5.6.1:
) It can be observed that, the general solution of the Clairaut’s
equation y= px+ f(p)

will be obtained by replacing ‘p’ with ‘c’.

i)  Many equations of the first order but of higher degree can be
easily reduced to the Clairaut’s form by making suitable

substitutions.

2
Example 5.6.1: Solve the differential equation; y+2(%j =(x+1)%.

2
Solution: Given differential equation is y+2(%) =(x+1)% ................. (1)



d
Using p:d_i’ we get ¥+2P*=(x+)p Ory=(x+1)p-2p* = p(x+1-p)

This is in Clairaut’s equation, therefore it’s general solution is

y=c(x+1-c).
Example 5.6.2: Solve the differential equation; x*(y- px) = yp?

Solution:  Given differential  equation is X2 (y— px) = yp*

............................. (1)

Put x>=u and y=v = 2xdx=du and dy =dv

.'.pzﬁz av =2Xﬂ=2XP with P:Q:_dy - P
dx du/2x du du 2xdx 2x-

oo X2 (y—=px)=yp? = u(v—2Pu) = 4uvP?

. (Vv—2Pu) =4vP? Or 2pu =v—4vP?
2Pu

Orv=—“"—_
1-4pP

This is in Clairaut’s equation, therefore its general solution is

2cu o y- 2cx?
1-4c? 1-4c?

Example 5.6.3: Solve the differential equation; (px—y)(py+x)=2p

Solution: Given differential equation s (px—y)(py +Xx)=2p

(1) Put x>=u and y*=v = 2xdx=du and 2ydy =dv

_Oy _QviZy xav _ xp e po OV _2ydy  yp

Cdx du/2x ydu vy du  2xdx  x




(px—y)(py+x)=2p:[%—\/VJ(P\/UM/U): 23\;5

or [“ZIVJ(PH)JU: ZSL/U Or (UP—V)(P+1) = 2P
Vv Vv

(uP—v):i Or v:up_ﬁ
P+1 P+1

This is in Clairaut’s equation, therefore its general solution is

v=cu—£ Or y2=cx2—£.
c+1 c+1

5.6 Test Your Progress

Solve the following differential equations (Clairaut’s Equation)
) X*(y—px)=yp’

i) (px+y)* = py’

i) y=2px+p’y

V) y=px+1+p®

V) sin(y - px) = p

vi) ¥ =2y +pixt - p* =2’




5.7. Singular Solutions

If we eliminate ‘p’ from equation (3) given by x+f'(p)=0and the
Clairaut’s equation in (1)

given by y=px+f(p) , we obtain an equation involving no constant.
This is the singular

solution of equation (1) which gives the envelope of the family of
straight lines given by the

equation (4).

We need to proceed as below to obtain the singular solution.

1) Find the general solution by replacing ‘p’ by ‘c’, we obtain the
equation (4)

i)  Differentiate equation (4) with respect to ‘c’, we obtain

i) Eliminating ‘c’ from equations (4) and (5) leads to the singular

solution.

Example 5.7.1: Find the general and singular solution of the differential

equation xp*-yp+a=0



Solution: Given differential equation is xp® —yp+a=0.....cccceerrnu.... (D
P a
= yp=a+xp° Or y:xp+B

This is in the form of Clairaut’s equation given by ¥ = Px+f(p) .

Therefore it’s general solution is given by

Now, to find the singular solution differentiating equation (2) with

respect to ‘c’, we obtain
a

0=x-— Or c¢’=
c

Eliminating ‘c’ from equations (2) and (3), we get
\/7 Or y:\/gh/& Or y:m
ﬂ

Jx
This is the desired singular solution.

Example 5.7.2: Find the general and singular solution of the differential
equation p =log( px—Y)
Solution: Given differential equation is p =log( px—Y)

_v)=aP — p
= (px—-y)=e” Ory=px+e (1)



This is in the form of Clairaut’s equation given by Y = Px+ f(p) .
Therefore its general solution is given by

Y=CX4E" e (2)

Now, to find the singular solution differentiating equation (2) with

respect to ‘c’, we obtain

O=x+e° Or e°=-x Or c=|og[1j ................ (3)
X

Eliminating ‘c’ from equations (2) and (3), we get
y= xlog[i}+e'°9a’x) Or y= xlog(l}rl
X X) X

This is the desired singular solution.

Example 5.7.3: Find the general and singular solution of the differential
equation p =sin(y—xp)
Solution: Given differential equation is p =sin(y —xp)

- 71 _ _ — - 71
=sin" p=y—-xp Or y=px+sin™p 1)

This is in the form of Clairaut’s equation given by Y= PX+ (p)
Therefore its general solution is given by

Y=CX4SINT'C e, (2)



Now, to find the singular solution differentiating equation (2) with

respect to ‘c’, we obtain

0=x+——_ Or xJl-c?=-1 Or (1—c2)=i2
1-c X
) 1 x> -1
c°=1-— Or Cc=——— ., (3
X X

Eliminating ‘c’ from equations (2) and (3), we get

This is the desired singular solution.

5.7 Test Your Progress

Find the general and singular solutions of the following differential

equations

1) y=px+,/(@®p?+b?)

I1) sin pxcosy =cos pxsiny + p
i) y*—2pxy + p°x*> — p* =a?

iv) y = px++/1+ p°




5.8 Summary

In this unit, we have studied the diffential equation of the first order but
not of first degree which are (1) Solvable for y (2) Solvable for x. (3)
Solvable for p. We also studied Clairaut’s equation and how to

determine singular solution.

5.9 Terminal Questions

1. Find the general and singular solution of the differential
equation(xp — y)? = p? — 1.

2. Solve
yED + (x+y)E-y=0

3. Solve
y*.logy = xyp + p?

4. Solve

1
y =px + (1 + p?)2.



5.10 Answers to Exercises

5.3 Test Your Progress (Solvable for ‘p’)
1) c’y®sin® x—tanz(gj =0

i) (y* =x*—c)(y-cx)=0

i) (y? +x*>—c)2xy +x*—-¢)=0
IV) (y=c)(y+x* —c)(xy +cy +1) =0
V) (y?—x2=x*c)(y’ —x*—c) =0

Vi) 2cxy =c®x® +x

5.4 Test Your Progress (Solvable for ‘y’)
1) 2cxy =cx® +x

i) 2c’y=c’x*+4

iii) y=xp?+p and eX®¥° = pc

iv)  y=2Jox+tanc

V) X=sinp+c

vi)  y=2Jox+c?



5.5 Test Your Progress (Solvable for ‘y’)
i) x=(y+3)p-p’ and y=(p* -1 +c(p* -
i) y*=2cx+c®

i) y? =2cx+c®

Iv) (y+ap)\/p27—1+acosh‘1 p=c

V) 4x(cy?)* +4y(cy?)—y* =0 Or 4c(l+cxy)—y=0

5.6 Test Your Progress (Clairaut’s Equation)
1) y> =cx®+c?
i) xy=cy-c?

2CX
1-¢?

iV) y=cx++1+c?

i) y =

V) y=cx+sin"'c
Vi) y=cx+va’ +c?
5.7 Test Your Progress

. . : _ 2.2 2 ] . .
i) General solution is y=cx++a’c’ +b - Singular solution is

y+1-x*=0



.. - . _ ainl . . .
if) General solution is y =cx—sinc : Singular solution is

2_
y=1-x? —sint X 1

X

- - _ 2 . . .
iii) General solution is y=cx++1+c - Singular solution is

X2 X2
y= +1M+ >
1-x? 1-x

- - - _ 2 2 . . .
Iv) General solution is y=cxt+a*+c : Singular solution is
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6.1. Introduction

Differential equations are very important mathematical subject from both
theoretical and practical perspectives. The theoretical importance is given by
the fact that most pure mathematical theories have applications in differential
equations.

The practical importance is given by the fact that the most important time
dependent scientific, social and economical problems are described by
differential equations. The bridge between nature (or universe) and us is
provided by mathematical modelling, which is the process of finding the
correct mathematical equations describing a certain problems. This process
might start with experimental measurements and analysis, which leads to
differential equations.

Many real-world problems, when formulated mathematically, lead to
differential equations. We encountered a number of these equations in
previous units when studying phenomena such as the motion of an object
moving along a straight line, the simple harmonic motion of moving object,
simple electrical circuits, heat flow of an object, the decay of a radioactive
material, the growth of a population, and the cooling of a heated object placed

within a medium of lower temperature.



In the previous units we introduced differential equations of the form
dy

—2 = f(x), where f

dx

Is given and y is an unknown function of x. When f is continuous over some
interval, we
learned that the general solution y(x) was found directly by integration,

y:jf(x)dx. And we also investigated differential equations of the form

% = f(x, y), where f is a function of both the independent variable X and the

dependent variable y. There we learned how to find the general solution when
the differential equation is separable.

In this unit we further extend our study to include other commonly occurring
first-order

differential equations. They involve only first derivatives of the unknown
function y(x), and

model phenomena such as simple electrical circuits, or the resulting
concentration of a

chemical being added and mixed with some other fluid in a container.

In this unit, we shall consider only such practical problems which give rise to

differential equations of the first order and first degree.



6.2. Objectives

After reading this unit students should be able to:
e Understand the geometrical applications of ODE’s of first order and
degree
e Understand the orthogonal trajectories

e Understand the oblique or isogonal trajectories

6.3. Geometrical Applications of Differential Equations of First
Order and First Degree

(i)  Cartesian Coordinates:

45




Let P(x, y) be any point on the curve f(x,y)=0 (as shown in the figure).

Then, we have

1.

9.

10.Radius of the curvature at the point P(x, y) is P = {

. Length of the sub-normal is MN =y. dy

Slope of the tangent at the point P(X, y) is tany = %

X

Equation of the tangent at the point P(X, y) IS Y -y = %(x —X) SO that its

x -intercept is OT = x—y.% and y -intercept is OT' = y—x.ﬂ.
X

dx

Equation of the normal at the point P(X, y) IS Y —y = —g—;(x —X)

2
Length of the tangent is PT =. 1+[%j

- =
Length of the normal is PN =y. 1+(%)
X

Length of the sub-tangent is T™M = y.%
y

dx

2 2
g _ {1{%) } and & _ {1{%} }
dx dx dy dy

Differential of the area = y.dx Or x.dy




(if)

Let P(r,0) be any point on the curve r = f () (as shown in the figure). Then,

we have

1. w=0+¢

2. tang= r.d—e, p=rsing
dr

3 1 _1 1(dr)
ST Sy [y~
p° r° r'\do
do

4. Polar sub-tangent is OT =r? I

5. Polar sub-normal is ON =3—;

2 2
6. & _ [H(rd_@) } ds _ Hﬁ”
dr dr deo de

6.3.1. Some Basic illustrations to understand/study the importance of

further geometrical applications:



Example 6.3.1: Find the equation of the curve which passes through the point

(3, -4) and has the slope Z—Xy at the point (x, y) on it.

Solution: It is given that, slope of the curve is % _Y
X X

Or dy = 2 dx (Variable Seperable Form)
y X

Integrating, we obtain
logy=2logx+1logC
Where, C is the constant of integration.

L Y=Cx (1) is the equation of the curve

Since, this curve passes through the point (3, -4). Equation (1) gives

—4=9C Orcz—g

Therefore required equation of the curve is given by y= —gxz Or 4x*+9y=0.

Example 6.3.2: Find the equation of the curve which passes through the

origin and has the slope x+3y-1.

Solution: It is given that, slope of the curve is % =X+3Y—1.oiiiiininn., (1)

Put x+3y—-1=v



Substituting in equation (1), we obtain

l{ﬂ—l} =V

3| dx

Or %=3v+1 (Variable Separable form)
X

dv
T 3v+l

=dx, Integrating

%Iog(3v+1) =X+logc
Where, ‘¢’ is the constant of integration.

Iog{(sv +1)} 3y
c

3

3v+1
; :e3x

Or

Putv=x+3y-1

Since, this curve passes through origin. Equation (1) gives -3=c® Or ¢, =-3

Therefore required equation of the curve is given by

3x+9y—-3=-3e* Or x+3y—-1=—-e%*.

Example 6.3.3: At every point on a curve the slope is the sum of the abscissa

and the product of the ordinate and the abscissa and the curve passes through

(0, 1). Find the equation of the curve. Solution: It is given that, slope of the

curve is %=x+xy or dy =X(1+Y)
X

dx



Or Ay = xdx (Variable Seperable Form)

1+y

Integrating, we obtain
2

log(1+ y) = X?+ logC

Where, C is the constant of integration.

v\)‘x,\,

(12_y) =€2 i, (1) is the equation of the curve

Since, this curve passes through the point (0, 1). Equation (1) gives
2 _10rc=2
C

Therefore required equation of the curve is given by

y+1=2e¥2 Or y=2e¥"2 —1.

Example 6.3.4: A curve is such that the length of the perpendicular from

origin on the tangent at any point P of the curve is equal to the abscissa of P.

Prove that the differential equation of the curve is y? —2xy%—x2 =0, and
X
hence find the curve.

Solution: Let the equation of the tangent at P(x, y) is given by
Y-y= ﬂ(x -X).
dx

Since the length of the perpendicular from origin on the tangent at any point P

of the curve is equal to the abscissa of P.



X-2 -y
= dx =X
1+[dy}
dx
2 2
Or ( Q—y} = x| 1+ ﬂ)
d dx
or xz(ﬂj2+y2—2xyd—y:x2+x2(ﬁJ2
dx dx dx

Or y*—x*-2xy—==0
ry -—x xyd
This is the required differential equation of the curve.

Now, to find the equation of the curve, consider y? —2xy%—x2 =0
X

2 2
% :% ..................... (1), itis homogeneous ODE of first order and first
degree.

Put y=vx= %:v+ x%, then equation (1) gives

dv  vix?-—x2

V+X— =
dx 2x%v
dv vZ-1 vioavi-1 —v?-1
X— = —v= =
dx 2V 2v 2V
2V

L ———dv= _ & (Variable Seperable form)
vo+1 X
Integrating, we obtain

log(v* +1) = —log x + logc

Where, ‘c’ is the constant of integration.



Or log(v? +1) = Iog[gj
X

Or (v +1) ~Cor x(v:+1)=c
X

<

Substitute v=-=
X

2

y2
[ +1jx:c0r x® +y? =cx
X

This is the required equation of the curve.

Example 6.3.5: A plane curve has the property that the tangents from any
point on the Y-axis to the curve are of constant length ‘a’. Find the differential

equation of the family to which the curve belongs and hence obtain the curve.
Solution: Equation of the tangent at the point P(X, y) is Y — y:%(x —-X) .
Since X =0.

dy

dy
~Y-y=—(0-x Y=y—-X—=
y dx( )=>Y=y i

The point on Y-axis is (o, y—x%}.
X

The tangents from any point on the Y-axis to the curve are of constant length

‘a’. This implies that

\/(O—x)z +(y—x%—yjz :a:(xz +x2[%ﬂ:a2




[ 2 2
Or jy (Variable Seperable form)
X
22
L dy= a X dx, integrating

X

a—+a®-x?
y =va®*-x*+alog———+c
X

Example 6.3.6: Determine the curve whose sub-tangent is twice the abscissa
of the point of contact and passes through the point (1, 2).
Solution: Let P(X, y) be the point on the curve. The sub tangent at P(X, y) is

.0
o

y.% = 2x (Variable Seperable form)
y

Since .. dx _ ZQ, int egrating
X oy

s logx=2logy+1ogc Or X=0cy’ ..ceovvvrvrverrrnnes @

This is the required equation of the curve. Since, this curve passes through the

point (1, 2).
From equation (1), we get 1=4c Or c= %.

Hence, the equation of the curve is y* = 4x



Example 6.3.7: Determine the curve in which the length of the subnormal is
proportional to the square of the ordinate.
Solution: Let P(x, y) be the point on the curve. The sub normal at P(x, y) is

dy
VX

Since y.%a y: = y.%: ky?, where ‘k’ is constant of proportionality.
X X

ﬂ= kdx (Variable Seperable form)
y

Integrating, we obtain
log y = kx+logc Or y =ce™

Where, ‘¢’ is the constant of integration.

Example 6.3.8: Show that the curve in which the portion of the tangent
included between the co-ordinates axes is bisected at the point of contact is a
rectangular hyperbola.

Solution: Let the tangent at any point P(x, y) of a curve cut the axes at T and

T as shown in the following figure.

)




Since, its x-intercept is OT :x—y.%
X

And its y-intercept is OT' = y—x.%
X

Therefore, the co-ordinates of T and T'are (x— y-?, 0] and (o, y—x-%)
Yy X

Since P is the mid-point of TT'.

(x—y-j;(/]+0

2

=X

Or x—y-%:ZX Or x-dy+y-dx=0
y

Or d(xy) =0.Integrating, xy =c
This represents the equation of the rectangular hyperbola, having ‘x’ and’y’

axes as its asymptotes.

Example 6.3.9: Find the curve for which the normal makes equal angles with
the radius vector and the initial line.

Solution: Let PT and PN be the tangent and normal at the point P(r,9) of the
curve so that tang = r-%. Since ZOPN =90° —¢=~ONP (as shown in the

following figure).



h\"'-l'll -
il'n.!:_'-,.:

|

0 =2 PON =180° — (180° — 2¢) = 2¢

Or gz o .. tang =tang=r i—f (Variable Seperable Form)

" ar =cotd-dé. Integrating, we obtain

r
.0
Iogr:2IogsmE+Iogc

or r=csin?2 :lc(l—cose)
2 2

Thus, the curveis the cardioid r = a(l—cosé).

Example 6.3.10: Find the shape of a reflector such that light coming from a
fixed source is reflected in parallel rays.

Solution: In the XY-plane, let PP’be the reflected ray, where P is the point (X,

y) on the curve f(x,y)=0.




If TPT' be the tangent at P, then angle of incidence = angle of reflection.

.. ¢=20PT =£P'PT' = ZOTP=y
e, p :% = tan £ XOP = tan 2¢
X

_ 2tang  2p
1-tan’¢ 1-p°

or 2x =2 — yp which is solvable for X ........ccccoooor.... 0
p

Now, differentiating equation (1) w. r.t. ‘y’, we obtain

dp_ (@+p’)/p _

Ory—= =
Yoy T @ e’
" ap = —ﬂ, int egrating, we obtain
p y
logp=-logy+logc
Or pP=— e, (2)

Now, eliminating ‘p’ from equations (1) and (2), we obtain

2x:l—yp:>2x=y?—c Or y*—c?=2cx Or y* =c® +2cx

Hence the reflector is the member of the family of paraboloids of revolution

y? +2° =c® +2cX.



6.3. Test Your Progress

(i)  The tangent at any point of a certain curve forms with the ordinate
axes a triangle of constant area A. Find the equation to the curve.

(i)  Find the curve which passes through the origin and is such that the
area included between the curve, the ordinate and the X-axis is twice
the cube of that ordinate.

(ili)  Find the curve whose
(a) Polar sub-tangent is constant
(b) Polar sub-normal is proportional to the sine of the victorial angle.

(iv) Determine the curve for which the angle between the tangent and the
radius vector is twice the victorial angle.

(v)  Find the curve for which the tangent at any point P on it bisects the
angle between the ordinate at P and the line joining P to the origin.

(vi) Find the curve for which the tangent, the radius vector ‘r’ and the
perpendicular from the origin on the tangent form a triangle of area

kr?.

6.4. Orthogonal Trajectories

The concept of the orthogonal trajectories is of wide use in applied

mathematics especially in field problems. For instance, in an electric field, the



paths along which the current flows are the orthogonal trajectories of the
equipotential curves and vice versa. In fluid flow, the stream lines and
equipotential lines (line of constant velocity potential) are orthogonal
trajectories. Likewise, the lines of heat flow for a body are perpendicular to
the isothermal curves. The problem of finding the orthogonal trajectories of a
given family of curves depends on the solution of the first order differential

equations.

Definition 6.4.1:
An orthogonal trajectory of a family of curves is a curve that intersects each
curve of the family at right angles, or orthogonally (as shown in the following

figure 1).



Orthogonal trajectory
Y -
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Figure 1: An orthogonal trajectory intersects the family of curves at right

angles, or orthogonally

For instance, each straight line through the origin in an orthogonal trajectory

of family of circles x*+y? =a?, centred at the origin is an orthogonal

trajectory (as shown in the following figure 2).

Figure 2: Every straight line through the origin is orthogonal to the
family of circles centred at the origin.
Such mutually orthogonal system of curves are of particular importance in
physical problems related to electrical potential, where the curves in one

family correspond to strength of an electric field and those in the other family



correspond to constant electric potential. They also occur in hydrodynamics
and heat-flow problems.

Equivalently,

Two families of curves are such that each curve in either family is orthogonal
(whenever they intersect) to every curve in the other family. Each family of
curves is orthogonal trajectories of the other. In case the two families are

identical, then we say that the family is self-orthogonal.

Note: Orthogonal trajectories have important applications in the field of

physics.

For example: The equipotential lines and the streamlines in an irrotational

two dimensional flow are orthogonal.

Slope = dy/dx

Orthogonal Trajectories



6.4.1. To find the orthogonal trajectories of the family of curves F(x, v,
c)=0

[i.e., Cartesian Form]

I. Form its differential equation in the form f [x, y,%) =0 by eliminating
X

¢

Cc.

il Replace g_y by —% in this differential equation, (so that the product
X y

of their slopes at each point of intersection is -1).

ii.  Solve the differential equation of the orthogonal trajectories of the

form f (x, y,—%J =0.
dy

Example 6.4.1: Find the orthogonal trajectories of family of straight lines
through the origin.

Solution: The family of straight lines through the origin is given by,

Differentiating equation (1) w. r.t 'x', we obtain

dy _
dx



This represents the ODE for the family of straight lines represented by the

equation (1).

Now, replace % by —% in this differential equation represented by the
X y
equation (3).
_Ox_y Or XdX =—YdY .eeevvrrrrrireennnnn 4
dy x

This represents the ODE for the orthogonal family of straight lines
represented by the equation (1).

Integrating equation (4), we obtain

2 2 CZ
PRty Or x> +y*=c¢’

This represents the family of circles with centre at the origin (as shown in the

following figure).




Example 6.4.2: Find the orthogonal trajectories of family of curves xy =a,
a=0 Is an arbitrary constant.

OR
If the stream lines (paths of fluid particles) of a flow around a corner are

xy = cons tant, find their orthogonal trajectories (called equipotential lines).

Solution: The given family of curves xy =arepresents the family of parabolas

This represents the ODE for the family of straight lines represented by the
equation (1).

Now, replace % by —% in this differential equation represented by the

y
equation (2).

—x%+y:0 Or XdX=Ydy .eevvvrrrreerennnnn (3)
Yy

This represents the ODE for the orthogonal family of straight lines
represented by the equation (1).

Integrating equation (3), we obtain



b£0

1
1
|

|| .
] T =
X

Example 6.4.3: Find the orthogonal trajectories of family of semicubical
parabolaay® = x°.
Solution: The given family of curves ay® = x* represents the family of semi

cubical parabolas,

Eliminating ‘a’ from equations (1) and (2), we get

2y x Y g or XY g (3)
2 Jdx y dx



This represents the ODE for the family of semi cubical parabolas represented
by the equation (1).

Now, replace % by —% in this differential equation represented by the
X

y
equation (3).

_2xdx =3 (Variable Seperable Form)

y dy
. —2xdx = 3ydy. Integrating, we obtain,

2 2 2
_2X_ +C_:3y_
2 2 2

This represents the family of circles with centre at the origin (as shown in the

following figure).

Example 6.4.4: Find the orthogonal trajectories of system of confocal and
coaxial parabolas.
Solution: The equation of family of confocal parabolas having X-axis as their
axis is given by,

V2 =4a(X+a) .eerrrirens o (1)

Differentiating equation (1) w. r. t 'x', we obtain

dy dy
2V—2L=4a OF V—2=2a .eovevrrrrrnrnres 2
Y o Yo (2)

Eliminating ‘a’ from equations (1) and (2), we get



y’ = 2y%(x+%%) Or y= Zﬂ(x+lﬂj

dy dy ?
Or 2X—=2+y| -2 | =y =0 toveeerrrirerreenen 3)
dx dx

This represents the ODE for the family of confocal parabolas represented by

the equation (1).

Now, replace % by —% in this differential equation represented by the
X y

equation (3).

2 2
2X X +y—% -y=0 Or —2x%+y% -y=0
dy dy dy “\dy

This is same as equation (3)
Thus, we see that a system of confocal and coaxial parabolas is self-
orthogonal, each member of the family (1) cuts every other member of the

same family orthogonally.

Example 6.4.5: Find the orthogonal trajectories of family of confocal conics

2

X—2+ Zy =1, where A is the parameter.
a® a"+4
) X2 y2
Solution: We have — +—>—=1 ................... (1)

a“ a“+41



Differentiating equation (1), we get

% 22y_ﬂ=0 Or L+ 2y ﬂ:o
a“+ A dx a® a“+4dx

aZ
or— Y - X o Y X . )
a“+4 a“(dy/dx) a“+A4 a“(dy/dx)

2

To eliminate ‘A’ , Substituting this in the equation (1), we get

2 2
XN o Ko M
a® a“(dy/dx) a a“ dy
or x2:a2+xy% or (xz—az)ﬂ:xy ....................... (3)
dy dx

This is the differential equation of the given family of curves represented by

the equation (1).

Now, replace % by —j—; in this differential equation represented by the
X

equation (3), we get
2 2, dX 2 5\ dX )
—(x"-a )d—:xy Or (a“—x )d—:xy (Variable Seperable Form)
y y

22
udx = ydy. Integrating, We Obtain
X

2 2

a’ Iogx—%:y?+c

This is the equation of the required orthogonal trajectories.

6.4 Test Your Progress

. Find the orthogonal trajectories of family of parabolas y* = 4ax.




Vi.

Find the orthogonal trajectories of family of parabolas y =ax?.
Find the orthogonal trajectories of family of Coaxial circles
x* +y*+2Ax+c=2, ‘A’ being the parameter.

Find the orthogonal trajectories of family of Confocal conics

2 2

X,y
a’+1 b*+4

=1, ‘A’ being the parameter.

Show that the family of parabolas x*> =4a(y+a) is self orthogonal.

The electric lines of force of two opposite charges of the same
strength at (£1, 0) are circles (through these points) of the form
x* +y*—ay =1. Find their equipotential lines (orthogonal

trajectories).

6.5. To find the orthogonal trajectories of the family of curves
F(r,0,c)=0[l.e., Polar Form]

Form its differential equation in the form f (r,e,:—;j =0by

eliminating ‘c’.

,do

o in this differential equation.
"

dr
Replace — by -
P 40 y —r




-+ for the given curve through P(r, @), tan¢g = r.?j—e
r

and for the orthogonal trajectory through P tang’ = tan(90° + ¢) = —cot ¢ = —%ﬁ

de
Thus fo getting the differential equation of the orthogonal trajectory

r-d—e is to be replaced by L Or dr is to be replaced by —r? 99
. dr r do do dr

ii.  Solve the differential equation of the orthogonal trajectories of the

form f(r, 0, —rzd—ero.
dr
Example 6.5.1: Find the orthogonal trajectories of family of straight lines
through the origin in polar form.

Solution: The family of straight lines through the origin is given by,



This represents the ODE for the family of straight lines represented by the
equation (1).

Now, replace 3—; by —rzi—f in this differential equation represented by the

equation (2).

This represents the ODE for the orthogonal family of straight lines
represented by the equation (1).
Integrating equation (3), we obtain, r=c.

This represents the family of circles with centre at the origin.

Example 6.5.2: Find the orthogonal trajectories of the cardioides
r=a(l—coséd).
Solution: Given equation of the cardioide is,

r=all—cosé) ..o ... 1)

Differentiating equation (1) w. r. t '¢', we obtain

g—gzasine .................... (2)

This represents the ODE for the family of straight lines represented by the

equation (1).



Now, eliminating ‘a’ from equations (1) and (2), we obtain

From equation (1), r=a(l—cos#) Or a=

1-cosé@
Equation (2) gives,
2rsingcos‘9
dr rsing P} 0
40 1-cos 0 :rCOtE
2sin® —
dr 0
. —=rcot—
do 2

Now, replace g—; by —rz?j—f in this differential equation represented by the

equation (2).

—r? 46 = rcotg Or - r% = cotg (Variable Separable Form)
dr 2 dr 2

This represents the ODE for the orthogonal family of cardioides represented
by the equation (1).

tang de:—ﬁ ...................... (3)

r

Integrating equation (3), we obtain,

2Iogcos§+logr =logc
%
Or logr= 2IogcosE+Iogc

Or r=ccos’ 49/2=%(1+cos€)

Or r=a’(1+cos#)

This represents the required orthogonal trajectory.



Example 6.5.3: Find the orthogonal trajectories of the family of r" =asinng.
Solution: Given equation of the family of curves is,
r'" =asinng
Taking ‘log’ on both sides, we get
nlogr =loga+logsinnd............. ... (2)
Differentiating equation (1) w. r. t '¢', we obtain

ndr ncosnég

— = =cotné

rdé sinnég

lﬂzcotne .................. (2)
rdo

This represents the ODE for the family of the curves represented by the
equation (1).

Now, replace 3—; by —rzz—f in this differential equation represented by the

equation (2).

2
1(— ' da]:cotnﬁ

r dr

Or-r 2—0 =cotn@ (Variable Separable Form)
r

tanné?d@:—% ............................ (3)

Integrating equation (3), we obtain,



—%Iogcosn9+logr =logc

Or —logcosn@+nlogr=nlogc

n

r —
cosné
Orr" =c"cosné

n

Or

c

This represents the required orthogonal trajectory.

Example 6.5.4: Find the orthogonal trajectories of the curves

r =2a(cosd+sin0).

Solution: Given equation of the cardioide is,
r=2a(cos@+sing) ....ccceue. ... (1)

Differentiating equation (1) w. r. t '¢', we obtain

3—; =2a(cosO—SiNO) ..ccoovvrririnnne, (2)

This represents the ODE for the family of straight lines represented by the
equation (1).
Now, eliminating ‘a’ from equations (1) and (2), we obtain

From equation (1), r =2a(cos@+sin#) Or 2a =;_
(cos@+sind)
Equation (2) gives,

dr _r(cos@—sinb)
dé (cos@+sind)




Now, replace g—; by _rz?j_é? in this differential equation represented by the
r

equation (3).

_rzd_e_ r(cos@—sin8)
dr  (cosé@+sind)
dé _ (cos&—sing)

Or —r = .
dr  (cos@+sin0)

(Variable Separable Form)

This represents the ODE for the orthogonal family of cardioides represented
by the equation (1).

(cos@+sind) 40— dr

A, (3)

(cosf—sind)  r
Integrating equation (3), we obtain,

—log(cos @ —sind) =—logr +logc

r
Or logf ———  |=logc
g(cos@—sin@) g

Or r =c(cosfd-sin0)

This represents the required orthogonal trajectory.

2a
1+cos6

Example 6.5.5: Find the orthogonal trajectories of r =

Solution: Given equation of the curve is,

Differentiating equation (1) w. r. t '¢', we obtain

dr 2a . 2asiné@
— = (-Sinf) = ———
dé  (1+cosd) (1+cos )



This represents the ODE for the family of curves represented by the equation

(1).
Now, eliminating ‘a’ from equations (1) and (2), we obtain,

2a

From equation (1), r =
g () ' 1+cosé@

Or 2a=r(l+cos0)

Equation (2) gives,

dr _r(+cos@)singd _ rsind
do (1+cos 6)? 1+cos@

. 0 0
2rsmEcos—

20

Or ;i_r:
¢ 2c0s

Now, replace 3—; by —rzi—f in this differential equation represented by the

equation (3).

_r299_ rtan?
dr 2

Or —rz—e :tang (Variable Separable Form)

r
This represents the ODE for the orthogonal family of curves represented by
the equation (1).

g cotgd@:—ﬂ ...................... (4)

r

Integrating equation (4), we obtain,



2Iogsin§:—logr+logc

. ,0 ¢
Or sin?==-=
.

Oor (1—cosé) _c
2 r

2C
1-cos@

Orr=

This represents the required orthogonal trajectory.

6.5 Test Your Progress

. Find the orthogonal trajectories of family of cardioidesr =a(1+cos6).
ii. Find the orthogonal trajectories of the family of curves r* =a®cos26.
ii.  Find the orthogonal trajectories of the family of curves r"cosng=a".
iv.  Show that the family of curves r" =asecng and r" =bcosecng are

orthogonal.

6.6. Isogonal Trajectories (Or Oblique Trajectories)

Two families of curves such that every member of either family cuts each
member of the other family at a constant angle a (say), are called isogonal or

oblique trajectories of each other. The slopes m; and m, of the tangents to the




corresponding curves at each point are connected by the relation

m, —m,

=tana = cons tant (as shown in the figure).
1+mm,

Figure: Oblique ( Or Isogonal)Trajectories
In other words,
Here the two families of curves intersect at an arbitrary angle o 6= m/2.

Suppose the first family be

Eliminate ‘c’ between the equations (1) and (2) to find the differential
equation ,
f, (x, Y, y’):O ................. (3).

If my, is the slope of this family, then we write equation (3) as



Let m, be the slope of the second family. Then,

M:itana,
1+mm,
: m, + tan
Thus, we find m, = —2—"%
1+m, tanax

Hence, from equation (4), the ODE for the second family satisfies

+
f2 X, y’mz_—tana =0
1Fxm, tana

Replacing m, by y*, the ODE for the second family is written as

y' £tana
0%y, ———|=0 ... 5
2( y 1¢y’tanaJ ®)

General solution of equation (5) gives the required oblique trajectories.

Note: If we let « —>%, we obtain the orthogonal trajectories.

Example 6.6.1: Find the oblique trajectories of the family of circles
x? +y2 =a?, which intersect at 45°.
Solution: Given family of circlesis x*+y*=a* ................... (1)

Differentiate the equation (1) w. r. t ‘x’. We obtain

2x+2yﬂ:0 or Y __Xor y ' =—x/y.
dx dx y



For the oblique (Or isogonal) trajectories, we replace

;Y ttan(z/4)  y'+1
1¥y'tan(z/4) 1Fy' "

y

Thus, the ODE for the oblique (Or isogonal) trajectories is given by

y’il__i
17y y
"+1 x
y_—,:——:> y(y' £1) =-x1FY")
1xy y
L (x+y)Y ==(x+y) Or (x+Yy)y' =(y—x)
Thus,y' =-1  or y' =Y=*%
X+Y

Integrating, we obtain

y=-x+c, Or y' =y _y=x (homogeneous ODE)
X+ Yy

Example 6.6.2: Find the oblique trajectories that intersects the family
y=x+A at an angle of 60°.
Solution: Given family if curvesis y=x+A ................... (1)

Differentiate the equation (1) w. r. t ‘x’. We obtain
dy =1 Or y' =1.
dx

For the oblique (Or isogonal) trajectories, we replace

;Y +tan(z/3)  y' +43
17y tan(z/3) 1343y




Thus, the ODE for the oblique (Or isogonal) trajectories is given by

y' £4/3

=1
173y’

Cy'+43
1343y
5 (1++/3)y' =1-3 Or 1-4/3)y’ =1++3
1-43 o , 1+43

=1= y' +/3=1F/3y’

Thus, y' = ry=-—-=-

y 1+4/3 y 1-4/3
Integrating, we obtain

1-4/3 . 1443
= X+C Or = X+C
d 1++/3 ' y 1-4/3 ’
6.7 Summary

In this unit, we studied Geometrical application of differential equation based
on tangent, normal, subtangent etc. to find orthogonal trajectories in Cartesian

and polar form, also to find oblique trajectories.

6.8 Terminal Questions

1) Find the Cartesian equation of the curve whose subtangent is constant.
2) Show that the parabola is the only curve in which the subnormal is

constant.

3) Find the orghugant trajectories of the system of curve (Z—z) = %



4) Find the orthogonal trajectories of r = ae™9.
5) Find the equation of the family of oblique trajectories which cut the line
y = mx at 45°.

6.7 Answers to Exercises

6.3. Test Your Progress
0] y=ax+b (i) x=3y? (i) (@) r(@—a)=c (b)
r=a+bcosé

(iv) r?=a’sin20 (V) c®x®*=2cy+1 (Vi) r=ae’"

6.4. Test Your Progress
(i) 2x*+y* =c (i) x?+2y*=c®>  (ill) xX* +y*+2uy—-c=0

(iv) This system is self orthogonal (Vi) xX*+y®+cx+1=0

6.5. Test Your Progress

(i) r=c(-cosH) (if) r*=c?sin20  (iii) r"nsin@=c
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7.1. Introduction

Applied mathematics involves the relationships between mathematics and its
applications. Often the type of mathematics that arises in applications is
differential equations. Thus, the study of differential equations is an integral
part of applied mathematics.

Differential equations are found in many areas of mathematics, science, and
engineering. One may be surprised to see the way in which differential
equations dominate the study of many aspects of science and engineering.
Differential equations are very important mathematical subject from both
theoretical and practical perspectives. The theoretical importance is given by
the fact that most pure mathematical theories have applications in differential
equations.

Applied mathematics is said to have three fundamental aspects;

Firstly, the modelling process by which physical objects and processes are
described by physical laws and mathematical formulations. Since so many
physical laws involve rates of change (or the derivative), differential

equations are often the natural language of science and engineering.



Secondly, the analysis of the mathematical problems that are posed. This
involves the complete investigation of the differential equation and its
solutions.

Thirdly, however, the mathematical solution of the differential equation does
not complete the overall process. The interpretation of the solution of the
differential equation in the contest of the original physical problem must be
given, and the implications further analysed.

The practical importance is given by the fact that the most important time
dependent scientific, social and economical problems are described by
differential equations. The bridge between nature (or universe) and us is
provided by mathematical modelling, which is the process of finding the
correct mathematical equations describing a certain problems. This process
might start with experimental measurements and analysis, which leads to
differential equations.

Many real-world problems, when formulated mathematically, lead to
differential equations. We encountered a number of these equations in
previous units when studying phenomena such as the motion of an object
moving along a straight line, the simple harmonic motion of moving object,

simple electrical circuits, heat flow of an object, the decay of a radioactive



material, the growth of a population, and the cooling of a heated object
placed within a medium of lower temperature.

In the previous units we introduced differential equations of the form
a_ f(x), where f
dx ’

Is given and y is an unknown function of x. When f is continuous over some
interval, we
learned that the general solution y(x) was found directly by integration,

y= j f(x)dx. And we also investigated differential equations of the form

% = f(x, y), where f is a function of both the independent variable x and the

dependent variable y. There we learned how to find the general solution
when the differential equation is separable.

In this unit we further extend our study to include other commonly occurring
first-order

differential equations. They involve only first derivatives of the unknown
function y(x), and

model phenomena such as simple electrical circuits, or the resulting
concentration of a

chemical being added and mixed with some other fluid in a container.



In this unit, we shall consider only such practical problems which give rise to
differential equations of the first order and first degree.

Also, we present a sufficient number of applications to enable the students to
understand how differential equations are used and to develop some feeling

for the physical information they convey.

7.2. Objectives

After reading this unit students should be able to:
e Understand the physical applications of ODE’s of first order and
degree
e Apply Newton’s law of cooling
e Understand to model the electrical circuits and solve the first order
ordinary differential equations which arise.
o Understand the Chemical applications of ODE’s of first order and

degree

7.3. Physical Applications of Differential Equations of First
Order and First Degree

In applications, the dependent variables are frequently functions of time,
which we denote by ‘t’. Some applications such as Newton's Law of

Cooling, Kirchhoff’s Laws of Electric Circuits, Motion under Gravity,



Rectilinear Motion, Simple Harmonic Motion, Rate of Growth or Decay,
Heat flow are discussed here. In all these cases, modelling, analysis and

interpretation are important.

7.4. Newton's Law of Cooling

Modelling the Newton’s Law of Cooling, according to this law, the
temperature of a body changes at a rate which is proportional to the
difference in temperature between that of the surrounding medium and that
of the bodly itself.

If 9,’ 1s the constant temperature of the surrounding medium and ‘0’ is the

temperature of an object at time ‘t’. Then,

49 _ —k(6-8,), where ‘k’ is a constant.

dt

Note: In case of process of heating, Newton’s law is given by, ((jj—f =k(0-6,),
where ‘k’ is a constant.

Example 7.4.1: If the temperature of the air is 30° C and the substance cools
from 100° C to 70° C in 15 minutes, find when the temperature will be 40° C.
Solution: If ‘0’ be the temperature of the body at any time ‘t’, then

?j—f =-k(0-30), where ‘k’ is a constant.



dé

=—kdt, Integrating, we obtain
(6-30)

log(@—30) =—kt+logc, where 'c'is the constant of integration

Or (0-30)=ce™ .vvvivrireriennnn, (1)

When t =0, 6 = 100° C and when t=15, 6 = 70°.

From equation (1), we get (100-30)=ce™® = c¢=70

And again from equation (1), (70-30)=70e™ = k =0.0373077191
Thus, equation (1) becomes, (6-30)=70e C®77" s, (2)
Now, when 0 = 40°C, equation (2) gives,

(40—30) = 70e 70N ¢ 52 15 mins

Example 7.4.2: If the air is maintained at 30° C and the temperature of the
body cools from 80° C to 60° C in 12 minutes. Find the temperature of the
body after 24 minutes.

Solution: If ‘0’ be the temperature of the body at any time ‘t’, then

% =—k(0—-30). Where ‘k’ is a constant.

déo

=—kdt, Integrating, we obtain
(0-30)

log(#—30) =—kt+logc, where 'c'is the constant of integration
Or (0—30)=ce™ .vvrcrreeeennnn, Q)

When t =0, 6 = 80° C and when t=12, 6 = 60°.



From equation (1), we get (80—30)=ce*® = ¢ =50

Again from equation (1), (60-30)=50e"* = k =0.0425688019

Thus, equation (1) becomes, (6—30) =50e @428 ... (2)
Now, when t = 24 mins, equation (2) gives,

(0 . 30) — 50e—(0.042568801}24 . 0 — 480 C

Example 7.4.3: A body originally at 80° C cools down to 60°C in 20
minutes, the temperature of the air being 40° C. What will be the temperature
of the body after 40 minutes from the original?.

Solution: If ‘0’ be the temperature of the body at any time ‘t’, then

% =—k(0—-40), where ‘k’ is a constant.

deo

=-kdt, Integrating, we obtain
(6-40)

log(@—40) =—kt+logc, where 'c'is the constant of integration

Or (6—40)=ce™ ..vververeenn, (1)

When t = 0, 0 = 80° C and when t=20, 6 = 60°,

From equation (1), we get (80-40)=ce™® = c=40

Again from equation (1), (60-40)=40e°* = k =0.034657359

Thus, equation (1) becomes, (6—40)=40e @043 ... (2)



Now, when t = 40 mins, equation (2) gives,

(0—40) = 40e (O047M0 — 9 =50°C .

Example 7.4.4: A body is exposed to a constant temperature of 280 K. After
1 minute the temperature of the body is 350 K and after 5 minutes it is 310K.
Find an expression for the temperature 0 at time t. Sketch the graph of 0
against t for t=0.

Solution: If ‘0’ be the temperature of the body at any time ‘t’, then

%—f =k(6-280), where ‘k’ is a constant.

de
(09— 280)

=kdt, Integrating, we obtain

log(@ —280) =kt+logc, where 'c'is the constant of integration

Or (0-280)=ce ..cccecvvivrrvarnnn (1)

When t = 60 Secs, 6 = 350K and when t=300 Secs, 6 = 310K.
From equation (1), we get (350-280) =ce®™ = ¢ =70e°*
Again from equation (1),

(310—280) = 70e ** (e¥* ) Or e = 3—8 — k =—0.003530407

Thus, equation (1) becomes, (6—280)=70e" " Or = 280+86.49¢ %3304



Next, to sketch the graph of 0 against t for t>0, we need to find the value of 0

att=0:

0 =280+86.49e° = 280+ 86.49 = 366.49 .

The graph in the following figure shows that the temperature of the body will

eventually reach very close to the temperature of the surroundings at 280 K.

This is because 86.4986.49xe 531" js the transient term and decays to zero

as t gets large.

f

366.49

280

0

Figure 7.4.4

7.4. Test Your Progress

1) An object is initially at 400 K, and the constant surrounding temperature

is 300 K. Determine an expression that gives the temperature 9= 6(t) at time

t.



2) Newton’s law of cooling gives % =k(0-T), where 0 is the temperature at

time t, T is the constant surrounding temperature and k is a constant. Given
that 6(0)=T,. Show thatg = (T, -T)e" +T.

3) A body is at a temperature of 373 K. After 5 minutes the temperature of
the body is 330 K. Find an expression for @ =4(t) given that the constant
surrounding temperature is 300 K. Sketch the graph of ¢ against t for t>0.
What does ¢ tends to as t tends to oo.

4) By applying Newton’s law of cooling to an object we obtain

% =k(6-320) where ¢ is the temperature at time t and k is a constant. Given

that whent =0, 9 = 348 K, find an expression for 6.

7.5. Simple Electrical Circuits (Kirchhoff’s Laws of Electrical
Circuits)

Here, we examine electrical engineering applications. In electrical principles
R, L and C are constants representing resistance, inductance and capacitance
respectively.

E represents the e.m.f. and v=v(t), I =I(t) Ori=i(t) represents voltage and

current respectively at time t.



We shall consider circuits made up of three passive elements: resistance,
inductance and capacitance. An active element: voltage source which may be

a battery or a generator.

7.5.1. Symbols:
e Quantity of electricity : Symbol is Q (Or q): Unit of
measurement is Coulomb.
e Current (““ time rate flow of electricity”): ~ Symbolis 1 (Ori):

Unit of measurement is ampere (A).

—-
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e Resistance (R) : Symbol is R - Unit of measurement

Is ohm (Q).

oy

e Inductance (L) : Symbolis L - Unit of measurement

is henry (H).

| R T _

e Capacitance (C) : Symbol is C - Unit of measurement

is farad (F).



-
1
Battery, E = {,‘m:smm
=
-5

(renerator, E = Variahle

e Electromotive force (e. m. f) Or voltage, E:
Unit of measurement is volt (V).

e Loop is any closed path formed by passing through two or more
elements in series.

e Nodes are the terminals of any of these elements.

7.5.2. Ohm’s Law: Current is the rate of flow of electricity.
e V =IR (Ohm's Law). The voltage v, across an inductor of inductance L
(figure 1), is given by

R

—{ +———I[Resistor]

el

Figure. 1

o V= L% , the voltage v, across an inductor of inductance L (Figure.

2), is given by

- L

PR R R At

I W

7]

[ [Inductor]
V I

Figure. 2



dv

o i=C g the voltage v, across a capacitor of capacitance C (Figure

3), is related to the current.

.| |€
| |Capacitor]

v

'

Figure. 3
Note: Remember that R, L and C are positive constant.

7.5.3. Basic Relations:

. dq .
e i=— Or g=|i-dt
& O 9=l

¢ Voltage drop across the resistance (R)=Ri.

e Voltage drop across the inductance (L)= L%

e Voltage drop across the inductance (C):%

7.5.4. Kirchhoff’s Laws:

1. The algebraic sum of the voltage drops around any closed circuit is equal

to the resultant electromotive force in the circuit.

2. The algebraic sum of the currents flowing into (or from) any node is zero.



Note: The formulation of differential equations for an electrical circuit

depends on these two Kirchoff’s laws which are of cardinal importance.

Below is the explanation of Kirchhoff’s Law.

Sum of the voltage rises = sum of the voltage drops

'y

L7
N

Figure. 4: Applied voltage to the circuit is v and vy, v, and vs are

voltage drops

With reference to the just above figure, Kirchhoff’s law says; v=v, +v, +v,

Now, we use these rules to form differential equations of electrical circuits.

7.5.5. Modelling of Electric circuit containing the resistance R and

inductance L in series with a voltage source (battery) E.



+ - -
|’E
Let ‘I’ be the current flowing in the circuit at any time ‘t’. Then by

Kirchhoff’s first law, we have sum of voltage drops across R and L = E.

ie., RI+Ld—I—E Or Ld—I+RI E Or d—I+BI—E
dt dt dt L L

This represents Leibnitz’s linear equation.

7.5.6. Modelling of Electric circuit containing the resistance R and

capacitance C in series with a voltage source (battery) E.

Let ‘I’ be the current flowing in the circuit at any time ‘t’. Then by

Kirchhoff’s first law, we have sum of voltage drops across R and C = E.

. 1 dQ dQ
e, RI+=Q=E Or EOr =+—Q=
e +CQ d — + = Q dt+ Q

This also represents Leibnitz’s linear equation.



7.5.7. Modelling of Electric circuit containing the resistance R ,
inductance L and capacitance C in series with a voltage source (battery)

E.

| L
[

=

3

Let ‘I’ be the current flowing in the circuit at any time ‘t’. Then by
Kirchhoff’s first law, we have sum of voltage drops across R, L and C =E.

2
ie, RI +Lﬂ+1Q=E Or Ld—I+RI +£Q=E Or d ?+Bd—Q+iQ=E
dt C dt C dt L d LC L

This represents the LDE of second order.

Example 7.5.1: With reference to the following figure, which consists of a
resistor of resistance R, connected in series with an inductor of inductance L,

and an applied constant voltage E.?

—— |

AR AN



I. Obtain a first order differential equation for the current i at time ‘t’

i. Solve this differential equation for the initial condition, when t = 0,
i=0.

iii.  What is the value of i as t—oo.

Iv.  Sketch the graph of ‘i’ versus ‘t’ for t>0.

Solution: By applying Kirchhoff’s law to the circuit, we have
. Voltage drop across the resistance (R)=Ri.

Voltage drop across the inductance (L)= L%

By applying the Kirchhoff’s law to the circuit, we obtain,

E =Voltage drop across resistance (R) +Voltage drop across induc tance (L)

.'.E:RI+L-d—I Or L-d—I+RI:E Or ﬂ+EI:E
dt dt dt L L

This represents Leibnitz’s linear equation.

li.  To solve this equation,

R
S 1.F=et , 1t’s general solution is given by,

R R R R
et =J.E€Ltdt+c —1.et =E~eLt~ L +C
L L R
E -
Thus, | :E+ce USRI @

Since, when t =0, | = 0. Equation (1) gives, c =%.



Thus, the general solution of the above differential equation is given by

R
| :E(uett].
R

Ii.  Since R and L are positive, we have

R & E
I>O,e L >0ast—>oand sol—>E.

iv. Att=0, =0 therefore the graph goes through the origin and is

asymptotic to the line 1 :E (as shown in the below figure).

Example 7.5.2: With reference to the following figure, which consists of a
resistor of resistance R = 3 Q, connected in series with an inductor of
inductance L = 5 H, and an applied constant voltage E =240 Volts .

. Obtain a differential equation giving the current I at time t.

Ii.  Solve the differential equation for the initial condition, when t = 0,

| =0.

Solution: By applying Kirchhoff’s law to the circuit, we have



. Voltage drop across the resistance (R)=Ri.

Voltage drop across the inductance (L)= L%

By applying the Kirchhoff’s law to the circuit, we obtain,

E =Voltage drop across resistance (R) +Voltage drop across induc tance (L)

cE=ri+L Y or LY ricE or LLRVCE )
dt dt L L

Since, R=3Qand L=5H, E =240Volts . (Given)

Now, Equation (1) gives,

a3 om0
dt 5

Or d—I+O.6I =240
dt

b

This represents Leibnitz’s linear equation in terms of ‘I’ and ‘t’.
ii.  To solve this equation,

- ILF =e®, it’s general solution is given by,

0.6t
| -e%® =I24Oe°'6tdt+c — 1. =240/ & |.4¢
0.6
Thus, I -e%* =400e%% -+¢c Or | =400+ce®®
Since, when t =0, | = 0. Equation (1) gives, ¢c=-400.
Thus, the general solution of the above differential equation is given by,

| =400—400e°% =400(1—e°*).



Example 7.5.3: Show that the differential equation for the current I in an
electrical circuit containing an inductance L and a resistance R in series and
acted on by an electromotive force Esinat satisfies the equation

Ld—|+ Rl = Esinawt .
dt

Find the value of the current at any time ‘t’, if initially there is no current in

the circuit.

Solution: By Kirchhoff’s first law, we have sum of voltage drops across

R and LisEsinat .

] dl )

I.e., Rl +L— =Esinwt
dt

This is the required differential equation which can be written as

dl R E .
—+— | =—sinwt
dt L L

This represents Leibnitz’s linear equation in terms of ‘I” and ‘t’.

To solve this equation,

Ry
L

[Rat _ ..
~1LF=e't =el ,it’s general solution is given by,

Et E Bt BI E Bt
|-et =j—sina)teL dt+c = | -et :erL sinwt-dt+c

R

R O

Thus, | -eLt :E € sin(a)t—tanlﬂ)ﬂ
L J(RILY +o0?] R

R R
et = E sin(wt —¢)+ce -

JIR? + 0?2

t where tang = L—Fgo




This is the required general solution.

Observation: As ‘t’ increases indefinitely, the exponential term will
approach zero. This implies that after sometime the current I(t) will execute

nearly harmonic oscillations only (as shown in the following figure).

(£)4
Exponential

< /rerm ini

Figure

7.5. Check Your Progress
1. When a switch is closed in a circuit containing a battery E, a resistance R

and an inductance L, the current | build up at a rate given by L%+ RI =E.

Find I as a function of t. How long will it be, before the current has reached
one half its final value if E = 6 volts, R = 100 Ohms and

L = 0.1 Henry.

2. When a resistance R ohms is connected in series with an inductance L

henries with an e.m.f of E volts, the current ‘I’ amperes at time t is given by



L%Jr Rl =E. IfE=10sint volts and | =0 when t =0, find I as a function of

t.

3. A resistance of 100 €, an inductance of 0.5 Henry are connected in series
with a battery of 20 volts. Find the current in the circuitatt = 0.5 sec, if 1 =0
att=0.

4. The equation of electromotive force in terms of current | for an electrical
circuit having resistance R and condenser of capacity C in series is

E=Ri +j'%t. Find the current | at any time t when E=E,sinat .

5. A resistance R in series with inductance L is shunted by an equal
resistance R with capacity C. An alternating e.m.f. E sinpt produces currents

I, and I, in two branches. If initially there is no current, determine I, and I

from the equations. L%+ RI, = Esin pt and I€2+ R%Z = pEcos pt. Verify that if

R’C =L, the total current i, +i, will be ES'F:' Pt

7.6. Heat flow

The fundamental principles involved in the problems of heat conduction are:

. Heat flows from a higher temperature to the lower temperature.



Ii.  The quantity of heat in a body is proportional to its mass and
temperature.
Heat: The form of energy that can be transferred from one system to another

as a result of temperature difference.

© Thermodynamics is concerned with the amount of heat transfer as a system
undergoes a process from one equilibrium state to another.

© Heat Transfer deals with the determination of the rates of such energy
transfers as well as variation of temperature.

® The transfer of energy as heat is always from the higher-temperature
medium to the lower-temperature one. Heat transfer stops when the two
mediums reach the same temperature.

© Heat can be transferred in three different modes: conduction, convection,
and radiation.

Conduction heat transfer

© Conduction: The transfer of energy from the more energetic particles of a
substance to the adjacent less energetic ones as a result of interactions
between the particles.

® In gases and liquids, conduction is due to the collisions and diffusion of the

molecules during their random motion.



@ In solids, it is due to the combination of vibrations of the molecules in a

lattice and the energy transport by free electrons.

Rate of conduction
® The rate of heat conduction through a plane layer is proportional to the

temperature difference across the layer and the heat transfer area, but is

inversely proportional to the thickness of the layer.

~,

e Ay —of
—x

Heat conduction through a large plane wall of thickness Ax and
area A

(Area)(Temperature Difference)
Thickness

Rate of heat conduction «

Ll g N L @

QConduction: KA AX AX



7.6.1. Fourier Law of Heat Conduction:
“The rate of heat-flow across an area is proportional to the area and to the

rate of change of temperature with respect to its distance normal to the area”.

: T,-T AT

= KA--L 2 =_KA=—

QConductlon AX AX
When X = 0, Qg = —KAC;—T
X

In heat conduction analysis, A represents the area normal to the direction of
heat transfer.

Equivalently,

If q (cal/sec) be the quantity of heat that flows across a slab of area o (cm?)
and thickness dx in one second, where the difference of temperature at the

faces is 0T, Then, by the statement of Fourier Law of heat conduction,



Where ‘k’ is a constant depending upon the material of the body and is

called the thermal conductivity.

e Heat is conducted in the direction of decreasing temperature, and the
temperature gradient becomes negative when the temperature decreases
with increasing Xx.

e The negative sign in the equation ensures that heat transfer in the positive
‘X’ direction is a positive quantity.

e Thermal conductivity ‘k’ is a measure of the ability of a material to

conduct heat.

e Temperature gradient 2—1 Is the slope of the temperature curve on a T-x

diagram.

e The rate of heat transfer through a unit thickness of the material per unit
area per unit temperature difference.

e The thermal conductivity of a material is a measure of the ability of the
material to conduct heat.

¢ A high value for thermal conductivity indicates that the material is a good
heat conductor, and a low value indicates that the material is a poor heat

conductor or insulator.



Example 7.6.1: The block of 304 stainless steel shown below, is well
insulated on the front and back surfaces, and the temperature in the block
varies linearly in both the X-axis and Y-directions, find the heat fluxes and
heat flows in the x-and y-directions.

Solution: The thermal conductivity of 304 stainless steel is 14.4 W/m.K.
The cross sectional areas are:

A =10x5=50cm? =0.0050m’
Ay =5x5=25cm? = 0.0025m?

1589C ——» T,

10 em

oc

Since the temperature variation is linear, replacing the partial derivatives

with finite differences, the heat fluxes are:

q, = T (AT —14.4(_—5j =1440W / m?
oX AX 0.05

q _ U AT g 10 =—1440W / m?
y OX AX 0.1



The heat flows are obtained by multiplying the fluxes by the corresponding

cross-sectional areas:

d, =0, A, =1440x0.005=7.2W

q, =4, A, =1440x0.0025=-3.6 W

Example 7.6.2: Apply the conduction equation to the situation illustrated in

the following Figure.

In order to make the mathematics conform to the physical situation, the

following conditions are imposed:

Insulated

T'I e
Nl o
g —» — .+ g,

Insulated -
«— F—»

x "
~ Ingulated

Figure 7.6.2: One-dimensional heat conduction in a

solid.

. Conduction only in x-direction = T =T(x), SO %T :2_T =0
Z



ii.  No heatsource = q=0

iii.  Steady state = %T =0

iv.  Constant ‘k’

Solution: With respect to the given figure and given conditions, the
conduction equation in Cartesian coordinates then becomes:

2 2
T _oor ¢
OX dx

k =0.

(The partial derivative is replaced by a total derivative because x is the only
independent variable in the equation.) Integrating on both sides of the

equation gives: (:j—T =C,, integrating again, gives: T =C,x+C,.
X

Thus, it is seen that the temperature varies linearly across the solid. The

constants of integration can be found by applying the boundary conditions:
Atx=0T=T,and At x=B T =T,.

The first boundary condition leads to T, =C, and the second the gives:
T,=C,B+T,.

Solving for C; we find: C, = L-T

The heat flux is obtained from Fourier’s Law:



qA :_kd_T —kC. =—k (rz _T1) :k(Tl _Tz)
X 1

dx B B

Multiplying by the area gives the heat flow:

a, =g, A= R,

Example 7.6.3: A pipe 20 cm in diameter contains steam at 150°C and is
protected with a covering 5 cm thick for which the thermal conductivity is
0.0025. If the temperature of the outer surface of the surrounding is 40°C,
find the temperature half-way through the covering under steady state
conditions.

Solution: Let g cal/sec. Be the constant quantity of heat flowing out radially
through a surface of the pipe having radius x cm. And length is 1 cm (as
shown in the following Figure 7.6.3). Then the area of the lateral surface =

2TX.

Direction of flow

q

Figure 7.6.3



Therefore, by Fourier Law of heat conduction;

q:—k-ZﬂX-d—T Or dT B Integrating, we obtain
dx 27K X

T :—ilogex+c.
27K

Since T = 150, when x = 10.

q
2150 =——-109,104C .cceecvrevrrrrrrrirnnn, 1
o 09 @
Again since T =40, when x =15.
q
40=——-109,154+C i 2
5 log, @)

Subtracting equation (2) from equation (1), we get
120= -9 109,15 ooroveveereeeeeeereeenn, 3)

27k ¢
Since T =t,whenx =125

q
Sot=— 109,12.54+C i 4
o 0g. + (4)

Subtracting (1) from (4), t-150= —ﬁ 109,1.25 .cvvveriiienenn, (5)

t-150  log.1.25
110 log.1.5

Dividing (5) by (3), , whence t =89.5°C .

Test Your Progress 7.6

1) A pipe 20 cm in diameter contains steam at 200°C. It is covered by a




layer of insulating material 6 cm thick and the thermal conductivity is
0.0003. If the temperature of the outer surface is 30°C, find the heat loss
per hour from two metre length of the pipe.

2) A steam pipe 20 cm in diameter contains steam at 150°C and is covered
with asbestos 5 cm thick. The outside temperature is kept at 60°C. By
how much should the thickness of the covering be increased in order that

the rate of heat loss should be decreased by 25%?.

7.7. Chemical Reactions

Suppose a chemical in a liquid solution ( or dispersed in a gas) runs into a
container holding the liquid (or the gas) with, possibly, a specified amount of
the chemical dissolved as well. The mixture is kept uniform by stirring and
flows out of the container at a known rate. In this process, it is often
important to know the concentration of the chemical in the container at any
given time. The differential equation describing the process is based on the

formula,

Rate of change of }

Rate at which the Rate at which the
amount in container

chemical arrives chemical departs




If y(t) is the amount of chemical in the container at time t and V(t) is the total
volume of liquid in the container at time t, then the departure rate of the
chemical at time t is

concentration in
Departure Rate = \% - (outflow rate) :(

.................. )

Accordingly, equation (1) becomes;

dy _[Rate of inflow —m.(outﬂow 2211-) J OSSR (3)
dt \of the chemical /] V(t)

) . - (outflow rate)
container at time t

Suppose y is measured in pounds, V in gallons, and t in minutes, the units in
equation (3) are given by,

pounds  pounds pounds gallons
minutes minutes gallons minutes

Example 7.7.1: A tank initially contains 50 gallons of fresh water. Brine.
Containing 2 pounds per gallon of salt, flows into the tank at the rate of 2
gallons per minute and the mixture kept uniform by stirring, runs out at the
same rate. How long will it take for the quantity of salt in the tank to increase

from 40 to 80 pounds?

Solution: Let the salt content at time t be y Ib, so that its rate of change is %



2 gal. /nmun.

—_——

7 [[—__z Ib./gal.

2 gal. Iminks

Figure 7.7.1

Rate of inf low of fresh water =2 galx21lb=4Ib/min.

If C be the concentration of the brine at time t, the rate at which the salt

content decreases due to the out-flow=2 galxC Ib =2 Ib/min .

c=2.
50
Therefore, equation (1) becomes W _y_p¥ 100=y
dt 50 25

Separating the variables and integrating, we have

[dt= zsjlogy v k. Where K is the constant of integration.

t=-25log,(100—y) +K eocrrrrrennn (2)
Initially when t = 0, y = 0; equation (2) gives,

0=-25log,100+k Or k =25109,100.........c.......... (3)



Eliminating k from equation (3) using equation (2), we obtain

t=25log, 100 :
100 -y

Now, taking t = t; wheny =40 and t = t, when y = 80, we have

t, = 25Ioge(%) and t, = 25|099(%j

.. The required time (t, —t,) =25log, 5—-25log, 5/3
=25log, 3=25x1.0986 = 27 min .28 sec.

Example 7.7.2: In an oil refinery, a storage tank contains 2000 gallons of
gasoline that initially has 100 Ib of an additive dissolved in it. In preparation
for winter weather, gasoline containing 2 Ib of additive per gallon is pumped
into the tank at a rate of 40 gal/min. The well-mixed solution is pumped out
at a rate of 45 gal/min. How much of the additive is in the tank 20 min after

the pumping process begins?.

Solution: Let y be the amount (in pounds) of additive in the tank at time t.
We know that y = 100 when t = 0. The number of gallons of gasoline and
additive in solution in the tank at any time t is

V (t) = 2000 gal + (409—‘?' - 459—","']@ min)
min min

= (2000 -5t) gal.



CD 40 gal/min containing 2 Ib/gal

45 gal/min containing ‘l Ib/gal

Figure 7.7.2: The storage tank mixes input liquid with stored liquid to

produce an output liquid.

If C be the concentration of the brine at time t, the rate at which the salt
content decreases due to the out-flow=45 gal / min .

= V(t) = 2000 -5t

Therefore,

Rate out = w-outﬂow rate
V(1)

=( y ]45 Yy /min

2000—5t ) 2000—5t
Also,
Rate in = (2£J-(40g—§“) =80 Ib/min
gal min

The differential equation modelling the mixture process is

Y _go_ 45

————— pounds/min.
dt 2000 -5t



Orﬂ+ 45 Y=80 .rrrrieriinns (1)

dt  2000-5t
Here, P(t) = 2004(;5 = Q(t)=80. The integrating factor is given by
45
ILE—el™ =eI [2"0@&]“ = g ?10%(20005) _ (2000 —5t) . *» 2000-5t >0

The general solution of the equation (1) is given by

yx(2000—5t)‘9:j80><(2000—5t)‘9dt+k. Where K is the constant of

integration.

Or yx(2000-5t)° =80[ (2000 5t) “dt + k

(2000-50)°
(-8)(-5)
Or y =2(2000—5t) + C(2000—=5t)°  ovrvvvvvvvverrrs ()

~. (2000-5t)°y =80-

To find the value of C, using y=100 when t=0 (Given).
Equation (1) gives;

100 = 2(2000 — 0) + C (2000 — 0)°

3900
(2000)°
] . 3900 9
Now equation (1) becomes; y =2(2000-5t) - (20007 (2000-5t)° .oooiieeiiieee

(2)
Equation (2) gives the particular solution of given initial value problem.
Further, the amount of additive in the tank 20 min after the pumping begins

IS



I.e., substitute t = 20 in equation (2); we get

y(20) = 2[2000 — 5(20)] -

3900
(2000)°

[2000-5(20)]° =13421b .

Test Your Progress 7.7

1)

2)

3)

A tank contains 1000 gallons of brine in which 500 It. Of salt are
dissolved. Fresh water runs into the tank at the rate of 10 gallons/minute
and the mixture kept uniform by stirring, runs out at the same rate. How
long will it be before only 50 It. Of salt is left in the tank?

A tank is initially filled with 100 gallons of salt solution containing 1 Ib.
Of salt per gallon. Fresh brine containing 2 Ib. Of salt per gallon runs into
the tank at the rate of 5 gallons per minute and the mixture assumed to be
kept uniform by stirring, runs out at the same rate. Find the amount of salt
in the tank at any time, and determine how long it will take for this
amount to reach 150 Ib.

In a chemical reaction in which two substances A and B initially of

amounts a and b respectively are concerned, the velocity of

transformation % at any time t is known to be equal to the product

(a—x)(b—x) of the amounts of the two substances then remaining un




transformed. Find t in terms of xif a=0.7, b=0.6 and x =0.3 when

t =300 seconds.

7.8. Rate of Growth or Decay

7.8.1: Rate of Growth
“The rate of growth of substance at time t is directly proportional to the

substance present at that time”.
Let y(t) be the substance present at time t. Then, the natural growth equation

Is the differential equation given by,

%a y = % =ky. Where ‘k’ is a constant of proportionality.

Its general solution is given by

% =ky = Yyt , This is in variable separable form
y

Integrating, we obtain
log, y =kt+log, C Or y=Ce"
If the initial conditions given are y(0)=y,, then C =y,

Therefore, the particular solution is given by y=ye"




Figure 7.8.1: Exponential Growth

7.8.2: Rate of Decay

“The rate of decay of radioactive substance at time t is directly proportional
to the mass of the substance present at that time”.

Let y(t) be the substance present at time t. Then, the equation of decay is the
differential equation given by,

%a y = % =—ky. Where ‘k’ 1s a constant of proportionality.

Its general solution is given by

dy

dy — =—kdt, This is in variable separable form
y

_ _x
a7

Integrating, we obtain
log, y =—kt+log,C Or y=Ce™
If the initial conditions given are y(0)=y,, then C =y,

Therefore, the particular solution is given by y=ye™



(]

ﬂq.____éc'_

€

¢

Figure 7.8.2: Exponential Decay
Example 7.8.1: The number N of bacteria in a culture grew at a rate

proportional to N. The value of N was initially 100 and increased to 332 in

one hour. What would be the value of N after 1% hours?

Solution: By the law of rate of growth, we have

N N = dWN =kdt. Integrating, we obtain

dt

log, N =kt+log,C Or N=Ce" .....cccocerrnenn. (1)

Initially, N = 100 when t = 0, equation (1) gives C = 100
Now equation (1) becomes N =100e* ...........c........ 2
And N = 332 when t = 1 Hr, from equation (2), we get

ie, N=100e" = 332=100e* = k =1.199965

=1.5Hrs, then from equation (2), we obtain

Now, if t =1

N |-
N | W

N =100e®199%% 15 — 604,9647 .



Example 7.8.2: Radium decomposes at the rate proportional to the amount
present. If a fraction p of the original amount disappears in 1 year, how much
will it remain at the end of 21 years?

Solution: By the law of rate of decay, we have

Let y(t) be the radium present at time t. Then, the equation of decay is the

differential equation given by,
“ay= d_t =—ky. Where ‘k’ is a constant of proportionality.

Its general solution is given by

dy

b —ky = —=—kdt, This is in variable separable form
y

dt
Integrating, we obtain

log, y =—kt+log,C Or y=Ce™ ...cccevvrrrrnen. (1)

Initially, y = Y (say) when t = 0, equation (1) givesC =Y
Now equation (1) becomes y=Ye™ ....ccccoveuneene. (2

Andy =Y/pwhent=1 Year, from equation (2), we get
. e Y e 1
e, y=Ye :B:Ye = _kZIOQQ(EJ Or k=log, p

Now, if t=21years, let y=y,, then from equation (2), we obtain

21
yl :Y e_[IOQe p] (21 Or y]_ =Y(lj
p



Example 7.8.3: A 30% of radioactive substance disappeared in 10 days, how
long will it take for 90% of it to disappear?

Solution: By the law of rate of decay, we have

Let y(t) be the radioactive substance present at time t. Then, the equation of

decay is the differential equation given by,

ﬂa y = v _ —ky. Where ‘k’ is a constant of proportionality.

dt dt

Its general solution is given by

dy _
dt

—ky = d—;' =—kdt, This is in variable separable form
Integrating, we obtain

log, y=—kt+log,C Or y=Ce™ .....cccevverrenen. (1)

Initially, y = Y (say) when t = 0, equation (1) givesC =Y

Now equation (1) becomes y=Ye™ ......cccceenne. (2

And y=Y —%Y =0.7y when t = 10 days, from equation (2), we get

0.7Y =Y e!* = k =-0.03567
90

Now, if y=Y _RY =0.1Y, then again from equation (2), we obtain

0.1Y =Y 9%t — t —64.5 days



Test Your Progress 7.7

1) A rate at which bacteria multiply is proportional to the instantaneous
number present. If the original number doubles in 2 hours, in how many
hours will it triple?

2) Under certain conditions cane sugar in water is converted into dextrose at
a rate which is proportional to the amount unconverted at any time. If it is

of 75 gm. At time t = 0.8 gm. are converted during the first 30 minutes,

find the amount converted in 1% hours

7.8 Summary

In this unit we have studied the physical applications of differential
equations of first order and first degree like problems based on Newton’s
Law cooling , simple electric circuit, Kirchhoff’s law, Modelling of electric
circuit, heat flow, Fourier law of heat conduction , chemical reaction, growth

and decay of radioactive substances.

7.9 Terminal Questions

1. Assuming v, as the original temperature of the body at t = 0 and that of

the surroundings is u, find the temperature u of the body at time t.




2. A glass of ice cold water is kept in a room at temperature 30°c. If the
initial rate of temperature increase is 1.5%c per minute, find the
temperature of water ofter 10 minutes.

3. In aculture of bacteria the rate of increase is proportional to the number
present. If their number are 3000 and 5000 at the end of 3 and 4 hours,
find their number in the beginning.

7.8. Answers to Exercises

Test Your Progress 7.4:

(1) 6(t) =100(3+€")  (3) 9=300+73e 31 (4) g(t) =320+ 28e"

Test Your Progress 7.5:
Rt
(1)0.0006931 secs  (2) %(Rsint— Loost+Le ] (3)
+

1 -100
I=—(1-e
( )

1
(4) I =ke " +&sin(a)t +0) where 8 =cot *(RCw) .

VI+RC?0
Test Your Progress 7.6:
(1) 490, 000 cal (2) 2.16 cm
Test Your Progress 7.7:

(1) 3Hrs. 50 mins. 16 Secs  (2) 100(1—e™"#*°); 13.9 min's



0.7—x
3) t=300-5log, 2+5lo
(3) g, ge(o.s Xj

Test Your Progress 7.8:

(1) 2- (2) 21.5 grams

log, 3
log, 2

e
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8.1. Introduction

Differential equations are found in many areas of mathematics, science,
and engineering. One may be surprised to see the way in which
differential equations dominate the study of many aspects of science

and engineering.

Differential equations are very important mathematical subject from
both theoretical and practical perspectives. The theoretical importance
Is given by the fact that most pure mathematical theories have

applications in differential equations.

In the previous units we introduced differential equations of the form
_ f(x), where f

dx

Is given and y is an unknown function of x. When f is continuous over

some interval, we

learned that the general solution y(x) was found directly by integration,

y =j f(x)dx . And we also investigated differential equations of the form



%z f(x,y), where f is a function of both the independent variable X
X

and the dependent variable y. There we learned how to find the general

solution when the differential equation is separable.

Many real-world problems, when formulated mathematically, lead to
differential equations. We encountered a number of these equations in
previous units when studying phenomena such as the, simple electrical
circuits, heat flow of an object, the decay of a radioactive material, the
growth of a population, and the cooling of a heated object placed within

a medium of lower temperature.

In this unit, we shall consider only such practical problems which give

rise to differential equations of the first order and first degree.

Also, we present a sufficient number of applications to enable the
students to understand how differential equations are used and to

develop some feeling for the physical information they convey.

We further extend our study to include other commonly occurring first-

order



differential equations. They involve only first derivatives of the

unknown function y(x), and

model phenomena such as motion of an object moving along a straight

line, the simple harmonic motion of moving object.

We shall consider only such practical problems which give rise to

differential equations of the first order and first degree.

Also, we present a sufficient number of applications to enable the
students to understand how differential equations are used and to

develop some feeling for the physical information they convey.

8.2. Objectives

After reading this unit students should be able to:

Understand the physical applications of ODE’s of first order and degree
Apply Newton’s second law of motion and modeling the motion of
particles in mechanics

Understand to model the motion under gravity and solve the first order

ordinary differential equations which arise.



Understand and apply the simple harmonic motion in modelling the

ODE’s of first order and degree

8.3. Physical Applications of Differential Equations of First
Order and First Degree

In applications, the dependent variables are frequently functions of
time, which we denote by‘t’. Some applications such as Newton's Law
of Cooling, Kirchhoff’s Laws of Electric Circuits, Rate of Growth or
Decay are already discussed in the previous unit and Motion under
Gravity, Rectilinear Motion, Simple Harmonic Motion, Heat flow are
discussed here. In all these cases, modelling, analysis and interpretation

are important.

8.4. Rectilinear Motion

Let a body of mass ‘m’ start moving from the point O along the straight
line OX under the action of a force F. After any time t, let it be moving

at P where OP = x, then

s
[}
=
H

H"




) . dx
ts veloc =
its velocity (v) m

: : d’x d(dx) dv dv dx _ dv
its acceleration (a) =—5=—| — |=—=—-—=V-—
dt® dtldt) dt dx dt dx

If, however, the body be moving along a curve, then

) . ds
its velocity (v) =—
ty (v) o

2
its acceleration (a) =$ Or av Or v-ﬂ

dt ds

The quantity mv is called the momentum.
Newton’s Second Law of Motion:

The net force F (say) acting on the body is directly proportional to rate

of change of momentum of the body.
i.e., Net force = massx acceleration

2
F :i(mv) :myzma Or F= m%: md—;(, if ‘m’ 1s constant.
dt dt dt dt

Now, consider the example of resisted motion

Example 8.4.1: A moving body is opposed by a force per unit mass of

value cx and resistance per unit of mass of value bv? where x and v are



the displacement and velocity of the particle at that instant. Find the

velocity of the particle in terms of x, if it starts from rest.

Solution: By Newton’s second law of motion, the equation of the

motion of the body is given by

dv d?x
F=m—=m
dt dt?

=-m(cx+bv?). (Since the force is opposite)

myz—m(cxjtbvz) or vgz—cx—bv2
dt dx

v? +hvi=—Cx (1). This represents the Bernoulli’s
X

equation.
2 dv du . .

Put v’ =u= 2v— =— 50 that equation (1) yields to

dx dx
Ed—u+bu =-—cx Or d—u+2bu S v S (2)
2 dx dx

This represents the Linear ODE of first order and first degree.

|F =/ g

General solution of equation (2) is given by



uxe® = —IZCXXGZbXdX+C1, integrating by parts

e
2b

2bx 2bx

Il-e dx [+¢,
2b

u-e? = —20{x~

CX C
— __e2bx +_e2bx + Cl

b 2b?

Substituting v* =u , we get; v* :%wlez‘“ —%X .................. 3)

Initially v = 0 when x = 0; equation (3) gives ozz—gz+cl.

Thus, substituting c, =—2ib2 in equation (3), we get

2 C C _—ax X

T 2p2 2b? b

or =2 (-e®)- &
2b2( ) b

Consider the example of resisted vertical motion

Example 8.4.2: A particle falls under gravity is a resisting medium
whose resistance varies with velocity. Find the relation between

distance and velocity if initially the particle starts from rest.



Solution: After falling a distance ‘s’ in time t from rest, let ‘v’ be the
velocity of the particle. The forces acting on the particle are its weight

mg downwards and resistance mAiv upwards.

.. Equation of motion is m% =mg-mAv

Or %:g—ﬂv Or =dt. Integrating,

g—Av

dv 1
=|dt+c Or —=log(g—AV) =t+C .evvrrrrneenn.... 1
Idtg_ﬁv [dt+ —log(g - ) =t+ (1)

Since v =0 when t = 0, equation (1) gives c = —%Iog g

Thus,

g9 9
—lo =t Orlo = At
bog, 0 torig S
Or g —eft S et = g—ﬂV
g-Av g
et =974V ge*'=g-Av Or gge*'—g=Avor v:%(l—e”)
g9

Integrating, we obtain,



_ 1 _
s:%[(l—e Ydt+c, Or s:%(HZe “J+c1

Since s=0whent=0, Cl=—%-

Thus, S=gt+%e‘“ —% or s:gt+%(e‘“ —1)
A4 A A A

Eliminating ‘t” from equations (1) and (2), we get

From equation (1) ,

V:Ezg(l—e’”) etV
dt 4
oret=1-Y* oret=— 9 or t:iloge 9
g g-vAa A g-vAa

. i g1 g g(-vi
.. Equation (2 es; s=—-—log, +2 | 2~
quation (2) giv ) g(g—v/lj /12[ ] J
or s=3jog,| L |-¥
A g-vi) 4

This is a desired relation between s and v.



Example 8.4.3: A body of mass m, falling from rest is subject to the
force of gravity and air resistance proportional to the square of the

velocity (i.e., kv?). If it falls through a distance x and possesses a

a2

velocity v at that instant, prove that %kx: Iog(az VZJ , where mg = ka®.

Solution: If the body is moving with the velocity ‘v’ after having fallen
through a distance x, then its equation of motion, by Newton’s law of

motion is given by

2
Net Force=F = md—2X =ma= mﬂ = mvy
dt dt dx
mvﬂz mg—kv®> Or mvﬁz k(@ =v?) .o.ooue.... (1)
dx dx
s mg =ka’

Separating the variables and integrating, we get

j ;/dvz zkjdx+c; put a® —v? =u = —2vdv=du

a’-v: m

g —idu:£x+c or —lloge(az—vz):£x+c .................... (2)
2u m 2 m

Initially, when x =0, v =0. Then, —%Iog A% =C i (3)



To eliminate ‘c’ from equations (2) and (3): Subtracting equation (3)

from equation (2), we obtain

1 k 2k a’
=l 2| Z_v¥)|=—=x Or —=x=1o .
2[Ogea Oge(a v )] mX m X ge(az _V2]

Test Your Progress 8.4

1) A particle of mass ‘m’ moves under gravity in a medium whose
resistance is k times its velocity, where k is a constant. If the particle is
projected vertically upwards with a velocity v, show that the time to

reach the highest point is %Iog{nﬁj.

mg
2) A body of mass m falls from rest under gravity and air resistance is
proportional to square of velocity. Find velocity as function of time.
3) A body of mass m falls from rest under gravity in a field whose
resistance is mk times the velocity of the body. Find the terminal
velocity of the body and also the time taken to aquire one half of its

limiting speed.

A particle is projected with velocity v along a smooth horizontal plane

in the medium whose resistance per unit mass is p times the cube of




the velocity. Show that the distance it has described in time is

L (fre2mit-1).

uv

8.5. Motion under Gravity

Elementary motions of a particle are frequently described by
differential equations. Simple integration can sometimes be used to
analyze these elementary motions. For the one-dimensional vertical

motion of a particle, we recall from calculus that,
Newton’s Second Law of Motion:

The net force F (say) acting on the body is directly proportional to rate

of change of momentum of the body.
i.e., Net force = massx acceleration

2
F :i(mv)zmﬂ:ma Or F :mﬂ:md—;{, if ‘m’ 1s constant
dt dt dt dt

2
Equivalently, F(x, %, tj = m% ......................... (1)




Here we have allowed the forces to depend on position, velocity, and

time.

Equation (1) is a second order differential equation, we have not yet

studied the techniques to solve the equation (1). However, it can be

solved by simple integration if the force F does not depend on x and %

Consider the following situation;

Suppose that the only force on the mass is due to gravity. Then, it is
known that F = -mg, where g is the acceleration due to gravity. The
minus sign is introduced because gravity acts downward, toward the
surface of the earth. Here we are taking the coordinate system so that x
increases toward the sky. The magnitude of the force due to gravity mg
is called the weight of the body near the surface of the planet earth, g is
approximately g=9.8 m/s°. If we assume that, we are interested in a
mass that is located sufficiently near the surface of the earth, then g can
be approximated by this constant. With the only force being gravity,

equation (1) becomes

2 2

X _mg or d’x =—-g. Integrating yields

md
t? dt?




ax_ —gt+C,, where C, is an arbitrary constant of integration
dt !

Orv(t) =—gt+C, woverrreerieenninns (2)

If we assume that the velocity att = 0 is given and let v=v,.
Equation (2) gives; C, =v, ,this implies % =—QUHVy e (3)

Now, the position can be determined by integrating the velocity in the

equation (3).

Where C, is second constant of integration. Again we assume that the

position at t = 0 is Xo. Then equation (4) gives C,=x,, SO that

1
x:—zgt2+v0t+x0.

Note: If the applied force depends only on time and is not constant,
then the formulas for velocity and position may be obtained by
integration. If the applied force depends on other quantities, then

solving the differential equation is not so simple.



Consider the another examples;

Example 8.5.1: Suppose a ball is thrown upward from ground level
with velocity vg and the only force is gravity. How high does the ball go

before falling back toward the ground?

Solution: As in the above situation, the corresponding differential

equation is given by

The successive integrations with initial conditions, att = 0, x = 0 and

dx .
=y, vyields to

From equation (3), the height is known as a function of time. To
determine the maximum height, we must first determine the time at

which the ball reaches this height. From calculus, the maximum of a

function x = x(t) occurs at a critical point where %:o. At the



maximum height the ball has stopped rising and has not started to fall,
so the velocity is zero. Thus, the time of the maximum height is

determined from equation (2):

—gt+v, =0 Or equivalently, t:VEO ................ 4)
When this time t in equation (4) is substituted into (3, a formula for the

maximum height y (say) is obtained:

In the following example we consider the motion of a boat across a

stream,

Example 8.5.2: A boat is rowed with a velocity ‘v’ directly across a
stream of width ‘a’. If the velocity of the current is directly proportional
to the product of the distances from the two banks, find the path of the

boat and the distance downstream to the point where it lands.

Solution: Taking the origin at the point from where the boat starts, let

the axes be chosen as in the following figure 8.5.2.



At any time t after its start from O, let the boat be at P(X, y), so that

% =velocity of the current =ky(a—y)

% =velocity with which the boat is being rowed =v

Oy _dy dt v
Cdx dt dx ky(a-y)

y
A y
:ii%:I-ZZT R
T g I
nis di P e
:‘{I': (11_’_: —:T:?:
S/ Py dtsssoas
N & e et S L
S | e o e T
0 ) X

Figure 8.5.2

This gives the direction of the resultant velocity of the boat which is

also the direction of the tangent to the path of the boat.

Equation (1) is of variable separable form and we can write it can be

written as

2 3
y(a—y)dy:%dx. Integrating, we obtain %—%:%Hc



Since, initially y = 0 when x = 0 implies C = 0.

Hence the equation to the path of the boat is given by

YV o3 -2y v
2 3 k 3] k

2
Or ky?(3a—2y)=6vx Or X:M
v

By putting y = a, we get the distance AB, downstream where the boat

lands is equal to

ka’(3a—2a) ka’
6V 6V

Test Your Progress 8.5

1) When a bullet is fired into a sand tank, its retardation is proportional to
the square root of its velocity. How long will it take to come to rest if it
enters the sand tank with velocity vo.

2) A particle of mass m is attached to the lower end of a light spring
(whose upper end is fixed) and is released. Express the velocity v as a

function of the stretch ‘x’ feet.




8.6. Simple Harmonic Motion

2
Differential equations of the type OI—y+k2y =0, where ‘k’ is a constant,
dx?

arise in vibration problems. One of the simplest cases is known as

simple harmonic motion (SHM).

Consider a particle P, moving to and fro about its equilibrium position

O as shown in figure 8.6.

<« 5 Displacement

0 p

Figure 8.6

The equation of motion at any time ‘t’ is given by

+k*x=0 ...l (1). Where ‘x’ is displacement, ‘k’ is a

constant and ‘t’ is time.

Equation (1) is a second order differential equation, we have not yet

studied the techniques to solve the equation (1). However, it can be



solved by separating the variables and by simple integration if the force

F does not depend on x and %.

Equation (1) can also be written as, v?+k2x =0 Or vdv=—k*xdx .
X
Integrating, we get

2 2 2
Y

Yoo x2 XL or v =—k*x* +c,.
2 2 2

Note: The motion of an object or weight bobbing freely up and down
with no resistance on the end of a spring is an example of simple
harmonic motion. The motion is periodic and repeats indefinitely. So

we represent it using trigonometric functions.

Consider the following example, which describes a case in which there

are no opposing forces such as friction to slow the motion.

Example 8.6.1: A weight hanging from a spring is stretched down 5
units beyond its rest position and released at time t = 0 to bob up and
down. Its position at any later time t is 5cost. Find its velocity and

acceleration at any time t.



Solution: We have, Position : s =5cost

—
=
=
i | 5

Rest
position

Position at
=10

Figure 8.6.1(a): A weight hanging from a vertical spring and then

displaced oscillates above and below its rest position

. ds d )
.. Velocity : v=—=—(5cost) =-5sint
v dt dt( )

and Acceleration: a= % = %(—58”1'[) =-bcost

We can notice the following points from the above situation

. As time passes, the weight moves down and up betweens=-5ands=5
on the s-axis. The amplitude of the motion is 5. The period of the
motion is 2, the period of the cosine function.

. The velocity v = -5sint attains its greatest magnitude, 5, when cost = 0,

as the graphs shown in figure 8.6.1(b). Hence, the speed of the weight,



v|=5sint|, is greatest when cost = 0, that is, s = 0 (the rest position). The

speed of the weight is zero when sint = 0. This occurs when s= 5cost =

+5, at the end point of the interval of motion.

Figure 8.6.1(b): The graphs of the position and velocity of the weight

3. The weight is acted upon by the spring and by gravity. When the weight
Is below the rest position, the combined forces pull it up, and when it is
above the rest position, they it down. The weight’s acceleration is
always proportional to the negative of its displacement. This property of
springs is called Hooke’s law. It says that “the force required to hold a
stretched or compressed spring x units from its natural length
(unstressed) length is proportional to x”. In symbols, F = kx. Where ‘k’

Is the spring constant or force constant.



4. The acceleration, a = -5cost, is zero only at the rest position, where cost
= 0 and the force of gravity and the force from the spring balance each
other. When the weight is anywhere else, the two forces are unequal
and acceleration is nonzero. The acceleration is greatest magnitude at

the points farthest from the rest position, where cost = 1.

Example 8.6.2: The motion of the spring-mass system (as shown in

figure 8.6.2) is described by

Mass

‘- —p
D\f*mﬂﬂﬁ.ﬂﬁmﬂpmﬁw\ﬂﬁﬁm@ HON

Figure 8.6.2

2
%+ 25x =0. Where x is displacement and t is time. Deternine the

particular solution for this differential equation with initial conditions,

when t =0, both x =1 and %:10.

2
Solution: We have %+Z5X =0. This equation is of second order, so

we will write it as



v —25x = v-dv =-25dx, this is in variable separable form.

dx

Integrating
I v-dv=-25 I dx+c. Where ‘c’ is the constant of integration.

2

V;z—25x+c Or V> =-50X+2C....cceeuuuen.... (1)

Since, when t =0, both x =1 and % =10. Equation (1) gives

100=-50+2c Or c=75.

Thus, v? =-50x+150.

8.7 Summary

In this unit we have studied application of differential equation of first
order and first degree in (1) Rectilinear motion, (2) Motion under

gravity (3) simple harmonic equation.



8.8 Terminal Questions

1) A particle is moving under gravity from rest in a medium whose
resistance varies as the velocity of the particle. Find the velocity and
distance of the particle after time t.

2) A particle is moving in straight line from rest with constant acceleration

f. Find the velocity and distance softer time t.

8.7. Answers to Exercises

Test Your Progress 8.4
1) V= (mj tanh(%HcJ 3) lIoge2
k m k
Test Your Progress 8.5

1) 2v,/k 2) v? :ng—%x2
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9.1. Introduction

We have already studied the basics of differential equations, including
separable first-order equations. In this unit, we go a little further and look at
second-order, higher- order and n"™-order equations, which are equations
containing second derivatives of the dependent variable. The solution
methods we examine are different from those discussed earlier, and the
solutions tend to involve trigonometric functions as well as exponential
functions. Here we concentrate primarily on second-order and higher-order

equations with constant coefficients.

Such equations have many practical applications. The operation of certain
electrical circuits, known as resistor—inductor—capacitor (RLC) circuits, can
be described by second-order differential equations with constant
coefficients. These circuits are found in all kinds of modern electronic
devices—from computers to smart phones to televisions. Such circuits can
be used to select a range of frequencies from the entire radio wave
spectrum, and are they commonly used for tuning AM/FM radios. We look

at these circuits more closely later in illustrations.



Spring-mass systems, such as motorcycle shock absorbers, are a second
common application of second-order differential equations. For motocross
riders, the suspension systems on their motorcycles are very important. The
off-road courses on which they ride often include jumps, and losing control
of the motorcycle when landing could cost them the race. The movement of
the shock absorber depends on the amount of damping in the system. In
this chapter, we model forced and unforced spring-mass systems with
varying amounts of damping.

When working with differential equations, usually the goal is to find a
solution. In other words, we want to find a function (or functions) that
satisfy the differential equation. The technique we use to find these
solutions varies, depending on the form of the differential equation with
which we are working. Second-order differential equations have several
Important characteristics that can help us determine which solution method
to use. In this section, we examine some of these

Characteristics and the associated terminology.

9.2. Objectives

After reading this unit students should be able to:

e |dentify the linear differential equations of second and higher order



e Recognize the homogeneous and non homogeneous linear
differential equations of higher order

e Determine the characteristic equation of a homogeneous linear
differential equation

e Determine the particular integrals by using different methods

¢ Find the general solution of the given homogeneous and non
homogeneous linear differential equations

e Solve the initial value and boundary value problems involving linear

differential equations.

9.3. The n" order linear differential equation with constant
coefficients

The linear differential equations are those in which the dependent variable
and its derivatives occur only in the first degree and are not multiplied
together. Thus the general linear differential equation of the n™ order is of

the form

n n-1 n-2
d y+a1d ,¥+azd Yt +a,y=F(x)
dx" dx"

Where a,, a, a,, ooerereeneeneen. a, are real valued functions, and a, is not

identically zero. F(x) is function of ‘x’ only.



If a,, 8,8, e, a, are all constants, then the equation is known as

linear differential equation with constant coefficients.

If F(X) = 0 for every value of x, the equation is said to be a homogeneous

linear equation.

If F(x) # 0 for some value of x. Then, the equation is said to be a non

homogeneous linear equation.
In particular,
A second order differential equation is linear if it can be written in the form

d’y . dy
aQ—5 +a,—+a,y=F(X
o g TG, TaY=FX

Note:

1. Such equations are most important in the study of electro-mechanical
vibrations and other engineering problems.

2. In linear differential equations, y and its derivatives can be raised
only to the first power and they may not be multiplied by one
another.

3. Terms involving y? or \y' make the equation nonlinear. Functions of

y and its derivatives, such as siny or e, are similarly prohibited in




linear differential equations.
4. The equations may not always be given in standard form. It can be
helpful to rewrite them in that form to decide whether they are linear,

or whether a linear equation is homogeneous.

Example 9.3.1: Classify each of the following equations as linear or
nonlinear. If the equation is linear, determine further whether it is
homogeneous or non homogeneous.

i. vy 43y +x%y? =x°

ii. (siny)y” +(cosx)y’ +3y =0

i, 4" +3x’ +4x=0

iv. 5y" +y=4x°

V. (cosx)y” —siny’ +(sinx)y —cosx =0

Solution: (i) We have, y” +3x*y’ + x*y? =x>. This equation is nonlinear

because of the y* term.

(ii) We have, (siny)y” +(cosx)y’ +3y =0. This equation is linear. There is no

term involving a power or function of y, and the coefficients are all




functions of x. The equation is already written in standard form, and F(x) is

identically zero, so the equation is homogeneous.

(iii) We have, 4t°x” +3txx’ +4x =0. This equation is nonlinear. Note that, in
this case, xis the dependent variable and tis the independent variable. The

second term involves the product of xand x’, so the equation is nonlinear.

(iv) We have, 5y” +y =4x>This equation is linear. Since F(x) =4x°, the

equation is non homogeneous.

(v) We have, (cosx)y” —siny’ +(sinx)y —cosx=0. This equation is nonlinear,

because of the siny’ term.

Test Your Progress 1

Classify each of the following equations as linear or nonlinear. If the

equation is linear, determine further whether it is homogeneous or non

homogeneous.

i. sty” —6t’y’ + 4ty —3t* =0
ii. sin(x®)y” —(cosx)y’ +x’y=y' -3

iii. y" +5xy’ —3y=cosy




iv. (y” )2 —y' +8x°y=0

V. (sint)y” +cost—3ty’ =0

9.4. General solution and Complimentary Function

We want to find a general solution (also known as complete solution) to a
linear differential equation. Just as with first-order differential equations, a
general solution (or family of solutions) gives the entire set of solutions to a
differential equation. An important difference between first-order and
second-order and higher order equations is that, with second-order and
higher order equations, we typically need to find two different solutions or
more solutions to the equation to find the general solution. If we find two
or more solutions, then any linear combination of these solutions is also a

solution. We state this fact as the following theorem.

Theorem 9.4.1: Superposition Principle

(D If y,(x) and y,(x) are solutions to a linear homogeneous differential
equation of nth order, then the function y(x)=c,y,(x)+c,y,(x), Where ¢,

and ¢, are constants, is also a solution.




Consider, if y,(x) and y,(x) are only two solutions of the equation

dn

d n-1 d n-2
a, ; y y

dx™? T8 dx"2

y
+
xnal

[say] u(x) =c,y,(x)+c,y,(x) is also its solution.

Since y=y,(x) and y=y,(x) are solutions of equation (1)

d n yl d n-1 y1 d n-2 y1
a + +a S O +a, ¥, =0 i 2
0 an al dX n-1 2 an_2 n yl ( )
dny d n—1y dn—2y
and a Z+a 2+a 2 b +a.Y, =0 o 3
0 Xn 1 an_l 2 dxn_z n y2 ( )

(2) If c; and ¢, be two arbitrary constants, then we get

LHS — ao dn(C1y1+CZy2) + dn_l(cly1+C2y2)

dx" an_l F o +an (Clyl +CZ yz)
d"y d"ty d"y dmiy
G % dxnl T dx”*ll Frs +anyl}+c{ao dx“l +a dx”*ll Foreeeeeeenenn, +a,y,
= ¢,(0)+c,(0)=0=RHS
Thus, a d”u+ dnilu+a d”’2u+ +au=0 (4). This
P dx" 4 dx”*l 2 an—Z ---------- dU=U .

proves the theorem.



Since the general solution of a differential equation of n™ order contains ‘n’
arbitrary constants, it follows from above that if y,, y,, Y5 cooeevereneene. .y, are
‘n’ independent solutions of equation (1), then

Y=C Y, +Co V5 +C¥YaF e +c, y, Is its complete solution.

(3) If y=v be any particular solution of

d"u d"u d"?u
+ +a Fooereeeenns FAU=X tooeoeeeeeeeeeeenn, 5) then
an al an—l 2 an—Z ( )

Eh)

d”vJr d"v 3 d"?v
dx" aidx”*l 2 dx"?

&

Adding equations (4) and (6), we have

d"(u+v) d" (u+v) d"?(u+v)
a + +a +
N 2 dx"?

........... +a,(u+v)=X

This shows that y=u+v is the complete solution of equation (5).

The part u is called the complementary function (C. F) and the part v is

called the particular integral (P.I) of equation (5).

Therefore, the complete solution (C. S) of equation (5) is y=C.F+P.I.

Thus in order to solve the equation (5), we have to first find the C. F., i.e.,

the complete solution of (1), and then the P.1., i.e., a particular solution of

).



For Example: To solve the linear differential equation of second order

2

a%+ b% +cy =0. Where a, b, and ¢ are constants.
X X

2
Solution: We have, a%+b%+cy:0 ...................... @)
X X

Since all the coefficients are constants, the solutions are probably going to
be functions with derivatives that are constant multiples of themselves. We
need all the terms to cancel out, and if taking a derivative introduce a term
that is not a constant multiple of the original function, it is difficult to see
how that term cancels out. Exponential functions have derivatives that are
constant multiples of the original function, so let’s see what happens when
we try a solution of the form y(x) =e™, where A is some constant.

If y(x)=e™,then y'(x)=1e” and y”(x) =A%e™ . Substituting these
expressions into equation (1), we get

2

d7y

e +bdy+cy=ay” +by’ +cy =a(’e*)+b(1e*)+ce?* =e**(at? +bi+c).
X

a -
dx

Since e**is never zero, this expression can be equal to zero for all x only if
al’ +bA+c=0. This is called as the characteristic equation of the

differential equation.



Definition 9.4.1: The characteristic equation of the differential equation

2

d7y
dx?

+bdy+cy=00r ay” +by’ +cy =0.

a -
dx

The characteristic equation is very important in finding solution to

differential equations of this form. We can solve the characteristic equation

—b++b?-4ac

2a

either by factorising or by using the quadratic formula 4 =

This gives four cases. The characteristic equation has

I. Distinct real roots
1.  Asingle, repeated real root
ii.  Complex conjugate roots

iv.  Complex conjugate repeated roots

Before considering each of these cases separately, let’s have the idea of

operator Din solving the linear differential equations of higher order.

2 3
Operator D: Denoting i, d—z, d—3 etc, by D, D?, D® etc, so that
dx dx° dx

2 3
% = Dy, 5—2 = D%y, 3—3 = D®y etc, the equation (5) above can be written in
X X X

the symbolic form (a,D" +a,D"* +......cc...... +a,)y=X, i.e, f(D)y = X, where

f(D)=a,D" +a,D"" +.cecrrrres +a,, I.e., a polynomial in D.



Thus, the symbol D stands for the operation of differentiation and can be
treated much the same as an algebraic quantity i.e., f(D) can be factorised

by ordinary rules of algebra and the factors may be taken in any order. For

2

instance %+2%—3y =(D*+2D-3)y =(D+3)(D-1)y Or (D-1)(D +3)y.
X X

9.5. Methods of finding complimentary function

i dny dnfly dn72y
To solve the equation a a
g % dx" e dx"?t T dx"2

..................... (1)

Where a,, a, 8y, «oeereeeene. a, are constants.

The equation (1) in operator form is (a,D" +a,D"™" +.............. +a,)y=0
........... ()

Its symbolic coefficient equated to zero i.e., a,D" +a,D"* +.............. +a,=0 IS
called the auxiliary equation (A.E). Letmy, my, ................ , m, be its

roofts.

Case I: If all the roots be real and different, then equation (2) is equivalent

to

(D-m)+(D—mM) +.ceererrne. +(D-m)y=0 .....oiiiini... 3)



Now, equation (3) will be satisfied by the solution of (D-m_)y=0, i.e.,

@ _ m,y =0. This represents Leibnitz’s linear and I.F =e™".

dx
Therefore, its solution is ye™ =c, ie., y=ce™.

Similarly, since the factors in equation (3) can be taken in any order, it will
be satisfied by the solutions of (D-m,)y=0, (D-m,)y=0c¢etc ie., by y=c,e™

etc.

Thus, the complete solution of equation (1) is

y=ce™ +C,e™ +.ne. +C, ™ i 4)

Case 11: A single, repeated real root. i.e., if two roots are equal (i.e., m; =

m5,), then equation (4) becomes

mx

y= (Cl + Cz)e
Or y=Ce™ +ce™.....c...... +c.e™ [~ ¢, +c, =one arbitrary constant C

It has only n-1 arbitrary constants and is, therefore, not the complete

solution of equation (1). In this case, we proceed as follows:

The part of the complete solution corresponding to the repeated root is the

complete solution of (D-m,)(D-m,)y=0 .

Putting (D-m,)y =z, it becomes (D-m,)z=0 Or %—mlzzo
X



This 1s a Leibnitz’s linear in z and |.F =e™*,

Therefore, its solution is ze™* =c, Or z=ce™ .
m;x dy m;x
Thus, (D-m,)y=z=ce™ Or G MY =CE™ (5)
X

Its I.F. being e™*, the solution of equation (5) is
—myx mX mXx
ye :jcle dx+c, =¢,x+c, Or y=(c,x+c,)e

Thus the complete solution of equation (1) is

myX

Yy =(CX+C,)e™ +Ce™ +.iin +c,e™.

n

If, however, the A.E. has three equal roots (i.e., m; = m, = my), then the

complete solution is
y = (C,X* +C,X+C;)e™ +¢,e™ +.nnn +c.e
Case 111: Complex conjugate roots.

If one pair of roots be imaginary, i.e., m =a+ig, m, =a—ig, then the

complete solution is

y=c el yc el pce™ 4. +c.e™

=e”(ce” +c,e ) +ce™ + s +c.e™



[ by Euler's Theorem, '’ =cosé@+isin@

y =e”[C, cos fx+C,sin fx]+c.e™ +............ +c,e™
Where C, =c, +c, and C, =i(c, —¢,).

Case 1V: Complex conjugate repeated roots

If two points of imaginary roots be equal i.e.,

m, =m, =a+if, m, =m, =a—ig, then by case Il, the complete solution is

m,X

y =e”[(c,x+c,)cos X+ (Csx+C,)sin SX]+Ce™ +....e. +c.e

2
Example 9.5.1: Solve d_g’+3ﬂ_4y:o.
dx dx

2
Solution: Given equation is %+3%—4y:0 Oor y"+3y' —4y=0
X X

.................. (1). This represents homogeneous linear ODE of second order

with constant coefficients.
The symbolic form of equation (1) is (D* +3D-4)y =0.

The corresponding auxiliary equation is D*+3D-4=0
= D*+4D-D-4=0 Or (D+4)(D-1)=0, .. D=1, —4, these are real and

distinct roots.



Hence the general solution (Or complete solution) of equation (1) is
y=ce* +c,e .

2
Example 9.5.2: Solve d—Z+6ﬂ+13y=o.
dx dx

2
Solution: Given equation is %mﬂﬂsy:o or y" +6y’ +13y =0
X

dx
.................. (1). This represents homogeneous linear ODE of second order

with constant coefficients.
The symbolic form of equation (1) is (D* +6D+13)y =0.

The corresponding auxiliary equation is D* +6D+13=0

—6+,/36-4()(13) —-6+/-16 —6=+4i .
D= = = =-3+2i
2 2 2 . these are real and

. D=-3+2i, -3-2i

distinct roots.

Hence the general (Or complete) solution of equation (1) is

—3x -
y =e~*[c, cos 2X +C, Sin 2x].

2
d y+6d—y+9y:O.

Example 9.5.3: Solve —;
dt dt




dy

S +9y=0Or y" +6y' +9y=0

2
Solution: Given equation is %w

.................. (1). This represents homogeneous linear ODE of second order

with constant coefficients.
The symbolic form of equation (1) is (D*+6D+9)y=0.

The corresponding auxiliary equation is D> +6D+9=0

5- ~6+./36-4()(9) -6+0 -6 _ 3 (Twice)

2 2
. D=-3 -3

These are real repeated roots.

Hence the general (Or complete) solution of equation (1) is y=e*[ct+c,].

3 2
Example 9.5.4: Solve d—2’+d 2y+4ﬂ+4y=0.
dt® dt dt

- : . oodly d’y o dy
Solution: Given equation is T T A tAay=0or y" +y"+4y' +4y=0

........... (1). This represents homogeneous linear ODE of third order with

constant coefficients.

The symbolic form of equation (1) is (D*+D* +4D+4)y=0.



The corresponding auxiliary equation is D®+D?*+4D+4=0

= D*(D+1)+4(D+1) Or (D*+4)(D+1)=0
~ (D*+4)=0 =D=+2i and (D+1)=0 = D=-1
;. D=-1 £2i

Here, one is real root and another is complex conjugate case.

Hence the general (Or complete) solution of equation (1) is

y=ce " +e”[c,cos2t+c,sin2t].
Or y=ce™+c,cos2t+c,sin2t.

2

3
Example 9.5.5: Solve [‘thhy} =0.

2

3
Solution: Given equation is {d y+y} =0 Or [y"+yI’=0 ........... (1).

dt’
This represents homogeneous linear ODE of sixth order with constant

coefficients.

The symbolic form of equation (1) is (D*+1)°y=0.

The corresponding auxiliary equation is (D* +1)°* =0

= D?+1=0 (Thrice)
. D*=-1 = D =i (Thrice)
oo D=%i, %1, i



Here, it is a case of complex conjugate repeated roots.

Hence the general (Or complete) solution of equation (1) is
y =e”[(c, +c,t +ct?)cost + (¢, +C.t +ct?)sint]

Or y=(c, +c,t+c,t?)cost +(c, +c.t+cyt?)sint

d'y

t4

Example 9.5.6: Solve +4y=0.

4

Solution: Given equation is i Y 44y=0Ory" +4y=0 .ooo..... (1). This

t4

represents the homogeneous linear ODE of fourth order with constant

coefficients.
The symbolic form of equation (1) is (D* +4)y=0.

The corresponding auxiliary equation is D* +4=0

—(D?)*+4D* +4-4D%* =0
. (D*+2)°-(2D)* =0 = D*+2D+2=0,D*-2D+2=0

_24 .4 —

From, D?+2D+2=0, D=¥:lii and
+./4 —

From, D?-=2D +2 =0, D=¥=—1ii

Here, both the roots are complex conjugate with different real part.

Hence the general (Or complete) solution of equation (1) is

y =e'[c, cost +c, sint]+e‘[c, cost +c, sint].



Example 9.5.7: Solve the initial value problem,

2

de+2%+y=0 with y(0) =1, y'(0)=0.

2
doy 2dy

Solution: Given equation is P d—+y:o or y"+2y' +y=0 .cceennnne.
X X

(1) This represents homogeneous linear ODE of second order with

constant coefficients.

The symbolic form of equation (1) is (D*+2D+1)y =0.

The corresponding auxiliary equation is D*+2D+1=0
= D?’+D+D+1=0 Or (D+1)* =0, .. D=-1, -1, these are real and repeated

roots.

Hence the general solution (Or complete solution) equation (1) is

Y=(CX+C, )™ i, (2)

Now, applying the given initial conditions: y(0) =1, equation (2) gives,

l=c,

From equation (2), y’ =—(c,x+c,)e™ +ce™, using the conditiony’(0)=0, we

obtain

O=—,+c, Orc =c, =¢, =1.



Thus, the solution of the given initial value problem (known as particular
solution) is y =(x+1)e™ .

Example 9.5.8: Solve the initial value problem,

d? dy

£V 5% 16y =0 with y(0)=0, y'(0)=15.
dx*>  dx

2
Solution: Given equation is %+5%+6y:0 Or y" +5y' +6y=0 ...cc.c.......
X X

(1) This represents homogeneous linear ODE of second order with

constant coefficients.
The symbolic form of equation (1) is (D? +5D+6)y=0.

The corresponding auxiliary equation is D*+5D+6=0
= D?+3D+2D+6=0 Or (D+3)(D+2)=0, .. D=-2, -3, these are real and

repeated roots.

Hence the general solution (Or complete solution) equation (1) is

Y=Ce P +C,e™ niirninn, (2)

Now, applying the given initial conditions: y(0)=0, equation (2) gives,



From equation (2), y’ =-2c,e™® —3c,e >, using the conditiony’(0) =15, we

obtain
15=-2c, —3c, Or 2¢, +3¢, =15 cevivrrvrrreennn 4)
Solving equations (3) and (4), we get ¢, =15 and ¢, =-15.

Thus, the solution of the given initial value problem (known as particular

solution) IS y =15e > —15e > =15(e > —e™¥).

Test Your Progress 2

Solve the following differential equations.

2 2 2
1. itf—ley:o 2, %w%usy:o 3. ?jt2y+16y:0
d’y _dy d’y
4. W+6&+9y20 5 F+y20 6
d’y ,d*y .dy
3= Y3 _y_p
dx® dx?  dx y
d'y ,d%
7. W+8dx2 +16y=0 8. (D*+1)*(D-1)y=0
d?y  dy
9. —4-—2+13y=0, y(0)=0, y'(0)=2.
e ot +13y y(0) y'(0)

2
10. %—Z%JrlOy:O, y(0) =4, y'(0) =1.




9.6. Methods of finding particular integrals

In this section, we examine how to solve non homogeneous differential
equations. The terminology and methods are different from those we used
for homogeneous equations, so let’s start by defining some new terms.

Consider the non homogeneous linear differential equation

dny dn—ly dn,gy
Ch X" +a, o +a, = F e, +a y=f(x)

The associated homogeneous equation is

n n-1

d'y
dx"

d n-2

y
dx"*

y

% dx"2

+a

+a,

is called the auxiliary equation. We have already seen that solving the
auxiliary equation is an important step in solving a non homogeneous

differential equation.

General Solution to a Non homogeneous Ordinary Linear Differential

Equation:

Let y,(x) be any particular solution to the non homogeneous linear

differential equation



dny dn—ly dn,zy
B e TRt TR e +a,y=f(x)
Also, let y, =c,y;(x) +C,¥,(X) +.ooeveee +c,Y,(x) denote the general solution to

the auxiliary equation. Then, the general solution of the non homogeneous

linear differential equation is given by y=y, +y,. Where y_is known as
complementary function and yis called particular integral.

In the preceding section, we learned how to solve homogeneous equations
with constant coefficients. Therefore, for non homogeneous equations of

dny dn—ly dn—2y
the form a + +a
% dx" % dx™t % dx"?

Forrrrererens +a,y = F(x), we already know

how to solve the auxiliary equation, and the problem boils down to finding
a particular solution for the non homogeneous equation. We now examine
two techniques for this: the method of undetermined coefficients and the

method of variation of parameters.

9.7. Method of Undetermined Coefficients

To find the particular integral of
[f(D)ly=[a,D" +a,D" +...... +a,Jy=F(x). We assume a trial solution

containing unknown constants which are determined by substitution in the



given equation. The trial solution to be assumed in each case, depends on

the form of F(x). Thus when

) F(x) is an exponential: If F(x)=2e*, trial solution =ae*

i)  F(x) is trigonometrical: If F(x)=3sin2x, trial solution
=@, Sin2Xx +a, Cos 2X

i)  F(x) is a polynomial: If F(x)=2x*, trial solution

3 2
=a X’ +a,X* +a,Xx+a,

However when F(x) =tanx Or secx, this method fails, since the number

of terms obtained by differentiating F(x) =tanx Or secx is infinite.

The above method holds so long as no term in the trial solution appears
in the C.F. If any term of the trial solution appears in the C.F., we
multiply this trial solution by the lowest positive integral power of 'x'
which is large enough so that none of the terms which are then present,

appear in the C.F.

Note: However, even if F(x) included a sine term only or a cosine term
only, both terms must be present in the trial solution. The method of
undetermined coefficients also works with products of polynomials,

exponentials, sines, and cosines.




Table 1. Some of the key forms of F(x) and the associated trial solutions

for y,(x) are summarized in the following table.

SI. F(x) Trial solutions for
No. Y, (X)
1 k (a constant) A (a constant)
2 ax+hb Ax+B (Note: The trial

must include both terms

even if b=0)

3 ax® +bx+c Ax? +Bx+c (Note: The
trial must include all
three terms even if

b or c are zero)

4 Higher order polynomials Polynomial of the same

order as F(x)

5 ae™* Ae**

6 acos A +bsin Sx Acos x + Bsin px (Note:
The trial must include
all three terms even if

b or c are zero)




7 ae™ cos X +be™ sin px Ae” cos fx + Be™ sin fx

8 (ax® +bx+c)e** (AX? + Bx +c)e™*

9 (a,x* +a,x+a,)cos S+ (0, x* +bx+Db,)sin x| (Ax® +Ax+A,)cos Bx+
(B,x* + B, x+ B,)sin Ax

10 (a,x” +a,x+a,)e™ cos X + (x> +b,x+hb,)e”sin (Ax* +Ax+ A,)e™ cos X+
(B,x* + B,x+ B, )e™ sin px

9.7.1 Working Method of Undetermined Coefficients

Step 1. Solve the auxiliary equation and write down the general solution.

Step 2: Based on the form of F(x), make an initial trial solution for y (x).

Step 3: Check whether any term in the trial solution fory, (x) is a solution

to the auxiliary equation. If so, multiply the trial solution by 'x'. Repeat this

step until there are no terms in y,(x) that solves the auxiliary equation.

Step 4: Substitute y, (x) into the differential equation and equate like terms

to find values for the unknown coefficients in y, (x).



Step 5: Add the general solution to the auxiliary equation and the particular
integral you just found to obtain the general solution to the non

homogeneous equation.

Example 9.7.1: Find the general solution of (; Z %—Zy:Ze
X X
1 . dzy dy 3x 3x
Solution: We have e —d——2y 2% or y'—y' —2y=2e* ... (1)
X X

Here, we have F(x)=2e*

The symbolic form of the equation (1) is (D*-~D-2)y = 2e*

The corresponding auxiliary equation is D>*~D-2=0

. D*’-D-2=0 = (D+1)(D-2)=0 = D=-1, 2.

The complementary function is given by C.F =y_(x) =c,e™ +c,e*

Now, to find the particular integral y,(x), by the method of undetermined
coefficients,

Since F(x)=2e™, the particular solution might have the form y (x) = Ae*.
Then, we have y;(x) =3Ae* and y; (x) =9Ae*. For y (x) to be the part of
the solution to the differential equation, we must find a value for A such

that

y// _ y/ _2y — 2e3x
. 9Ae® —3Ae¥ —2Ae* = 2e¥
= 4Ae% =2e*



- 4A=2 Or A:% Then, yp(x)z(%je“.

Thus the general (Or complete) solution of equation (1) is given by,

y=C.F+P.I=y,(X)+Y,(X)=ce™ +c,e” +%e3X .

2
Example 9.7.2: Find the general solution of MJr2ﬂ+4y= 2x° +3e7 .

dx? dx

2
Solution: We have %+2%+4y= 2x*+3e™ Or y"+2y' +4y=2x"+3e™
X X

Here, we have F(x)=2x*+3e™*
The symbolic form of the equation (1) is (D* +2D+4)y =2x* +3e™*

The corresponding auxiliary equation is D*+2D+4=0

— 74+ _ —_ 2+ 1
. D?+2D+4=0 = D= 2—“24 16 _ 2_22'\/§=—1J_ri\/§.

The complementary function is given by
C.F =y_(x) =e*(c, cos+/3x+¢, sin/3x) .
Now, to find the particular integral y,(x), by the method of undetermined

coefficients,

Since F(x)=2x*+3e7*, the particular solution might have the form

y, (X) =a,x* +a,x+a, +a;e”*. Then, we have y| (x) =2a,x* +a,—a,e™ and



y, (X) =4a,x+a,e™. For y (x) to be solution to the differential equation.

Substituting these in the given equation, we get

vy +2y' +4y=2x" + 3
Aa X +a,8 ™ +2(2a,X* +a, —a,6 ) +4(a,X° +a X +a, +a,e*) =2x* + 3~

Equating corresponding coefficients on both sides, we get

~oda, =2, 4a,+4a, =0, 2a,+2a +4a,=0, 3a,=3

1 1
Then, =" 8 =7, a,=0, a, =1,

Thus P.I.=y, L Liie
2 2
Thus the general (Or complete) solution is

X

y=C.F+P.l = yc(x)+yp(x):e‘x(clcos\/§x+c2sin\/§x)+%x2 —%x+e‘ .

2
Example 9.7.3: Find the general solution of 3)(2’ +y=sinx.
2
Solution: We have d y+y:sinx Or v/ +y=sinX .everenne, (1)

2
Here, we have F(x)=sinx
The symbolic form of the equation (1) is (D* +1)y =sinx
The corresponding auxiliary equation is D> +1=0

~ D°+1=0 Or D*’=-1 = D=+i.

The complementary function is given by C.F =y_(x) =(c, cosx+c,sinx) .



Now, to find the particular integral y (x), by the method of undetermined

coefficients,

Since F(x)=sinx, Let’s assume the trial solution to have the particular
solution, be of the form y_ (x) = x(a, cosx+a, sinx) as these terms appear in
the C.F, therefore we multiply it by x. Then, we have

y, (X) = (a, +a,x)cos x+(a, —a,x)sinx and

ys (X) = (2a, —a,x)cos x — (2a, +a,X)sinx. For y_(x) to be solution to the
differential equation. Substituting these in the given equation, we get

y" +y=sinx
(2a, —a,x)cos x —(2a, +a,X)sin X+ x(a, cos x + a, sin x) =sin X
2a, COS X —2a, Sin X =sin X

Equating corresponding coefficients on both sides, we get

s=2a=1= aiz—%, 2a,=0 = a, =0

Thus P.l.=y, =—%xcosx
Thus the general (Or complete) solution is
y=C.F+P.I=y.(X)+y,(X)=(c,cosx+c,sin x)—%xcosx.

CEi : d’y ,dy
Example 9.7.4: Find the general solution of —--4-—=>

+4y=7siNX—COSX.
dx dx




Solution: We have

d’y ,dy
———4-2
dx dx

+4y=7sinx—cosx Or y" —4y’ +4y=7sinx—cosx ........ (1)
Here, we have F(x)=7sinx—cosx
The symbolic form of the equation (1) is (D* —4D +4)y = 7sin x—cos X
The corresponding auxiliary equation is D*—~4D+4=0
. (D-2?=0 Or D=2,2
The complementary function is given by C.F =y_(x) = (c,x+c,)e*.
Now, to find the particular integral y,(x), by the method of undetermined
coefficients,
Since F(x)=7sinx—cosx, Let’s assume the trial solution to have the
particular solution, be of the form y (x) =(a, cosx+a,sinx). Then, we have
y,(X)=—a,sinx+a,cosx and y’ (x)=-a, cosx—a,sinx. For y (x) to be
solution to the differential equation. Substituting these in the given
equation, we get

y" —4y’ + 4y =T7sin x—cos x
. (—a, cosx—a, sin x) —4(—a, sin X+ a, cos X) + 4(a, Cos X + a, Sin X) = 7sin X —cos X
Or (3a, —4a,)cos x + (4a, +3a,)sin x = 7sin X —C0S X
Equating corresponding coefficients on both sides, we get

3a, —4a, =—1 and 4a,+3a,=7 , Solving both the equations for a, and a,,

we obtain



a,=1and a, =1.
Thus P.l.=y_ =cosx+sinx

Thus the general (Or complete) solution of eequation (1) is

y=CF+PIl=y.(X)+Yy,(X) =(C,X+C,)e** +cosx+sinx.

d’y
dx?

Example 9.7.5: Find the general solution of y =e* cos2x—e*sin3x.

Solution: We have

dzy_
dx?

1

y =e*cos2x—e*sin3x Or y” —y=e*cos2x—-e”sin3x ....... (1)

Here, we have F(x)=e* cos2x—e**sin3x

The symbolic form of the equation (1) is (D? —-1)y =e> cos 2x —e** sin3x
The corresponding auxiliary equation is D*-1=0

oo D?*-1=0 Or D’=1 = D=+1.

The complementary function is given by C.F =y, (x) = (c,e ™ +c,e”).

Now, to find the particular integral y,(x), by the method of undetermined
coefficients,

Since F(x)=e¥cos2x—e**sin3x, Let’s assume the trial solution to have the
particular solution, be of the form

y, (X) =e*(a, cos 2x +a, sin 2x) —e* (a cos3x +a, sin3x) Then, we have

y, (x) =e*[(3a, +2a,) cos 2x + (3a, — 2a, ) sin 2x] —e**[(2a, +3a,) cos 3x + (2a, —3a,)sin 3x]



and

yy () =e¥[(5a, +12a,)cos 2x + (5a, —12a,)sin 2x]—e*[(12a, —5a,) cos 3x — (5a, +12a,)sin 3x]
For y,(x) to be solution to the differential equation. Substituting these in

the given equation, we get

y" —y=e*cos2x—e**sin3x
e¥[(5a, +12a,)cos 2x + (5a, —12a,)sin 2x] —e*[(12a, —5a,) cos 3x — (5a, +12a,)sin 3x] —

e¥(a, cos 2x + a, sin 2x) —e* (a, cos 3x + a, sin 3x) = ** cos 2x —e** sin 3x

Equating corresponding coefficients on both sides, we get
- 4a +12a, =1, 4a,-12a, =0; 12a,-6a, =0, 6a, +12c, =-1.

] . 1 3 1 1
Solving for a,, a,, a, and a,, we obtain a,=—,a,=—, a,=——and a, =
g a‘l 2 3 4 a1 40 2 40 3 15 4 30

Thus P.1=y, =4—10e3x(c052x+33in 2x)+%e2x(2cos3x+sin3x)

Thus the general (Or complete) solution of equation (1) is

y=C.F+P.I=y,(X)+Y,(X)=(ce™ +c,e*) +4ioe3X (cos 2x + 3sin 2x) +%e2x(2c053x+sin 3x)

Test Your Progress 3

Find the general solution of the following differential equations by
finding the P.1.by Method of Undetermined Coefficients.
1. y" -9y =—-6cos3x 2. y'+2y +y=4e> 3.

y" -2y’ +5y =10x? —-3x-3




d’y

4. y" -3y’ =-12t 5. (D*-3D+2)y=x"+e" 6. W+y:2cosx
2 2

7. d—2/—5ﬂ+6y:e3x+sinx : d—3+ﬂ—2yzx+5inx
dx dx dx® dx

9. (D*-2D+3)y=x>+cosx 10. (D* -2D)y =e*sinx

9.8. Method of Variation of Parameters

Sometimes, F(x) is not a combination of polynomials, exponentials, or
sines and cosines. When this is the case, the method of undetermined
coefficients does not work, and we have to use another approach to find a
particular solution to the differential equation. We use an approach called
the method of variation of parameters.

To simplify our calculations a little, we are going to divide the differential
equation through by a, so we have a leading coefficient of 1. Then the

differential equation has the form
y”+py’ +ay = F(x),
where p and g are constants.

If the general solution to the complementary equation is given by

¢y, (X)+c,y,(x), we are going to look for a particular solution of the form




Y, (X) =u(X)y; () +v(x)y,(x). In this case, we use the two linearly
independent solutions to the complementary equation to form our particular
solution. However, we are assuming the coefficients are functions of x,
rather than constants. We want to find functions u(x) and v(x) such that

y,(x) satisfies the differential equation. We have

ooooooooooooooooo

Yp (X) =u(x)y; (X) +V(x)y, (x) (1)

Y (¥) =0’ )y, () +u(x) y1 () + V' (X) Y, (X) +V(X) 5 (X)

Yo (%)= (U ()Y, +V' (x)y, ()" + (U’ () y1 () +u(x)yy’ () +V' () y5(x) +V(x)y; (X)
Substituting into the differential equation, we obtain

y'+py' +ay =

yu' ()Y, () +V (X)y, (X)) + U’ (X)y; () +u(x)yy (X) +V' (X)y; () +v(X)y5 (X)
+ p[u’ (X) Y, (X) +Uu(Q) Y1 (X) +V' (X) Y, (X) +V(X) y5 ()] + AU (X) , (X) +V(X) ¥, (X)

=ulyy (x)+ py; (%) + Y 0T+ VOLYz (9 + Py, (0) +ay, )]+ U’ (9, () +V' (x)y, ()T +

/

pLu’ (X)y, (x) + V' (x)y, 001+ U’ () y; (X) +V' (X)y; (X)]
Note that y, and y, are the solutions to the auxiliary equation, so the first

two terms are zero. Thus, we have

[u" (x)y2 () +V' ()Y, (1" + plu’ () y, (x) +V' () y, (1 +[U’ (x) y3 () +V' () y; ()] = F (x)

If we simplify this equation by imposing the additional condition

u’ (x)y,(x)+v' (x)y,(x) =0, the first two terms are zero, and this reduces to



u’ (x)y, () +v' (x)y,(x) =F(x). So, with this additional condition, we have a
system of two equations in two unknowns:

u' ()Y, () +V' (X)y,(x) =0

u' () y; () +V' ()Y, (x) = F(x)
Solving this system (by using Cramer’s rule Or any suitable technique)

“V,(0F) (90 F ()

gives us u'=
W (x) W (x)

, which we can integrate to

Yi Y2
[

1 2

find u and v. Where, W (x) = A A

Substituting these in equation (1), we obtain the y, (x).

9.8.1. Working Method of Variation of Parameters

Step 1: Solve the auxiliary equation and write down complementary

function: y, (x)=c,y,(X) +¢,y,(x)

Step 2: Assume Y» () =UC)Yi(X)+V()¥,(X)  Then, determine Wronskian

Y0 y.(x)

W=l vl

= V1 (Y2 (¥) = Y, (})y1 (%) -




Step 3: Find U and v using the formulae
_ J‘Y2(X) FO) gxand v Iyl(X) FO) g,

W (x) W (x)

Step 4: Then, y, (x) =u(x)y,(x) +v(x)y,(x) is the particular integral to the

equation.

Step 5: Add the complementary function and the particular integral to

obtain the general solution to the non homogeneous differential equation.

Example 9.8.1: Find the general

2

Solution: We have, 3 2/+y=secx Or v/ +y=SeCX .covenunn... @
X

Here, we have F(x)=secx

The symbolic form of the equation (1) is (D* +1)y =secx

The corresponding auxiliary equation is D* +1=0

. D*+1=0 Or D’=-1 = D=+i.

The complementary function is given by C.F =y_(x) =(c, cosx+c,sinx) .
Now, to find the particular integral y,(x), by the method of variation of

parameters,

Let y,(x) =u(x)y, (x) +V(X)y, (X) = u(x) cos x+v(x)sin x



weo = Y2y v 0 v, 0y
Y (X) Y, (%)
- CO_SX SN _ cos? x+sin? x =1
—sinX CosX
Now,
Y, (X)- F(x) sinx-secx. _ B
= j W) J.f dx=—log(sec x) = log(cos x)
and V:Jyl(x)-F(x)_dX:J‘cosx.secx'd _
W (x) 1

.Y, (X) =log(cos x) cos X + xsin x

Thus the general (Or complete) solution of equation (1) is

y=C.F+P.l =y (X)+Y,(x)=(c, cosx+c,sinx) +log(cos x)cos X + xsin x

=tan2x.

Example 9.8.2: Find the general solution o

d’y

Solution: We have, ——-+4y=tan2x Or y" +y=tan2x ......... )]

Here, we have F(x)=tan2x

The symbolic form of the equation (1) is (D? +4)y = tan2x
The corresponding auxiliary equation is D* +1=0

. D*+4=0 Or D’=--4 = D=+2i.

The complementary function is given by C.F =y_(x) = (c, cos 2x +¢, sin 2x) .



Now, to find the particular integral y,(x), by the method of variation of

parameters,

Let y, () =u(x)y,(X) +V(X)y,(x) = u(x) cos 2x +v(x)sin 2x

y:(%) ¥2(X) / /
W (x) = =¥ Y2(X) = ¥, (X)y; (X)
yi(x) oy 0] T B
Cos2x  sin2x ) .
= ) =2C0S” 2X+2sin“ 2x =2

—2sinX 2coS X

Now,

= IyZ(X) F(x) =—Iw-dx:—%[(sech—cost)dx
W (x) 2 2

= %[Iog(sec 2X + tan 2x) —sin 2x]

and V:J‘M.dxzjw.dxzijsinZ)@dx
W (x) 2 2

:—lcoszx
4

y,(X)= —%[Iog(sec 2X + tan 2x) —sin 2x]cos 2x — %cos 2xsin 2x

= —%cos 2x[log(sec 2x + tan 2x)]

Thus the general (Or complete) solution of equation (1) is

y=C.F+P.l =y (x)+Yy,(x)=(c,cos2x+c,sin2x) —%cos 2X[log(sec 2x + tan2x)]

3X

2
Example 9.8.3: Find the general solution of ——63 +9y = ¢ -
dx X




3x

2
d’y gy

e
+9y =
dx* dx =

Solution: We have,

e
Here, we have F(x) =

3x

The symbolic form of the equation (1) is (D* -6D+9)y = iz

The corresponding auxiliary equation is D> -6D+9=0

. D*-6D+9=0 Or (D-3)°=0 = D=3,3.

The complementary function is given by C.F =y_(x) = (c, +c,x)e*.

Now, to find the particular integral y,(x), by the method of variation of

parameters,

Let y, (x) =u(x)y, (x) +V(x)y, (X) =u(x)e’ +v(x)xe™

y:() ¥2(X)
y1(%) ¥, (%)

3x

W(x) = = V1 ()2 (X) = Y2 (x) y; ()

e xe¥*

¥ 3xe® +e¥

6X

=3xe® +e% —3xe® =¢e

Now,

3x 3x
J‘yz(x) F() 4 _J'%.dx:_.[l.dx=—logx
W (X) e . x

and v= Iyl(x) F() dx = .[i:x -dx = j— dx =—

W (x) X

3Xx

or y" -6y’ +9y="1 -
X



Y, (X) =(—log x)-e* —%(xe“) =—*(logx+1)

Thus the general (Or complete) solution of equation (1) is

y=CF+P.I=y (x)+Y,(X)=(c, +c,x)e¥* —e*(1+log x) =e*(c, +¢,x —1-log x)

2
d y_zﬂ

Example 9.8.4: Find the general solution of o 2o

+y=e*logx.

Solution:  We  have, 3—)2(2/— %+y=exlogx or y" -2y’ +y=e*logx
Here, we have F(x)=e*logx

The symbolic form of the equation (1) is (D*-2D +1)y =e* log x

The corresponding auxiliary equation is D*-2D+1=0

-. D*-2D+1=0 Or (D-1)*=0 = D=11.

The complementary function is given by C.F =y_(x) = (c, +c,x)e*.

Now, to find the particular integral y,(x), by the method of variation of

parameters,

Let Y, (X) =u(X)y,(X) +V(X)y,(X) =u(x)e* +v(x)xe*

Y1 (X) Y, (X)
Y1 (X)) Y;(%)

X

W (X) = =¥, (0)Y2 () = Y, (x) Y (%)

xe
xe* +e*

— Xer +er _ Xer — er

e



Now,

Yo()F(X) 4 xe*-e*logx _x
I W) -[—ez dx= _[xlogx dx > (
and v =[50 %,00-FO) x=| e e l0gX gy - [1ogx-dx = x(log x~1)

W(x)

2

logx—=

)

Ly (x)——x—(logx—ijex—x(Iogx—l)xeX =—e" X—Z(Iogx—ljer(log X —1)x
S oF 2 2 2 2

Thus the general (Or complete) solution of equation (1) is

2
y=CF+Pl =y (x)+y,(x)=(c, +c,x)e” ——ex{x?(log X—%j-i- x(log x—1)x}

2
Example 9.8.5: Find the general i ‘;Xg’ _y-=

Solution: We have, —--y= Or =
dx @+e*) @+e")

(1)
Here, we have F(x)=e*log x

2
@+e")

The symbolic form of the equation (1) is (D* -1)y =

The corresponding auxiliary equation is D*-1=0

- D*°-1=0 = D=1 -1.

1+e*)

The complementary function is given by C.F =y _(x)=(c,e* +c,e™).



Now, to find the particular integral y,(x), by the method of variation of

parameters,
Let y, (x) =u(x)y, (x) +V(x)y, (x) =u(x)e* +v(x)e™

y1(X)  y,(X)

WO il = Y:09%00=Y200¥/09

S

e’ —e

Now,

yz(x) F(X) _ e’ -2 dy = e’ 3 — 1 .

T W) o j(—2)(1+eX) dx I(1+eX) dx JeX(1+eX) dx

1 L e X x

:I(e—x—Hexj-dx:e —Ie_x+1~dx:—e +log(1+e™)

_[(R)-FX) e*-2 e’ _ .
and V—I W) _[( e -dx = I(l o) -dx=—-log(1+¢€")

Y, (X)=e"[-e" +log(1+e*)]-e *log(l+e*) =—1+e*log(e * +1)—e* log(e* +1)

Thus the general (Or complete) solution of equation (1) is

y=CF+P.I=y (X)+Yy,(X)=(ce"+c,e)-1+e"log(e ™ +1)—e *log(e* +1)

Test Your Progress 4

Find the general solution of the following differential equations by

finding the P.1.by Method of Variation of parameters.




1.y / e' I 2 d’y .,
Yyt =2y ry== 2. y" +y=3sin’x 3. +a’y = cosecax

t dx?
4, d;¥+y:tanx 5. (;;¥+y:xsinx 6. %—2%+y:%
7. 3—3—3%+2y=$ 8. y' -2y’ +2y=e*tanx 9. ‘;;Z—z%ﬂwinx
10. (;—:(2/+ :1+slinx

9.9 Summary

Method for finding the complementry fuction C.F. and methods for finding
P.l. in certain standerd cases is given. Method of variation of parameters
and method of undetermined coefficent has been discussed to find P.I. for

non stunderd cases.

9.10. Terminal Questions

1. Solve
(D? — 4D + 3)y = x3.e%*
2. Solve

(D? — 2D + 1)y = xe *cosx




3. Solve by method of variation of parameters
i. (D?—-2D+2)y = e*tanx
ii. (D?+ 1)y = cosecx

4. Solve

3x

(D% — 6D +9)y = —
y_xz

AnS.

1. y=ce* + c,e3* — e (x3 + 6x)

2. y=(c1x + cy)e ™ + e ¥*(—xcosx + 2sinx)

3. (I) y=-e*(cicosx + cysinx) — e*cosx log (secx + tanx)
(i)  y = cycosx + c,sinx — xcosx + sinx log(sinx)

4. y = (c1x + cy)e3* —e3*. (1 + logx)

9.11. Answers to Check Your Progress

Test Your Progress 1

(i) We have, sty” —6t*y’ +4ty —3t*> =0. This equation is linear. Rewriting it in
standard form gives 8ty” —6t?y’ + 4ty =3t>. With the equation in standard

form, we can see that F(t) =3t*. So the equation is non homogeneous.



(ii) We have, sin(x?)y” —(cosx)y’ + x’y =y’ —3. This equation looks like its
linear, but we should rewrite it in standard form to be sure. We get
sin(x?)y” —(cosx+1)y’ +x*y =-3. This equation is, indeed, linear. With

F(x) =-3, it is non homogeneous.

(iii) We have, y” +5xy’ —3y=cosy. This equation is nonlinear because of the

cosy term.

(iv) We have, (y"f -y’ +8x®y =0. This equation is nonlinear because of

(y"? term.

(V) We have, (sint)y” +cost—3ty’ =0 Or (sint)y” —3ty’ =—cost . This is
linear. With F(x)=—cost, it is non homogeneous.

Test Your Progress 2
1. y=ce™+c,e 2. y=e"(c, cos2x+c,sin 2x) 3.

y =C, CoS4t +C, Sin4t

U2 (o oV V3

4. y=(c,+c,x)e™ 5. y=ce" +e"*(c, cos?t+c3sin2x7t)
6. y=(c, +C,x+C,x)e* 7. y=(c, +C,X)C0S2X+ (C, +C,X)Sin 2x

8. y=(c, +¢,x)cosx+ (c, +C,X)Sin X +C.e” 0. y:%eZXSingx

10. y=e*(4cos3x—sin3x)



Test Your Progress 3

1
1. y=ce¥+ce™ +50053x 2. y=(c,+c,x)e* +2t%*
X H 2 tx 2 4
3. y=¢e*(c,cos2x+C, sin2x) + 2x* + x—1 4, y=ce”+c,+2t +§t
X 2x 1 2 X . .
5. y=ce*+c,e +§(x +3x+3.5-2xe") 6. y=c, cosx+c,sinx—xsinx

7. y=ce” +c,e™ +xe* +%(sin X +3C0s X)
X —2X 1 1 H
8. y=ce*+c,e” —=(2x+1) ——(cos x +3sin x)
4 10
. . 1, . 1 .
9. y=e (clcos\/§x+czsm\/§x)+5(9x +18x +6x—8)+z(cosx—smx)

10. y=c, +c,e* —%ex sin x

Test Your Progress 4

1. y=ce' +c,te’ —e' logt 5 Yy =C, C0S X +C, Sin X +1+00s* X
y = (c, —x/a)cosax +[c, + (1/a*)logsin ax]sin ax

y = C, COS X + C, Sin ax — cos x log(sec x + tan x)

2
: X . X

Yy =C, COS X +C, SiN X+ —Sin X — —C0S X
2 4

y =(c, +C,x)e* +xe” log x



. y = (e* +e”)log(1+e*) +(c, —1—x)e* +(c, — x)e*

y =e”(c, cos X+, sin X) —e* cos xlog(sec x + tan x)

1 ..
y=c, +C,e> —Eexsmx

Y = C, COS X+ C, Sin X +sin xlog(1+sin X) —xcos x —1

10.



Unit 10: Methods of finding particular integrals by inverse
operator method

Structure

10.1. Introduction

10.2. Objectives
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10.4. Case of hyperbolic functions

10.5. Case of trigonometric functions

10.6. Case of a polynomial

10.7. Case of combination of e*V

10.8. Case of combination of x™Vv

10.9. Summary

10.10 Answers to exercises

10.11 Terminal Questions




10.1. Introduction

Linear differential equations are those in which the dependent variable
and its derivatives occur only in the first degree and are not multiplied
together. Thus the general differential equation of the n™ order is of the

form

dny dnfly dn72y
o dx" th dx"* tk, dx"?

Where kg, K;, Ky, cooveereeneenennene. k, are real valued functions, and ko is not

identically zero. F(x) is function of ‘x’ only.

If Ky, Ky, Ky oo, k, are all constants, then the equation is known as

linear differential equation with constant coefficients.

2 3
Operator D: Denoting i, d—z, d—3 etc, by D, D?, D® etc, so that
dx dx° dx

d3
=D?%y,
yd

ﬂ:Dy d2 —
) X3

; o7 = D%y etc, the equation (5) above can be written in
X X

the symbolic form (k,D" +k,D"™* +.............. +k.)y=F(x), i.e., f(D)y = F(x),

where f(D)=k,D" +k,D"" +.............. +k, i.e., a polynomial in D.



Thus, the symbol D stands for the operation of differentiation and can be
treated much the same as an algebraic quantity i.e., f(D) can be
factorised by ordinary rules of algebra and the factors may be taken in

any order.

Let y. =c,y,(X) +C, ¥, (X) + e, +c,y,(x) denote the general solution to

the auxiliary equation. Then, the general solution of the non

homogeneous linear differential equation is given by y=y, +y,. Where
y. is known as complementary function and vy is called particular

integral.
In the preceding unit, we learnt how to solve non homogeneous

equations with constant coefficients. Therefore, for non homogeneous

n n-1 n-2
equations of the form k, 3 ny+ k, 3 nj’ +k, (; n,z
X X X

Foreerieeens +k,y=F(x), we

already know how to solve the auxiliary equation and to find a particular
solution for the non homogeneous equation. We have seen two methods
of finding particular integral. Now examine one more technique for this:
the inverse operator method.

Inverse Operator



Definition 10.1.1:%F(x) is that function of x, not containing the
arbitrary constants when operated upon by f(D)gives F(x).

e, f (D){% F(x)} = F(x).

Thus %F(x) satisfies the equation f(D)y=F(x) and is, therefore, its

particular integral.

Obviously, f(D) and % are inverse operators.

Definition 10.1.2: %F(x) = [F(9-ox

Let %F(x) Y, (1)
Operating by D,
D%F(x) =Dy ie, F(x) :%
Integrating both sides w. r. t. x, y=jF(x)-dx, no constant being added
as equation (1) does not contain any constant.

Thus %F(x)sz(x)-dx



Definition 10.1.3: S F(x)= eanF(x)-efade
D-a

1
L ——F(X)=Y i
et S F00=y 2)
. 1

@) t bv (D - —3a)- . =(D=-
perating by (D-a), (D-a) (D-a) F(x)=(D-a)y

dy . dy . o ey
Or F(x)= v ay ie., ol ay = F(x) . This represents a Leibnitz’s

linear equation.

—adx

SF=el e , its general solution is given by
yel = [F(x)-e™* dx, no constant being added as equation (2)

does not contain any constant.

Thus

-F(x)= y:eE‘XIF(x)-e’aX -dx

Rules for Finding the Particular Integral

d" gt dn2
! dx"‘)ll +k, dx”‘z Foevrerreenees +k_y=F(x)

It’s symbolic form is (k,D" +k,D"* +.............. +k,)y=F(x). Then,



1
P.l =
(kD" +K,D"  + s +k.)

10.2. Objectives

After reading this unit students should be able to:

e |dentify the method of particular integral to apply

e Recognize the method of particular integral to solve the non
homogeneous linear differential equations of higher order

e Determine the particular integrals by using inverse operator

method

10.3. Case of Exponential Function

When F(x) =e*

ax

- ax _
Since D& =ae

DZ eax — a2 eax

D3 eax — as ekax



Dn eax — an eax
" (K,D"+KkD"  +.. +k )e* = (k,a" +k,a" ., +a,)e™
ie, f(D)e™=f(a)e™

Operating on both sides by

L1 o) =—L f(@e™ or e*=f(a)—

(D)’ f(D) £(D) °

. Dividing by f(a),

1 ax 1 ax
e = e
f(D) f(a)

........................ (1), provided f(a)=0.

If f(a)=0, the above rule fails and we proceed further.

Since ‘a’ is a root of auxiliary equation

f(D)=k,D" +k, D" +...ceoeune. +k, =0

. (D-a) is a factor of (D). Suppose f(D)=(D-a)-#(D), where

#(@)=0. Then



L o 1 1 W 1 1
f (D) D-a ¢(D) D-a ¢(a)
1 1 ax 1 ax ax —ax
e =——.e|e*™.e™™dx

"4 D-a 4@

:i-e”jdx: X-——e
¢(a) #(a)
1 ax __ 1 ax

. e =X €
f(D) f'(a)

~+ f/(D)=(D-a)¢' (D) +1¢(D)
. f'(a)=0x¢'(a)-¢(a)

If f/(a)=0, then applying equation (2) again, we obtain,

f(lD) ¥ — x2 . ’1(a) e, provided f ’(a) 20 (3) and so on.
Note 10.3.1:

Definition 10.3.1: If F(x) =k, where ‘k’ is arbitrary constant. Then,

1 1 1 ]
X)=————-k=k——e” =k———, provided f(0)=0
yp( ) f(D) f (D) f(0) P ©
If f(0)=0. Then,
X X )
X) =Kk - e =k- . provided f’/(0)=0
Y, (X) (D) 0 p 0)

If f/(0)=0. Then,

2
Y, () =k-——e™ =k

X2 .
.—— provided f”(0)=0 and soon
f//(D) .I://(O) p ( )

Definition 10.3.2: If F(x)=a*, where ‘a’ is arbitrary constant. Then,




1 X 1 eIogax _ 1 e(Ioga)x

— .a’ = =
T ) (D)

= flloga)’ provided f (loga) =0
If f(loga)=0. Then,

_._ X togayx ___ X . /

—.—_ ¢ =—————— provided f'(loga) =0
Y, (X) (D) f(loga) provi (loga) =

If f'(loga)=0. Then,
y_(X) =X—2e('°9a)X X provided f”(loga) =0 and so on
P (D) f”(loga) '

Examplel0.3.1: Find the general solution of

dzy dy 3 -2
—6—=+9y=6e>*+7e*—log2
dx>  dx y g

Solution: We have

2
%y _ ﬂ+9y:6e3x +7e* —log2 Or y" -6y’ +9y=6e¥ +7e*

—log 2
dx?> dx J
Here, we have F(x)=6e* +7e ™ —log2

The symbolic form of the equation (1) is

(D> -6D+9)y =6e¥ +7e** —log 2

The corresponding auxiliary equation is D*-6D+9=0

- D°-6D+9=0 = (D-3)>=0 = D=3 3.




The complementary function is given by C.F =y_(x) =(c, +c,x)e**.

Now, to find the particular integral y (x), by the inverse operator

method
Consider,
1
X)=——— . (6e®* +7e?* —log 2
Y, (X) (D7 6D+ 9) ( 92)
- .2;63’(4_7.2;9_“_ ng%eox
(D°-6D+9) (D°-6D+9) (D°-6D+9)
—6 1 ™47 - L e‘zx—logZZ; ox
(2D -6) [-2% —6(-2)+9] [0 —6(0)+9]
:6.X_2e3X+7e72X _IOLZ
2 25 9
-2X
Ly, ()= 3x%% 4 7e”™ log2

9
Thus the general (Or complete) solution of equation (1) is given by,

—2X
y=C.F+P.l=y,(X)+Y,(x)=(c, +c,x)e” +3x°e™ + 725 _|082.

dy dy

Examplel0.3.2: Find the general solution of o tYE (1—e*)?

Solution: We have
2
d y_'_ﬂ 2X

e dX+y:(1—ex)2=1—2ex+ezx or y'+y +y=@1-€")°=1-2e"+e

Here, we have F(x) =1-2e* +e*

The symbolic form of the equation (1) is (D* + D+1)y =1-2e* +e*



The corresponding auxiliary equation is D*+D+1=0

_ V14 13 o -1+iV3 -1-iV3
22 o2 2

. D*+D+1=0= D
The complementary function is given by

1
CF=y.(x)=e?2 (clcos\/§x+czsin\/§x).

Now, to find the particular integral y (x), by the inverse operator

method
Consider,
1
X)=—— . (1-2" +e*
Y, (%) (D*+D+1) ( )
1 0x 1 X 1 2X
=—— % -2. X + e
(D*+D+1) (D*+D+1) (D*+D+1)
15 ex N e2><
P+@+1 [22+(2)+1]
2e* ¥
X)=1- +
Yy, (X) 3 7

Thus the general (Or complete) solution of equation (1) is given by,

—}x X 2x
y=CF+Pl=y (X)+y,(x)=¢? (clcos\/§x+czsin\/§x)+1— 2; + e7
3 2
Examplel0.3.3: Find the general solution of Ol—ZJrzu+ﬂ =g

dx dx?  dx



3 2
Solution: We have ,d y+2d i dy =g

ax® T dx® dx

or y"i2y" 4y =™ i,

1)

Here, we have F(x)=e™*
The symbolic form of the equation (1) is (D® +2D* + D)y =¢e™*
The corresponding auxiliary equation is D*+2D?*+D =0

- D*+2D?+D=0 Or D(D?+2D+1) = D=0, (D+1)?=0.Thus, D=0, -1, -1

The complementary function is given by C.F =y (x)=c, +(c, +c,x)e .
Now, to find the particular integral y (x), by the inverse operator

method
Consider,

1 x
3 2 €
(D°+2D°+D)
1 X
.2—.e
3D°+4D +1
, 1 L X%

=X -e =
6D+4 -2

x2e™*

2

y,(X)=

—X

LY (0 ==

Thus the general (Or complete) solution of equation (1) is given by,

x%e™*

y=CF+Pl=y (X)+y,(X)=c +(c, +c;x)e™" —



2
3 gl—y:SeXJr3‘X
X

Examplel0.3.4: Find the general solution of

2

Solution: We have (; Z—yzsex+3*X Oor y'—y=5"+3"........ Q)
X

Here, we have F(x) =5¢* +3™*

The symbolic form of the equation (1) is (D* -1)y =5e* +37*

The corresponding auxiliary equation is D*-1=0

.. D*-1=0= D=+#10rD=1 -1.

The complementary function is given by C.F =y, (x) =(c,e* +c,e™).
Now, to find the particular integral y (x), by the inverse operator

method

Consider,

(56" +37)

y,(X) = )

P ST S
(D? -1) (D? -1)
X e b ooy
[2D] [D? -1]

Cy (X)_Sxex+ 3"
CoP 2 [(log3)-1]

Thus the general (Or complete) solution of equation (1) is given by,

xe”* 3*
+
2 [(log3)* -1]

y=CF+Pl=y (X)+Yy,(X)=(ce” +c,e ™)+ >



Test Your Progress 1

Find the general solution of the following differential equations by

finding the P.1.by Inverse Operator Method.

2 3 2
1 9 oWy g (9 g4 W gy g0
dx dx dx dx dx
2
3. (D°—D)y=e* +15 4. 9Y 6 Y, 25y —100e*
dx dx
2
5. %+5%+6y=55e2" 6. (D*+D?+1)y =e*/?
X X

10.4. Case of Hyperbolic Functions

When F(x) =sinh(ax+b) Or cosh(ax+b)

Since D[sinh(ax +b)] = acosh(ax +b)

D?[sinh(ax +b)] = a® sinh(ax +b)

D*[sinh(ax +b)] = a® cosh(ax +b)

D*[sinh(ax +b)] = a* sinh(ax +b)

D?[sinh(ax +b)] = (a*)sinh(ax +b)




(D?)?[sinh(ax +b)] = (a*)? sinh(ax +b)

In general, (D*)"[sinh(ax +b)]=(a*)" sinh(ax +b)

f (D?)[sinh(ax +b)] = f (a2)sinh(ax +b)

1

— on both sides,
f(D?)

Operating

1
f(D?)
Or sinh(ax+b) = f(a?)

f (D?)sinh(ax +b) = % f (a%)sinh(ax +b)

1
f(D?)

sinh(ax +b)

Dividing by f(a®), we obtain

1
f(D?)

sinh(ax+b) = ﬁsinh(axjt b) provided f(a?)=0.
a

If f(a®)=0, the above rule fails and we proceed further as follows;

1

sinh(ax+b) provided f’(a®)=0.
£(D?) ( ) P @)

sinh(ax+b) =x-

f/(a?)

1 . 1 . .
If f/(a?)=0, ————sinh(ax+b) =x?.-————sinh(ax+b) provided f”(a?)=0
(@) £(D?) ( ) £ (a) ( ) p (@%)



1 . 1
If f/(a®)=0, —=——sinh(ax+b)=x®-————sinh(ax+b) provided f”(a?)=0
@) (DY) ( ) £ a?) ( ) P (a%)
, and so on

Similarly,

cosh(ax+b) = félz)cosh(ax+b) provided f(a®)=0.

f(D?)

If f(a®)=0, the above rule fails and we proceed further as follows;

cosh(ax +b) = x- cosh(ax+b) provided f’(a®)=0.

f(D?)

f/(aZ

If f/(a®>)=0,

1 )
cosh(ax +b) = x?-————cosh h(ax +b) provided f”(a?)=0
(D% ( ) t7(a) ( ) P (@)

If f7(@*) =0,

1
cosh(ax +b) = x®-————cosh(ax+b) provided f”(a®)=0, and so on
(D% ( ) £ (a) ( )P @%)

Note 10.4.1:

We can make use of the definitions of

X _ A~ X X

e¥+e™
and coshx=

sinhx =2 and then one can opt for the case of




exponential to find the particular integral.

d?y
dx?

Examplel0.4.1: Find the general solution of —4y =sinh 2x

2

Solution: We have (; y—4y=sinh2x Or y"—4y=sinh2X ...cccueeuee.

X2

Here, we have F(x) =sinh2x

The symbolic form of the equation (1) is (D* —4)y =sinh 2x

The corresponding auxiliary equation is D*-6D+9=0

. D?-4=0= D’=4 = D==+2.

The complementary function is given by C.F = y_(x) = (ce™ +c,e ™).
Now, to find the particular integral y,(x), by the inverse operator

method

Consider,

yp(x):;-sinh 2X

(D?-4)
= isinh 2X = ﬁj'sinh 2x-dx = X, cosh 2x = 5cosh 2X
2D 2 2 4

yp(x):gcosh 2X

Or, alternatively; use sinh2x =




=0y 2

1{ 1 2x 1 _2X :| 1[ X 2X X —2x:|
=== e")-— e)|==| —e" ———¢
2| (D" -4) (D -4) 212D 2D

1| xe® xe™®* | x|e¥*+e® | x
== + =2 =——— |=Zcosh2x
2| 4 4 | a4l 2 4

yp(x)zgcosh 2X
Thus the general (Or complete) solution of equation (1) is given by,

y=C.F+Pl=y (x)+y,(x)=(ce™ +c2e2X)+§cosh 2X .

4
Examplel0.4.2: Find the general solution of Z Z—y:coshx
X
4
Solution: We have d—x}{—yzcoshx Or y"—y=coshX ..ccceuen. 1)

Here, we have F(x) = cosh x

The symbolic form of the equation (1) is (D* —1)y = cosh x

The corresponding auxiliary equation is D* -1=0

- (D*)?*-1=0 = D*-1=0,D*+1=0 = D=4#1, +i.

The complementary function is given by

CF=y.(x)=(ce*+c,e ™) +(c,cosx+C,SiNX) .

Now, to find the particular integral y,(x), by the inverse operator

method



Consider,

y,(X)=

1

7 -cosh x
(D" -1)
X

oS coshx = gm cosh x - dx

%”sinhx-dx:g.fcoshx-dx:gsinhx

X .
LY,(0)= Zsmh X

X X X .
Or X) = cosh x == ———cosh x = ——— | cosh x - dx = =sinh x
Y, (%) 4D?® 4D?D 4(12)I

. . e*+e™
Or, alternatively; using coshx =

Y () = 1 'ex+e‘X
P (D*-1) 2

1{ 1 ) 1 } 1{ X o, X }
== <@ )+——(E) == ;€ +—¢e
2| (D*-1) (D* -1) 2| 4D 4D

1| xe* xe™ x| e —e™ X .
— — =— =—sinhx
e el -

X .
LY, (%)= Zsmh X

Thus, the general (Or complete) solution of equation (1) is given by,
y=CF+P.I=y (X)+Yy,(X)=(ce" +c,e™)+(c,cosx+c,sinx) + Xsinhx.

Example10.4.3: Find the general solution of

d3y_5d2y

v i +7%—3y=8cosh5x—7sinh4x
X X X

Solution: We have ,



3 2
d 2/ —5d—2/+7%—3y =8cosh5x —7sinh 4x
dx dx dx (1)

or y" —5y" +5y' —3y =8cosh5x —7sinh 4x

Here, we have F(x)=8cosh5x—7sinh4x

The symbolic form of the equation (1) is

(D® —5D? + 7D —3)y =8cosh5x — 7sinh 4x

The corresponding auxiliary equation is D*-5D*+7D-3=0

- (D-1)*(D-3)=0 = D=113 .

The complementary function is given by C.F =y_(x) =(c, +c,x)e* +c,e*.

Now, to find the particular integral y (x), by the inverse operator

method ,
Consider,
Yp(X) = L -(8cosh 5x — 7sinh 4x)
P D*-5D*+7D-3
=8— 21 cosh5x -7 — 21 sinh4x; Put D*=5" and D? =4?
D°-5D“+7D-3 D°-5D“+7D-3
=8- 1 coshbx—7- 1 sinh 4x
25D -125+7D -3 16D-80+7D -3



:8-;cosh5x—7-;sinh4x
32D -128 23D -83
=8 32D +128 cosh5x—7 23D +83 sinh 4x

'1024D? —16384 '520D? — 6889
_g. 32(5sinh 5x) +128cosh5x 7. 23(4 cosh 4x) +83sinh 4x

1024(5%) -16384 529(4%) — 6889
_g. 160sinh 5x +128cosh5x 7, 92 cosh 4x +83sinh 4x

- 9216 1575

v (x)= 160sinh5x +128cosh5x  92cosh 4x +83sinh 4x
P 1152 225
5sinh5x +8cosh5x  92cosh 4x +83sinh 4x
or y,(x)= -
72 225

4x —4x 5% _ 45X

Or, alternatively; use sinh 4x=% and cosh5x ==

1 e re™ 1 e

D®-5D?+7D-3 2 D®-5D?+7D-3 2

:4.[ 3 3' ey 3 ;I' .e5xj|_
D°-5D“+7D-3 D°-5D“+7D-3

LY,(X)=8-

7 1 4x 1 —4x
5| 3 2 €+ 2 €
2| D°-5D“+7D-3 D°-5D“+7D-3
eSx
+

. y (X)_4. e—Sx _Z e4x _e—4x _e5x +e—5x _Z e4x _e—4x
S 32 288 2| 9 175 8 72 2|9 175

Thus the general (Or complete) solution of equation (1) is given by,

5x

e e—5x 7 e4x e—4x
=C.F+Pl=y (X)+Vy.(X)=(c, +C,x)e* +c.e®* +—+ —— - .
y Y. (X)+y,(X)=(c, +C,X) 3 s 73 2{9 175}




2
Examplel0.4.4: Find the general solution of %+4%+5y =-2coshx .
X X

Also find y when y =0, %zl at x=0.

2
d ¥+4ﬂ+5y:—2coshx Or y" +4y’ +5y=—2coshx
dx dx

Solution: We have

Here, we have F(x) =-2cosh2x
The symbolic form of the equation (1) is (D? +4D +5)y = —2cosh x

The corresponding auxiliary equation is D> +4D+5=0

—4+J16—
. D*+4D+5=0 = D:%GZO = D=-2+i.

The complementary function is given by C.F =y_(x) =e™*(c, cosx+c, sin x)

Now, to find the particular integral y,(x), by the inverse operator

method ,
Consider,
X) = —————-(-2cosh x
5 () (D> +4D +5) ( )
=-2- coshx=— coshx = — ZDZ—3 .coshx = 2sinh x —3cosh x
4D +6 2D+3 4D° -9 5
2sinh x —3cosh x
Yo (X)=

5



X —X

- e —€
Or, alternatively; use coshx =

y (X)—__z. ;.ex_;.e‘x
P 2 | (D*+4D+5) (D® +4D +5)

1, .. 1,
:{E(e )_E(e )}

1le*
==|—-e

Thus the general (Or complete) solution of equation (1) is given by,

_ox ) 2sinh x —3cosh x
(c,cosx+c,sinx)+ c

y=C.F+P. :yc(x)+yp(x):e

Now, using the given conditions; y =0, % =1 at x=0. From equation
X

(2),

0=C1—§ Or clzg.

Again, from equation (2);

2sinh x —3cosh x
5
(—c, sinx+c, cos X)

—2X -
y=e “*(c,cosx+c,sinx) +

—2X —2X

=y’ =-2e7(c,cosx+c,sinx)+e

. Using at x=0, %zl, we obtain,
X

11
= G, :g

alw

1=-2(c,+0)+(0+c,) Or —2c,+c, =1 put ¢, =



Thus, the particular solution of equation 1) is given by

2sinh x —3cosh x
5

2x(3 11 . J
y=e gcosx+gsmx+

-3x

e
Ory=
y 5

(3cos x +11sin x) + 2sinh x —3cosh x

Test Your Progress 2

Find the general solution of the following differential equations by

finding the P.1.by Inverse Operator Method.

2 3 2
1.0I ¥—2ﬂ+yzlosinhx 2. d z—Sd Z+7ﬂ:coshx
dx dx dx dx dx
3. (D® - D)y = 2sinh x —cosh 2x 4,
2
9% 6%, 25y — 50c0sh3x
dx dx
d?y

™ +5%+6y:sinh2x
X X

5.

10.5. Case of Trignometric Functions

When F(x) =sin(ax+b) Or cos(ax +b)

Since D[sin(ax +b)]=acos(ax+b)



D?[sin(ax +b)] = —a’ sin(ax +b)
D?[sin(ax + b)] = —a® cos(ax +b)
D*[sin(ax +b)] = a* sin(ax +b)
i.e., D2[sin(ax+b)]=(-a?)sin(ax+b)
(D*)*[sin(ax +b)] = (-a*)* sin(ax+b)
In general, (D?)" [sin(ax +b)] = (—a®)" sin(ax +b)

f (D*)[sin(ax+Db)] = f (—a*)sin(ax +b)

Operating on both sides,

N
f(D?)

1
f(D?)

1
f(D?)

sin(ax +b)

f (D?)sin(ax +b) = f (—a®)sin(ax +b)

1
f(D?)

Or sin(ax+b) = f(-a?)

Dividing by f(a*), we obtain

sin(ax+b) provided f(-a*)=0.

sin(ax +b) =

f(D?) f(-a%)

If f(-a®)=0, the above rule fails and we proceed further as follows;



1

1 ] ] )
sin(ax+b) = x- sin(ax+b) provided f’(-a?)#0.
(DY) ( ) ad) ( ) P (-a%)
If £/(-a%)=0,
] 1 ] ]
sin(ax+b) = x?- sin(ax+b) provided f”(-a%)#0
£(D%) (ax+Db) 7 a?) (ax+b) p (-a%) =
If £/(-a2)=0,
! sin(ax+b):x3~;sin(ax+b) provided f"” (-a®) =0, and so on
f(DZ) f///(_aZ)
Similarly,
1 )
cos(ax+b) =——=—cos(ax+b) provided f(-a®)=0.
£(D?) ( ) f(Cad) ( ) P (-a%)

If f(-a®)=0, the above rule fails and we proceed further as follows;

12 cos(ax+b)=x- /1 5
f(D) f'(-a%)

cos(ax+b) provided f'(-a?)=0.

If f'(-a*)=0, Lcos(ax+b)=x2~%cos(ax+b) provided f”(-a?)#0

f(D?)

If £/(-a%)=0,

1
f(D?)

cos(ax +b) = x> cos(ax+b) provided f”(-a®)=0, and so on.

1



2
Examplel0.5.1: Find the general solution of d—2'+ A y =e”* —cos® x

dx dx

Solution: We have 3—)2(2/+2%+ y=e*—cos’x Or y"+2y' +y=e* —cos®x
Here, we have F(x)=e"* —cos® x

The symbolic form of the equation (1) is (D? +2D+1)y =e** —cos” x

The corresponding auxiliary equation is D*+2D+1=0

. D*+2D+1=0 = (D+1)*=0 = D=-1, -1.

The complementary function is given by C.F =y (x) =(c, +c,X)e” .

Now, to find the particular integral y (x), by the inverse operator
method ,

Consider,



Y, (X) = 5 -(e¥ —cos? X)

242D +1
l 2X 1 2
=— e - — cos? X
D°+2D+1 D +2D+1
le2x_ 1 1+cos2x)_e*™ 1 1 %% 4
9 D?+2D+1 2 9 2|/D?+2D+1 D?+2D+1
2X B 2X
yp(x):e 1 1+2;-00st _° 1 1+ -COS 2X
9 2| -2°+2D+1 9 2 2D-3
2X B 2x
:e —1 1+%-c052x =e —1 1+2D—2+3~c052x
9 2 - 2|7 429 -
e _1_1+—4sin2x+3c052x _e”  1[7-4sin2x+3cos 2x
9 2| 7 9 2 7
e?  4sin2x—3cos2x—7
Or X)= +
yp() 9 14

Thus, the general (Or complete) solution of equation (1) is given by,

e  4sin2x—3cos2x —7

y=CF+PI=y (X)+y,(X)=(c,+c,x)e" + 5 + 7

2

Example10.5.2: Find the general solution of %—4%4_33/:5"13)((:052)(
X X

Solution: We have

9%y 4 Y 3y _sinaxcos2x Or y" -4y’ +3y —sin3xcos 2x (1)

dx>  dx y= y Yy’ +3y =SIN3XCOS2X .........

Here, we have F(x)=sin3xcos2x
The symbolic form of the equation (1) is (D? —4D +3)y =sin 3xcos 2x

The corresponding auxiliary equation is D*-4D+3=0

- COS ZX}



. D*-4D+3=0 = D*-3D-D+3=0 Or (D-3)(D-1)=0 = D=1, 3.
The complementary function is given by C.F =y_(x) =c,e* +c,e*

Now, to find the particular integral y (x), by the inverse operator

method ,

Consider,
y (x)—;-simxcost
P 2_4D+3

U sin g sin Acos B = %[sin(A+ B) +sin(A-B)]

1 . 1
==+ —5———=-SinbX+—————-C0s X
2 —-4D+3 D°-4D+3
_1 { sin5x+;-cosx} Here —a®=-5%and —a’=—
2 |25-4D+3 1-4D +3
1
— -sinbx + -COS X
2 [28 4D 4-4D }
1 7+D 1+D 1 | 7sin5x+5c0s5x cos X —sin X
y,(X)=~" -SIN5x + > COSX | =— +
8 - 8 49 + 25 2
1 7sm5x+5c035x .
Ory (X)_B +C0S X —Sin X

Thus, the general (Or complete) solution of equation (1) is given by,

7sin5x +5c0s5x
37

y=CF+PI=y,()+y,()=ce" +c,e” %{

+C0S X —sin x} )

Example10.5.3: Find the general solution o



2

Solution: We have F;(+n2x= kcos(nt+a) Or x" +n’*x=kcos(nt+a)

Here, we have F(x) =k cos(nt + )

The symbolic form of the equation (1) is (D* +n?)x =k cos(nt + )

The corresponding auxiliary equation is D*+n® =0

. D*+n*=0 = D=+in.

The complementary function is given by C.F =x_(t) =c, cosnt +c, sinnt .
Now, to find the particular integral x(t), by the inverse operator method

Consider,

X, ()= D7 2 -kcos(nt + )

U sin g cos(nt + «) = cosntcosa —sinntsin «

1 . 1 .
=|Cosa—; 5-cosnt—sina - —; 5 -sinnt
D°+n D°+n

——-cosnt—sing - ———

=|cosa -
[ D°+n D°+n

-sin nt} Here —a?=-n? in both cases

t : t . t . .
=| coSar - ——-cosnt —sin - —-sinnt | = —[cos & -sinnt +sin & - cos nt |
2D 2D 2n

t .
X, (t)=—sIin(nt +«
()= -sin(nt-+2)



Thus, the general (Or complete) solution of equation (1) is given by,
X(t) =C.F+P.I =x (t) +Xx,(t) =c,cosnt +c,sinnt +%sin(nt +a).
Examplel0.5.4: Find the general solution of

2
ZXZ+4%+4y:3sinx+4cosx,y(0)=l, y'(0)=0.

Solution: We have

2
%+4%+4y:3sinx+4cosx Or y" +4y' +4y=3sinx+4cosx ... (1)
X X

Here, we have F(x)=3sinx+4cosx
The symbolic form of the equation (1) is (D? +4D +4)y = 3sin X+ 4¢0s X
The corresponding auxiliary equation is D> +4D+4=0

. D*+4D+4=0 = (D+2)*=0 = D=-2,-2.

The complementary function is given by C.F =y_(x) = (c, +¢,x)e .
Now, to find the particular integral y (x), by the inverse operator

method

Consider,



y,(x)= ;(SSin X+ 4C0S X)

(D*+4D+4)

:3-2;sinx+4-2;cosx, here D? =—a% =—1? =—1in both cases
D +4D +4 D +4D+4

=3. sinx+4- cosx:B-Lz_asinx+4-Lz_3’cosx
4D +3 4D +3 16D° -9 16D° -9

_ 3(3sinx—4cos x) N 4(4sinx+3cosx) _ 25sinx

25 25 25
Yy, (X)=sinx

Thus the general (Or complete) solution of equation (1) is given by,

—2X

Y=Y () +Yy,(X)=(c,+C,x)e " +sinx .............. (2)
Now, using the first given condition; y(0)=1. From equation (2),
l=c,

Again, from equation (2);

y(X) = (c, +C,x)e > +sinx
y'(X) =—2e7%*(c, +C,X) +C,e > +Cos X

Using the second condition y’(0)=0; 0=-2¢, +c, +1 Or 2¢, —c, =1, put
1=c, then 1=c,
Thus, the particular solution of equation (1) is given by

y(X) = Y. (X)+ Y, (X) = @+ Xx)e™> +sin x



Test Your Progress 3

Find the general solution of the following differential equations by

finding the P.1.by Inverse Operator Method.

2 2
dtf+2%+3x:sint 2. 3 ¥+3%+2y:4coszx

X dx

1.

2
3. %—G%Jr%y:sinx 4. (D - D)y = 4cos x
X

5. (D?* +1)*y = 2sinxcos x

10.6. Case of a polynomial

When F(x)=x"

1 m =) m. -1
In this case, P! =5y %" =LT(OI"X" we expand LT(P) in

D

. . m
ascending powers of D as for as the term in are zero, we need not

consider terms beyond D™

Equivalently,




When F(x)=x", ‘m’ being a positive integer.

1 m -1, m 1
P":f(D)'X =[T(O)" X" To evaluate it, expand [T (D)™ in ascending

powers of D by binomial theorem as for as D™ and operate on x™ term by

term.

Examplel0.6.1: Find the general solution of

2
d 2/— ﬂ+25y:ezx+sinx+x
dx dx

d_2y_6ﬂ+25 =e? +sinx+ X
Solution: We have ax?  ax <) c TOMETX (1)

Or y" -6y’ +25y=e” +sinx+x
Here, we have F(x) =e™ +sinx+x
The symbolic form of the equation (1) is (D? —6D +25)y =e** +sin x+x

The corresponding auxiliary equation is D*-6D+25=0

_ 6++/36-100
2

.. D*-6D+25=0 = D =314i

The complementary function is given by
C.F =y_(x) =e¥(c, cos4x+c, sin4x) .
Now, to find the particular integral y (x), by the inverse operator

method

Consider,



X)=— (e +sin X+ X
Ys (%) D2 -6D+25 ( )

{ 1 ” 1 .
=¥t ——————sinx+

. . - X
D?-6D+25 D?-6D+25 D?-6D+25 |

o2 1 _1(. (6D-DY))"
= +— sinx+—|1-~——2| -X
4-8+25 —12-6D+25 25 25

e 1 1 6D-D* (6D-D?Y
= + SiINX+—|1+ + o - X
21 24-6D 25 25 25

e  24+6D
y,(X)= + 5 SiNX+—| X+ —
| 21 576-36D 25 25

+ +
21 612 25 625

GH_e2X 24sinx+6cosx  x 6

Thus, the general (Or complete) solution of equation (1) is given by,

. . e 24sinx+6cosx Xx 6
y=C.F+P.I =y, (X)+Y,(x) =e¥(c, cos4x+c,sin4x) + T

+
612 25 625

Examplel0.6.2: Find the general solution of

2 2
Gxg +1] y = X* + 2sin xcos 3x

2 2
. CI—2/+1 y = x* + 2sin xcos 3x
Solution: We have dx
or (y” + y)2 = x* + 2sin xcos 3x
Here, we have F(x)=x* +2sin xcos3x
The symbolic form of the equation (1) is (D* +1)?y = x* +2sin xcos 3x

The corresponding auxiliary equation is (D* +1)* =0



- (D*+1)?=0 = D*=-1 (Twice) = D=4 (Twice).

The complementary function is given by

C.F =y.(x) =(c, +c,Xx)cos x+(c; +C,X)sinX).

Now, to find the particular integral y,(x), by the inverse operator

method |,

Consider,

Y, (%)

= w(x“ + 2sin xc0s 3x)

1 . 1 .
=l X +ﬁ-2cos3xsmx
(D°+1) (D +1)

Using 2cos A-sinB =sin(A+ B)—sin(A—B)

= 1+D2)’2~x“+—1 SIN4X ————
( 2 2 2 2
D+ D+
( 1) ( 1)

U sin g the exp ansion (1+X) > =1—2x+3x* —4x° +

-sin ZX} :D?=-4% and D?=-2°

=(1-2D?*+3D* —4D° +....coeu....... )-x4+ﬁ-sin4x—ﬁ-sin2x

sindx sin2x

sindx sin2x

y, (X)=[x* —2(12x%) +3(24)] + =(x*-24x* +72) +

225 9 225 9

Thus, the general (Or complete) solution of equation (1) is given by,

y=CF+Pl=y. (X)+y,(X)=

sindx sin2x

=(c, +¢,X)cos X+ (C, +C,X)sin X+ (x* —24x? +72) +
(¢, +¢,%) (c; +¢,%) ( ) 275 9




Examplel0.6.3: Find the general solution of

2
(ﬂ— ZyJ =8(e* +sin2x+ x?)

dy i 2X - 2
i __2 :8 2
Solution: We have (dx YJ (e* +sin2x+x?)

Or (y' —2y)? =8(e* +sin2x + x?)
Here, we have F(x) =8(e** +sin2x+ x?)
The symbolic form of the equation (1) is (D—2)*y =8(e** +sin2x + x?)
The corresponding auxiliary equation is (D-2)*=0
. (D-2?=0=D=22 .
The complementary function is given by C.F =y_(x) = (c, +¢,x)e*.
Now, to find the particular integral y,(x), by the inverse operator

method,

Consider,



(6% +sin 2x + x?)

1
yp(X)=8-(D_2)2

:8{ ! -ezx+#-sin2x+—-x2}
(D-2)? (D-2)? (D-2)°

X 2x 1 ; 1 2
=8 -e +2—'S|n2X+2—'X
2(D-2)  D?-4D+4 D?—4D+4

2 Y -+
=8 X—-ezx—i~sin2x+1 1- 4D-D G
2 4D 4 4

Y 12\
yp(x):8 +C082X.+1 1+ 4D-D + 4D-D o 'X2
2 8 4 4 4

242X 242X
:8xe +cost+£ x2+2x—1(2)+2 8xe +cost 1X
2 8 4 4 2 8

Thus, the general (Or complete) solution of equation (1) is given by,

2 42X
X°e C052X+i(x2+2x) .
8 4

y=C.F+P.I=y,(x)+Y,(X) = (c, +c,x)e** +8(

Test Your Progress 4

Find the general solution of the following differential equations by

finding the P.1.by Inverse Operator Method.

2 2
1.d—;(+2%+3x=5t2—sint 2. d Z+3ﬂ+2y=x+4coszx
dt dt dx dx
2
3. %—6%+25y:3x+5eX 4, (D*-D)y=2x°
X X

5. (D*+1)%y=e*-4x>




10.7. Case of combination of e*v

When F(X)=e*-V where V is a function of X',

1

1 1
; Pl=—"—e™V=—1" .V v
In this case, £(D) f(D+a) and then evaluate f(D+a)

as in case of 10.3, 10.4, 10.5 and 10.6.

Cly+2y: X + e cos X

2
Examplel0.7.1: Find the general solution of %—2&
X

Solution: We have

d’y _dy X " / X 1
W—2&+2y:x+e cosx Or y" -2y +2y=X+e*CoSX .cccevrrrunnn, Q)

Here, we have F(x) = x+e* cosx

The symbolic form of the equation (1) is (D? —2D +2)y = x+¢e* cos x
The corresponding auxiliary equation is D*—~2D+2=0

+./4—
.. D?*-2D+2=0 :Dz%zlii = D=1+1i, 1-i.

The complementary function is given by C.F =y (x) =e™(c, cosx +c, Sin x)



Now, to find the particular integral y,(x), by the inverse operator

method ,
Consider,
yp(X) :m'(X-FeX COSX)
1 1

=— X+ — -7 COS X
D°-2D+2 D°-2D+2

op-p2\|" 1
1- ‘X+e 5 COS X
2 (D+D)°-2(D+1)+2

N |-
1

2D-D? (ZD—DZJZ ] )
1+ + +..[|-X+e

COS X

N |~

D% +1

2 2

X

Xe
2D

yp(x):%(x+1)+ -cosx:%[(x+1)+xexsinx]

Thus, the general (Or complete) solution of equation (1) is given by,

y=CF+Pl=y (X)+y,(x)=e7(c,cosx+c,sin x)+%[(x+1)+xexsinx] :

Examplel0.7.2: Find the general solution of

2
d—¥+4ﬂ+3y =e*sinx+ xe*
dx dx

Solution: We have

d’y  dy . .
+4—= +3y=e*sinx+xe* Or y" +4y’ +3y=esinx+xe* .. (1)

dx? dx

Here, we have F(x)=e*sinx+xe*



The symbolic form of the equation (1) is (D* +4D+3)y =e *sin x+ xe*
The corresponding auxiliary equation is D* +4D+3=0

. D*+4D+3=0 = D=(D+1)(D+3) = D=-1, -3.
The complementary function is given by C.F =y_(x) =(ce™ +c,e™).
Now, to find the particular integral y,(x), by the inverse operator

method

Consider,

y,(x) = 5 (e sinx+ xe®)

+4D+3
x 1 . ax 1
5 -sinx+e 5 - X
(D-)°+4(D-1)+3 (D+3)“+4(D+3)+3

—X

—e*. 21 -sinx+e3X2;-x
D°+2D D°+10D+24

. 2D-1 . e[ (10p+D?\|"
=€ ————-SInX+ 1+ — - X
4D? -1 24 24

X 3x 2 22
yp(x):e (sinx—2cosx) + ¢ 1+1OD+D + 10D+D S TR - X
5 24 24 24

-X 3x
_¢ (sinx—2cosx)+e x+i
5 24 12

Thus, the general (Or complete) solution of equation (1) is given by,

e™x . e¥ 5
=CF+Pl=y (X)+y. (X)=(ce ™ +c,e)+ SINX—2C0SX) +—| X+— | .
y Y, 00 = G e )+ ( +Sa(xe )



d-y

2
Examplel0.7.3: Find the general solution of e —4y = xsinh x
X

d?y

Solution: We have e —4y=xsinhx Or y”"—4y=xsinhx ... (1)
X

Here, we have F(x)=xsinhx

The symbolic form of the equation (1) is (D? —4)y = xsinh x

The corresponding auxiliary equation is D*-4=0

. D*-4=0= D=2, -2.

The complementary function is given by C.F =y_(x) = (c,e™ +c,e™).
Now, to find the particular integral y, (x), by the inverse operator

method

Consider,



1 :
yp(x):mxsmhx

—X

e¥—e

Using sinhx =

1 e*—-e™ ) 1 1 y 1 _X
= - X == xe* — xe
2 2 | D*-4 D*-4

('D

e;}
(D+1) : (D-1)7 -4

[e R =
D?+2D-3 . D?-2D-3

r\JII—‘ NII—‘

| 1|, 1f, {20+, 1[ (20-D*\|"
Y, (X)_E _—3{1 ( 3 j_ X—e _3{17{ 3 ﬂ x]
1 { ) [ (2D+D2J 2D+D2j2 ] { [2D—DZJ (2D—D2ﬂ }
=—0:-e |1+ + +.. X—e '|1- + X
6 3 3 3
17 ([ 2

3
x 2 x(e*—-e™ | 2(e*+e” X . 2
=—|e' | Xx+=|-eF|x—="||==—= —— =—=sinh x ——=cosh x
-6 3 3 3 2 9 2 3 9

Thus, the general (Or complete) solution of equation (1) is given by,

y=CF+P.l =y (X)+Y,(x)=(ce”™ +c,e ™) —gsinh x—scosh X

Test Your Progress 5

Find the general solution of the following differential equations by
finding the P.1.by Inverse Operator Method.

2
(D* +D?+1)y =e 2 osﬁx u+2y x%e® +e* cos 2x
1. 2 2 dx?




d’y ,dy
3. d_2_3d_+2y= xe> +sin 2x 4. (D®+2D% + D)y = x’e* +sin® x
X X

10.8. Case of combination of x™.v

When F(X)=x"-V where V is cosax or sinax.

Then, P.I= (D) x™cosax Or x"sinax
1 m S 1 m iax
= x"[cosax+isinax] = x"e
f(D) f (D)
iax 1 m
=e" ——X
f(D +ia)
And ﬁxm , can be evaluated by the method mentioned in 10.6, the
+1

case of polynomial then equating the real and imaginary parts, we get

the required results.

Remark 10.8.1: When F(X)=Xx-V <V’ being any function of ‘x’. Then

we use the formula,

LX.V:{X_“’(W] 1y
f (D) f(D) | f(D)




This rule is applicable if

1) Power of ‘X’ is one

ii) _L v isnota case of failure
f(D)

iiiy  Ifthe power of ‘X’ is one and %V Is a case of failure then

do not apply xV rule. In this case we apply rule given by case

10.7.

Remark 10.8.2: When F(X)=f(X)  being any function of ‘x’. Then

P.l = %- f(x). If f(D)=(D-m)(D-m,) ......... (D-m,), resolving into

partial fractions,

1 _ A A A
f(D) D-m, D-m, D-m,
P.I={ A + Ay F e A }f(x)
D-m D-m, D-m,
1 1 1
:AlD_ml~f(x)+A2-D_m2-f(x)+ ............... +An~D_mn~f(x)
=A -e"‘lxje’le - (x)-dx+A, ~em2x.[e’mzx (X)X Feee, + A, ~e““"x_|.e"”"lX - (x)-dx

Equivalently,



Resolve % into partial fractions and operate each partial fraction on

f(x) remembering that

ﬁ- f(x) =™ j f (x)e*dx

Note: This method is general one and, can therefore, be employed to

obtain a particular integral in any given case.

2
Examplel0.8.1: Find the general solution of %— y = Xsin 3x + Cos X

2

Solution: We have d Z—y=xsin3x+cosx Or y"—y=xsin3x+cosx ...
X

1)

Here, we have F(x) = xsin3x+cos x

The symbolic form of the equation (1) is (D* —1)y = xsin3x +cos x
The corresponding auxiliary equation is D*-1=0

.. D’-1=0= D=1, -1.

The complementary function is given by C.F =y (x)=(c,e* +c,e™).
Now, to find the particular integral y,(x), by the inverse operator

method

Consider,



1 :
yp(x)zm-x3|n3x+cosx
= 21 - xsin3x+ 21 -cosx:I.P( 21 -xeaixj—% as a’=-1"=-1
D - D°-1 D -1 2

I.P e3‘X;_2.x _%zllp(emx . 1 'XJ—COSX
(D+3i)" -1 2 D +6iD-10 2

: -1
e (6iD + D?) Cos X
X)=1.P 1- X | =—
Y, (%) (10[ 10 | ] 2
aix | . 2 . 2\2 *
e 61D + D 61D + D COS X
=|.P 1+ + o X |=—
-10 10 10 2
e[ 6D D? 36i°D> 6iD° D* CoS X
=1.P +—+—+ + + % SO X |——
-10{ 10 10 100 50 100 2
e[ 3 COS X €0S 3X +i5sin 3x 3i C0S X
-10| 5 2 -10 5 2
Y (x) = 1P x0033x+ixsin3x+3icos3x—3sin3x _ CosX _ (5xsin3x+3cos3x —25C0s X)
P ' -10 -50 2 -50

Thus, the general (Or complete) solution of equation (1) is given by,

y=CF+P.I=y,(\)+Y,(x) = (" +C,e ™) - (5xsin 3x+305o;3x+25cos X)

2
Examplel0.8.2: Find the general solution of Z 2’—2%+y=xexsinx
X X

— d’y _dy ‘- Y
Solution: We have —--2-2 +y=xe*sinx Or y" -2y’ +y=xe*sinx

dx dx

Here, we have F(x) = xe*sinx



The symbolic form of the equation (1) is (D* —2D +1)y = xe*sin x
The corresponding auxiliary equation is D*—~2D+1=0

. (D-1)?=0= D=1 1.

The complementary function is given by C.F =y_(x) =(c, +¢c,Xx)e*.
Now, to find the particular integral y,(x), by the inverse operator
method ,

Consider,

-xe*sin x

Y, (X)= (D1

:exm-xsinx:exé-xsinx:exﬂxsinx-dx-dx

=eXJ'[—xcosx+J'cosx-dx]-dx:exj(—xcosx+sin X) - dx
" yp(x):ex[—jxcosxdx+_[sin xdx]:ex[—xsinx+jsin xdx—cosx]

= e[ xsin x — cos x — cos x| = —e*[~xsin x — 2cos X]

Thus, the general (Or complete) solution of equation (1) is given by,

y=CF+P.lI=y. (X)+y,(X)=(c, +c,x)e" —e*[-xsin x—2cos X]

4 2
Example10.8.3: Find the general solution of 4y .0y, y = X* COS X
dx*  dx®
- d'y _d?%
Solution: We have —+2——=+y=x%cosx Or y" +2y"+y=x*cosx ...

dx

1)



Here, we have F(x) = x* cos x

The symbolic form of the equation (1) is (D* +2D?* +1)y = x* cos x
The corresponding auxiliary equation is D* +2D* +1=0

- (D*+1)?=0 = D® =4 (Twice).

The complementary function is given by
C.F=y.(X)=(c,+c,x)cosx+(c, +C,X)sinx.

Now, to find the particular integral y, (x), by the inverse operator

method

Consider,

y_(X) 1 2cosx
P D*+2D* +1

=Re %-xzeix):Re(e“%-xzj
(D°+1) [(D+1)"+1]
=Re %.xzjzRe{e”{ : 2(1—1Dj_ }xzj
(D? +2iD) —-4D 2
_ Codl €)1 iD JiD] L
- ¥Y,(X)=Re _4{[)2(1 +2 > 3[ } F o J} x}
:Re(i{ +2|x—— ] Re( {—[—3+|x —EXJH
-4 | D? 2

:_%R{e'x X’ 1_— ——Re[(cosx+|smx)(x +4ix® —9x? )]

Ly, (X)= —4i8[cos x(x4 —9x2)—4x3sin x]



Thus, the general (Or complete) solution of equation (1) is given by,

y=C.F+P.I =y, (X)+Y,(X) = (c, +¢,X)c0s X+ (C; +C,X)sin x—4i8[cos x(x4 —9x2)—4x3sin x]

2
Examplel0.8.4: Find the general solution of %—4%+4y=8xzezxsin 2X
X X
Solution: We have
2
%—4%+4y =8x%?sin2x Or y" -4y’ +4y=8x%*sin2x ........ 1)
X X

Here, we have F(x)=8x%e*sin2x

The symbolic form of the equation (1) is (D* —4D +4)y =8x"e* sin 2x
The corresponding auxiliary equation is D*—-4D+4=0
~(D-2%=0= D=2 2.

The complementary function is given by C.F =y_(x) = (c, +¢,x)e*.
Now, to find the particular integral y,(x), by the inverse operator

method

Consider,



2X

-8x%e?*sin 2x

y4@=(D_a2

— g2 1 _ - x?sin 2x = 8e** iz.(x2 sin 2x) = 8e* .lsz sin 2x dx
(D+2-2) D D

y,(x) =8e* -%J‘{xz(— Coszzxj—j[— coszj - 2X dx}

2 - -
=8 ij —X—0032x+x-szx—jl-szxdx
D 2 2 2

2
Y, (x)=8e” -_f{—x?cos 2x+§sin 2X + Cozzx}dx

2 a3 . .
_ ga?* .J‘H_x?sm;x_.[(_x)smsz dx}{jgsin ZdeJ+5|n82x}

2

X +1]sin 2x+jxsin 2xdx}
8

:8e2X

- ) ) )
=8 %—%jsin2x+x( C()Zszxj—jl-( co;ZdeX}

1 xzj. X C0S 2X sinZX}
in2x— +

=8e®|| === [sin2x
8 4 4

LY, (x) =e” [(3— 2x7)sin 2x —4xcos 2x]

Thus, the general (Or complete) solution of equation (1) is given by,

y=CF+P.I=y (x)+Y,(X)=(c, +c,x)e* +e2x[(3—2x2)sin 2X —4X008S 2x]

2
3 Z+a2y:secax
X

Example10.8.5: Find the general solution of

2

Solution: We have 3X¥+a2y=secax or y" +a’y=secax ... (1)




Here, we have F(x)=secax

The symbolic form of the equation (1) is (D* +a®)y =secax

The corresponding auxiliary equation is D*+a® =0

~D*=-a’= D=xzai .

The complementary function is given by C.F =y_(x) =c, cosax+c, sinax.
Now, to find the particular integral y, (x), by the inverse operator

method

Consider,

-Secax

1
X) = ———-Secax =
Yo() D’ +a’ (D +ai)(D—ai)

Resolving into partial fractions, we obtain

(0= | =
Y ~2al|D-ia D+ia

:|S€C&X

=i —secax — -
Za{D—la D+ia

Sec an|

Now, consider,

secax = eiax_[sec ax-e " dx

D-lia

1
w——f(X)=e* e f(x)dx
S, f0=e"[e™f (9

—secax =e™ COS‘fjl)(_ls'maxdx:e“"‘XJ‘(l—itanax)dx
D-ia cos ax

i [
= e'ax(x +—logcos axj
a



Changing i to —i, we have

cosax +isinax = .
dx=e 'aXJ'(1+ i tanax) dx
cos ax

secax = e‘iaxj

D+la

r i
=e ""‘X(x ——logcos axj
a

Thus

1] i r i
y,(X) =——|e"| x+—logcosax |-e | x——log cos ax
2al a a
X eiax_e—iax iax+e—iax
—-————+—logcosax-
a

21

X . 1
Sy, (X) = gsm ax+¥log COS ax - CoS ax
Thus, the general (Or complete) solution of equation (1) is given by,

i X . 1
y=C.F+P.l= yc(x)+yp(x)=clcosax+czsmax+gsmax+¥logcosax-cosax

Test Your Progress 6

Find the general solution of the following differential equations by

finding the P.1.by Inverse Operator Method.

2 2
1. d ¥+2ﬂ+y=xcosx d Z+3ﬂ+2y=xsin2x
dx dx 2. dx dx
d’y d’y  dy i
: +y = 24XC0S X ~+2—=+5y | =xe " cos2x
dx? 4. \ dx dx




10.9 Summary

It is again a method to find P.1. when methods for standerd cases are not
aplicable to solve f(D)y = f(x). In this case use of integration is

involved.

10.10 Answers to Check Your progress

Test Your Progress 1

y =(c, +c,x)e” FETC S
e 3 (log5)? +2(log5) +1

2. y=(ce*+c,e”)-10e*

2X

3. y=(c,+c,e* +c,e”*)+——15x

100e?

4. y=e¥(c cos4x+c,sindx)+

5. y=(ce ™ +c,e™)+55xe>
H 21 -x/2

6. y:(cl+czx)cosx+(c3+c4x)smx+Ee

Test Your Progress 2

1. y=(c, +c,x)e* —g(cosh X +sinh x)

5 J3 _ /3 ) 8sinhx+5coshx
2. y=c, +e C, €08~ X+ C;SiN =2 |+ 3



y=(c, +C,e" +cse ™)+ xsinh x —%sinh 2X

y =e¥(c, cos4x +c, sin4x) + %[17C05h 3x+9sinh3x]

y=(ce? +c,e™) i

(xsinh 2X
5

—cosh ZXJ

Test Your Progress 3

. sint —cost
x(t) =e ' (c, cos/2t + ¢, sinv/2t) + —————

y(x)=(ce™ +c,e ) +1- gsin 2X + 4¢0S 2X

y(x) =e~>*(c, cos4x +c, sin4x) + %(W]

y(X)=(c, +C,e* +C,e ) +2sinX

y(x) = (c, +¢,X)cos X + (c; +¢,X)sin x+%sin 2X

Test Your Progress 4

y =e*(c, cos/2t +c, sin \/Et)+g(t2 —gt+§j+%(cost —sint)

y(x)=(ce™+c,e )+ % (x+ g) +00S 2X + % (3sin 2x — cos 2x)



N

w

no

. 3 6 X
3. y=e¥(c,cosdx+cC,sindx)+—| X+— |[+=
y @ 2 ) 25( 25) 4

4
4. y(x)=(c, +c,e* +ce”) —)(?—6x2

2X

5. y(x)=(c, +¢,X)cos X+ (C, +C,X)Sin X+ eZS —4(x* - 4)

Test Your Progress 5

y=e 2 [(c1 +x/4)cos(x/3/2) +(c, + x/4\/§)sin(x«/3/2)J
+eX’2[c3 cos+/3x/2 +c, sin \/3x/2]

3x X
L y= (clcos\/?x+czsin\/§x)+ ¢ (xz —Ex+5—0j+e—(4sin2x—c032x)
11 11 121) 17

X 3 1 }
. y(x) =(c.e* +c,e?)+e*| = —= |+ —(3c0s2x —sin 2x
Y(X) = (e +ce) (2 4j = )
Loe¥( ., Tx 11} 1, .
. v(X)=(c, +C, +c.x)e * + X®——4+—=—|4+—(3sin2x+4cos 2x
V() = (€ + ¢, + €0 18[ & 6] . )

Test Your Progress 6

1, . .
. y=(c,+c,x)e” +§(xsm X+ C0S X —Sin X)

y=(ce?+ce™) +(7 _30chos 2x+(12_5X]sin 2X
200 100

y = (C, +¢,X)cos X + (C, +C,X)sin X — x> cos X +3x° sin x



4, y=[e7(c, +C,X)CcoS2X +(C, +C,X)Sin ZX%(xsin X+C0s X —sin x)]

——{(x3 —x%)cos 2x—§x3 sin ZX}

10.11 Terminal Questions

Solve

1) (D2 +3D +2)y =e®

1
1+eX

2) (D*+ D)y =
3) (D2 43D +2)y =e® + cose*
4) (D?>+ 1)y = cosce x

By Method of inverse operator.

Ans-

1) y=Cie™ + ce 2% 4 e~ 2%ee"
D y=c t+ce*+x—1log(1+e?)—e*log(l+e*)
3) y=Cre % + e + e (e — cose¥)

4) y = c¢; cosx + ¢, sinx + sinx log sinx — x cosx



Unit-11 : Equation Reducible to linear with Constant
Coefficients

Structure:

11.1. Introduction

11.2 Objectives

11.3. Cauchy Linear Differential Equations

11.4. Legendre’s Linear Differential Equations

11.5 .Simultaneous Linear differential equation with Constant Coefficient.

11.6. Summary

11.7. Terminal Question



11.1 Introduction

In this chapter we will study Cauchy homogeneous linear different

equation with variable coefficients this types of differential equation

consisting of three main terms first homogeneous second linear and third

differential equation with variable coefficients. So now we explain all

these terminology.

1-

Homogeneous means power of x in the coefficients are equal to the
orders of the derivatives associated with them i.e.

2 3
ay 247

d
x. 2, . x322 andsoon.
il d£ - d£2 —_ d£3

Linear means dependent variable y and its derivatives appear in the
first degree and there is no more terms not multiplied together.
Different equation means dependent variable and its derivatives
occurs in the equation.

If all these properties comes together in a differential equation such
types of equation is called homogeneous linear differential equation
with variable coefficient such equations can be solve by reduction

procedure of suitable substitution and transform the give linear



ordinary differential equations with variable coefficients to linear
ordinary differential equations with constant coefficient after then
we dicused Legendre’s linear differential equation and then

simultaneous linear D.E.W. constant coefficient.

11.2 Objectives:-

After reading this unit you should be able to

% Solve Chauchy’s linear differential equations

s From the given equations we will be able to identify the given
equation is Cauchy equation or not.

+» Solve simultaneous linear differential equation

+» Solve as illustrated in the problems of oscillation and electric

circuits among other.

11.3 . Cauchy Linear Differential Equations

A differential equations is said to be Cauchy homogeneous linear

differential equation with variable coefficient which is defend as



dn—ly
Yaxi—2= 0w

i=0

d d""y d*cy dy
-1 -1
ap x" dx"+a1 x" T T +a, x" dxn_2+---..+an_1 xa
dO
+ aTL d 0 = Q(x)
0
Where a; = 1 and 373; =y, so above equation becomes
damn ~ dn—l _ dn—Zy dy doy
x"m+alxn 1dxn T+ a; x™ 1dx"‘2+ +an_1xa+anw
=Q()....(1)

Where a;’s are constants, x are variable and Q is the function of x and
power of x in the coefficients are equals to the order of the derivative
associated with them so it is called Homogeneous linear differential
equation this types of equation was first used by Euler’s and Chauchy
hence, because of their name it is called Eular Chauchy homogeneous

linear differential equation with variable coefficients.



Such types of equation can be reduced to linear differential equation with

constant coefficients by the substitution.

Reduction Process

Let x = et ort = logx andazD

N dy dy dt dy 1 dy dy
Wax T acdr ac e Yax T ar

Origin differentiate, we have

d (d_y) dy d (dy 1)

dx\dx)  dx?  dx\dt'x
1 d(dy +dy d 1
Cxdx dt) dt(dx'x>
1 ddydt 1ady
Cx'dt dt dx x?dt



d?y d?y dy
2 < _ 7 T 24, — 2 _ — _
X = g dt_D y—Dy=(D*-D)y=D(D — 1)y

Similarly

d’y d (d*y\ _d (1 (d*
dx3  dx\dx?)  dx\x2\dt2

1 /d3 d? d
_ L (y Ly dy
x3\ dt3 dx? dt

Hence

d3 d3 d? d
RIS A S Yo'l
dx3 dt3 dx? dt

= D3y —3D?y + 2Dy
— (D?—3D%+2D)y
= D(D?—3D +2)y

=D (D -1)(D—-2)y

Therefore, we can write

r

d
xrd—x)T}=D(D—1)(D—2) (D—-3)......(D—r+1)yand so on.



Substituting these values in equation (1) we get a linear differential
equation with constant coefficients which can be solved by the methods

already discussed.

a’y

2
. 2 L ay — 43
Example 1 :- solve x X ty=x

Solution:- Given equation is a Cauchy’s homogeneous linear different

equation. So Put

—etort=1 d Y i x® - Dy where D
X = e ort=1t1togx an dx—xClTl xdx— ywnere
d d?y
_ 2 — —
“a gz PW-ly

Substituting these values in the given equation it reduces to
D(D-1)y—-Dy+y=(e)’
=D*-D-D+1)=¢%

=((D2—-2D-D+1) =e3t

which is a linear equation will constant coefficients. Its A.E. is D* -

2D+1=0i.e.

(D-1)*=00or D=1,1



So C.Fis y= (ci+c,t) €', where ¢, and ¢, are arbitrary constants.

Now calculate Pl = —~— g3t
(D-1)?
1
(3—-1)2
1
_ 3t
2

Therefore the complete solution is y= CF+PI== (c,+c,t) e'+ ie“

Now putting t= log x Hence y=(c; + clog x)e!?9* + ix3
2
Example.2:- solve x? % — x‘;—z + 4y = x3 = cos (log) x + x sin (log x)

This equation in a cauchy's homogenous liner differential equation we put

x = el ort = logx then we have

2

dy d“y d
—~ =D 2_2=-p({D-1 D=—
X yand x 12 ( )y where T

the given equation is transformed into

D(D—1)y—Dy+ 4y =cos (t) + elsint



or (D) =D —D+4)y =cost+etsint
or (D* —2D +4)y =cost +etsint

which in a liner differential equation with constant coefficient. Now the

A.E.is

D?—2D+4=0=>D=1+iV3
Hence C.F. in Given by

y =e'{c; cosV3 .t+c,sinV3.t}

1 1

dP.l = Cost t Sint
an Dr_2p+4 Ot T op 4o
"+ T D A +4 "
-1 Cost + et Sint
—3_2p %" T¢ pz 37"

2D + 3 t |
=—4D2_9Cost+e _1+35mt

_(2D+3)cost+ tlS' .
=" —1_9 e’ - Sin




1 1
— (-2 si _pteag
13 (—2 sint + 3 cost) + 5 € sint

Hence the general solution in

1 1
y = ef[cycos (V3.t) + csin (V3.0)] + B [3cost — 2sint] + Eetsint

putting t = logx we get

y = x[clcos V3 (logx) + cysin/3 (logx)]

1 1
+ 13 [3cos (logx) — 2sin (logx)] + 5X sin (logx)

d? d
Example. 3: — solve x? d_x}; — 3xd—i: + 5y = x2.sin (logx)

It is a cauchy's homogenous linear diffintial equation. we put
x = etort =logx
dy _ 2 4%y _ _
thenxdX = Dy & x == D(D—-1)y
therefore the given equation is changed in the form :

[D(D —1) — 3D + 5)y = e?tsint

10



or (D? — 4D + 5)y = e?'sint

The A.E.is D> — 4D + 5 = 0 & there fore D

=21i&C.Fis given by

(putting t = logx)

y = e?[c;cost + cysint] = x2[c,cos (logx) + ¢, sin(logx)

and P.1 = DT —aD T 5ez‘fsint

2t 1

D+27—aD+2)+5 ™

=e

sint

t 1
= —e”zcost = —EeZt.t cost = — 1/2 x2(logx)cos (logx)

Therefore the general solution in given by -

y=C.F.+P.]

1
= x%[c¢; cos(logx) + ¢, sin(logx)] — Exz(logx)cos (logx)

11



11.3.1.Test your knowledge

Solve the following differential equation -

a? d
1. xzd—xf—4x£+6y=x5

2, x3LY _ 42 &
' dx3 “dx?

—2y=x%+x73

2
3. x2373zl+x2—z+y = sin (logx?)
2
4, xZZTZ— ZxZ—z—ély = x? + 2logx

5. (x2D?* —xD + 1)y = x.logx

2
6. xd—32’+d—y+x = 0 (mult.by x
dx dx

Ans:-

5
1.y = cyx? + cpx3 +%

5
2. v =cyx% + ¢, cos(logs) + c3 sin(logx) + x?logx — E_)—lox‘3

3. y =c; cos(logx) + c,sin (logx) — gsine(logxz)

Ceyt gy X1 3
4.y =cx*+Z———"logx + /g

5. y = x[c;logx + c;] +§(logx)3



2

6. y=¢ +c2logx—x:

11.4 Legendre’s Linear Differential Equations

n dn—ky
Z P.(a + bx)" % pper 0169 I ¢ )
k=0
Or
dn—ky dn—ly
Py(a + bx)"* e Py(a+ bx)" 1 pro=
dy o Ay
+P,_4 Tx + P,(a + bx) T = Q(x)
n—k n—1
_ y _ y dy
= Py(a + bx)" % e P;(a + bx)™ 1 e +"P”—1E
+ By = Q(x)

0
Where P, = 1 and %: y

So above equation can be written as

13



d
(Cl + bX)nTy + Pl(a + bX)n_l ? + .- +Pn—

—+ P
1dx+ le

Equation (1) and (2) both are same. Equation (2) is also a Legendre’s

linear different equation.
Reduction Process

Let a+ bx = €'

Taking log on both sides
Log (a+ bx) =tlog e
Now consider

Y _ 4 oela+bx) = L (t1 loge® = 1
Ix — dx og(a + bx _dx( oge) oge® =

1 _dt_dt dy
a+bx'~  dx dy dx

b dy dt
a+bx dx'dy

02 s Dy whereD =
(a x)dx— 7; ~ 0Dy whereD =

14



dy_( b )dy
dx \a+ bx/ dt

Again differentiate, we have

d(dy)_d( b )dy
dx \dx/)  dx\a + bx/ dt

d?y ( b ) d (dy)_l_dy (a + bx)x0—b.b
dx (a + bx)?

dx? a + bx/ dx \dx

b (dt) b?  dy
“a+bx\dx) (a+bx)?dt

b d’y dt b?  dy
a+bxdx?dx (a4 bx)?dt

d’y b dzy( b ) b%? dy
dx2  a+bx dt?\a+bx) (a+ bx)?dt
. b? d?y dy
~ (a+bx)?|dt? dt

zdzy 2(n2
(a + bx) sz (D?y — Dy)

d2
(a + bx)zd—tz =b2D(D - 1)y

15



Similarly

(a+ bx)32’37§ =b3D(D —1)(D —2)y

Substituting these values in equation 2, we get a linear different equation

with constant coefficients, which can be solved by the methods already

discussed.
Example 1 : Solve

d?y d

y
2 2 2 —
(5+ 2x) —dx2+6(5+ X) x+8y—0

dx
Given equation is a Legendre’s linear D.E. put (5+2x) = €'

2 dt

log(5 + 2x) =t.loge =t 505+2x=E

Now consider

dy dy dt dy 2
dx_dt'dx_dt<5+2x>

(5+2)dy—zdy—zp here D = 2
Ve T far  crYy wnere Y =g

Again diff, we get (5 + 2x)2 22 = 22D(D — 1)y

16



Putting all these values in given equation, it reduces
4D(D-1)y+6.2Dy+8y=0
(D2 -D+3D+2)y=0
(D?+2D+2)y=0

Which is a linear equation with constant coefficients it’s A. E. is

D?+2D+2=0

2% VA—AX2 2420

D
2 2

-1+

SoC.F.=e t[C,Cost+iC,sint] PI=0
Hence the C.S. isy=e t[C;Cos t + i C, sint]
Putting t= log(5+2x), So, we have

y = e~108G+2X)[C, Cos t + i C, sinlog(5 + 2x)]

1
+ 2x

Y=z [CiCos t +iC,sinlog(5+ 2x)]

Example 2 : Solve

17



dzy

(x+1)2 +(x+1)—+y 4 Coslog(x + 1)

Solution: Given differential equation is Legendre’s L.D.E. put x+1 = ¢'
e
t = log(x+1)

dzy

So (x+1)——Dy and (x+1)2 >=D(D -1y

Substituting these values in the given equation it reduces to
D(D-1)y + Dy +y =4 Cos 't

(d*-D+D+1) y= 4Cos t

Here AE.isD°+1=0 D=+ i

C.F.isC;Cost+c,Sint

SoPlis y = ——

4t

2t 1
=35 Cost = HCost = 2t— {Cost dt} =2t Sint

Therefore, the complete solution is

18



CS = CF+PI

y=C;cost+C,Sint+ 2tsint

putting t = log(x + 1)so, we have

y = C; Cos (log(x+ 1) + C, Sinlog (x+1)

+ 2log(x + 1).Sinlog(x + 1)

11.5 Simultaneous Linear differential equation with
Constant Coefficient

Since we know that equations in which there is one independent variable
and two or more than two dependent variables, such equations are called
simultaneous linear equations. Just like that if two linear ordinary
differential equation with two or more dependent variables and a single
independent variable then this types of equation is known as simultaneous

linear ordinary differential equations. For example

Let x and y are two dependent variable and t is the independent variable.
Consider the simultaneous linear differential equation with constant

coefficients.

19



d d
(i) —+—y+ 3x+y=0and—y+5x+3y=0

dt dt
. d%x d’y
(LL)W—Sx—4y=0andd2+x+y—0
(i) +dy+ —tand 2 - oy
iii e ty=land———+2x+z

1 and® 00
T T YT AT

where X, y and z are dependent variables and t is the independent variable.

Working Process

Step 1- Firstly we will convert the given equation into operator from.

Step 2- Then solving both these equations with the help of elimination

method. We get the value of x ory.

Step 3- If the value of x (or ‘y’) is obtained then we will get the value of'y

by substitution method in any one of the given original equations.

Example 1 :- Solve % =7x—y

dy
— =2 5
It X+ oy

20



Here X, y are independent variable and t is independent variable So it is
simultaneous liner differential equation because it has two dependent
variable and one independent variable and both differential equation of
degree one so it is linear and its coefficient are constant so it is

simultaneous linear differential equation wish constant coefficients.

Solution:- Given equation can be rewritten as in

operator from

d
Dx=7x—y whereD =—
X X Yy wnere dt

Dy = 2x + 5y tisindependent variable.

Or

Dx—7x+y=0 or(D—7)x+y=0 (1)

or

—2x+Dy—-5y=0 or —=2x+ (D -5)y=0 (2)

Now we will eliminate t, for this multiply in equation (1) by (D-5) and

then subtraction equation (1) from equation (2)

21



(D-5MD-7)x+{D-p)y=0

—2x + —5)y=0

(D-5D-7)x+2x=0

(D2 —12D +37)x =0

which is a linear equation with constant coefficients. It’s A.E. is

D?—-12D +37 =0

124122 -4x37 12+42i
B 2x1 2

=6*i

So C.F = e”[C; Cost + C, Sint] and P.I= 0
SoC.S=C.F+P.
x= " [C; Cos t C, Sin {]

Now we will obtained the value of y with the help of x. For this

substituting the value of x and % In equation (1) we have.

x= €% [C, Cost + C, Sint]

dx_

i e [—C;sint + C,cost] + 6e®[C,cost + C,Sin t]

22



d equation (Dis = = 7 _ge
and equation (1)is —=7x —ysoy =T7x - —

= 7e°[C, Cos t + C, Sin t] — ePt[6C; + C,]Cos (6C, + C;) Sin't
y = e6t[(761 - 6C2 - Cz) Cost + (7C2 - 6C2 + Cl) Sin t]
y = e®[(C, —C,) Cost+ (C; + C,) Sint]

Ex.2: Solve the Simultaneous linear differential equations.

dx 3x — 6y = t? 1
dy dx ;
ata = T o 2

d
taking D = T equations (1)and (2)can be written as

(D-3)x—-6y=t* ——————— (3)

Dx+ (D -3)y=t*> ——————— (4)

To eliminate x from (3)& (4)we operate (3)by D and (4)by(D

— 3)we get.

D(D-3)x—6Dy=D({t*>=2t = ———————



or DD —3)x+ (D —3)*y=(D —3)et =et —3et —2et ——(6)
now subtracting(5)for (6)we get.

(D? +9)y = —2et — 2t
Whose general solutionin (get C.F.&P.1.)

, et 2t
y = ¢4 €c0s 3t + ¢,5ing3t — T 9

Now to eliminate y fram (3)& (4)we oprate (3)by (D — 3)
and multiply (4)by (6)and then subtracting we get.

(D% + 9)x = 6et — 3t% + 2t

Whose general solution is

= 3t + 't+3et t2+2t+2
X = C3C0S C4aSln 5 3 9 7

11.4.1.Test your Knowledge

Solve the following Simultaneous equations:-

24



d
d—3t7+x=e‘t

dx
2. E+5x—2y—t

Y sy =0
ac TV

given that x =y = 0 where =0

dx dy _
3. 4E+9E+44X+49y—t

dx dy
3—+7—+34x + 38y =e’

dt dt

ANS:-

1. x = c;cost + c,sint +%(et —eb)

H 1 t t
c1Sint — cycost + 5 (et —e")

=
Il

__1 3t 4 1
2. x = 27(1+6t)e +27(1+3t)

= 2(2+31:) 3t+2 2—3t
Y="3%7 e” 55 ( )

3. x=c ettt -2t
3 9 7
17 55 24
t 6t t
=ce" t4ce ——t+—+—-e
y 1 2 3 9 7

25



11.6.Summary

The idea of chauchy's linear differential equation is introduced and
method of solving it is givin by examples. then legendre’s Differential
equation is introduced with examples. After that simultaneous liner
equation with coefficient is introduced and method of solving it, is given
by examples. In the end terminal questions are giving of each type for

practice of the students.

11.7. Terminal Question

Solve the following differential equation .

2 4%y _
1. x E—Sx—+5y x.log x.
2y dy x3
2. x* X—=—y=
dx? + dx y 14+x2

3. (x?D?* —Dx+ 1)y = x.logx
4. (1+ )2 d’ y+(1 + x) —+y =4cos[log(1+x)]

5. (4x +1)2 +2(4 +1)—+y—2x+1

26



7.

AnNs:-

T Tx-y=te
_dx Ay e
2y dt+dt_e
D—-1Dx+Dy=t

3x+(D + 4)y = t?

y =X +%+4£log(1 + x2) —4£+$log(x2 + 1).
y = x[cylogx + c,] +g (logx)?
y =ci[log(x + 1)] + c¢;sin[log(1 + x)]

y=c¢ +c,log(4x +1)(4x + 1)1/4 +1—18(4x +1) +%

2 o 1 1
x = —2c,e?t —Zce?t —=——¢
3 4 2

o 1, 1,51
y =ce?t + et +ot +Zt2+§'
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Unit—12 Linear differential equation of Second
Order

Structure:
12.1. Introduction
12.2. Objective

12.3 . Method of reduction in equation where one part of the C.F.

is known.
12.4. Method to find out part of the complementary function
12.5. Procedure for solving the given differential equation.

12.6. Complete solution of the second order differential equation by

changing the dependent variable

12.7. Complete Solution of the differential equation by changing

the independent varible
12.8. Removable of the First degree term
12.9. Summary

12.10. Terminal Question



12.1. Introduction

An equation of the type
d’y dy _
E+P5+Qy—R Where P, Q, R

are functions of x alone is called linear differential

equation of second order, here coefficient of &

Note - If the coeffient P & Q are constant then it becomes linear
differential equation with constant coeffient wich has been

discussed earliar.

12.2. Objective

By reading the matter the student able be identify the type of
differential equation & by the Method givin in each section the

student can solve the given differential equation.



12.3 . Method of reduction in equation where one part of
the C.F. is known.

Let y = u be the known part of the complementary

function
Then g2y du
7 PP P QU )

Now puttin
P %/=Uuwegetﬂ=ud—u+udu

dx dx
d? d%u du dv d%v
and 2L =p 2242 Z 4272
dx? dx? dx dx dx?
2
dy & d’y

Putting the valuesofy, 4, ® 2
in equation (1)

We get

vd?u du do d?v du do
— +2—.—+U— [+plv— +U— |+Quu=R
dx dx dx dx dx dx

OI‘ 2 2
v d—l:+Pd—u+Qu +ud—U+Pd—U +2d—u.d—sz
dx dx dx dx dx



With the help of equation (2) and dividing by u we get

d?v dv. 2 dudv R

dx? a-l_u'dx'dx_u

Or 42, 2 du) do R
—— F | P+=—— | = — 3)
dx udx/ dx u
We putdu i dz
— =Zthen — = —
dx dx?  dx
. from (3) we get
dz 2 du
L P+E = | Z=R i, 4
dx +[ +u dx} u *

which is a linear differential equation of order one, its
2du
j
=e'| P+ ——du
LF. ( U dx )

_[(P.dx + Eduj
. u
u

Z.IP.dx

& so the solution of equation (4) is



z.uszdx = I(%.uz J'de)dx+C ................... (5)

From which we get

z-4v
dx
And integrating we get the value of v & thus we get the

Solution y = wu.

This is the complete solution of equation (1)

Ex.1: Solve
2
%—M% +(4x2—2)y:0. Itis given.............. ()]

That y = e** is one solution in the complementary

function.

Solution: Here u = e*? therefore putting y = v.e** in (1)

We get




(-R=0)

From equation (4) where

z- v
dx
Herep 4x, Q = 4x* -2, and R=0
d?v o]V
_dX2+ —4x+7.(2xe ) d——O
Or 2 2
d—lj +[—4x+4x]%:00r d—I;:O
dx dx dx
Or dU—cl or v =¢cX==¢C
ax =X =0

.. The solution is y =uv =@, (C,X + C,X)

Ex.2: Solve 42
xd—z - (2x-1) ay + (x-1) y=0
dx dx

When y=e*is one solution in the C.F.

Solution : Dividing the equation by x we get

d’y  (2x-1) dy (x—l]
— + | — V=0 e, 1
i o y @)



We put y=wve*, then we get from (1)

Putting P = X dx

We get %, [ﬂ 4 iex} 2=0
dx X e

o {g N —2x+1+2x.z} 0
dx X

Or $+5:0 or — =
dx x X X

Or Integrating log z =log x + log ¢

_C dv ¢
Or z=-or — == or v=clogx+c,
X dx X

.. The complete solution is

y=uv=e"(c logx+c,)

2
Ex. 3:Solve x2.9 Y+ Y y=0. Itisgiven that
dx dx



1 . i
Xx+= IS one solution .
X

Solution : dividing the equation by x?

o
N
<
< |~

We get

o_|o.
X <

Y_y
X

Putting y = u.(x +3jthe equation becomes
X

2
d—g+[P+g.d—uj.@:0Whereu:x4—l
dx u dx/) dx X

1
2 2(1-=
Or d—lz) +3=+ x2( dv_
dx X x+% dx
2 r
Or d12)+ 3X2 1.d—U:
dx X(x“+1) dx
2_
Or putting z=d—” we get $+ 3X2 L .2=0
dx dx  x(x“+)
2_
Or %+—3X L dx =0

z  x(x*+1)

Or %+(—1+ Z"X jdx:o

z X XxX°+1



& so integrating log z — log x + 2 log (x* + 1) = log ¢,

C,x rdu_ C,x

Or T Ak (6 41)?

C:l

Or integrating u=—2(x2 D

+C,

.. The complete solutionisy = vu

x? +1
Or y=vu.
o 5]

Or y= A +C, (x+1j A B, X
X

X X

Check your Progress 1

Exercise- Solve the following differential equations

2
1. Sin® x.% =2y When y=cotx is a solution.
X

2
2. x Sin X+ Cos X) d 2/ —X COS x.ﬂ + ycos x=0
dx dx

When y = x is a solution.



2
3. X (:sz - (%} + (1-x)y= x°c™ when y=e*is a solution.

2
4. d—z’ - x2.ﬂ+xy =x Wheny = x is a solution.
dx dx

Ans. (1) cy=1+(C;—x)cotx (2) y=Cyx—C;cosXx

(3) y:CZeX+C1(2x+1)eX—%(2x2+2x+1)ex)

(4) yzlclxj.i X—S.dx+Cx
X?_ e3 1

12.4 Method to find out part of the complementary
function of

Rule 1: y:néX isa solution if m®+Pm+ Q=0
If y=e™then dy _ me™, — =m
dx

If y=e™ in asolution then from (1)

m”e™ + Pme™ +e™ =0



Or m*+Pm+Q=0.
In Particular if y =e* isasolutionthereof 1+P+Q=0 & if
m = -1 then e will be asolutionif1-P+Q=0

Rule2: y=x™ isasolution

2
Then ﬂ:mx’“‘1 & d Z
X

=m(m-1) x"?
i (m-1)

Therefore from (1) we have

m(mL) X" +Pmx™ +Qx"=0

Or m(m-1) +Pmx+Qx*=0

In particular if m =1 then y = x will be a solution if P+ Qx =0
& Putting m =2, y = x*will be a solution

If2+Px+Qx*=0.

12.5 Procedure for solving the differential equation.

(i)  We put the equation in the standard form



d’y
dx?

+P.Q+Qy =R

dx

2

d-y

in which the coefficient of vl IS one.

(if)

XZ

if1+P+Q=0then y=* insolution

If 1-P+ Q=0then y=eis asolution

(iii)

(iv)

(v)

if P+xQ =0 theny =xis a solution.
if 2+ 2Px + Qx* =0 then y = x?is a solution

Put y = vuthere reduced equation will be

ﬂ+(P+gd_ujd_U:B
dx’ u

(vi)

u dx ) dx

Put z= ?j—)‘i & solve the linear equation in z & X.

2
Ex.: 1. Solve % - X% gy +Xy= X

dx

Here P=-x*, Q=x & so P +xQ = 0.

Therefore y = x in a part of the C.F.



& so u=x. Now puttingy = ou = wx

dy do
=== X.— 4V
dx dx
2 2
d y:xd u+2d_u

dx? dx? " dx

then Equation becomes

d®v do 2( do j
X 2+2.— —X| X— + U |+X. VX=X
dx dx dx

d?v

Or x—;
dx

+ (2—x3)d—u = x. Now putting dv_ z
dx dx

dz
Weget x— + (2-x%)z=x
g . + ( )

Hence the solution of (1) in



So we get Z :‘;_)‘;: LR

or ov=ii _[Cle%xz.x’zdx+C2
X

The complete solution is

y=0u = 1+xCljeéXSx‘2 dx+C,x.

2

Ex. Solve xz.d—z—2x(1+x)d—yk 2(1+x) y= x*
dx dx

Solution: Dividing by x° the equation in the standard form is

d’y  2(1+x) dy +2(l+x)

— . =X
dx? X dx x? y
Hence p = —2d*X) Q.= 2(1:”()
X X

and P+x.Q =0 Therefore y=xisa part of C.F.

& so u =Xx. Therefore putting y = ux the equation becomes



[x& + 2d—0j 2040 (x dv + uj +2(1+X)

dx? dx X dx x2

2
Or xd—U - 2xd—U= x. Now Putting (;—U =Z
X

dx? dx

We get x% —2XZ=X
dx

Which is linear & so the L.F. = e™®

.. the solution is
—2X -2X 1 -2X
Ze = _[e .dx +C, = —Ee +C,

Or z= —1+Cle2X or dv_ Cle“—1
2 dx 2

Integrating o= %ezx —%x +C,

Hence the complete solution is

2X

C,xe 1

y=0X= _EXZ +C,X.

LOX=X



Ex. :

d*y dy

X
Solve —- — cot x.—= —(1—cot x) y=e. sinx.
X dx

Hence P=-cotx,Q=-(1-cotXx)
& So1+P+ Q=0 thereforey=¢e"isa part of

The C.F. Putting y = wu=uv.e"

2 2
9X=€(gg+u} and il:@ du+ﬁk+u
dx dx

& So the equation becomes

2
e dg+292+u —wb{giﬂg—a—mbmﬁ)
dx dx dx

d?v
X2

Or

+(2—aﬁx)92==SMX.
dx
Putting % =Z we get

% + (2—cotx).z =sinx which is linear
X

2X
IF — (eIZ—COIX) — e2x—|ogsinx — e-+
SINX



Solutiion is

—2X —2X

e

SIn X

Ze

—_—= Isin X. dx +C, = Loy C,
sin x 2

Or Z = % sinx+ C, sinxe™*

Or % =% sinx+C, sinxe™?*. Integrating
X

L= —% COS X —ie‘2X (cosx + 2 sin x)+C,

22 +1

ax

[ Ie""x. sinbx dx = (asinbx — bcos bx)j

a’+b?

The complete solution isy = ve*
1 X Cl —X H X
Or yz—Ee cosx—ge (cos x+2sin x}+C,e

Check Your Progress 2

Exercise - Solve the following differential equations :

2
dy dy 0

1. (Xsin+cos X) —>- —XCOSX —= + yCOS=
dx dx




Of which y = x is a solution.

2

2. d’y +(1—cotx)d—y—ycotx=sin X
dx dx

2

(Hint 1-P+Q=0)

Ans. (1) y=-C,cosx+C,x

(2) y=C,e”+C,(sinx—cosx) —%(Sin 2X —2C0S 2X).

12.6 Complete solution of the second order differential
equation by changing the dependent variable

2
372/ T P.%JrQy: R by changing the dependent . Variable (or

equations which do not contain x directly).

The equation  which do not contain x directly are of the form

To solve such equations we put

% = p and from (1) we get



d’y dp _dPdy dp

dx  dx  dy dx dy
Putting in (1) we get

f(p.i—s, P,Y)=0 (2)

Now equation (2) can be solved for P

d
Let p=f,(y) & S°d_§ = 1, (y)

Or dy = X+C.
L) y)
Ex.. Solve yd—2y + [ﬂjz =Y, (1)
dx? dx
S dy d’y _dp _dp dy _dp
Solution : Put =p & S0 —. 2L =p =
dx - P dx?  dx  dy dx dy
dp 2 2
from (1) we get y.p& +Pi=Y (2)
_az
We get 2p ~ from (2)
1 dz z dz 2z
- — +— =Y or — +— =2
2.dy vy dy vy



Which is linear and so

The solution in

2y* = [2y(y*)dy+c,

4

Or p%’= y7+Cl or 2p*y?=y*+2C,

Oor  (V2)yp=y"+2c

d d
Or a/z.yd—i:«/y“+2C1 or 2 y4y =dx (K=2C))

y'+k
Or  Puttingy* =t s 2ydy = dt
1 dt 1 . t
or — =dx or ——sinh?| — |= x+C
V2 Ji2 4K J2 (\/Ej ’

Or sinhl[y—sz(ﬁ)HCz or y2=\/ESinh((\/2_)X+C2)

<1

Solve y(1-logy)

d’y dyY’
v +(1+log y)(&j =0 i @



2
Putﬂzp & S0 d_g’:@:@_ﬂ: d
dx dx dx dy dx \dy

- from (1) y(1— log y)g—s. p+(L+logy)p? =0
dp
Or y(1-logy) d_y + (A+logy)p=0

d
OR y(1-logy) d—"y’ = —(+logy) p

or B __ A+logy) o )
P y(1-logy)
Puttinglogy =t & so d—}f’: dt - from (2)

dp_ -+t g _ (1+ij at
D 1-t -1

Or  Integrating log p =t+2log(t-1) + log C

Or  log p=t+logC(t-1)*

Or  p=ce'(t1)?’ =Cy(logy-1)> ~y=et

dy

dy
Or Cy (logy-1)? or ——~2 =
y (log y—1)?

&:

c,dx



Or  integrating we get

— Cx +C,
(logy-1)
_ 1
Or (1-logy) = xiC,

Check Your Progress 3

Ex. Solve the following differential equations :

2 2
1. (; Z+[%) =1 Ans. y*=x’+ax+b
X X
d’y (dy) . dy
2. e —[d—) + d—:O Ans. Cy+2 = de™
X X X

3 dzy dy ’ 2 X —X
. Yy— || =Yy’logy Ans. log = be*+ae
dx dx

12.7 Complete Solution of the differential equation by
changing the independent variable

d’y o dy
o + P.d— + Qy=R by changing the independent
X X

Variable. (1)



We change the independent variable from x to z with the help

of Z = f(x).

Then

2 2 2 2
dy _dy dz_ . dly _d v[gj | dy d%z

dx  dz dx dx?  dz? \ dx dz dx?

Putting these values in (1) we get
d?y(dz\" dy d 2z dy dz
dzz(dxj Tz A {dZ dx }Q -

2 2
Or d g(gj +(Pd—z+d de+Qy R

dz< \dx dx dx* )d

dz d’z
a2y (Pax ") ay R
Or =+ — + = = = s (2)
& CE &)
dx dx dx
2
P% d°z

Now putting P——dx 0¢ o __Q




from (2) we have

d’y
dz?

dy _
+ F)1 & +Q1y = F\’1 ................... 3)

Hence P Q,, R, are functions of x can be expressed a function

of Z with the help of z = f (x).

2
Case 1: whenP; = 0if we choose z such that p; = 0 ie % +

dz
p dx
d (dz dz . . . . dz
or — (—) + p— = 0 which in linear in —
dx \dx dx dx

The solution is

dz
- ,—[pax — — [ pdx
I e or z j [e ]dx

. d? . .
equation (3) becomes d—zjzl + Q.y = R; which can be solved if
(i) Q. isconstant then it is a linear equation with constant coef ficent
(ii) Q isof the form prs then it is linear homogenous equation

with variable coef ficent.



case -

Note:

of a

2. We choose Z such that Q; = a® = costout

Q dz ) _
Or e :a[dxj_\/a
(o
Or dz =£dx or Z:j@dx
a a
Hence Q is taken in such a way that Q remain the whole Square

function without surd and its negative sign is ignored we

choose Z such that

2 2
(Ej =Q. these find dz and find Z & d—zzthen find P,, Qq, R, etc.
dx dx dx

d?y dy
Ex.: Solve — +cotx| —= |[+4ycosec’x=0.............. 1
dx? (dxj y (1)
d’y dy :
OR sinzx.d =-+sin x.cosx.&+4y=0 by changing the
X

independent variable

Solution:

From (1) P=cotx, Q=4cosec’x, R=0



We choose Z such that

2 2
(d_Zj =Q. or (%j = 4cosec’ X
dx dx

dz
Rl - X
Or v 2C0S eC X or Z_2IogtanA

dz  d?%z
P— +—
p__ dx dx® _ 200tx.cosecx—2cosecxcotx=O
1 dz\’ 4cosec’x
dx
Ql_ Q =1

2
Hence the transformed equation is (; y+Pl%+Q1y=Rl

Z2

d?y
dz?

+y=0 or (D*+1)y=0 or D=xi

. The solution is y = C,cos(z+C,)

Or y=C;cos (2logtan x/2 +C,)

2
Ex: Solve xf‘.(]|—2'+3x5.d—y+azyzi2
dx dx X



Solution:  Dividing by x° the equation is

2 2
We choose Z such that (Ej o=

Or (EJ _1 (takinga=1)

dx x°
dz 1 1 d’z -3
Oor === o Z=——"&& ——=—
dx X3 22 dx? 4
d?z dz
5 P.




Therefore the transformed equation is

d? d
2R TQY=R,

2
Or %+azy=—22 or (D?+a’)y=-2z
z

The C.F. = C,cos (az + Cy)

-2z 2 2y -1
— = (. D (=2
& p| = (D'+a%) (b))
-2z
.. The solution is
. — _ a 1
Ly =CF. +P.l= Clcos(Cz—y}Lazxz

. 1
on putting z = - —
(on putting o

2

Ex.: Solve d Z+ (3sin x—cot x)ﬁ +2ysin? x
dx dx

= ™, sin’ x



Solution:  Hence P = (3sinx—cot x), Q=2sin’ x

And R = e**sin?x

We choose z such that (ﬁ) =Q.

2
Or We take [ﬁj = sin? x therefore dz =sin x
dx dx

2

d°z
Or z=-cosx & e = Os¥
X

¢z p &
p_ dx? "dx _ CosXx+(3sinx—cotx)sinx
1= - =

(dZZJZ sin’ X
dx

3

Q  2sin’x_

= 2
R (dZT sin? x
dx
R —COSX. inz X z
and R = = ° 32 =e =g
dz SIin” X
dx)

(- z=—cosx0

&  sothe transformed equation is



d? d
AR+ QY=R
2 z
Or d Z+3d—y+2y =e
dz dz

Or (D2+3D+2)y:é
AE.isD*+3D+2=0 or (D+2)(D+1)=0

Or D=-2,-1

-2z

&sothe C.F. = C,_ez +C, e

Therefore the complete solution is

22

—y:C17e+C2 e +%e

COSX

Or y=Ce™+C,e™ +=e

ol



12.8. Removable of the First degree term

(Reduction to Normal form)

When we fail in obtion a part of the C.F
i . . d?y dy _ _
then the differential equations = tp- Qy =R (1)

may be solved by Removing the first derivative. We do it as follos :

We puty = vy,
then Ly, &
dx dx dx

d?y d?y, _dv dy, d?v

dxzzv' dx? dx " dx +y1dx2

and then equation (1) becomes

d?y, dv dy, d?v d?y, dy,
[v'ﬁ_l_zdx I +y1d 2]+P[d > +Pd—+va1—R]

2 dJ/1

2 dx]d TtV [dy1+de1+Qy1_R]

or y1 +y1 [P+

d*y, dy;
[Here Tx2 + P T +Qy,=o0




because y; innot a part of the Solution

We choose y; such that the first derivative is removed

2 d
ie P+ —ﬂ =
vy, dx
dy, 1 . .
or —=-—=P.dx or integrating
V1 2
1 1
logy, = _E_[ Pdx or y, =e zI P ——=(2)

then the above equation becomes

d’v v | _ d?*y, dy, R

ax? z[”- & TP +le] =5 0¥
_1 1

from @) = (72" (=5P) = —5Px

d’y; 1_dy, 1dp

o @ T 20 ax  2ax
_ 1P( 1P ) 1 dp

S T2P\T2N) T T e
1, 1 d

419 B4t 2y1dx



Putting these values in (3) we get

~+ [PZ L plpigl=
Vg 2dx 2 Q_e—%dex

d?v 1 1d 1
or —+v[Q——P2———p] = R.ezd P&
dx? 4

d?v
or ——+Qv=R = —o—————== (4)

1 1dp

1
— PP =5 R, = R.ez/ P&
Where Q; = Q > dx and R, e

The reduced equation (4) is called a differential equation in normal

form.

Ex.1. Solve ——4xdy+ (4x2 — 3)y = e*

Here P = —4x,Q = 4x2 —3,R = e*

to remove the first derivative we choose
ldex [ 2xdx x?

Y1 = e?2 =e

=e

Putting y = vy, the equation after removing the first derivative

becomes



W+Q1V=R1 _______ (1)
1 1d
Where Q1=Q—ZP2—§d—Z=(4x2—3)—4x2+2=—1
R e*
R1=E=e7=1

2
We get for (1) %—v=1 or (Q>?—-1Dv=1
A.E.isD*—-1=0 or D=+4+1 and

C.F.=Cie*+ Ce™

and P.l.= -1

DZ—1
Hence v =~Ce*+ Ce -1
~ The complete solution is y = vy,
or y= exz(Clex + C,e™*—1)

az d
Ex.2. Solve —32/ — 2tanx = + 5y = seex.e*
dx dx

To remove the first derivative we choose



~3J pax d l
y, = e 2 pdx _ ,ftanxdx — plogseex — ooy

Now putting y = v.y; the above quation becomes

d?v
a2 T Qv=R ~ ———————-= (1)
1 1d
where Q, = Q _ZPZ —§£ =5 — tan®x + see’x = 6
&R, = R _ seex.e* _ X
V1 seex

2

d“v
Hence form (1)We get TxZ + 6v =e”

AE.isD*+6=0 or Q=+iv6

C.F.= ¢icos(V6.x + ;)

X ex

and P.l.= DTre -7 therefore

1
v= clcos(\/g.x + CZ) + 76’“

and so the complete solution is

1

y = c,Seex cos(\/g.x + cz) + 7seex. e*



a’y ay o n2 — o 3%
Ex.3. solve =T 2x — (x*+5)y =xe 2

1
Hence P = 2x,Q = x* +5,R = xe 2

To remove the first derivative we choose

1

Y1 = e 2/ P

e
= e 2" now putting y =v.y,

the above quation becomes

d?v
2 Thv=R - (1)
1 1ldp
_n__p2__%F _ 2 .21 =
where Q; = Q 4P > ax (x“+5)—x*—-1
R
& R1=—=x
V1

2

d“v
form (1)We get Tzt 4v = x or (D*+4)v=x

A.E.is D>+4=0 =D = +2i

C.F.= c;cos(2x + c,)

X 1
and P.I.= = <1——>x=—x



1
v=c;cos(2x+c,) + 7%

complete solutionis y=v.y;

1o 1
y=e 20 |c;cos(2x+cy) +—x

4

Check Your Progress 4

1. Solve — + 4x + 4x%y =0 by removing

the first derivative

2. Solve x2. d —2(x 2+x) +(x +2x+2+2)y=0

by removing the first derivative. (Hint divide x2)

d’y 2 dy __sin2x
3. dx? x'dx+y_ x
d? 2d 2
4. Solve =2 - = y+(a2+—)y=0
dx?2 xd x2

2
5. xzd_sz’ (x 4x2) +(1—2x+4x2)y—0

12.9. Summary

First the method of reduction then been discussed when one part of

the C.F. is known. Then complete solution of — + P — + Qy =



R has been discussed by chaing the dependent variable and by
chaenging the independet variable. In the end the mehead of solving
the above diffrential equaction by romoving the first derivative (or

norml form hes bing discussed.

12.10. Terminal Question

Solve the the following different equation.

2
1) x252 = 3xZ+ 4y =222 ans.(c; + 110g)x? + x2(log)?

2) xzdz—x —x¥ 44y = cos(log x) + x sin(logx).ans y =
dx? dx y 9 g§X). y
X (A cosv3(logx) + B Sim/?(logx)) + 1—13 [3 cos(logx) —
2sin(logx) + %x sin(log x)]
2 4%y dy 2
3) Solve (3x + 2) =T 3(3x + 2);363/ = 3x°+4x+ 1.
2 d%y 2 dy 2.
4) x —T—Zx (1+x)a+2(1+x)y=x
5) Solve (x sin + cos)dz—y —xcosx L+ ycosx =
dx? dx y
0 of whichy = x

s 4y 34y 2 1
6) Solv x 5 t3x—+a’y =~



