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1.1 INTRODUCTION 

On the one hand the quantum theory of light cannot be considered 

satisfactory since it defines the energy of a light particle (photon) by the 

equation E=hf containing the frequency f. Now a purely particle theory 

contains nothing that enables us to define a frequency; for this reason 

alone, therefore, we are compelled, in the case of light, to introduce the 

idea of a particle and that of frequency simultaneously. On the other 

hand, determination of the stable motion of electrons in the atom 

introduces integers, and up to this point the only phenomena involving 

integers in physics were those of interference and of normal modes of 

vibration. This fact suggested to me the idea that electrons too could not 

be considered simply as particles, but that frequency (wave properties) 

must be assigned to them also. (Louis de Broglie, Nobel Prize Speech, 

Quantum Physics, 1929) 

The development during the present century is characterized by two 

theoretical systems essentially independent of each other: the theory of 

relativity and the quantum theory. The two systems do not directly 

contradict each other; but they seem little adapted to fusion into one 

unified theory. ... Experiments on interference made with particle rays 

have given brilliant proof that the wave character of the phenomena of 

motion as assumed by the theory do, really, correspond to the facts. ... de 

Broglie conceived an electron revolving about the atomic nucleus as 

being connected with a hypothetical wave train, and made intelligible to 

some extent the discrete character of Bohr's 'permitted' paths by 

the stationary (standing) character of the corresponding waves. 

(Albert Einstein, On Quantum Mechanics, 1940) 



 

 

A careful analysis of the process of observation in atomic physics has 

shown that the subatomic particles have no meaning as isolated entities, 

but can only be understood as interconnections between the preparation 

of an experiment and the subsequent measurement. Quantum theory thus 

reveals a basic oneness of the universe. It shows that we cannot 

decompose the world into independently existing smallest units. As we 

penetrate into matter, nature does not show us any isolated ‘basic 

building blocks’, but rather appears as a complicated web of relations 

between the various parts of the whole. (Fritjof Capra, The Tao of 

Physics, On Quantum Theory) 

From 1900 to 1930 there was a revolution in the foundations of our 

understanding of light and matter interactions. In 1900 Planck showed 

that light energy must be emitted and absorbed in discrete 'quanta' to 

explain blackbody radiation. Then in 1905 Einstein showed that the 

energy of light is determined by its frequency, where E=hf. Finally, in the 

late 1920s, de Broglie and Schrodinger introduced the concept of 

Standing Waves to explain these discrete frequency and energy states of 

light and matter (standing waves only exist at discrete frequencies and 

thus energy states). 

So, it is clear that Waves are central to Quantum Physics and our 

understanding of the structure and discrete energy states of Matter (which 

explains why Quantum Theory is also called Quantum Wave Mechanics). 

As we shall explain, the problems and absurdities of quantum theory have 

been caused by the continuing assumption of the discrete 'particle' 

concept for both light and matter, and thus the resulting paradox of the 

'Particle / Wave' duality. 



 

 

As we are dealing with a scientific theory, it is necessary to begin by 

stating the central Principles of the 'Metaphysics of Space and Motion 

and the Wave Structure of Matter', which describe how Matter exists 

in Space as a Spherical Standing Wave and interacts with other Matter in 

the Space around it. From this foundation we can then deduce the 

solutions to many problems currently found in Quantum Theory caused 

by this ancient concept that matter exists as 'particles'. 

For example, the obvious solution to the paradox of the particle / wave 

duality of matter is to realise that the Wave-Center of the Spherical 

Standing Wave causes the observed 'particle' effects of Matter (see wave 

diagram below). Likewise, the discrete 'particle' properties of Light 

(quanta / photons) are caused by Standing Wave interactions which only 

occur at discrete frequencies and thus energy states. 

What we observe as material bodies and forces are nothing but shapes 

and variations in the structure of space. Particles are just schaumkommen 

(appearances). The world is given to me only once, not one existing and 

one perceived. Subject and object are only one. The barrier between them 

cannot be said to have broken down as a result of recent experience in the 

physical sciences, for this barrier does not exist. (Erwin Schrodinger, on 

Quantum Theory) 

Because Schrodinger believed in real waves, he was never happy with 

Max Born's statistical / probability interpretation of the waves that 

became commonly accepted (and was actively promoted by Heisenberg 

and Bohr) in Quantum Theory / Mechanics. 

Secondly, David Bohm provides a clear account of how this incorrect 

'particle' conception of matter not only causes harm to the Sciences, but 



 

 

also to the way we think and live, and thus to our very society and its 

future evolution. 

The notion that all these fragments is separately existent is evidently an 

illusion, and this illusion cannot do other than lead to endless conflict and 

confusion. Indeed, the attempt to live according to the notion that the 

fragments are really separate is, in essence, what has led to the growing 

series of extremely urgent crises that is confronting us today. Thus, as is 

now well known, this way of life has brought about pollution, destruction 

of the balance of nature, over-population, world-wide economic and 

political disorder and the creation of an overall environment that is 

neither physically nor mentally healthy for most of the people who live in 

it. Individually there has developed a widespread feeling of helplessness 

and despair, in the face of what seems to be an overwhelming mass of 

disparate social forces, going beyond the control and even the 

comprehension caught up in it. 

In this unit we will discuss some basic fundamentals and need of 

quantum mechanics.  

  1.2 OBJECTIVES: 

 After studying this unit, student should able to, 

 Concept of Quantum Mechanics  

 Explain the concept of stationary states  

 Know about wave function  

 Explain the concept of probability current density  

 Know about equation of continuity  

 1.3. NEED OF QUANTUM THEORY AND QUANTUM MECHANICS  



 

 

(Quantum theory is needed because many phenomena at the microscopic level 

cannot be explained using classical theory, eg: Photoelectric effect, interaction 

among   elementary particles.) 

Quantum mechanics and classical mechanics are two cornerstones of 

physics we know today. Classical mechanics describes the behavior of 

macroscopic bodies, which have relatively small velocities compared to 

the speed of light. Quantum mechanics describes the behavior of 

microscopic bodies such as subatomic particles, atoms, and other small 

bodies. These two are the most important fields in physics. It is vital to 

have a proper understanding in these fields in order to excel in any part of 

physics. In this article, we are going to discuss what quantum mechanics 

and classical mechanics are, where they are applied, their special 

characteristics, the similarities between quantum mechanics and classical 

mechanics, their variations, and finally the difference between quantum 

mechanics and classical mechanics. 

What is Classical Mechanics? 

Classical mechanics is the study of macroscopic bodies. The movements 

and statics of macroscopic bodies are discussed under classical 

mechanics. Classical mechanics has three different branches. They are, 

namely, Newtonian mechanics, Lagrangian mechanics, and Hamiltonian 

mechanics. These three branches are based on the mathematical methods 

and quantities used to study the motion. For an example, Newtonian 

mechanics uses vectors such as displacement, velocity, and acceleration 

to study the motion of the object, whereas Lagrangian mechanics uses 

energy equations and rate of energy change to study. The proper method 

is selected depending on the problem to be solved. Classical mechanics is 



 

 

applied in places such as planetary motion, projectiles, and most of the 

events in daily lives. In classical mechanics, energy is treated as a 

continuous quantity. A system can take any amount of energy in classical 

mechanics. 

What is Quantum Mechanics? 

Quantum mechanics is the study of microscopic bodies. The term 

“quantum” comes from the fact that energy of a microscopic system is 

quantized. The photon theory is one of the cornerstones of quantum 

mechanics. It states that the energy of light is in the form of wave 

packets. Heisenberg, Max Plank, Albert Einstein are some of the 

prominent scientists involved in developing the quantum mechanics. 

Quantum mechanics falls into two categories. The first one is quantum 

mechanics of non-relativistic bodies. This field studies the quantum 

mechanics of particles with relatively small speeds compared to the speed 

of light. The other form is relativistic quantum mechanics, which studies 

particles moving with speeds compatible with the speed of light. 

Heisenberg’s uncertainty Principal is also a very important theory behind 

quantum mechanics. It states that the linear momentum of a particle and 

the position of that particle in the same direction cannot be measured 

simultaneously with 100% accuracy. 

Difference between Classical and Quantum Mechanics 

1. Classical Mechanics deals with macroscopic particles whereas 

Quantum Mechanics deals with microscopic particles. 



 

 

2. Classical Mechanics is based on Newtons laws of motion. Quantum 

Mechanics takes into account Heisenberg’s uncertainty principle and 

de Broglie concept of dual nature of matter. 

3. Classical Mechanics is based on Maxwells electromagnetic wave 

theory. According to it any amount of energy may be emitted or 

absorbed continuously. Quantum Mechanics is based on Planck’s 

quantum theory according to which only discrete values of energy 

are emitted or absorbed. 

4. In Classical Mechanics, the state of a system is defined by specifying 

all the forces acting on the particles. It also counts, particles 

positions and velocities (moment). The future state then can be 

predicted with certainty. Quantum Mechanics gives probabilities of 

finding the particles at various locations in space. 

1.4 FUNDAMENTAL EQUATION OF WAVE MECHANICS 

The Schrödinger equation is the fundamental equation of physics for 

describing quantum mechanical behavior. It is also often called the 

Schrödinger wave equation, and is a partial differential equation that 

describes how the wavefunction of a physical system evolves over time. 

Quantum mechanics is a branch of physics that studies the behaviors of 

matter and light on an atomic and subatomic level. It tries to explain and 

classify the properties of molecules and atoms as well as their 

constituents, which include electrons, protons, neutrons, and other more 

esoteric particles including quarks and gluons. These properties include 

the interactions of the particles with one another and with 

electromagnetic radiation (i.e., light, X-rays, and gamma rays). 



 

 

Quantum mechanics is based on the Schrodinger equation, which is a 

fundamental equation. 

In classical mechanics, the Schrodinger equation plays the function of 

Newton's laws and energy conservation, predicting the potential 

behaviour of a complex system. It is a wave equation in terms of the 

wavefunction that predicts the likelihood of events or outcomes 

analytically and precisely. The precise outcome is not predetermined, but 

the Schrodinger equation can predict the distribution of outcomes 

provided a large number of events. 

Kinetic energy + Potential energy = E 

The kinetic and potential energies are combined into the Hamiltonian, 

which acts on the wavefunction to cause it to evolve in time and space. 

The Schrodinger equation gives the system's quantized energies as well 

as the wavefunction's structure, which can be used to calculate other 

properties. It is written as – 

      

Where,   Hamiltonian Operator,    Wave function and E Energy. 

THEORY OF SCHRODINGER EQUATION 

The theory of Schrodinger equation was formulated by Erwin 

Schrodinger in the year 1926. His formulation is based on de-Broglie’s 

concept of matter-wave. The theory aims at setting up a differential 

equation (wave equation) for a wavefunction that can describe the 

detailed behavior of matter wave. 

The main assumptions made in the theory are : 

(i) Creation and destruction of material particles do not take place. 



 

 

(ii) All material particles move with small velocities so that they 

can be treated non-relativistically.  

Inspire of the above assumptions, the theory has proved to be immensely 

successful when applied to atoms and molecules. The theory provides a 

quantitative formulation of some of the basic principles of quantum 

mechanics, shows how a wave theory of matter works out in practice, 

tells how physical quantities, for systems for which the laws of classical 

mechanics are not applicable, can be actually computer within the 

framework of the theory. 

The Schrodinger equation for a free non-relativistic particle may be 

arrived at by making straightforward uses of the new concepts that have 

been obtained in the domain of microscopic particle. 

TIME-DEPENDENT SCHRODINGER EQUATION FOR A FREE 

PARTICLE: EQUATION OF MOTION FOR MATTER WAVE 

 The wavelength λ of the de-Broglie wave associated with a free particle 

of mass m moving along the x-axis with momentum px is given by 

                              ……… (1) 

  

The wave-vector k is related to the wavelength λ as 

          ……… (2) 

 From the above two equation, we get 

      ……… (3) 



 

 

  

The kinetic energy E of the particle is related to the angular frequency   

of the wave associated with it as 

        ……… (4) 

 Further, we have 

       ……… (5) 

  

 so that Eqs. (3), (4) yield 

    ……… (6) 

  

The wave function ѱ(x, t) which describes the free particle localized in 

the region of the x-axis  is given by  

                                           ……… (7) 

  

Using   given by Eq. (6), the above becomes  

    ……… (8) 

  

Differentiating Eq. (8) with respect to time t, we get 



 

 

  ……… (9) 

Further, differentiation of Eq. (9) with respect to x gives 

    

 The above on differentiation with respect to x gives 

  ……… (10) 

 Multiplying Eq. (9) by iℏ  we obtain 

  ……… (11) 

 In view of Eqs. (10) and (11) we obtain 

    ……… (12) 

 Equation (12) is the one-dimensional time-dependent Schrodinger 

equation for a particle of mass m localized in the region of the x-axis and 

described by the wave function ѱ(r, t). 



 

 

OPERATORS CORESPONDING TO ENERGY AND LINEAR 

MOMENTUM 

It is possible to write the one-dimensional Schrodinger equation for a free 

particle given by Eq. (12) as 

 ……… (13) 

 

The energy E of the free particle is related to the momentum component 

px as 

    ……… (14) 

 

Comparison of Eqs (13) and (14) allows us the associate differential 

operators with the energy E and the momentum component px, which 

operate on the wave function ѱ(x, t), as 

      ……… (15) 

as  

     ……… (16) 

Extending the above for the three-dimensional case the operators 

associated with the momentum components px, py, pz are given as  



 

 

     ……… (17) 

In view of the above, the operator corresponding to the linear momentum 

vector    is  

 

i.e.       ……… (18) 

 

TIME-DEPENDENT SCHRODINGER EQUATION FOR A 

PARTICLE MOVING IN A FORCE FIELD 

Let us now consider the particle to be moving in space under the 

influence of a force field and not freely. Under such a case, the particle 

possesses potential energy besides kinetic energy. Let us consider the 

potential energy of the particle to be a function of position    and time t. 

Denoting the potential energy as V(  , t), we may write the total energy of 

the particle 

      ……… (19) 



 

 

According to Schrodinger, the operators for    and t are respectively 

        ……… (20) 

and        ……… (21) 

Replacing E, p, r and t by their respective operators given by Eqs. (15), 

(18), (19) and (20) in Eq. (19) we obtain 

   ……… (22) 

Allowing the operator Eq. (22) to operate on the wave function ѱ(  , t) 

describing the state of the particle, we getV(  , t). 

  ……… (23) 

Equation (23) is the time- dependent Schrodinger equation for a particle 

of mass m moving in space in a force field describe by the potential 

energy functionV(  , t). 

The operator  
 ℏ 

  
            is the operator corresponding to the total 

energy of the particle or the Hamiltonian of the particle. It is usual to 

denote this operator as    so that the Schrodinger Eq. (23) can be written 

in its usual form as  

    ……… (24) 



 

 

TIME-INDEPENDENT SCHRODINGER EQUATION 

Consider a particle of mass m moving freely in space. Let ѱ(  , t) or ѱ(x, 

y, z, t) be the wave function for the de-Broglie wave associated with the 

particle at the location    or (x, y, z) at the instant of time t. 

In analogy with classical mechanics, the differential equation for the 

wave function can be written as  

 

Where u in the wave velocity of the de-Broglie wave. The above equation 

can also be written as  

 

or    ……… (25) 

The solution of Eq. (25) in its most general form is given by 

     ……… (26) 

where       ……… (27) 

v being the frequency of the wave and       is the time-independent 

function and represents the amplitude of the wave at the location   .  



 

 

We get from Eq. (26) an differentiation with respect to time t 

     

Differentiating the above equation with respect to time t we get 

    ……… (28) 

 Using Eq. (28) in Eq. (25) we get 

     ……… (29) 

 We have 

      ……… (30) 

 where λ is the wavelength of the de-Broglie wave. Equation (30) 

gives 

        ……… (31) 

Use of Eq. (31) in Eq. (29) gives 

 



 

 

 or           

 or    

 or     ……… (32) 

 It v the velocity of the particle, we have 

 

 Substituting the above in Eq. (32) we obtain 

 

 or    ……… (33) 

It E be the total energy of the particle and V be its potential energy then 

we have the kinetic energy of the particle 

 

so that 



 

 

     ……… (34) 

Substituting Eq. (34) in Eq. (35) we obtain 

   ……… (35) 

Equation (35) is the time-independent Schrodinger equation for a 

particle of mass m, total energy E moving in a force field described 

by the potential energy function V. 

For a freely moving particle in space, V = 0, so that Eq. (34) reduces to 

    ……… (36) 

For one-dimensional motion localized in the region along the x-axis, Eq. 

(35) gives 

    ……… (37) 

1.5 WAVE FUNCTION 

In quantum physics, a wave function is a mathematical description of a 

quantum state of a particle as a function of momentum, time, position, 

and spin. The symbol used for a wave function is a Greek letter called 

psi,  . 



 

 

By using a wave function, the probability of finding an electron within 

the matter-wave can be explained. This can be obtained by including an 

imaginary number that is squared to get a real number solution resulting 

in the position of an electron. The concept of wave function was 

introduced in the year 1925 with the help of the Schrodinger equation. 

Schrodinger equation is defined as the linear partial differential equation 

describing the wave function,  . The equation is named after Erwin 

Schrodinger. Using the postulates of quantum mechanics, Schrodinger 

could work on the wave function. 

Following is the equation of the Schrodinger equation: 

 

 

Properties of Wave Function 

 All measurable information about the particle is available. 

   should be continuous and single-valued. 

 Using the Schrodinger equation, energy calculations become easy. 

https://byjus.com/physics/derivation-of-schrodinger-wave-equation/


 

 

 Probability distribution in three dimensions is established using the 

wave function. 

 The probability of finding a particle if it exists is 1. 

Postulates of Quantum Mechanics 

 With the help of the time-dependent Schrodinger equation, the time 

evolution of the wave function is given. 

 For a particle in a conservative field of force system, using wave 

function, it becomes easy to understand the system. 

 The linear set of independent functions is formed from the set of 

eigenfunctions of operator Q. 

 Operator Q associated with a physically measurable property q is 

Hermitian. 

 By performing the expectation value integral with respect to the wave 

function associated with the system, the expectation value of the 

property q can be determined. 

 For every physical observable q, there is an operator Q operating on a 

wave function associated with a definite value of that observable such 

that it yields a wave function of that many times. 

PHYSICAL INTERPRETATION OF WAVE FUNCTION 

Schrodinger wave function ψ(x, t) or ψ(  , t) is the amplitude of the de-

Broglie wave for a particle. A rough interpretation of the wave function is 

that the particle is most likely to be found in those regions of space in 

which ψ(x, t) (in one dimension) or ψ(  , t) (in three dimensions) is large. 



 

 

The wave function ψ(x, t) or ψ(  , t) being a complex valued function of 

position and time cannot as such have any physical existence. However, 

the wave function must, in some way, be related to the presence of the 

particle at the position x or    at the instant of time t. Furthermore, the 

behavior of the particle should become completely known if the wave 

function is known at all possible positions at all possible of time. 

(a) Max Born and Jordan’s probabilistic Interpretation. Max Born 

and Jordan in 1926 gave a probabilistic interpretation of the wave 

function which is characteristic of and fundamental to the Schrodinger 

theory. This interpretation of the wave function is found to be both 

convenient and physically transparent enabling us to make precise 

computations regarding the behavior of the particle. According to Max 

Born and Jordan, the wave function describes the probability distribution 

of the particle in space and time as follows. If we try to locate the particle 

through a measurement of its position at a given instant of time t, the 

probability of finding the particle in a small region of volume d
3
(  ) 

containing the position r in space is given by  

 

      ……… (38) 

where ψ*(  , t) is the complex conjugate of ψ(  , t). 

The probability density is thus proportional to the square modulus of the 

wave function (b) The Schrodinger wave function is a complex valued 

function of position and time which satisfies the linear Schrodinger 

equation [Eq. (12) in one dimension. 



 

 

Every definite wave function describes a definite state of motion of the 

particle. 

It is important to note that if ψ(  , t) is a possible wave function then 

                    is also a possible wave function if θ is an arbitrary 

real constant. The probability distribution define by ψ and ψ  are exactly 

identical    ψ                    ψ       
 
         ψ               . 

This means that two wave function ψ and ψ  describe the same state of 

motion of the particle.  

From the above we find: 

To every wave function there corresponds a unique state of motion of the 

particle. However, a given state of motion of the particle does not 

correspond to a unique wave function. The wave function corresponding 

to a given state is known only to within a constant complex factor (phase 

factor) of modulus unity. 

ACCEPTABLE WAVE FUNCTIONS FOR A PHYSICAL SYSTEM 

The dynamical state of a physical system say, a particle moving in space, 

is defined by the wave function ψ(  , t) which is a complex valued 

function of position    in space and time t. 

The quantity ψ*(r, t) ψ(  , t)d3
 (  ), i.e., the quantity  ψ                gives 

the probability of finding the particle within a volume element d
3
(  ) 

about the position   . In other words,   ψ          is the probability density, 

i.e., the probability density, i.e., the probality of finding the particle 

within a unit volume about the position    at the time t. This probabilistic 



 

 

interpretation of the wave function necessitates some conditions that must 

be satisfied by it for its physical acceptability. These conditions are: 

(i) Wave function must be finite at all positions at all instants of 

time. This requirement stems from the fact that  ψ               

must lie between 0 and 1. 

(ii) Wave function must be single valued at any position at all 

instants of time. This requirement of single validness arises 

from the fact that at any given position, the wave function 

must be unique so that the probability density at the position be 

uniquely defined at all instants of time. 

(iii) Wave function ψ(  , t) must be a continuous function of 

position    and time t. Further, the gradient of the wave 

function     ψ       should be continuous at all points in space. 

These requirements follow from the fact that the probability 

current density         , which is intimately related to the 

probabilistic interpretation, is define through ψ(  , t) and 

    ψ      . The Schrodinger equation satisfied by the wave 

function contains the term     ψ which can exist provided     ψ is a 

continuous function at all points in space. 

(iv) The wave function must be quadratically integrable, i.e., we 

must have 

 

 

If the above condition is satisfied then we may define a normalized wave 

function that corresponds to a total probability to unity. 



 

 

1.6 STATIONARY STATES 

The time-dependent states of a quantum system are the solutions of the 

general time-dependent Schrodinger equation 

 

     ……… (39) 

the operator    being the Hamiltonian for the system. The solution of the 

above equation when    is explicitly dependent on time is generally a 

difficult task and is treated most commonly by approximate methods. For 

the moment, it will suffice to consider conservative system, that is, 

system for which    does not depend explicitly on time. If such is the 

case, the above equation becomes. 

  ……… (40) 

Since the operator    
 

  
  on the left is independent of coordinates while 

the operator  
   

  
          on the right is independent of time, it is 

reasonable to use, as a trial solution of eq. (40), one in the separated 

form: 

     ……… (41) 



 

 

Substituting Eq. (41) in Eq. (40) we get 

 

Dividing throughout by ψ(  )T (t), we get 

……… (42) 

The left-hand side of the above equation is a function of only time while 

the right-hand side is a function of only coordinates. Hence for the above 

equation to hold, each side must be equal to some constant. Taking this 

constant as equal to E we obtain. 

…… (43) 

 

… (44) 

Solution of eq. (43) is given by 

      ……… (45) 

Using Eq. (45) in Eq. (41) we may write the solution of the Schrodinger 

Eq. 40 as  



 

 

     ……… (46) 

Equation (44) can be written as 

      ……… (47) 

where    ……… (48) 

i.e.,    = operator corresponding to kinetic energy + operator 

corresponding to potential energy 

or    = operator corresponding to the total energy of the system. 

Equation (47) is the energy eigenvalue equation and the constant is thus 

identified as the energy eigenvalue. In general, Eq. (47) has a complete 

set of solutions ψn(  ) such that 

     ……… (49) 

En represent the possible results of energy measurement performed on the 

system. Including the time-dependent part, we have the wave function of 

the system 

    ……… (50) 

Equation (50) gives the time-dependent states of the system. 



 

 

The probability density, i.e., the probability of finding the particle, with 

energy eigenvalue En within unit volume about the position    at the 

instant t is given by 

 

      ……… (51) 

We find that Pn(  , t) = constant in time.    ……… (52) 

The states describe by wave function such as ψn(  , t) given by eq. (50) for 

which the probability density is constant in time are called stationary or 

steady states of the system. 

Let us now consider an observable A for the system whose operator    

does not depend on time explicitly. By definition, the expectation value 

of A in the stationary state describe by the wave function ψn(  , t) is given 

by  

 



 

 

 ……… (53) 

We find that the expectation value of an observable, which is not an 

explicit function of time, in any stationary state is constant in time. 

We  know that the equation of continuity for probability is given by 

    ……… (54) 

For stationary states, probability density P(  , t)  is independent of time so 

that 
        

  
  . 

Clearly, for stationary states, the current density         , according to Eq. 

(54), satisfies 

  

or      ……… (55) 

  

Bound States 

Under many physical situations, we come across states of a quantum 

system called the bound states. These are essentially stationary states 

which are described by wave functions which vanish at infinity. Clearly, 

for bound states, the probability also vanishes at infinity. 



 

 

 Superposition States 

 As we have seen, the particular solution of Eq. (40) are of the form 

     ……… (56) 

 The general solution of Eq. (40) are of the form 

  ……… (57) 

Where an are constants and, in particular, do not depend on time. The 

state of the system described by the wave function ψ(  , t) [eq. (57)] is 

called a superposition state. 

 The probability density corresponding to the superposition state is 

given by 

  ……… (58) 

 

Clearly, P(  , t) is not independent of time in a super position state. 

Further, the expectation value of an observable A in a super position state 

is given by 



 

 

 

 ……… (59) 

As we have seen earlier ψn’s are the energy eigen functions, i.e., the eigen 

functions of the Hamiltonian operator   . 

If    commuters with   , then ψn’s are also the eigen function of   . In 

such a case we may write 

 

where   

                           

Hence, we obtain 

      ……… (60) 

Clearly <A> is constant in time in a super position state provided    

commutes with   . If A does not commute with   , (  ) is time-dependent 

in general as indicated by Eq. (134). 



 

 

1.7 PROBABILITY CURRENT DENSITY 

The wave function         which describes the state of motion of a 

particle of mass m moving under a force field described by the potential 

energy function V       [assumed real] satisfies the time dependent 

Schrodinger equation 

 ℏ
        

  
  

 ℏ 

  
                      ………… (61) 

Taking complex conjugate of Eq. (61) we get 

  ℏ
         

  
  

 ℏ 

  
                       ………….. 

(62) 

Multiplying Eq. (61) by          from the left and Eq. (62) by         

from the left and subtracting we obtain 

     
  

  
  

   

  
  

   

  
             

or   
  

  
      

   

  
             

or 
  

  
      

  

  
                                             …….. (63) 

Writing the Laplacian operator    in term of derivatives we get according 

to Eq. (63),  

  

  
      

  

  
   

   

   
   

   

   
   

   

   
   

    

   
   

    

   

   
    

   
  



 

 

or 
  

  
       

  

  

 

  
   

   

  
   

  

  
  

  

  

 

  
   

   

  
   

  

  
  

                                
  

  

 

  
   

   

  
   

  

  
                    ………. (64) 

Let us define 

   
  

  
   

   

  
   

  

  
                                                ……….  (65) 

   
  

  
   

   

  
   

  

  
                ………….  (66)                               

   
  

  
   

   

  
   

  

  
                                           ………….  (67)                     

Then using Eqs. (65), (66) and (67) in Eq. (64) we obtain 

 

  
       

   

  
 
   

  
 
   

  
                    ……………. (68)                               

Equation (68) can alternatively be expressed as 

 

  
                                                ……………. (69)                                            

where                           
  

  
                        ……..……. (70)                     

                                                ………….. (71)                                                 

We have the well-known equation of continuity in fluid dynamics  

  

  
                                                         ………….. (72)                                         

Where, 

  = number of fluid particles per unit volume or particle density 



 

 

  = the number of fluid particles that cross unit area in unit time in a 

direction perpendicular to the area, and is called the current density. 

Comparing Eq. (69) with Eq. (72) we may interpret             as the 

position probability density so that            is the probability of 

finding the particle in the volume element       about the point      at the 

instant t. 

and 

                                      

The above result is referred to as the conservation of probability. The 

result holds as long as the particle under consideration is stable and does 

not undergo any kind of decay or does not annihilate or disappear due to 

some reason. 

 

1.8 EQUATION OF CONTINUITY  

 We generate one equation by multiplying the Schrödinger equation 

with           , where  means conjugate complex. We generate another 

equation by multiplying the (Schrödinger equation)  with  and 

add both equations. The result is 

 



 

 

This can be written in the form of a continuity equation: 

 

1.9 SUMMARY 

Quantum mechanics is the branch of physics that deals with the behavior 

of matter and light on a subatomic and atomic level. It attempts to explain 

the properties of atoms and molecules and their fundamental particles like 

protons, neutrons, electrons, gluons, and quarks. The properties of 

particles include their interactions with each other and 

with electromagnetic radiation. So below mentioned are those two 

pointers one should know necessarily before tackling quantum 

mechanics. 

Schrodinger wave equation is a mathematical expression describing the 

energy and position of the electron in space and time, taking into account 

the matter wave nature of the electron inside an atom. 

It is based on three considerations. They are; 

 Classical plane wave equation, 

 Broglie’s Hypothesis of matter-wave, and 

 Conservation of Energy. 

Schrodinger equation gives us a detailed account of the form of the wave 

functions or probability waves that control the motion of some smaller 

https://byjus.com/physics/electromagnetic-radiation/
https://byjus.com/physics/wave-function/
https://byjus.com/physics/wave-function/


 

 

particles. The equation also describes how these waves are influenced by 

external factors. Moreover, the equation makes use of the energy 

conservation concept that offers details about the behaviour of an electron 

that is attached to the nucleus. 

Besides, by calculating the Schrödinger equation we obtain Ψ and Ψ2, 

which helps us determine the quantum numbers as well as the 

orientations and the shape of orbitals where electrons are found in a 

molecule or an atom. 

There are two equations, which are time-dependent Schrödinger equation 

and a time-independent Schrödinger equation. 

Time-dependent Schrödinger equation is represented as; 

 

………………M 

Equation (M) is the time-independent Schrodinger equation for a 

particle of mass m, total energy E moving in a force field described 

by the potential energy function V. 



 

 

1.10 TERMINAL QUESTIONS 

1. Explain the concept of Quantum Mechanics. 

2. Difference between Classical Mechanics and Quantum Mechanic. 

3. Describe the concept of Stationary States. 

4. Discuss about Probability current density. 

5. Explain equation of continuity. 

 1.11. ANSWER AND SOLUTION OF TERMINAL QUESTION 

1. Section 1.3 

2. Section 1.3 

3. Section 1.6 

4. Section 1.7 

5.  Section 1.8 

1.12 SUGGESTED READINGS: 

1. Introduction to Quantum Mechanics: David J. Griffiths. 

2. Quantum Mechanics: Noureddine Zettili. 

3. Elements of Quantum Mechanics: Kamal Singh, S.P.Singh 

4. Quantum Mechanics: Chatwal and Anand  
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2.1 INTRODUCTION 

In quantum physics, a wave function is a mathematical description of a 

quantum state of a particle as a function of momentum, time, position, and 

spin. The symbol used for a wave function is a Greek letter called psi,  . 

By using a wave function, the probability of finding an electron within the 

matter-wave can be explained. This can be obtained by including an 

imaginary number that is squared to get a real number solution resulting in 

the position of an electron. The concept of wave function was introduced 

in the year 1925 with the help of the Schrodinger equation. 

Significance of wave function 

The wave function ψ itself has no physical significance but the square of 

its absolute magnitude ∣ψ2∣ has significance when evaluated at a particular 

point and at a particular time ∣ψ2∣ gives the probability of finding the 

particle there at that time. The wave function ψ(x,t) is a quantity such that 

the product P(x,t)=ψ (x,t)ψ(x,t) is the probability per unit length of finding 

the particle at the position x at time t. P(x,t) is the probability density 

and ψ*(x,t) is complex conjugate of ψ(x,t). Hence the probability of 

finding the particle is large wherever ψ is large and vice-versa. 

We have learned about Schrödinger’s wave equation in previous unit. 

https://byjus.com/physics/derivation-of-schrodinger-wave-equation/


 

 

  

2.2 OBJECTIVES 

 Know about the normalizable wave function. 

 Discuss about condition for normalized wave function. 

 Define Dirac Delta Function. 

 Explain Ehrenfest Theorem. 

 Understand Expectation value of a Physical Quantity.   

2.3 PHYSICAL INTERPRETATION OF WAVE FUNCTION 

 We know that the moving particle has a wave nature. The 

mathematical function which describes motion is the wave 

function ψ(x, y, z, t). The wave function actually contains all the 

information which the uncertainty principle allows us to know 

about the associated particle. But the wave uncertainty ψ itself has 

no physical interpretation, as it may be positive, negative or 

complex. 



 

 

 The basic connection between the properties of the particle and its 

associated wave function is expressed in terms of the probability 

density. The square of absolute magnitude of wave function |ψ|
2
 

(called probability density) evaluated at a particular place at a 

particular instant of time is proportional to the probability of 

finding the particle there at that time. As the wave functions are 

usually complex with real and imaginary parts, the probability |ψ|
2
 

is taken as the product ψψ*, where ψ* is a complex conjugate of ψ. 

This interpretation was given by Max Born in 1926. According to 

Born’s postulate. 

“If at an instant t, a measurement is made to located a particle 

having the wave function ψ(x, t), then the probability P(x, t) of 

finding the particle in a range x and x + dx will be equal to ψ(x, 

t)ψ*(x, t) dx”. 

 In general, the probability of finding the particle in volume 

element dV is 

P(r, t) dV = |ψ(r, t)|
2
 dV 

The function ψ(r, t) is called probability amplitude. 

 Since |ψ|
2
 or ψψ* represents the probability density, the integral of 

|ψ|
2
 over all space representing the total probability must be finite 

because the particle is present somewhere. Because of the way of 

definition of ψ, |ψ|
2
 cannot be negative or complex. Since the 

particle under consideration will always be found somewhere, total 

probability always equal to unity i.e. 

                                       



 

 

 The integral in the above equation is carried out over the entire 

space. The above condition on ψ is called the normalization 

condition. The wave function that satisfies the above condition is 

called normalized wave function. 

 If the wave function is not normalized, in order to normalize the 

wave, function it is multiplied by some arbitrary constant and then 

the above integral is evaluated over the entire space. The 

normalization procedure is as follows: 

If ψ is not normalized, multiply it by some constant A. Then 

evaluate the integral and equate it to unity calculate the 

constant A called normalization constant i.e. 

              

  or              

  As A is real constant, we get 

                

  This gives normalization constant as 

       
 

       
 

The normalization constant can be taken as positive square 

root of the above result. 

2.3.1. NORMALIZABLE AND UNNORMALIZABLE WAVE 

FUNCTION NORMALIZED WAVE FUNCTION 

  



 

 

If the motion of the particle takes place in a space of finite extent, 

then the total probability P of finding the particle in the space is 

unity, i.e., 

P = 1  

or                  

or                            

or                        …………… (1) 

The wave functions which satisfy Eq. (1) are called normalized 

wave functions. Equation (1) is usually referred to as the 

normalization integral. 

Normalization of wave function can be understood from the 

following: 

The Schrodinger equation given by is linear and homogeneous in the 

wave function         and its derivatives. Hence, if the solution of 

Equation is multiplied by a constant the resulting function is also a 

solution. Let        be a solution of the Schrodinger equation. We 

know from the discussions in the earlier section that              is a 

positive real number and hence its integral over the entire space is 

also a real positive number. We may hence write 

                                                             ……….. (2) 

The number N
2
 is called the norm of the wave function         . 

Let us define 



 

 

        
 

 
                                                             ……. (3) 

Since          is different from          only by the multiplicative 

constant 
 

 
, it is also a possible function which satisfies the 

Schrodinger equation. 

We get 

                    
 

  
                  

In view of Eq. (2), the above gives 

                                                                        ………(4) 

The wave function         satisfies Eq. (1) and is hence a 

normalized wave function. Comparing Eq. (4) we find that the norm 

of the wave function         is unity. 

We can thus define a normalized wave function as one which has 

unit norm. 

In Eq. (3), through which normalized wave function is defined, N 

must be finite. In other words, normalizable wave functions must 

have finite norms. For N and hence N
2
 to be finite we get according 

to Eq. (2). 

                             

or                                 …………… (5) 

Equation (5) is the boundary condition that must be satisfied by 

normalizable wave functions. 



 

 

2.4 CONDITION FOR NORMALIZED WAVE FUNCTION 

1. In Classical Physics (CP), we use momentum and position to describe an 

object. In Quantum Physics (QP), we use “wave function”. Wave 

function does the job of what momentum and position do in CP. 

2. CP is “deterministic”. It means that an object is “definitely there at x”. 

QP is not. QP is “probabilistic”. In QP, at a given point, we only have a 

“probability of finding the object at that point”. At a given point in time, 

different points in space have different probabilities of existence of the 

particle. It means that unlike CP an object is NOT at one point, its 

existence (probability) is spread out. 

3. To get the probability of finding a particle at a given point in space, you 

have to calculate the modulus of square of the value of wave function at 

a given point. 

4. Now, logic suggests that at a given point in time, if I calculate the 

probability of finding an electron at every point in space, and add up all 

those probabilities, it should be equal to 1. In the mathematical form we 

write it as 

                            OR 

                                 OR 



 

 

                                           

 

This is the summation of probability at all possible points of its existence, 

from minus infinity to plus infinity. Such sum should be equal to 1. 

 

A valid wave function should satisfy this property. We call this 

“normalization condition”. 

To “normalize” a wave function, calculate the sum of probabilities of 

finding the electron at all points in space (at a given time). It is the above 

integral. Let us say that this turns out to be x. But the actual answer should 

be 1. So, it means that you have to divide the actual wave function by x to 

make it 1. This process of adjusting the integral to 1 is called normalizing 

a vector. 

 

  



 

 

 

 

REQUIREMENTS OF WAVE FUNCTION 

 To be an acceptable solution of Schrodinger’s time-independent 

equation, the wave function ψ(x) and its first order derivative 
  

  
 

should satisfy certain requirements. These requirements are: 

1. ψ(x) must be continuous everywhere i.e., at each and every 

point on space. 

2. ψ(x) must be finite everywhere. 

3. ψ(x) musts be single valued everywhere. 

4. Similarly, the first order derivative must be continuous, finite 

and single valued everywhere.  

 In order to ensure that the wave function must be mathematically ‘well 

behaved’ above requirements are imposed on the wave function. (Fig. 



 

 

1) illustrates the meaning of the properties of wave functions. If ψ(x) 

and 
  

  
 are not finite and single valued, then the wave function 

                   and its derivative 
       

  
       

     

  
 will not 

be continuous and single valued. The general formula of calculation of 

expectation values of x and p contain either               
       

  
 . 

Therefore, in any of these cases we might not obtain finite and definite 

values of the measurable quantity. This is completely unacceptable 

because the measurable quantities like <x> and <p> do not behave in 

unreasonable way. 

 In order that 
  

  
  be finite, the wave function must be continuous. If the 

wave function ψ(x) is discontinuous, the first order derivative 
  

  
  will 

be infinite at the discontinuity and the second order derivative will also 

be infinite. We have Schrodinger’s time-independent equation 

   

   
 
  

  
          

 For finite values of E, V and ψ(x), the second order derivative 
   

   
  

must be finite. This requires that dψ/dx must be finite and hence the 

wave function should be continuous. 

 Thus, it is necessary that the wave function must be mathematically 

‘well behaved’ and satisfies the above requirements. In Fig. 1 the wave 

functions in (a), (b), (c) and (d) are not acceptable. The wave function 

in (e) is well behaved and hence acceptable. 



 

 

 

 

2.5 EXPECTATION VALUES OF A PHYSICAL QUANTITY 

Let us consider a particle in a definite state described by the 

normalized wave function        . Let us make a large number of 

observations (measurement) of the position vector    of the particle. 

We know that each observation causes the wave function to undergo 

some change. Let us suppose that we have at our disposal some 

technique to bring the wave function to the original form before any 

observation is made. Even if we ensure that before any measurement 

the wave function is restored to its original form, we do not get the 

same result each time. The average of the value obtained in these 

measurements is called the measured value or the expectation value 

and is denoted as (  ). Since                  represents the 

probability with which the value    occurs in the measurement we get   



 

 

                                                   ……. (6) 

If the wave function         is not normalized the expectation value 

of    is given by 

     
              

           
                                                                  …. (7) 

Generalizing, the expectation value of any quantity f(  ), which is a 

function of   , in the state described by the normalized wave function 

       may be written as 

                             

or                                                             …… (8) 

       Expectation Value of Total Energy E of a Particle 

Consider a particle of mass m moving in space under the action of a 

force field describe by the potential energy function        . Let 

       be the normalized wave function that describes the state of 

the particle. The time evolution of the wave function is given by the 

Schrodinger equation 

  
        

  
  
   

  
                   

Multiplying the above by          from the left and integrating over 

the entire space we get 



 

 

            
        

  
      

           
   

  
                         

or

             
 

  
                

          
   

  
                  

                                 

Using the definition of expectation value given above we obtain 

   
 

  
   

   

  
                                                         …  (9) 

In view of Eq. (15) and Eq. (18) from Unit 1(Basic Concept) of 

block I, Eq. (9) gives 

     
  

  
                                                  ….  … (10) 

Classically, the total energy is 

                                  
  

  
            …... (11) 

Equation (10) tells that the expectation value of the total energy is 

the sum of the expectation values of the kinetic energy and the 

potential energy. 



 

 

 

2.6 DIRAC-DELTA FUNCTION 

The Dirac delta function is the name given to a mathematical structure that 

is intended to represent an idealized point object, such as a point mass or 

point charge. It has broad applications within quantum mechanics and the 

rest of  quantum physics, as it is usually used within the quantum wave 

function. The delta function is represented with the Greek lowercase 

symbol delta, written as a function: δ(x). 

This representation is achieved by defining the Dirac delta function so that 

it has a value of 0 everywhere except at the input value of 0. At that point, 

it represents a spike that is infinitely high. The integral taken over the 

entire line is equal to 1. 

https://www.thoughtco.com/quantum-physics-overview-2699370
https://www.thoughtco.com/definition-of-wavefunction-605790
https://www.thoughtco.com/definition-of-wavefunction-605790


 

 

 

 

Properties of Dirac Delta Function  

   

2.7 KRONECKER DELTA FUNCTION 

The Kronecker delta (named after Leopold Kronecker) is a function of 

two variables, usually just non-negative integers. The function is 1 if the 

variables are equal, and 0 otherwise: 

 

https://en.wikipedia.org/wiki/Leopold_Kronecker
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Variable_(mathematics)
https://en.wikipedia.org/wiki/Integer


 

 

where the Kronecker delta δij is a piecewise function of variables i and j. 

For example, δ1 2 = 0, whereas δ3 3 = 1. 

The Kronecker delta appears naturally in many areas of mathematics, 

physics and engineering, as a means of compactly expressing its definition 

above. 

2.8 NON-DEGENERATE STATES AND DEGENERATE STATE 

Degeneracy of an energy state means number of different ways (given by 

number of different wavefunctions) an energy state occurs.  

Non-degenerate state is a state differing in both energy and the quantum 

state of the system. Like, a degenerate state is those having a state defined 

by combination of different quantum but all these states have same energy 

level, which is not the case in non-degenerate state. 

The dimension of the eigenspace corresponding to that eigenvalue is 

known as its degree of degeneracy, which can be finite or infinite. An 

eigenvalue is said to be non-degenerate if its eigenspace is one-

dimensional 

An eigenvalue is degenerate if there is more than one linearly independent 

eigenstate belonging to the same eigenvalue.  

 

https://en.wikipedia.org/wiki/Piecewise


 

 

2.9 EHRENFEST THEOREM 

 We know that a particle’s momentum is equal to its mass times group 

velocity of a wave packet of a particular type that is associated with it. 

But this type of treatment is not adequate to the general case, in which the 

shape and size of wave packet changes as the packet moves. 

Then the questions arise how the <x> and <px> behave as wave packet 

moves, that is, what is 
    

  
 ? this difficulty was solved by Ehrenfest. 

 According to him Newton’s laws of motion in classical physics of the 

form like 

 
  

  
                                  

  

  
 
  

  
 

Are still valid in quantum mechanics provided that we use the 

expectation values of the dynamical variables. This is Ehrenfest’s 

theorem. 

 In other words, the theorem states that the average motion of wave 

packet agrees with the motion of the corresponding classical motion 

of particle. 

Ehrenfest’s theorems are 

1. First theorem: 

 
    

  
      

 For all components, 

 
     

  
       

2. Second theorem: For conservative force field, 

     

  
   

  

  
  

 For all components, 



 

 

     

  
       

Thus, there exists a relation among expectation values which is exactly 

parallel to Newton’s second law expressed in terms of potential energy. 

2.10 SUMMARY: 

 

Therefore, one can't impose an arbitrary condition on ψ without checking 

that the two are consistent. Interestingly, if ψ(x, t) is a solution, Aψ(x, t) is 

also a solution where A is any (complex) constant. Therefore, one must 

pick a undetermined multiplicative factor in such a way that the 

Schrodinger Equation is satisfied. This process is called normalizing the 

wave function. 

For some solutions to the Schrodinger equation, the integral is infinite; in 

that case no multiplicative factor is going to make it 1. The same goes for 

the trivial solution ψ= 0. Such non-normalizable solutions cannot represent 

particles, and must be rejected. Physically realizable states correspond to 

the "square-integrable" solutions to Schrodinger's equation. 



 

 

 

 

 

 

It shows how we represent the delta function. The delta function, δ(x), is 

shown by an arrow at x=0. The height of the arrow is equal to 1. If we 

want to represent 2δ(x), the height would be equal to 2. In the figure, we 

also show the function δ(x−x0), which is the shifted version of δ(x). 



 

 

 

 



 

 

Non-degenerate States and Degenerate State  

In quantum physics, the quantum state of a given system is described by 

the probability wavefunction, which depends on a set of quantum 

coordinates. The absolute square of the wavefunction determines the 

probability of finding the particle in the given quantum state. Each 

quantum state has a specific energy. For example, if we look at the particle 

in a box (of width L) problem the particle energy can be expressed as: 

 

There are three quantum states here (100), (010), (001), having the same 

energy and these states are commonly referred as degenerate states. But 

each level is described by a specific wave function. In quantum 

mechanical words if two or more eigen functions correspond to the same 

eigen value they are said to be degenerate 

 

Here, there is only one state with the energy E111and is described by a 

specific eigen function or wave function. Such states are called non-

degenerate states. If different eigen functions correspond to different eigen 

values they are said to be non-degenerate. 



 

 

 

  

2.11 TERMINAL QUESTIONS 

1.Define Expectation value 

2. Explain Ehrenfest Theorem. 

3. Give the Physical interpretation of the wave function. 

4. Write down the condition for normalized wave function. 

5.Explain Dirac Delta Function. 

6. Define Kronecker Delta Function. 

 



 

 

2.12 ANSWER AND SOLUTION OF TERMINAL QUESTION: 

1. Section 2.5 

2.Section 2.9 

3.Section 2.3 

4. Section 2.4 

5. Section 2.6 

6. Section 2.7  

2.13 SUGGESTED READINGS 

1. Introduction to Quantum Mechanics: David J. Griffiths. 

2. Quantum Mechanics: Noureddine Zettili. 

3. Elements of Quantum Mechanics: Kamal Singh, S.P.Singh 

4. Quantum Mechanics: Chatwal and Anand  
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3.1 INTRODUCTION 

An operator can be imaginary as well as a complex quantity. It is a 

mathematical rule that acts upon a function and produces another 

function. As the operators of mathematical algebra, quantum mechanical 

operators also function under certain rules like addition, multiplication, 

etc. An operator has no meaning if it is written alone. Linear operators, 

SQR – Square operators, and Hermitian operators are some types of 

operators. 

Classical observables have an associated quantum mechanical operator. In 

other words, for every measurable parameter in physical systems, there 

exists a quantum mechanical (QM) operator. 



 

 

 

Quantum Operators: 

 



 

 

3.2 OBJECTIVES 

After studying this Unit, student should able to: 

 Know about Operators in QM. 

 Define Null operator and Inverse Operator. 

 Explain the concepts of Linear and Hermitian Operators. 

 Discuss the Concept of Orbital angular Momentum. 

 Know about Ladder Operators   

3.3 CONCEPT OF OPERATOR 

An operator is a symbol that tells you to do something to whatever follows 

that operator. They are commonly used to perform specified mathematical 

operations on certain functions. Operators may be used in mathematics, 

physics, or chemistry but their primary purpose is always to perform 

operations on variables. The quantum mechanical operators are used in 

quantum mechanics to operate on complex and theoretical formulations. 

The Hamiltonian operator is an example of operators used in complex 

quantum mechanical equations i.e. Schrodinger’s wave energy equation. 

                       

https://psiberg.com/hamiltonian-operator/
https://psiberg.com/time-independent-schrodinger-wave-equation/


 

 

Â is a function here, acting on a function (ψ). Now if Â is an operator, it 

will map one state vector (ψ) into another one (Φ). 

 

Consider a function of n independent variable, q1, q2, ……, qn, such as 

ψ = ψ (q1, …, qn)          ………….. (1) 

Using this function, it is possible to generate any number of other 

functions by a simple mathematical procedure, namely, the 

application of a mathematical operator. Such an operator may take 

any one of many forms, for example 

Addition operator           

Multiplication operator          

Differential operator                           
 

   
     

Integral operator                                         
 

 
                      etc. 



 

 

An operator thus defines a relationship between two functions. If the 

function ϕ is obtained from a function ψ then the relationship 

between ψ and ϕ can be expressed as 

                                                                         ………. (2) 

We then say that    is the operator representing the generation of ϕ 

from ψ. It is important to note that the left-hand side of Eq. (2) does 

not necessarily mean that the function ψ is multiplied by the operator 

  , instead, it may represent addition, differentiation, integration. 

Alternatively, we can say, in view of Eq. (2) that an operator maps a 

given function. As indicated in Eq. (2), it is usual to write an 

operator with the symbol of cap    overhead. 

The set of functions {ψ1} for which    {ψ1} has a meaning is called 

the domain of   . 

The set of function {ϕ1} which can be expressed as ϕi =   ψi, is 

called the range of   . 

3.4 NULL OPERATOR: 



 

 

 

3.5 INVERSE OPERATOR 

Consider an operator    defined in a certain domain of definition. 

The inverse of    is written as      and is defined such that 

                

It is easy to see that any operator commutes with its inverse 

                                

3.6 OPERATORS IN QUANTUM MECHANICS 

 The mathematical operations like differentiation, integration, 

multiplication, division, addition, subtraction etc. can be 

represented by certain symbols known as operators. In other 

words, an operator Ô is a mathematical operation which may be 

applied to function f(x), which changes the function f(x) to another 

function g(x). This can be represented as 

Ô f(x) = g(x) 



 

 

For example,   
 

  
              

 In operator language   
 

  
 operates on the function f(x) = 4x

2
 + 

2x and changes the function f(x) to function g(x) + 2. 

Now, 

The wave function is given as  

          
 

 
       

………………………(3) 

Differentiating equation (3) with respect to x, we get 

  

  
 
  

 
   

 
 
       

 

or  
  

  
 

  

 
   

⸫      
 

 

  

  
 

or        
  

  
                     ……………. (4) 

Differentiating ψ(x, t) with respect to t, we get 

  

  
  

  

 
   

 
 
       

 

or   
  

  
  

  

 
   

⸫    
 

 

  

  
                                                  

or          
  

  
          ……………… (5) 



 

 

 Equation (4) indicates that there is an association between the 

dynamical quantity p and the differential operator    
 

  
 . That is 

the effect of multiplying ψ(x, t) by p is same as the operating the 

differential operator    
 

  
 on ψ(x, t). This differential operator is 

called momentum operator. It can be written as 

      
 

  
                                    ……………. (6) 

As it is related to variable x, therefore, we have 

       
 

  
                                  

Corresponding components of momentum operators for y and 

z variables are  

       
 

  
                                                                 

and         
 

  
                                                                 

In three dimensions, the momentum operator is 

 From equation (5), a similar association can be found between 

dynamical variable E and the differential operator  
 

  
 . Thus, 

    
 

  
                                             …………… (7) 

We have Schrodinger’s time independent equation 

    
  

  
         



 

 

or    
  

  
          

or     
  

  
                    ……….. (8) 

 or     

           Hψ = Eψ 

 

where    
  

  
     is the differential operator and 

called as Hamiltonian operator. 

  

 

. 



 

 

 

 

3.7 PHYSICAL OPERATORS 

(a) LINEAR OPERATOR  

A particular class of operators is of primary interest in the 

mathematical formulation of quantum theory. These are the so-called 

linear operators. 



 

 

Consider an operator    define in a certain domain of definition. Let 

ψ1 and ψ2 be any two arbitrary functions defined in the domain of 

definition of   . 

If on operating on the sum of the functions ψ1 and ψ2 the operator    

yields the same result as the sum of the operations on the two 

functions separately, then    is said to be linear operator. Thus, for 

the operator    to be linear we must have 

                                                       ………… (9) 

For linearity of    we must also have 

               

                                                  ……………. (10) 

where c is a number. 

The properties of linear operator expressed by the Eqs. (9) and (10) 

will be useful in later developments of quantum mechanics. 

(b) HERMITIAN OPERATOR 

Definition 

The operators which play important role in quantum mechanics can 

be further specialized. They are not linear, they are Hermitian. 



 

 

Before we define Hermitian operator, we need to define the complex 

conjugate of a linear operator   . Let us suppose 

                                                                           ……… (11) 

The operator denoted by     is called the complex conjugate of the 

operator    if, by the action    on the function    (complex conjugate 

of the function ψ), we get the function    complex conjugate of the 

function ϕ), i.e., we get 

                                                                    ………… (12) 

In the domain of definition V in which the operator    is define, let u 

and v be two functions subject to identical boundary conditions. 

The operator    is said to be Hermitian operator if it satisfies the 

condition 

               
 
               

   
               ….. (13) 

Alternatively, the Hermitian character of the linear operator    is 

made through the definition of transpose of the operator   . The 

transpose of the operator    is denoted by    and is defined according 

to the relation 



 

 

                   
  

                                 ……………. (14) 

The transposed operator     for the operator     is, according to Eq. 

(14), given by 

                                                   ………………. (15) 

It is usual to denote     and     (read as A-dagger) and is said to be 

the Conjugate to the operator   . Now the operator    is called 

Hermitian or self-adjoint if. 

                                                               ……………. (16) 

3.8 COMMUTATORAND NON-COMMUTATOR OPERATORS 

(A) Commutator of Two Operators 

Let    and    be two operators defined in the same domain of 

definition. A useful operator called the commutator of    and    

which is usually written as [  ,   ] is defined as 

                                                                      …….. (17) 

From the definition given by Eq. (17) it follows that 

                                       ……………. (18)                                                                   



 

 

Equations (17) and (18) give 

                                                                ……… (19)                                                                   

The operator    and    are said to commute with each other or the 

operators    and    are said to be commutative, if 

                                                      ……………… (20) 

or 

                                      ……………. (21)                                                

And hence the commutator  

              …………… (22) 

If the operators    and    are such that Eq. (20) or Eq. (21) or Eq. (22) 

does not hold, then they said to be non-commutative. 

(B) Anti-commutator of Two Operators 

If    and    are two operators defined in the same domain of 

definition then an operator called the anti-commutator of the 

operators usually written as [  ,   ]+ or {  ,   } is defined as 

       
 
                                                    ……….. (23) 



 

 

The operators are said to anticommute, if 

          

or 

                                                                 

3.9 EIGEN FUNCTION, EIGEN VALUES  

 Let ψ be the well-behaved function of the state of the system and 

an operator    operates on this function such that it satisfies the 

equation 

                                                …………. (24) 

where a is number then we say that a is an eigen value of the 

operator    and the operand ψ(x) is called the eigen function of 

  . Eigen is the German word meaning characteristic or proper. 

 An operator is a rule which changes a function into another 

function. For example, when operator 
 

   
 operates on a function 

i.e. 

        

  

  
        



 

 

 Another example is,  
  

   
           

 We say that  
  

   
  is the operator operating on function     giving 

result      . The operand      is called eigen function of operator 

  

   
 and 16 is the eigen value. 

The total energy operator E of equation  is usually written as 

   
  

  
     

and is called Hamiltonian operator. If the Hamiltonian 

operator  

   
  

  
      operates on a wave function ψn, we get 

  
  

  
             

or               

The wave function ψn is called eigen function and En is called energy eigen 

value of the Hamiltonian operator H for a state of the system. 

Eigen Functions and Eigen Values of a Linear Operator 

Consider a linear operator     defined in a certain domain of definition. If ψ 

is any function define in the domain of the definition of   , then in general, 

we have 



 

 

  ψ = ϕ                                                    …… (25)  

          

However, for every linear operator   , there exists a set of functions 

ψ1, ψ2, …., ψn, such that  

            

          
  

          

                                              ………… (26) 

where d1, d2, ….., dn are constants with respect to the variables of 

which ψ1’ S (i = 1, …., n) are functions. The set of functions ψ1, ψ2, 

….., ψn are called eigenfunctions of the operator    and the constant 

a1, a2, ….., an are called the eigenvalues belonging to the 

eigenfunctions ψ1, ψ2, …., ψn, respectively. 

Eigenvalue Equation 

 The equation 

                                                             ……….. (27)        

 is called the eigenvalue equation for the operator   . 



 

 

3.10 COMMUTATION RELATIONS OF TOTAL ANGULAR 

MOMENTUM WITH COMPONENTS 

 The total angular momentum is defined by the relation 

                        ………. (28) 

 We can derive the commutation relation of J
2
 with components Jx, Jy, 

Jz. Let us take 

 …. (29) 

 We know that 

[ab, c] = a[b, c] + [a, c] b, 

 So  

         ………. (30)                

 ⸫  [J
2
, Jx] = 0 



 

 

 Similarly, 

 [J
2
, Jy] = 0,     …………… (31) 

 [J
2
, Jz] = 0,        ………….. (32) 

 3.10.1 LADDER OPERATES (J
+
 AND J

-
) 

 Ladder Operators J+ and J- Now let us define the new operators. 

           ………. (33) 

 Commutation relation of Jz with J+ an J-. 

  

 

    ………. (34) 

 And similarly, 



 

 

  

                                                                      ……. (35) 

 or we can write (34) and (35) in compact form as 

      ………. (36) 

3.11 COMMUTATOR RULES AMONGST J
+
, J

-
, Jz AND J

2
 

 Commutation Relation of J+ and J- Mutually. 

……. (37) 

Commutation Relations of J
2
 with J+ and J-. Let us take [J

2
, J+] 

first, 



 

 

 

Using (30) and (31), we get 

[J
2
, J+] = 0 + 0 = 0   ……………. (38) 

Similarly       …. (39) 

[using (30) and (31)] 

Combining (38) and (39), we have 

            ………. (40) 

3.12 ANGULAR MOMENTUM OPERATOR IN POSITION 

REPRESENTATION 

Classically the angular momentum L of a particle relative to some 

arbitrary origin is defined as 

L = r × p         ………. (41) 



 

 

where                is position vector and p the linear 

momentum of the particle (      and   ) are unit vectors along X, Y, Z 

axes respectively. In quantum mechanics, the associated with linear 

momentum p is 
 

 
         

Thus the angular momentum operator is 

         ………. (42) 

If Lx, Ly and Lz are components of angular momentum operator L, 

then equation (42) gives 

 

Comparing coefficients of       and    and on either sides, the 

components of angular momentum operator can be explicitly written 

as 



 

 

          ………. (43) 

and 

Using these definitions, it is easy to show that Lx, Ly and Lz satisfy 

the following commutation rules  

and            ………. (44) 

These relations can be written in the compact form as 

L ×L = i ħ L.     …….. (45) 

 THE ROTATION OPERATOR AND ANGULAR 

MOMENTUM 

If we consider the rotation of a co-ordinate system through an angle 

θ about an axis specified by unit vector   , then the transformation of 

a wave function ψ(r) under rotation is described by unitary 

transformation 



 

 

    ………. (46) 

where R(  , θ) is the rotation operator and is unitary operator. This 

equation means that the rotated wave function ψ (r) at any point r is 

equal to the value operated by rotation operator on unrotated wave 

function. 

Let us first consider the rotation of angle ϕo about z-axis. The effect 

of this rotation is that it leaves the coordinates (r, θ) unchanged, 

while the coordinate ϕ is changed to    ϕ - ϕo. Hence equation (1) 

implies 

      ………. (47) 

Now assuming the wave function as the well-behaved function, we 

may expand ψ by Taylor’s series about (r, θ, ϕ), so that 

 ………. (48) 

But        ………. (49) 



 

 

Therefore equation (48) may be expressed as 

    ………. (50) 

Now expressing components of angular momentum L in spherical 

polar coordinates, we get 

         ………. (51) 

Using third of equation (51), we may write equation (50) as 

 ………. (52) 

Now comparing (46) and (52), we get 

……. (53) 

Since above equations holds for any arbitrary wave function ψ(r, θ, 

ϕ), therefore equation (53) yields  

         ………. (54) 



 

 

This equation shows that the rotation about z-axis are generated by 

an operator which depends on z-component of angular momentum. 

In general equation (53) may be expressed as 

        ………. (55) 

Now if there exists any operator Q(r, θ, ϕ) which satisfies the 

condition 

           ………. (56) 

Then the operator Q is said to be rotationally invariant. Equation 

(56) is satisfied if operator Q satisfies the following commutation 

relations with components of angular momentum operator L. 

    ………. (57) 

As the components L are Hermitian, θ is real, therefore R(  , θ) is 

unitary. 

Also, we require R = 1 for θ = 0. [This is also obvious from (55)] 

Also, we must have R (  . (2πk)) = 1., where k is an integer. Since 

physically the rotation of 2πk means no rotation at all. 



 

 

Infinitesimal Rotation: 

If the angle of rotation θ is very small, the rotations are said to be 

infinitesimal rotations. If     is very small rotation; then equation 

(55) may be approximated as 

     ………. (58) 

 

It is obvious that any finite rotation can be considered as the product 

of a large number of infinitesimal rotations. These infinitesimal 

rotations commute with each other, while rotations, in general, do 

not commute. 

Another important property of infinitesimal rotations is the 

transformation of operators under them. This is achieved by 

substituting (58) in (56). 

Thus, if we define        then we get 

       ………. (59) 



 

 

Commutability of Angular Momentum Operators: 

Equation (55) may be used to define the transportation operator for 

an arbitrary rotation about an arbitrary axis. In many cases it is 

convenient to express the arbitrary rotation as a sequence of 

rotations about, say, X, Y and Z axes. For example, if the desired 

rotation θ can be carried out by a rotation θy about Y-axis followed 

by a rotation θx about X-axis, we have 

 

Now finite rotations, in general, do not commute. Because if above 

rotations are made in opposite order (i.e. first θy about Y-axis and 

then θx about X-axis), then it would be essential to perform a further 

rotation of θx θy about Z-axis to reach the same final position. This is 

represented geometrically in fig. (1). 

The statement holds only for small angles (upto order θ
2
 in 

exponential). Analytically this result may be expressed as 

 



 

 

 

 

Expanding exponentials to second order in θ’s, we get 

 

Retaining only second order terms in angles, we get 

 

 



 

 

or  

Cancelling the common factors, this gives 

 

This is a familiar commutation relation of angular momentum 

operator. 

The other commutation relation can be obtained by considering 

infinitesimal rotations about the other two pairs of coordinate axes, 

i.e. 

 

and  

The relation in compact form is expressible as 

L ×L = i ħ L 

 SPIN ANGULAR MOMENTUM 



 

 

The electron also possesses spin motion and hence contributes to the 

total angular momentum. It is denoted by S. It follows the same 

commutation relations as those of orbital angular momentum. 

 

THE TOTAL ANGULAR MOMENTUM OPERATORS 

The total angular momentum which may include the spin 

contribution is conveniently denoted by J = (Jx, Jy, Jz) and is define 

as the generalized angular momentum operator J as any Hermitian 

operator whose components, satisfy the commutation rules. 

………. (60) 

The above three equations can equivalently be written as 

             ………. (61) 

In order to avoid cumbersome factors of ħ, it is sometimes 

convenient to use quantum mechanical definition of angular 

momentum as 



 

 

             ………. (62) 

In other words we are choosing a system of units in which ħ = 1. 

If we use definition of angular momentum given by (62) the 

commutation rules satisfied by the components Jx, Jy, Jy takes the 

form 

  ………. (63) 

or equivalently 

J × J = i J          ………… (64) 

It will be seen that these rules are satisfied by quantities which are 

more general than the angular momentum of a single particle and 

therefore the results obtained will be applicable to system of greater 

complexity. 

Note:  If sometimes the factors of ħ are omitted; then it means that 

quantum mechanical definition (62) of angular momentum has 

been used instead of classical definition. 

J = r × p. 



 

 

3.12 SUMMARY: 

The mathematical formulation of quantum mechanics (QM) is built upon 

the concept of an operator. 

Physical pure states in quantum mechanics are represented as unit-norm 

vectors (probabilities are normalized to one) in a special complex Hilbert 

space. Time evolution in this vector space is given by the application of 

the evolution operator. 

Any observable, i.e., any quantity which can be measured in a physical 

experiment, should be associated with a self-adjoint linear operator. The 

operators must yield real eigenvalues, since they are values which may 

come up as the result of the experiment. Mathematically this means the 

operators must be Hermitian. The probability of each eigenvalue is related 

to the projection of the physical state on the subspace related to that 

eigenvalue. See below for mathematical details about Hermitian operators. 

In the wave mechanics formulation of QM, the wavefunction varies with 

space and time, or equivalently momentum and, so observables 

are differential operators. 

https://en.wikipedia.org/wiki/Mathematical_formulation_of_quantum_mechanics
https://en.wikipedia.org/wiki/Pure_state
https://en.wikipedia.org/wiki/Unit-norm_vector
https://en.wikipedia.org/wiki/Unit-norm_vector
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Hilbert_space
https://en.wikipedia.org/wiki/Hilbert_space
https://en.wikipedia.org/wiki/Time_evolution
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Evolution_operator
https://en.wikipedia.org/wiki/Observable
https://en.wikipedia.org/wiki/Self-adjoint
https://en.wikipedia.org/wiki/Linear_operator
https://en.wikipedia.org/wiki/Eigenvalue
https://en.wikipedia.org/wiki/Hermitian_matrix
https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation#Particles_as_waves
https://en.wikipedia.org/wiki/Differential_operator


 

 

 

 

  

3.13 TERMINAL QUESTIONS 

1.Explain the concept of Operator in Quantum Mechanics  

2. Define Null Operator. 

3. Discuss Linear Operator and Hermitian Operator. 

4. Explain Ladder Operator. 

5. Define Commutator and Non-Commutator Operators.  

3.14 ANSWER AND SOLUTION OF TERMINAL QUESTION 



 

 

1.Section 3.3 

2.Section 3.4 

3. Section3.7 

4 Section 3.10 

5. Section 3.8 

3.15 SUGGESTED READINGS: 

1. Introduction to Quantum Mechanics: David J. Griffiths. 

2. Quantum Mechanics: Noureddine Zettili. 

3. Elements of Quantum Mechanics: Kamal Singh, S.P.Singh 

4. Quantum Mechanics: Chatwal and Anand  
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UNIT- 4 One- and Three-Dimensional Problem  

Structure  

 

4.1 Introduction 

4.2 Objectives 

4.3 Free Particle  

4.4 Particle in a Box 

4.5 Potential Step 

4.6 Rectangular Potential Barrier  

4.7 One Dimensional Linear Harmonic Oscillator  

4.8 Zero Point Energy and Parity Oscillator  

4.9 Summary 

4.10 Terminal Questions 

4.11 Answer and Solution of Terminal Question 

4.12 Suggested Readings 

4.1   INTRODUCTION: 

The quantum particle in the 1D box problem can be expanded to consider 

a particle within a higher dimension as demonstrated elsewhere for a 

quantum particle in a 2D box. Here we continue the expansion into a 



 

 

particle trapped in a 3D box with three lengths Lx, Ly, and Lz. As with the 

other systems, there is NO FORCE (i.e., no potential) acting on the 

particles inside the box: 

 

 The potential for the particle inside the box: 

 

 

In this unit we will discuss Free particle and particle in a box also we will 

discuss about one dimensional linear harmonic Oscillator. 

4.2 OBJECTIVES: 

After studying this unit, student should able to:  

 Know about Free particle. 

 Explain particle in a Box problem. 



 

 

 Discuss Potential Step. 

 Define Zero Point Energy. 

 Concept of Rectangular Potential Barrier.   

 

4.3 THE FREE PARTICLE 

The Schrödinger wave equation for a particle of mass m, total energy E 

and potential energy V is written as 

   …………….. (1) 

where , being Planck’s constant. 

A free particle is one for which potential energy V is quite 

independent of position and hence, for convenience, it may be set 

equal to zero, so that Schroedinger wave equation for a free particle 

becomes  

   …………….. (2) 

or, in cartesian coordinates. 

  …………….. (3) 

This is a partial differential equation in three independent variables 

x, y and z and may be solved by the method of separation of 



 

 

variables imposing the boundary that ѱ is infinite everywhere in 

space since the particle is free to move anywhere in space, so that we 

may write the solution of equation (3) in the form 

   …………….. (4) 

where X(x), Y(y) and Z(z) are functions of their respective co-

ordinate alone. 

Substituting this in equation (3) and dividing by X(x) Y(y) Z(z) we 

get 

   …………….. 

(5) 

The equation may be written as 

   …………….. (6) 

In above equation L.H.S. is function of x along, while R.H.S. is 

function of y and z and is independent of x. It is, therefore, necessary 

that the value of the quantity to which each side is equal must be 

independent of x, y and z, i.e., both sides must be equal to a constant 

kx, (say), so that 

        …………….. 

(7) 



 

 

and      …………….. 

(8) 

Equation (8) may be written as 

     …………….. (9) 

In above equation L.H.S. is independent of z while R.H.S. is 

independent of y. Therefore if above equation is to be satisfied both 

sides must be equal to constant ky (say), so that 

       …………….. (10) 

     …………….. (11) 

Equation (11) may be written as 

     …………….. (12) 

In above equation R.H.S. is constant. Let this constant be kz, so that 

we may write 

  



 

 

and   

or    …………….. (13) 

For convenience let us substitute 

       …………….. (14) 

Then the differential equation in x, from equation (7), may be 

written as 

      …………….. (15) 

The general solution of above equation can be written as 

    …………….. (16) 

where Nx and x0 are arbitrary constants. 

Similarly we may obtain the differential equation in y and z by 

substituting  and   in equation (10) 

and (12) respectively, viz., 

      …………….. (17) 



 

 

and     …………….. (18) 

The general values of kx, ky and kz in equation (19), we get 

    …………….. (19) 

    …………….. (20) 

Substituting values of kx, ky and kz in equation (19), we get 

      …………….. (21) 

As any since function is single valued, valued, finite and continuous 

for real values of its argument, therefore for finite values of X, Y and 

Z, (i.e., ѱ) Ex, Ey, Ez and hence E must be positive. 

Thus the eigen (or wave or characteristic) functions and energy 

values of the free particle are 

Ѱ = X Y Z 

      

        …………….. (22) 

and     …………….. (23) 

where N = (Nx Ny Nz) is a normalization constant, Ex, Ey and Ez 

arepositive. Clearly the free particle has a continuous set of energy 



 

 

levels, however, the quantization may occur if the particle is not 

entirely free, but is constrained to remain in box, which we shall 

consider in next section. 

The complete weave functions with the time factor can be written as 

follows : 

  

  

        …………….. (24) 

4.4 PARTICLE IN A BOX  

Let a single particle, e.g. a gas molecule of mass m, be confined 

within a rectangular potential box with edges parallel to the X, Y and 

Z-axes of lengths lx, ly and lz respectively. The particle can move 

freely within the region 0 < x < lx, 0 < y < ly,0 <z < lz i.e., inside the 

box the potential function V(x, y, z) is equal to zero but it rises 

suddenly to a very large value at the boundaries of this region 

remaining infinitely large everywhere outside the boundaries. 

Therefore the particle will rebound when it will strike either of the 

boundaries. 

If m is the mass of the particle and E its total energy, the 

Schroedinger wave equation, for the case under consideration may 

be written as 



 

 

  

or   …………….. (25) 

This  is a partial differential equation in three independent variable 

and may be solved by the method of separation of variables, so that 

we may write the solution of above equation in the form 

     …………….. (26) 

where X(x) is a function of x alone, Y(y) a function of y alone and 

Z(z) a function of z alone. 

Substituting value of ѱ from equation (26) in (25) and dividing by 

X(x) Y(y) Z(z), we get 

    …………….. (27) 

Above equation may be written as 

    …………….. (28) 

In above eqn. L.H.S. is a function of x alone, while R.H.S. is a 

function of y and z and is independent of x. It is, therefore, necessary 

that the value of the quantity to which each side is equal must be 

independent of x, y and x, i.e., both sides must be equal to a 

constant, kx (say), so that 



 

 

       …………….. (29) 

and   …………….. (30) 

In above equation L.H.S. is a function of y alone, while R.H.S. is a 

function of z and is independent of y. Therefore, if above equation is 

to be satisfied both side must be equal to a constant, ky (say), so that 

       …………….. (31) 

and    …………….. (32) 

Eqn. (32) may be written as 

  

so that we have    …………….. (33) 

and     …………….. (34) 

For convenience let us substitute  



 

 

and      …………….. (35) 

Then the differential equation in x, y and z from (29), (31) and (32) 

may be written as 

      …………….. (36) 

      …………….. (37) 

and     …………….. (38) 

The general solution of equation (36) will be sine function of 

arbitrary amplitude, frequency and phase, i.e., 

      …………….. (39) 

where A, B and C are constants to be determined from the 

consideration of the boundary conditions. 

According to quantum mechanics |ѱ|
2
 represents the probability of 

finding the particle at any point within the box. Therefore |X(x)|
2
 

which is a function of x coordinate only, represents the probability 

of finding the particle at any point along X-axis. As the potential is 



 

 

very high at the walls of the box, the probability of finding the 

particle at the walls will be zero i.e., 

or   

Using these boundary conditions, eqn. (39) give 

sin C = 0 

and    sin (Blx + C) = 0 

which yields    C = 0 

and                                                  sin Blx = 0 

  

Substitution values of B and C in eqn. (39), we get 

      …………….. (40) 

For simplicity we may assume A to be real number, then using the 

condition 

  

we have   



 

 

or   

or   

or   

or      …………….. (41) 

 

Substitution this value of A in eqn. (40), the normalized function 

X(x) is given by 

     …………….. (42) 

Finding its second derivative, we have 

      …………….. (43) 

Substitution values from (42) and (43) in (36), we get 

  



 

 

or   …………….. (44) 

since  

                        

Similarly, we may solve equations (37) and (38) and obtain 

     …………….. (45) 

  

     …………….. (46) 

  

       …………….. (47) 



 

 

       …………….. (48) 

Using (34) and (35), we have 

  

Equations (44), (47) and (48) give the allowed values of energy 

along X, Y and Z axes respectively. 

The allowed values of total energy are given by 

   …………….. (49) 

where nx, ny, nz denote any set of three positive numbers.  

The complete wave function ѱnx, ny, nzhas the form, for various values 

of the quantum numbers nx, ny, nz, 

  …………….. (50) 



 

 

                       

Fig.2 represents the first three normalized wave functions X(x) for a 

particle in a box. 

4.5 POTENTIAL STEP 

In the case of a potential step the potential function undergoes only 

one discontinuous change as shown in fig 3 and hence the potential 

function of a potential step may be represented as  

      …………….. (51) 

 



 

 

Let the electron of energy E move from left to right i.e. along the 

positive direction of X-axis. Let us apply quantum mechanics to the 

problem, according to which the electrons behave like a wave 

moving from left to right and face a sudden shift in the potential at x 

= 0. 

The problem is analogous when light strike a sheet of glass where 

there is a shift in the index of refraction and the wave is partly 

transmitted. Hence in this problem the electrons will be partly 

reflected and partly transmitted at the discontinuity. 

To solve the problem let us write the Schrodinger equation for two 

regions. 

The Schrodinger equation for the first region is given by 

      …………….. (52) 

  

The Schroedinger wave equation for II region is 

    …………….. (53) 

The general solutions of equations (51) and (52) may be written 

as    …………….. (53) 



 

 

and    …………….. (54) 

where p1 and p2 are the momenta in the I and II regions respectively 

and are given by 

      …………….. (55) 

ψ1 and ψ2 are functions for I and II regions respectively. A, B, C and 

D are constants and may be determined by boundary conditions. 

In equation (53) the term represents the wave travelling along +ve 

X-axis in first region, i.e., the incident wave and the second term 

represents the wave travelling along +ve X-axis in first region, i.e., 

the incident wave and the second term represents the wave travelling 

along –ve X-axis in the 1
st
 region, i.e., the reflected wave. In 

equation (54), the first term represents the wave travelling along +ve 

X-axis in 2
nd

 region i.e., transmitted wave while the second term 

represents the wave travelling along –ve X-axis in second region : 

but there is no reflection of electrons in 2
nd

 region and hence there 

will be no wave travelling along –ve X-axis Consequently D = 0 so 

that the solution of equation (51), i.e., equation (54) may be written 

as 

       …………….. (56) 

According to probability interpretation of the wave function ψ must 

be finite, whereas E and V must be finite, because infinite energies 

do not exist in nature. Then from Schrödinger’s equation we may 



 

 

conclude that  is  everywhere finite : but not necessarily 

continuous. But  can only be finite if  is 

continuous everywhere, this is first boundary condition. If 

 is continuous everywhere, then necessarily ψ must be 

continuous. This is second boundary condition. 

Now the boundary conditions, in this case may be represented as 

follows: 

The continuity of ψ implies ψ1 = ψ2 at x = 0.  …… (A) 

The continuity of    implies  at x = 0. …… (B) 

Applying boundary condition (A) to equations (53) and (56), we get 

A + B = C        ……………. 

(57) 

Differentiating equation (53) and (56), we get 

    …………….. (58) 

      …………….. (59) 

Applying boundary conditions (B) to (58) and (59), we get 

     …………….. (60) 

Solving (57) and (60), we get 



 

 

      …………….. (61) 

      …………….. (62) 

where B and C represent the amplitudes of reflected and transmitted 

beams respectively in terms of the amplitude of incident wave. 

The reflectance of reflectivity or reflection coefficient and the 

transmittance or transmissivity or transmission coefficient at the 

potential discontinuity may be defined as follows. 

The reflectance, i.e., the fraction of electrons reflected is equal to the 

ratio of reflected current to be incident current i.e. 

              ………… 

(63) 

The transmittance, i.e., the fraction of electrons transmitted, is equal 

to be ratio of transmitted current to the incident current, i.e., 

  ……………. 

(64) 

There may be two cases: 

Case I.  is real. 

In this case the expressions for the current density in the 1
st
 and 2

nd
 

regions may be derived as follows: 



 

 

In 1
st
 region, we have 

   …………….. (65) 

Its complex conjugate  is given by 

    …………….. (66) 

so that we have 

   …………….. (67) 

and    …………….. (68) 

The probability current is defined as 

       

The expression in the case for 1
st
 region becomes 

   …………….. (69) 

Since in the electron are moving only along X-axis. 

Using equations (65), (66), (67) and (68), we have 



 

 

  

        …………….. (69) 

From above expression it is clear that the current in the 1
st
 region is 

made up of the difference between two terms, of which the first is 

proportional to p1|A|
2
 and represent the wave travelling from left to 

right, i.e., the incident wave, while the second is proportional to 

p1|B|
2
  and represents the wave travelling from right to left, i.e., the 

reflected wave. 

⸫ The probability current of the incident beam 

 ……  

……………………………………………………………………..(7

0) 

and the probability current of the reflected beam               

.. ………………………………………………..…… (71) 

In 2
nd

 region, we have 



 

 

      ……. 

(72) 

The probability current in this case is  

  

Using (72), we get 

           ……. 

(73) 

In second region, there is only transmitted wave; therefore equation 

(73) represents the transmitted current. 

Now we can obtain the expressions for reflectance and transmittance 

in this case, i.e., when E > V0 or p2 is real. 

⸫     



 

 

{from (63)} 

  

⸫               ……. (74)                                                             

         

  {from (62)} 

       

{from (64)} 

  

  

or        ……. 

(75) 

According to definitions the sum of reflectance and transmittance 

must be equal to unity. It may be verified from equation (74) and 

(75), i.e., 



 

 

    ……. 

(76) 

From equation (74) it is clear that reflectance approaches zero as p2 

approaches p1 and unity as p2 approaches zero. 

But   

Clearly p2 will approach p1 if V0 is and hence the reflectance will be 

zero only if V0 is equal to zero. Therefore, there must be some 

reflection even if E>>V0. The reflectance will be large only if V0 

becomes comparable in size with E. It should be noted that the 

property of reflection from a sudden change in potential aries from 

nature of matter and does not exist in classical theory if E > V0. Thus 

we may say that it is purely a quantum mechanical effect. 

Case II if   is 

imaginary. 

 We have    

Its complex conjugate 

       ……. 

(77) 



 

 

As p2 imaginary, the probability current associated with wave 

function ψ2 may be calculated as follows: 

We have 

  

so that  

  

The probability current, in this case, is given by 

  

Substituting  we get 

  

i.e., the transmitted current is zero. 

  



 

 

⸫     T = 0    …………. 

(78) 

The reflectance = 1 (from definition i.e., since R + T = 1). 

The reflectance may also be deduced as follows: 

  

  

[using (62) and its complex congugate] 

  

⸫     R = 1    …………. 

(79) 

From (78) and (79) it is clear that in this the entire wave is reflected, 

i.e., all of the electrons are reflected and none of them is transmitted. 

4.6 RECTANGULAR POTENTIAL BARRIER 

Let us consider the one-dimensional problem where the potential 

function is defined as in fig. 3.6 



 

 

       ……. (80) 

Here we have a potential barrier between x = 0 and x = a. 

If a particle having energy less than V0, i.e., E < V0, approaches this 

barrier from the left, i.e., from 1
st
 region, classically the particle will 

always be reflected and hence will not penetrate the barrier. 

However, wave mechanics predicts that the particle has some 

probability of penetrating to region 3
rd

, the probability of penetration 

being greater if (V0– E) and a are smaller. Moreover, if E > V0 

classical mechanics predicts that the particle will always be 

transmitted; while according to wave mechanics, the particle has a 

finite probability of transmission and hence it is not certain that the 

particle will penetrate the barrier. 

  

Figure: 3 

To solve the problem, let us write there Schrödinger equations, one 

for each region. 

The Schrödinger equation for I region is 



 

 

       ……. (81) 

(Since V = 0) 

The Schrödinger equation for II region is 

      ……. (82) 

The Schrödinger  equation for III region is  

       ……. (83) 

Here ψ1, ψ2 and ψ2 are wave functions for I, II and III regions 

respectively. 

The general solutions of equation (82), (83) and (84) may be written 

as 

      ……. (84) 

      ……. (86) 

      ……. (87) 

where p1 and p2, the momenta of particle in the corresponding 

regions, given by 



 

 

       ……. (88) 

A1, B1, A2, B2, A3 and B3 are constants to be determined by 

boundary conditions. 

In equation (85) the first term represents the wave travelling along 

(+) ve X-axis in the I region, i.e., the incident wave and second term 

represents the wave travelling along negative X-axis i.e., wave 

reflected at x = 0. 

In equation (86), the first term represents the wave travelling along 

(+)ve X-axis in II region i.e., the wave transmitted at x = 0 and 

second term represents the wave travelling (-)ve X-axis in II region, 

i.e.,  the wave reflected at x = a. 

In equation (87) the first term represents the wave travelling along 

(+)ve X-axis in III region, i.e., the wave transmitted at x = a and the 

second term represents the wave travelling along (-)ve X-axis in III 

region ; but no wave travels back from infinity in III region. 

Consequently B3 = 0, so that the solution of equation (83), i.e. 

equation (87) can be written as 

       ……. (89) 

For evaluation the constants A1, B1, A2, B2, A3 and B3 we shall apply 

the conditions at the two boundaries x = 0 and x = a. 

One condition is that ψ must be continuous at the boundaries, i.e., 



 

 

      ……. (90) 

The other condition is that  must be continuous at the 

boundaries i.e., 

     ……. (91) 

Applying boundary condition (90) to equations (85) and (86), we 

have 

        ……. 

(92)  

Applying boundary condition (90B) to equations (86) and (89), we 

get 

     ……. 

(93) 

Differentiating equations (85), (86) and (89) we get 

      ……. 

(94) 

      ……. 

(95) 



 

 

        ……. 

(96) 

Applying boundary conditions (91A) and (91B) to these equations, 

we get 

  

and  

or      ……. (97) 

    ……. 

(98) 

Solving (92) and (97) for A1 and B2, we get  

      ……. 

(100) 

      ……. 

(101) 

Solving (93) and (98) for A2 and B2, we get 



 

 

      ……. 

(102) 

      ……. 

(103) 

Substituting values of A2 and B2 from these equations in (102) and 

(103), we get 

  

……. 

(104) 

  

          ……. 

(105) 

Equation (104) may be written as 



 

 

  

Here  is imaginary since E < V0, therefore p2 

is real, so that we have 

  ……. 

(106) 

The complex conjugate of above equation is written as 



 

 

    ……. (107) 

But we have 

  

⸫  

and so   

Then equation (107) becomes 

     ……. 

(108) 

The transmittance or the transmission coefficient is given by 

  



 

 

or    ……. 

(109) 

Here p2 is imaginary, i.e., ip2 is real and so  is real. 

Therefore, T is real. 

The reflectance of the barrier or the reflection coefficient is given by 

     ……. 

(110) 

Using equation (104) and (105), their conjugates and remembering 

the fact that  , equation (110) after simplification yields 

     ……. 

(111) 

The reflection coefficient R may be obtained by the fact 

R + T = 1 

i.e.,      R = 1 – T.     ….. 

(112) 

The property of the barrier penetration is entirely due to the wave 

nature of matter and is very similar to the total internal reflection of 

light waves. If two plates of glass are placed close to each other with 



 

 

a layer of air as a medium between them, the light will be 

transmitted from one plate to another, even though the angle of 

incidence is greater than the critical angle. However, the intensity of 

transmitted wave will decrease exponentially with thickness of the 

layer of air. In this case the intensity of electron waves decreases 

exponentially with the thickness of the barrier. The wave function 

has the form more or less as shown in fig. 4. 

  

Figure: 4  

Now let us consider a special case when the barrier is thick, i.e., 

  

In this case tanh (ip2)/a/ħ) = 1 

and   

It is to be noted that p2 is imaginary and so ip2 and  are  real 

and negative. Then equation (104) and (111) yield. 



 

 

  

or       ……. 

(113) 

and    ……. 

(114) 

Substituting values of p1 and p2 from equation (88) equation (113) 

gives 

  

This is the expression for transmission coefficient for a very 

large barrier. The phenomenon of the particle’s (electrons, say) 

penetrating the potential barrier is called the “tunnel effect” and 

is especially important in thermionic and field emission.  

4.7 ONE DIMENSIONAL LINEAR HARMONIC OSCILLATOR 

 The wave equation for an oscillator 



 

 

A particle understanding simple harmonic motion in one dimension 

is called one-dimensional harmonic oscillator. 

In S. H. M. the restoring force is proportional to displacement 

i.e.    F = - kx    ……….. (115) 

where k is a positive constant, called the force constant. 

According to Newton’s II law  

Where m is the mass of the particle. 

⸫ From (115) we have equation of oscillator as 

  

or        ……. 

(116) 

This equation represents a periodic motion of angular frequency 

    ……. 

(117) 

The potential energy of oscillator is  



 

 

  

          ……. 

(118) 

The one-dimensional Schrödinger time independent equation is 

       ……. 

(119) 

Substituting    in (119), the wave equation for an 

harmonic oscillator becomes 

       ……. 

(120) 

where k is given by eqn. (119), 

or  

or  



 

 

or  ……. 

(121) 

For convenience let us substitute  

and    ……. 

(122) 

in eqn. (121) ; then we have 

       ……. 

(123) 

Again, for convenience, let us introduce a new variable q related to x 

such that 

       ……. (124) 

 where  is a constant given by eqn. (122). 

 Now   

 from (124) 



 

 

 and   

    

 substituting these values in eqn. (123), we get 

       ……. (125) 

 Asymptotic Solution. 

To  solve eqn. (125) let us first make an attempt to obtain an 

asymptotic solution for the case when q
2
 >>λ,  in this case, eqn. 

(125) becomes 

         ……. 

(126) 

The solution of above equation in 

         ……. 

(127) 

which may be verified by differentiating above equation twice with 

respect to q ; this 



 

 

      ……. (128) 

As q is very large  and so eqn. (128) becomes 

  

which is same as eqn. (126). 

Thus quantity |ψ|
2
 represents the probability of finding the particle 

along X-axis ; therefore it must decrease continuously to zero as x, 

i.e., q approaches . 

Clearly out of the two possible solutions represented by (127). 

  

the solution  is not acceptable since it increases with 

increasing x, i.e. q, while the solution  satisfies the 

conditions and therefore is an asymptotic solution of the equation. 

Recursion formula. 

From above consideration it is clear that the solution of eqn. (125) 

will contain the term  as a factor; the possible solution 

may be written as 



 

 

        ……. 

(129) 

where ϕ(q) is a function of q and hance of z. 

Differentiating equations (129) twice with respect to q, we get 

     ……. 

(130) 

where ϕ is written for ϕ(q). 

Substituting values of ψ and  from (129) and (130) in eqn. 

(125) we get 

  

or  

⸫     ……. (131) 

  

Now let us assume that the function ϕ(q) may be expressed in the 

form power series in q, i.e. 



 

 

    …… (131A) 

Differentiating, we get 

  

and   

Substituting these values in (131), we get 

  

or  

This equation is a power series and is satisfied only if coefficient of 

each power in q most be separately equal to zero. Equating to the 

zero coefficient of lowest power of q(i.e. q
s-2

)we get 

  

As  being first of power series, we have 

s = 0 or s = 1   …………… (132) 

Now equating to zero the coefficient q
s-1

 we get 

a1(s + 1) (s) = 0 



 

 

This gives either a1 = 0 or s = 0 or s = -1. 

As s  -1, we have either a1 = 0 or s = 0 or both. …… (133) 

Now equating to zero the coefficients of q
s+r

, we get 

  

or   ……. (134) 

where r is an integer or zero. This expression is called recursion 

formula. From this we can calculate the coefficients of q
2
, q

4
, q

6
, 

etc. if that of q0 is known. Similarly, we calculate the coefficients 

of q
3
, q

5
, q

7
 etc. if the coefficient of q

1
 is known. Thus, if we 

choose a1 = 0, then all odd coefficients ar will be zero. 

Examining the series. 

If no restriction is placed on λ which is related to the energy E of the 

oscillator by eqn. (122) the series for ϕ(q) consists of infinite number 

of terms and does not correspond to a satisfactory wave function, for 

large values of r which may be seen as follows: 

Examining eqn. (134) for large values of n, we get 

     ……. (135) 

Now consider the series 



 

 

  

  

then the recursion formula for the exponential series for e
q2

 is give 

by 

  

Where  n is very large, so that unity is negligible in comparison with 

, then above equation gives 

        ……. 

(136) 

Thus, we see that for large values of n, the series for ϕ(q) will 

behave like  . If this is case, the eigen function ψ for large 

values of n will behave like 

     ……. 

(137) 

According to this equation if  thus making the 

ware function physically unacceptable. Thus, the series governed by 

the recursion formula (133) does not lead to a satisfactory wave 



 

 

function unless some restriction is introduced which make the series 

break off after a finite number of terms. 

Eigen values of harmonic oscillator. 

From above discuss we have seen that in order to obtain a 

satisfactory wave function, the series (126A) must break off after a 

finite number of terms. The series will break off after rth term if we 

get the numerator in the recursion formula (134) equal to zero, i.e., 

  

i.e.        ……. 

(138) 

For s = 0, we have 

  

For s = 1, we have 

  

Thus equation (138) may be written more generally as 

       ……. 

(139) 

Substituting this value of λ in equation (122B) we get 

  



 

 

or from (117) 

or  

or  

or    ……. (140) 

The allowed integral values of n lead to certain discrete values of 

energy, represented by equation (140) known as eigen value of 

the harmonic oscillator. Moreover equation (140) indicates that 

the energy levels of harmonic oscillator are equally spaced. 

4.8 ZERO POINT ENERGY AND PARITY OSCILLATOR 

Significance of zero-point energy. 

For ground state (or lowest state) n = 0, so that we have 

         ……. (141) 

This is called zero-point energy 

A comparison with the result  obtained by old 

quantum they show that the only difference is that all the equally 

spaced energy levels are shifted upward by an amount equal to half 

the separation of energy levels, i.e.  equal to zero point 

energy. Thus, it is clear that even in the lowest state, the harmonic 



 

 

oscillator has finite energy while according to classical mechanics 

the harmonic oscillator possesses zero energy at state. The existence 

of zero-point energy is in agreement with experiment and is 

important feature of quantum mechanics. 

The energy levels of the harmonic oscillator according to wave 

mechanics are represented in fig. 5.  

  

Figure: 5 

Eigen functions of harmonic oscillator. We have seen that in order 

to have a satisfactory solution of wave equation (120), ϕ must break 

off after a finite number of terms, i.e. ϕ should be restricted in such a 

manner so as to make it a polynomial rather than a power series. The 

best suitable polyhomial  is Hermite  polynomial denoted by Hn (q). 

Then the eigen function ψ can be set equal to the product of 

polynomial Hn (q) and the factor , i.e. 

  



 

 

where Nn in normalizing factor and the Hermite polynomial Hn (q) 

of degree n is defined by  

  

Values of Hermite polynomials of different orders may be obtained 

by using above equation. 

  

and so on. 

The orthogonality condition of Hermite polynomials is 

  

where  Kronecker delta symbol defined as 

  

The normalizing condition is 

  



 

 

As q =  we have  

or   

i.e.   

But from orthogonality condition of Hermite polynomials  

  

⸫  

or    

Thus normalized wave functions of harmonic oscillator are 

  

where  is given by equation (121). 

The wave function corresponding to the lowest state of energy is 

  

A few of these wave functions are shown in figures 6 (a), (b), (c). 



 

 

  

Figure : 6 

The probability distribution function ψ*n ψn for n = 0, 1, 6 are shown 

in fig. 2.18. The classical limits of x for corresponding energy are 

shown by A and B in each case. The departures of wave mechanical 

results from classical mechanical results are as under : 

1. The probability distribution function ψ*n ψn has finite value 

beyond the classical limits A and B. 

2. For the lowest energy state  , the probability is 

maximum at centre while according to classical theory the 

maximum time is spent near the ends. 



 

 

3. The probability distribution function does not very smoothly 

but shows (n + 1) maxima for energy state. 

  

The wave mechanical predictions of the harmonic oscillator have 

been verified experimentally, thus establishing the superiority of 

wave mechanics over classical mechanics. 

Parity : It may be observed that harmonic oscillator wave functions 

are even functions of  x if n is even odd functions of x if n is odd. 

This property is due to the fact that the Hamiltonian of the oscillator 

is invariant under parity. If P is parity operator, then for every eigen 

state one has degenerate eigen state Pψ(x). As the Hermite 

polynomials have definite parity, the functions ψ(x) and P(ψ) must 

be linearly dependent. 

i.e.  

If the transformation x → - x through parity operator is made again. 

We gee 

P
2
 ψ (x) = ψ (x). 

Also P
2
 ψ(x) = P C ψ (x) = C

2
 ψ (x) 

i.e.,  C2 = 1 or C =  1  

and so ψ (-x) =  ψ (x) 

i.e., every eigen function for a bound state in a symmetric field [u(x) 

= u (-x)] is either an even or odd function of x. This fact is expressed 



 

 

by the statement that for the oscillator wave function ψ (x) = - ψ (x) 

the parity of ψ is odd. From parity considerations it can be deduced 

immediately that for states of definite parity the expectation value of 

any odd operator is always zero without reference to the explicit of 

ψ. 

Recurrence relations: From the recurrence relations of Hermite 

polynomials, the recurrence relations of harmonic oscillator wave 

functions may be deduced. 

From recurrence relation of Hermite polynomials, we have 

  

This can be written equivalently as 

  

Multiplying above equation by 

  

  



 

 

or  

or  

or …..(142) 

We have 

   

 

 

  

Using other recurrence relation for Hermite polynomials as 

  

we get 

  



 

 

Now using eqn. (142), we get 

  

or

 

 

or   ……. 

(143) 

Equations (142) and (143) represent two important recurrence 

relations of the harmonic oscillator wave functions. 

4.9 SUMMARY 

In this unit we studied about particle in a Box problem, Potential 

Step, recursion formula, tunnel effect, Zero-point Energy.   

4.10 TERMINAL QUESTIONS 

1.What do you mean by Tunneling through a Barrier. 

2. Discuss one dimensional linear harmonic oscillator. 

3.Write down Schrödinger wave equation for a particle in a box. 



 

 

4. Solve the Schrödinger wave equation in three dimensions for a free 

particle. 

5.Discuss the motion of an electron across a potential step of finite height. 

calculate the reflection and transmission coefficients. 

4.11 ANSWER AND SOLUTION OF TERMINAL QUESTION 

1. Section 4.6 

2. Section 4.7 

3. Section 4.4 

4. Section 4.3 

5. Section 4.5 

4.12 SUGGESTED READINGS: 

1. Introduction to Quantum Mechanics: David J. Griffiths. 

2. Quantum Mechanics: Noureddine Zettili. 

3. Elements of Quantum Mechanics: Kamal Singh, S.P.Singh 

4. Quantum Mechanics: Chatwal and Anand  

  

 

 

 

 



 

 

 

UNIT- 5 SPHERICALLY SYMMETRIC SYSTEMS 

Structure  

 

5.1 Introduction 

5.2 Objectives 

5.3 Schrodinger equation for Spherically Symmetric Potential 

5.4 Three-Dimensional Harmonic Oscillator 

5.5 The Rigid Rotator with free axis 

5.6 The Rigid Rotator in fixed Plane 

5.7 The Hydrogen Atom 

5.8 Degeneracy 

5.9 The Normal State of the Hydrogen Atom 

5.10     Summary 

5.11 Terminal Questions 

5.12 Answer and Solution of Terminal Question 

5.13 Suggested Readings 

  



 

 

5.1 INTRODUCTION: 

In the presence of spherical symmetry, the Schrödinger equation has 

solutions that can be separated into a product of a radial part and an 

angular part. In this unit, all possible solutions of the equation for the 

angular part will be determined once and for all. 

We start by discussing symmetry transformations in general. In quantum 

mechanics, all symmetry transformations may be realized by unitary or 

antiunitary operators.  

5.2 OBJECTIVES: 

After studying this unit, student should able to: 

 Know about Schrodinger equation for Spherically Symmetric 

Potential. 

 Discuss about Three-Dimensional Harmonic Oscillator. 

 Explain The Rigid Rotator with free axis. 

 Know about The Hydrogen Atom. 

5.1 SCHREOEDINGER’S EQUATION FOR SPHERICALLY 

SYMMETRIC POTENTIALS 

The potential energy of a particle moving under a central spherically 

field of force depends only upon is distance from the centre of force, 

i.e., the potential energy in such cases has the form V(r), r being the 

distance between the particle and the centre of force (i.e. origin). The 

Schroedinger equation for such a system would be given by 



 

 

………………………..1 

In such cases it is appropriate to write the Schredinger’s equation in 

spherical polar co-ordinates (r, θ, ϕ) since the potential energy V(r) 

is independent of the angular variables θ and ϕ. 

Let P be the point in space such that its cartesian co-ordinates of the 

point P are specified by (r, θ, ϕ), where r = OP is the radius of the 

sphere on which point P lies, θ is the colatitude, i.e., the angle 

between OP and z-axis and ϕ is the longitudinal or azimuthal angle, 

i.e., the angle included between XZ plane and the plane OPZ, from 

fig.1 the transformations between cartesian co-ordinates (x, y, z) and 

spherical co-ordinates (r, θ, ϕ) are given by 

…………………..2 

From (2), we have 

i.e.  

and ……………………..3 

Using (2) and (3), we have 



 

 

………………4 

Then  

⸫  

Now  

……5 

Similarly, 

so that   



 

 

………………………………………………………………………

…..6 

Also  

so that  

and 

………………………………..7 

Adding and simplifying (5), (6) and (7) we get 

 

Substituting this in equation (1), the Schrödinger wave equation for 

spherically symmetric potential in spherical polar co-ordinates is 

given by 

…………………………………………………………………..8 



 

 

 

Figure 1 

5.4 THREE-DIMENSIONAL HARMONIC OSCILLATOR: 

(SPHERICALLY SYMMETRIC CASE) 

 Here we shall consider a particular case of the three-dimensional 

harmonic oscillator already discussed in previous unit 4, where the 

frequencies along X, Y, Z-axis are equal. 

 i.e.,  

 The system consists of a point bound to origin by a force 

proportional to the displacement r from the fixed point, 

 i.e.     F = - kr,  

 where k is force constant given by 

 k = 4π
2
 v

2
 m        

 ……… (9) 

 so that the potential energy function of the oscillator will be 



 

 

 

assuming V(r) = 0, where r = 0 i.e. at the origin 

But  

⸫  

The Schroediner were equation in this case will be 

 

or

 

or 

…………………………………………..(10) 

Substituting  



 

 

 

and 

equation (10) becomes  

………………11 

For convenience substituting  

and …………………………..12 

in equation (11), we get 

………………………13 

The equation can be solved exactly in the same manner as in the case 

of free particle, i.e., by the method of separation of variables. Then 

the substitution of  

 



 

 

where Qx is function of qx, Qy is function of qy and Qz is function of 

qz only, results in separate equations for Qx, Qy and Qz i.e. 

………………………….14 

……………………15 

………………………16 

where the constant λx, λy and λz are related by 

λz + λy + λz = λ       

 ……………. (17) 

Each of the euqtions (14), (15) and (16) represents the wave 

equation for the dimensional harmonic oscillator (see equation (125) 

of unit 4 for which the eigen values and normalized wave functions 

are given by equations (140) and (140A) of unit 4. By analogy, we 

have 

 

 



 

 

 

and λx, λy and λz restricted to the values 

 

 

The given values are given by 

 

Where n = nz + ny + nz may the called total quantum number. As the 

energy of this system depends only on the total quantum number, a l 

the energy levels except the lowest one are degenerate with the 

quantum weight   
 

 
          . Fig.2 represents a few 

energy levels together with their quantum weights and quantum 

numbers. 



 

 

 

Figure:2 

5.5. THE RIGID ROTATOR WITH FREE AXIS 

The system, consisting of two spherical particles attached together, 

separated by finite fixed distance and capable of rotating about an 

axis passing through the centre of mass and normal to the plane 

containing the two particles, constitutes, a rigid rotation. If these two 

particles are constrained, to remain in one plane, then the direction 

of the axis of rotations in fixed and so the system is called the rigid 

rotator with axis. If the plane of these two particles can move, then 

the axis of rotation is free to take any position in space and so the 

system is called the rigid rotator with free axis. In a diatomic 

molecule the atoms vibrate with respect to each other and so the 

distance between atoms will not be always constant; while the 

distance apart of the equilibrium position is constant. Thus, the 

system of diatomic molecules is not really rigid; however, it may be 

treated, at least as a first approximation, as a rigid rotator with free 

axis. 



 

 

 

Figure:3 

Energy for the rotator. 

The kinetic energy of a particle of mass m can be expressed as 

……………………….18 

where         are the components of the velocity of a particle along X, 

Y and Z axes respectively. 

the transformations between cartesian co-ordinates (x, y, z) and 

spherical co-ordinates (r, θ, ϕ) are given by 

 

so that the kinetic energy in spherical co-ordinates is expressed as 

…………………….19 

If the distance r of the particle from the origin is fixed, its derivative 

r will be zero, then from equation (19) the kinetic energy would be 



 

 

………………………………20 

Taking O, the centre of mass of the rotator, as origin, the K.E. of the 

particle of mass m1 is given by 

 

Similarly, the K.E. of the particle of mass m2 is 

 

Hence the total kinetic energy of the rotator will be 

 

As there is no potential energy of the rotator, total is given by 

 

………………………..21 

But     
      

    the moment of interia of the system about the 

axis passing through the centre of mass and perpendicular to the line 

joining the two masses. 

The equation (21) may be written as 

………………………………22 



 

 

The moment of inertia of the rotator may be expressed in a more 

convenient form as follows : 

According to definition of centre of mass     
         

     
, we have 

…………………………….23 

i.e.  

But  

i.e.  

Substituting this in eqn. (23) we get 

 

⸫  

Similarly 

  

Then the moment of intertia of the rotator may be expressed as 

 



 

 

 

⸫ ……………………..24 

where   

is called the reduced mass of the system. 

Form equation (20) and (22) it is evident that the rotator behaves like 

a single particle of mass μ given by eqn. (24) placed at a fixed 

distance, equal to unity (since r = 1) from the origin, which in this 

case in the centre of mass of the system. 

Wave equation for the rotator: The Schroedinger wave equation in 

three dimensions in spherical co-ordinates is given by  

 

For a rigid rotator we have seen that potential energy is zero r = 1 

and the mass m may be replaced by the moment of inertia l. 

Therefore the Schroedinger wave equation for a rigid rotator 

becomes 

………………………25 



 

 

This equation consists of two variable θ and ϕ which represent the 

processional motion of the rotator’s free axis and the rotation of the 

system respectively. 

Solution of wave equation : Eigen function for the rotator : 

Equation (25) may be solved by the method of separation of 

variable, i.e., the wave function ѱ(θ, ϕ) may be represented by 

 

where ϴ (θ) is function θ of alone and ф(θ) is the function of ϕ 

alone. 

Substituting in equation (25) and dividing by ϴ ф we get 

 

Multiplying this equation by sin
2
 θ we get 

or  

In this equation L.H.S. is a function of θ alone, while R.H.S. is a 

function of ϕ alone. Therefore if this equation is to be satisfied, both 

sides must be equal to the same constant, m
2
 (say) i.e. 

……………………..26 



 

 

and ………………………………27 

Equation (27) may be rewritten as 

 

the solution of above equation may be written as  

 

where                    

A is any arbitrary constant which may be chosen is such a way that 

the function is normalized i.e. 

or  

i.e.  

or  

i.e.  

Thus the normalized function is 



 

 

 

Multiplying equation (26) by 
 

     
, we get 

………………………28 

Let us now define a new variable x such that 

x = cos θ……………………..28(A) 

so that  

Then ……………….29 

And hence in general, we have 

…………………………….30 

⸫  

…………………..31 

Using equations (29), (30) and (31) equation (28) can be written in 

terms of variable x as 



 

 

……………….32 

where ……………………..33 

Equation (33) is known as Legendre’s equation. It has physical 

significance only for values of x between the limits of – 1 and + 1 

since x is equal to cos θ [equation (28A)]. 

In order to solve eqn. (33) let us substitute, for convenience. 

………………….34 

where X (x) is the function of x only. 

Equation (34) yields 

 

⸫  

………………35 

where  



 

 

Using equation (34) and (35), equation (32) becomes. 

 

Dividing this by           , we get 

…………….36 

or ………………..36A 

 

Now let us assume that X(x) may be expressed as a power series, i.e. 

 

so that   

and  

Substituting these values in equation (36) and simplifying, we get 

 

 



 

 

In order that the series may be zero for all possible values of x, the 

coefficients of individual powers of x must vanish separately, i.e., in 

general 

 

where n = 0, 1, 2, 3, …… 

or  

Substituting values of α and λ in above equation, we get 

……………………………………37 

This is called recursion formula for the coefficients in power series 

for X(x). 

In order to obtain a satisfactory wave function ѱ it is necessary that 

X(x) should be a polynomial breaking off after a finite number of 

terms, as in the case of harmonic oscillator. The series will break 

after nth term if the nominator of equation (37) is zero 

i.e.  

or …………………….38 

It has already been pointed out that m zero or an integer and n is also 

zero or integer. Therefore, the sum (n + m) may be replaced by I, is 

also zero or an integer. 



 

 

Then equation (38) gives 

…………………39 

 

Substituting this value of β in equation (27), we get 

…………………………40 

The solution of above of above equation contains the factor called 

the associated Legendre function  
     which may be defined as 

 

where P1(x) is Legendre polynomial of degree l. 

The solution of equation (40) is written as 

 

[since x = cos θ] 

where B is a constant which may be normalizing factor. 

According to orthogonal properties of associated Legendre’s 

Polynomials, 



 

 

and  

According to normalizing condition. 

 

i.e.  

i.e.  

i.e.  

Substituting value of B in (36A), the normalized wave function ϴ is 

given by 

 

The complete wave function or eigen function for the rigid rotator is 

given by 

 



 

 

or  

Eigen values or energy levels of the rigid rotator. Form equations 

(33) and (39), we have  

 

or  

l = 0, 1, 2, 3, …… 

This equation gives allowed values for the energy (i.e. eigen values) 

of  a rigid rotator with free axis. 

5.6 RIGID ROTATOR IN A FIXED PLANE 

If we consider the rotator to be only in XY plane, then θ = 90
o
 and 

hence the Schoredinger’s equation, in this case may be written as  

……………….41 

In this case ѱ = фm (ϕ), so that 

 

so that we have  



 

 

 

i.e. ………………42 

where …………………43 

Eigen function : The solution of equation (42) can be written as 

 

where A is arbitrary constant and m = 0, ± 1, ± 2, …….. 

According to normalization condition, 

 

or  

or  

i.e.  

⸫ The eigen functions are given by 



 

 

 

 

Eigen values : From equation (43), we have 

 

This equation represents the rotational energy eigen values of the 

rigid rotator. 

5.7 THE HYDROGEN ATOM 

Hydrogen atom may be regarded as a system fir two interacting 

point charges, the positively charged nucleus consisting of a proton 

and negatively charged electron, revolving around the nucleus. 

For a system of two or more particles the equation of motion can be 

more conveniently written in the form 

Hѱ = Eѱ        ……… (44) 

where H is the Hamiltonian operator, ѱ is the eigen function and E is 

thue energy of the whole system. 

If (x1, y1, z1) (x2, y2, z2) are the cartesian co-ordinates of the nucleus 

and the electron and m1 and m2 their masses respectively. The 

Hamiltonian of the system is given by 



 

 

 

where V is the potential energy. 

So the Schroedinger wave equation for the whole system is written 

as 

………………………………..45 

Where ѱT and ET are the total eigen function and the total energy 

respectively. 

Equation (45) may be written as  

……………………………………………46 

In general the potential energy V of the system may be written as 

 

 



 

 

Equation (46) can be separated into two equations one of which 

represents translational motion of the whole system i.e., the centre or 

mass and the relative motion of the two particles. In order to separate 

the two equation let us introduce the new variables      , the 

cartesian co-ordinates of the centre of mass of the system and (r, θ, 

ϕ) the polar co-ordinates of the electron relative to the nucleus. 

These new co-ordinates are related to the cartesian co-ordinates of 

the particles by the equations. 

 

 

Introducing these new variable in equation (46), we get 

 

…………………………………….47 

when   
    

     
                             

Let us now apply the principle of separation of variables to separate 

the two equations. For the purpose let us assume 



 

 

 

Substituting this value of ѱT in equation (47) and dividing by fѱ, we 

get 

 

 

In above equation L.H.S. in a  function of (     ). Therefore if 

above equation is to be satisfied both sides must be equal to a 

constant 2E/ℏ2
, (say) i.e. 

 

or 

……………48 

and

 



 

 

 or       

………………………………………..49 

 Equation (48) represents the equation of motion of a free particle of 

mass m1 + m2 and 

Energy (Er – E) : thus the translational motion of the centre of mass 

is the same as that of a free particle of mass m1 + m2 and energy (Er 

– E). Thus result corresponds to the classical result that the centre of 

mass moves in a straight line with constant speed. Equation (49) is 

identical with Schroedinger’s wave equation for a single particle of 

mass μ and total energy E (exclusive of the translational energy) 

moving under the influence of a potential function V(r) = -e
2
/r since 

for hydrogen atom Z = 1. The energy E of the relative motion is 

determined as the eigen value of this equivalent problem. 

In order to solve equation (49), let us express eigen function ѱ(r, θ, 

ϕ) as the product of three functions, viz. R(r) ϴ (θ) ф (ϕ), each of 

which is function of the one indicated variable, thus 

 

Substituting this in equation (13) and dividing by R ϴ ф, we get 

 

Multiplying this equation by r
2
 sin

2
θ and rearranging, we get 



 

 

 

In this equation L.H.S. is function of r and θ is independent of ϕ, 

while R. H. S. is function of ϕ alone. Therefore if this equation is to 

be satisfied each side must be equal to same constant m
2
 (say), i.e. 

………………………………………….50 

and   

or ……………..51 

Dividing equation (50) by sin
2
θ and rearranging, we get 

 

The L.H.S. of this equation is a function of the variable r only while 

R.H.S. is a function of the variable θ only. Therefore if above 

equation is to be satisfied each side must be equal to the same 

constant, β (say) i.e. 

 



 

 

or 

……………………..52 

and  

…………….53 

The solution of ϴ equation. As discussed in last article the solution 

of eqn. (53) can be written as 

 

where the constant m = 0, ± 2, ± 3, …. and is called the magnetic 

quantum number. 

The solution of ϴ equation. Let us substitute a new variable x such 

that 

x = cos θ          

in equation (53), then we have 

 

 

Therefore, we must have 



 

 

β = l (i + 1)         

where i = 0, 1, 2, 3, ….. and is called the azimuthal quantum 

number. 

Also solution of equation (53) may be written as 

 

where   
    is called the associated Legendre function. 

Solution of radial equation 

Substituting value of β in equation (52), we have 

 

or 

…………………………………………….54 

This equation with        
   

 
 is called the radial equation for 

hydrogen-like atoms and for Z = 1 it is radial equation for hydrogen 

atom. 

Substituting        
   

 
 in equation (54), we get 

…………55 



 

 

According to classical mechanics E < 0, i.e., negative energies 

correspond to elliptical orbits representing bound states in atomic 

system: while E < 0, i.e., positive energies correspond to hyperbolic 

orbits representing unbound states. 

In this case let us consider that the electron in bound is the hydrogen 

atom, i.e. E < 0. Then let us substitute 

and …………………………56 

in equation (55), so that we have 

…………….57 

Let us now introduce a new independent variable   such that 

 

so that we have  

 



 

 

Substituting these values of 
  

  
     

   

   
in equation (57) and 

dividing by 4α
2
, we get 

…………….58 

Asymptotic behaviour : If       equation (58) approaches the 

form 

 

The solution of above equation is 

 

As   may vary from 0 to  , former of these solutions will increase 

as   increases and so it will lead to an unacceptable wave function. 

On the other hand second solution decreases to zero as   (and hence 

r) increases to infinity. Consequently second solution is satisfactory. 

Recursion Formula : Keeping in mindthe asymptotic solution, the 

exact solution of equation (58), must be of the form 

 

where F( ) is another function of variable  . 

Substituting this in equation (34), we get 



 

 

…………………………………………………………..59 

where   

Let us now find a solution for F in the form 

………………………….60 

where G( ) is a power series in  , beginning with a non-vanishing 

constant, i.e., 

…….61 

 Differentiating equation (60), w.r. to  , we get 

 and   

 Substituting these values of F, F  and F” in equation (59), we get 

 

 

 Dividing above equation by  s
and arranging the terms, we get 

 



 

 

 If   is set equal to zero in above equation, we get 

                    [using 

(61)] 

  

 which yields  

 The boundary condition that R( ) be finite at     requires that s = 

l so that 

 ………62 

 Differentiating equation (61) w.r. to  , we get 

 …………………………63 

 and …………………64 

 Substituting value of G, G  and G” from (61), (63) and (64) in 

equation (62), we get 

 

If  this equation is to be satisfied the coefficients of various powers 

of   must vanish separately. 

 



 

 

 

or     

or …………………………65 

This expression is called recursion formula. Here k is an integer or 

zero. 

For any value of λ and l the series for F( ) consists of infinite 

number of terms and does not correspond to a satisfactory wave 

function; because value of the series as shown below, increases with 

increasing   and consequently with increasing r with the result that 

the function R(  , i.e., e-      s
 G( ) increases without limit as   

increases. 

To prove this consider the series. 

 

so that   

If k is large k + 1, then 

 

Also from (65), we have 



 

 

 

Thus the series for F( ) i.e.  s
 G( ), for large values of   behaves 

like  s
 e

ρ
. If this is the case, the function R( ) for the large of   will  

behave like                 : which approaches infinity as   

approaches infinity : thus making the wave function physically 

unacceptable. Thus the series governed by the recursion formula 

(65) does not lead a satisfactory wave function unless some 

restriction some restriction is introduced which make the series 

break off finite number of terms. 

Energy Eigen values for the hydrogen atom : 

From the above discussion we have seen that in order to obtain a 

satisfactory wave function the series will break off after a finite 

number of terms. The series will break off after  k
 if we see the 

nominator in the recursion formula (65) equal to zero, i.e. 

 

or ……………………………….66 

Here k is called the radial quantum number can have the values 1, 2, 

3, ……, while n is called total quantum number and can have the 

values 1, 2, 3,…. 



 

 

or  

so that  

[using (66)] 

The equation gives the energy eigen values for hydrogen atom with 

Z = 1 and is agreement with the old quantum theory and experiment. 

Radial wave function : Substituting λ = n in equation (62) we get 

……………..67 

 

 

 

in equation (67), we have 

 

The solution of this equation will be the associated Laguerre 

polynomial or more correctly the associated Laguerre polynomial 

multiplied by a constant factor i.e. 



 

 

 

 

where C is constant and may be made equal to the normalization 

factor 

 

Thus the total wave function R(r) is given by  

………………..68 

The normalization condition, for the physically significant interval 

of zero to infinity is 

…………………….69 

Here the factor r
2
 is necessary to convent the length the length dr 

into an element of volume. 

We have 

 



 

 

……………………..70 

where 
 

  
 

   

ℏ 
, a0 being Bohr’s radius. 

From (70) 

so that  

Substituting values of R(r), R*(r), r and dr in equation  (69), we get 

 

i.e.  

i.e.  

or  

Substituting this value of C in (68), the radial wave function may be 

represented by 

……………………………………………71 



 

 

The first radial functions, found from equn. (71), are 

 

Complete wave function : The complete wave function or the 

normalized eigen functions for hydrogen like atoms are 

 

with  

and

 

 

The real forms of the complete eigen function ѱnlm. Exclusive of 

spin, for various values of n, l and m are given below : 



 

 

 

If Z = 1, these wave function represent specifically the eigen 

function of hydrogen atom. 

5.8 DEGENERACY 

The energy eigen values given by equation (48) of section 3.5 

depend only on n and hence are degenerate with respect to booty l 

and m. For each value of n, l can take value from o to n – 1 and for 

each or these l values, m can take values from – l to + l. Then the 

degeneracy of the energy level En is 

 

The degeneracy with respect to m is the characteristic of the central 

force i.e. the force field depending only on the radial distance r, 

while the degeneracy with respect to lis characteristic of the 

Coulomb field. In the presence of some external field (such as a 

magnetic field) (2l + 1), fold m degeneracy disappears and the level 

is spited up into n
2
 different energy levels. 

The existence of the degenerate energy level means that the linear 

combinations of the corresponding eigen function are the solution of 



 

 

the wave equation with the same energy. For m degeneracy nth 

linear combination of the function Yim (θ, ϕ) = ϴim (θ) фm (θ) can be 

found that correspond to new choice of the polar axis. In general the 

degeneracy will occur whenever the wave equation is solved in 

different co-ordinate systems; because in the absence of the 

degeneracy the wave functions obtained in different co-ordinate 

system would differ only by a multiplying constant, which is usually 

not possible. However, there occurs an exception in a general central 

field for l = 0 where the wave function is spherically symmetric and 

has the same form for all orientations of the polar axis : 

consequently these will be no degeneracy. A similar exception 

occurs for hydrogen atom when n = 1, where the solution obtained 

by spherical and parabolic separation of the wave equation are 

identical. 

5.9 THE NORMAL STATE OF THE HYDROGEN ATOM 

In the case of normal state of hydrogen atom (Z = 1, n = 1, l = 0, m = 

0) the wave function takes the form 

 

Then the probability distribution function of the electron relative to 

the nucleus is given by 

 

The probability that the electron will lie in the volume element 



 

 

 

is given by 

 

The probability that the electron will lie between distance r and r + 

dr from the nucleus irrespective of its angular distribution is given 

by 

 

 

The radial distribution function P(r) dr is shown in fig. 3.4 together 

with ѱ100 with |ѱ100|
2
. The dotted curve represents the probability 

distribution function for a Bohr orbit 

The most probable distance of the electron from the nucleus, i.e. the 

value of r at which P(r) is maximum may be obtained as follows : 

For the most probable distance r, P(r) should be maximum, 

i.e.,    



 

 

or    

which gives 

r = a0 = Bohr’s radius. 

Thus the most probable distance of the electron from the nucleus in 

the normal state of hydrogen atom is equal to the Bohr’s radius. 

 

Figure:4 

5.10     SUMMARY: 



 

 

In quantum mechanics description of a particle in spherical coordinates, 

a spherically symmetric potential, is a potential that depends only on the 

distance between the particle and a defined center point. In particular, if 

the particle in question is an electron and the potential is derived 

from Coulomb's law, then the problem can be used to describe a hydrogen-

like (one-electron) atom (or ion). 

In the general case, the dynamics of a particle in a spherically symmetric 

potential are governed by a Hamiltonian of the following form: 

  

Where  is the mass of the particle,  is the momentum 

operator, and the potential  depends only on , the modulus of 

the radius vector r. The quantum mechanical wavefunctions and energies 

(eigenvalues) are found by solving the Schrödinger equation with this 

Hamiltonian. Due to the spherical symmetry of the system, it is natural to 

use spherical coordinates  . When this is done, the time-

independent Schrödinger equation for the system is separable, allowing the 

angular problems to be dealt with easily, and leaving an ordinary 

differential equation in  to determine the energies for the particular 

potential  under discussion. 

5.11 TERMINAL QUESTIONS 

1. Obtain Schrödinger’s equation for spherically symmetric 

potential in spherical co-ordinates. 

https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Coulomb%27s_law
https://en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics)
https://en.wikipedia.org/wiki/Quantum_mechanical
https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
https://en.wikipedia.org/wiki/Spherical_coordinates
https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
https://en.wikipedia.org/wiki/Separation_of_variables


 

 

2. Obtain Schrödinger’s equation for spherically symmetric case 

of three-dimensional harmonic oscillator. Solve it obtain eigen 

functions and eigen values. 

3. Obtain and solve the Schrödinger’s equation for a rigid rotator 

with free size. 

4. Solve Schrödinger’s equation for the hydrogen atom and 

discuss the radial wave-function. 

5. Obtain and solve the radial equation for the hydrogen atom. 

Calculate the most probable distance of the electron from the 

nucleus. 

5.12 Answer and Solution of Terminal Question: 

1.Section 5.3 

2. Section 5.4 

3. Section 5.5 

4. Section 5.7 

5. Section 5.7 

5.13 Suggested Readings: 

1. Introduction to Quantum Mechanics: David J. Griffiths. 

2. Quantum Mechanics: Noureddine Zettili. 

3. Elements of Quantum Mechanics: Kamal Singh, S.P.Singh 

4. Quantum Mechanics: Chatwal and Anand  
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6.1. INTRODUCTION: 

There are many systems in nature that are made of several particles of the 

same species. These particles all have the same mass, charge, and spin. For 

instance, the electrons in an atom are identical particles. Identical particles 

cannot be distinguished by measuring their properties. This is also true for 

classical particles. In classical mechanics we can always follow the 

trajectory of each individual particle, i.e., their time evolution in space. The 

trajectories identify each particle in classical mechanics, making identical 

particles distinguishable. In quantum mechanics the concept of trajectory 

does not exist and identical particles are indistinguishable 

Two particles are said to be identical if all their intrinsic properties (mass, 

spin, charge, etc.) are exactly the same: no experiment can distinguish one 

from the other. Thus, all electrons in the universe are identical, as are all the 

protons and all the hydrogen atoms. Note that this definition is independent 

of the experimental conditions. Even if, in a given experiment, the charges 

of the particles are not measured, an electron and a positron can never be 

treated as identical particles. An important consequence can be deduced 

from this definition: when a physical system contains two identical 

particles, there is no change in its properties or its evolution if the roles of 

these two particles are exchanged. In classical mechanics, the presence of 

identical particles in a system poses no particular problems. Each particle 

moves along a well-defined trajectory, which enables us to distinguish it 

from the others and follow it throughout the evolution of the system. It is 

immediately apparent that the situation is radically different in quantum 

mechanics, since the particles no longer have definite trajectories, but rather 

are treated in a probabilistic manner. For example, in figure 2 two identical 



 

 

particles approach one another. When the two particles are still far away 

from each other, they are distinguishable due to their spatial separation: we 

can label them “1” and “2”. But when they interact with each other (when 

they collide), we lose track of which is which, so, looking at figure 3, we 

are not sure which particle hits the detector (labeled “D”). Nothing in the 

theory of quantum mechanics enables us to determine which particle hits 

the detector. The Symmetrization Postulate We add a new postulate to the 

theory of quantum mechanics to deal with this. Statement of the Postulate 

When a system includes several identical particles, only certain 

wavefunctions can describe its physical states. Physical wavefunctions are, 

depending of the nature of the indentical particles, either completely 

symmetric or completely antisymmetric with respect to permutation of 

these particles. Those particles for which the physical wavefunctions are 

symmetric are called bosons, and those for which they are antisymmetric, 

fermions. The symmetrization postulate thus limits the possible 

wavefunctions for a system of identical particles. From the point of view of 

this postulate, particles existing in nature are divided into two categories. 

All currently known particles obey the following empirical rule: particles of 

half-integral spin (electrons, positrons, protons, neutrons, muons, etc) are 

fermions, and particles of integral spin (photons, mesons, etc) are bosons. 

Once this rule has been verified for all the particles which are called 

“elementary”, it holds for all other particles as well, inasmuch as they are 

composed of these elementary particles. Consequently, nuclei whose mass 

number (the total number of nucleons) is even 2 are bosons, and those 

whose mass number is odd are fermions. Thus, the nucleus of the 3He 

isotope of helium is a fermion, and that of the 4He isotope, a boson. 



 

 

Predictions based on this principle, which are often spectacular, have 

always been confirmed experimentally. 

 

 

 

 

6.2. OBJECTIVES: 

After studying this unit, student should able to: 



 

 

 Know about Distinguishable and Indistinguishable Particles. 

 Explain the concept of Spin. 

 Discuss Pauli Spin Matrices. 

 Define Exchange Operator  

 Explain the Concept of Pauli Exclusion Principle 

6.3. DISTINGUISHABLE AND INDISTINGUISHABLE    

PARTICLES: 

Distinguishable Particles: 

It is also known as classical particles. They follow classical statistics. 

MB Statistics. Large distance and energy Barrier  

Indistinguishable Particles: 

It is also known as Quantum particles. They follow Quantum Statistics. 

Small distance and Barrier. 

 

 



 

 

 

6.4 SYMMETRIC AND ANTI-SYMMETRIC WAVE FUNCTION  

Let us consider a system of n identical indistinguishable particles. The wave 

function of the system consisting of n particles is Ψ(1,2,3,4……….n, t). 

The Schrödinger equation for the above system of particles is written as  

 

 where each of the numbers represents all the position and spin coordinates 

of one of the particles. As the particles are identical, Hamiltonian  of the 

system is symmetrical in its arguments. Two types of solutions of equation 

(1) are possible for the wave function of Ψ; namely  

(i) Symmetric wave function   

 (ii) anti-symmetric wave function.  



 

 

Symmetric wave function (ΨS): A wave function is said to be symmetric 

if the interchange between any pair of particles among its arguments do 

not change the sign of the wave function.  

Anti-symmetric wave function (ΨA): A wave function is said to be anti-

symmetric if the interchange between any pair of particles among its 

arguments change the sign of the wave function. This may be seen as 

follows: 

 



 

 

 

                  



 

 

                                

6.5 CONCEPT OF SPIN 

S.A. Goudsmit and G.E. Uhlenbeck, in 1925, recommended that an 

electron has an inherent angular momentum that is a magnetic moment 

that is recognized as spin. In atomic physics, the inherent angular 

momentum of a particular particle is parametrized by spin quantum 

numbers. The spin quantum number is the fourth number. The rest three 

are a principal quantum number, azimuthal, and magnetic quantum 

number. The spin quantum number explains the unique quantum state of 

an electron. This is nominated as ‘s’. 

The spins play a noteworthy role in quantum mechanics in computing the 

characteristics of elementary units like electrons. The spin direction of the 

particle regulates several things like the spin quantum number, angular 

momentum, the degree of freedom, etc.  

What is Electron Spin? 

https://byjus.com/physics/quantum-mechanics/


 

 

The electron spin is one of the three inherent properties of the electrons; 

the others are the mass and charge of the electron. The electron spin is 

described as the electron spinning around its axis. 

It is articulated as: 

 

Where, 

 s is equivalent to a quantized spin vector. 

 The spin vector is articulated as ||s||. 

 The spin quantum number (s) is associated with the spin angular 

momentum and h is Planck’s constant. 

The spin quantum number can be articulated as: 

 

Any non-negative integer can be n. 

The permitted values of the spins are 0, 1/2, 1, 3/2, 2, etc. 

The intrinsic angular momentum of the Electron is signified by quantum 

number 1/2 

The total angular momentum s is articulated by: 

 

https://byjus.com/physics/angular-momentum/


 

 

Where, 

the reduced Planck’s constant is ℏ  

ℏ  = h/2π. 

Electron Spin Theory 

As in classical theory, the electron spin theory describes the electron as a 

quantum particle instead of a simple sphere. 

The theory says that “the electron spin direction and its influence on 

certain properties like the atom’s magnetic properties”. 

 

The electron can spin in two directions: 

1. Spin up 

2. Spin down 

The spin up and spin down directions correspond to the spinning in 

the “+z” or “–z” direction. These spins (spin up and spin down) are the 

particles that have spin “s” equal to 1/2, i.e. for electrons. 



 

 

In quantum theory, the electron is thought of as the minute magnetic bar, 

and its spin points to the north pole of the minute bar. If two proximate 

electrons have a similar spin direction, the magnetic field formed by them 

strengthens each other, and therefore a strong magnetic field is gained. If 

the proximate electrons have an opposite spin direction, the magnetic field 

formed by them cancels each other, and no magnetic field is existent. 

6.6 PAULI SPIN MATRICES 

The Pauli spin matrices (named after physicist Wolfgang Ernst Pauli) are a set of unitary Hermitian matrices which 

form an orthogonal basis (along with the identity matrix) for the real Hilbert space of 2 × 2 Hermitian matrices and for 

the complex Hilbert spaces of all 2 × 2 matrices. They are usually denoted: 

 

 

https://www.theochem.ru.nl/~pwormer/Knowino/knowino.org/w/indexc007.html?title=Wolfgang_Ernst_Pauli&action=edit&redlink=1
https://www.theochem.ru.nl/~pwormer/Knowino/knowino.org/wiki/Hermitian_matrix.html
https://www.theochem.ru.nl/~pwormer/Knowino/knowino.org/wiki/Identity_matrix.html
https://www.theochem.ru.nl/~pwormer/Knowino/knowino.org/w/index7205.html?title=Hilbert_space&action=edit&redlink=1


 

 

 

6.7 EXCHANGE OPERATOR  

In quantum mechanics, the exchange operator  , also known 

as permutation operator, is a quantum mechanical operator that acts on 

states in Fock space. The exchange operator acts by switching the labels on 

any two identical particles described by the joint position quantum state 

 Since the particles are identical, the notion of exchange 

symmetry requires that the exchange operator be unitary. 

In three or higher dimensions, the exchange operator can represent a literal 

exchange of the positions of the pair of particles by motion of the particles 

in an adiabatic process, with all other particles held fixed. Such motion is 

often not carried out in practice. Rather, the operation is treated as a "what 

if" similar to a parity inversion or time reversal operation. Consider two 

repeated operations of such a particle exchange: 

 

Both signs are realized in nature. Particles satisfying the case of +1 are 

called bosons, and particles satisfying the case of −1 are called fermions. 

https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Operator_(quantum_mechanics)
https://en.wikipedia.org/wiki/Fock_space
https://en.wikipedia.org/wiki/Identical_particles
https://en.wikipedia.org/wiki/Quantum_state
https://en.wikipedia.org/wiki/Exchange_symmetry
https://en.wikipedia.org/wiki/Exchange_symmetry
https://en.wikipedia.org/wiki/Unitarity_(physics)
https://en.wikipedia.org/wiki/Dimension
https://en.wikipedia.org/wiki/Adiabatic_process
https://en.wikipedia.org/wiki/Parity_inversion
https://en.wikipedia.org/wiki/T-symmetry
https://en.wikipedia.org/wiki/Boson
https://en.wikipedia.org/wiki/Fermion


 

 

The spin–statistics theorem dictates that all particles with integer spin are 

bosons whereas all particles with half-integer spin are fermions. 

6.8 PAULI EXCLUSION PRINCIPLE  

Pauli’s Exclusion principle is one of the important principles along with 

Aufbau’s Principle and Hund’s Rule in chemistry. Learning about it is 

crucial for students especially when they are studying about electrons. 

Pauli’s Exclusion principle basically helps us to understand the electron 

arrangements in atoms and molecules and it also gives an explanation for 

the classification of elements in the periodic table. In this section, we shall 

study the Pauli exclusion principle in detail and learn about all the 

underlying concepts. 

What is Pauli Exclusion Principle? 

The Pauli exclusion principle states that in a single atom no two electrons 

will have an identical set or the same quantum numbers (n, l, ml, and ms). 

To put it in simple terms, every electron should have or be in its own 

unique state (singlet state). There are two salient rules that the Pauli 

Exclusion Principle follows: 

 Only two electrons can occupy the same orbital. 

 The two electrons that are present in the same orbital must have 

opposite spins or they should be antiparallel. 

However, Pauli’s Exclusion Principle does not only apply to electrons. It 

applies to other particles of half-integer spin such as fermions. It is not 

relevant for particles with an integer spin such as bosons which have 

symmetric wave functions. Moreover, bosons can share or have the same 

https://en.wikipedia.org/wiki/Spin%E2%80%93statistics_theorem
https://en.wikipedia.org/wiki/Spin_(physics)
https://byjus.com/chemistry/atoms-and-molecules/


 

 

quantum states, unlike fermions. As far as the nomenclature goes, 

fermions are named after the Fermi–Dirac statistical distribution that they 

follow. Bosons, on the other hand, get their name from the Bose-Einstein 

distribution function. 

Formulation of the Principle 

An Austrian physicist named Wolfgang Pauli formulated the principle in 

the year 1925. With this principle, he basically described the behaviour of 

the electrons. Later in the year 1940, he expanded on the principle to cover 

all fermions under his spin-statistics theorem. Meanwhile, fermions that 

are described by the principle include elementary particles such as quarks, 

electrons, neutrinos, and baryons. 

Wolfgang Pauli was also awarded the Nobel prize in the year 1945 for the 

discovery of the Pauli Exclusion principle and his overall contribution to 

the field of quantum mechanics. He was even nominated by Albert 

Einstein for the award. 

 

https://byjus.com/chemistry/electrons/
https://byjus.com/chemistry/electrons/
https://byjus.com/physics/quantum-mechanics/


 

 

Nuclear Stability and Pauli Exclusion Principle 

The nuclei in an atom consist of neutrons and protons which are held 

together by the nuclear force. However, protons tend to repel each other 

via electromagnetic force as a result of their positive charge. Basically, 

these two forces are working against (competing) each other thereby 

leading to the stability of nuclei. Meanwhile, you will find only certain 

sets or combinations of protons and neutrons that form stable nuclei. The 

nucleus is mostly stabilized by the neutrons as attract each other and 

protons. This further helps counterbalance the electrical repulsion between 

protons. When this happens, the number of protons goes up. In essence, an 

increasing ratio of neutrons to protons is needed to form a stable nucleus. 

In case if there are a larger number of (neutrons also obey the Pauli 

exclusion principle) or too few neutrons for a given number of protons, the 

nucleus of the atom is not stable. This will lead to radioactive decay. 

Meanwhile, Pauli’s exclusion principle also has an effect on the critical 

energy of fissile and fissionable nuclei. For example, if we look at 

actinides that have an odd neutron number they are usually fissile or in 

other words fissionable with slow neutrons. On the other hand, actinides 

that have even neutron number they are usually not fissile or we can say 

that are fissionable with fast neutrons. Similarly, due to the Pauli exclusion 

principle, heavy nuclei with an even number of protons and neutrons are 

very stable due to the presence of ‘paired spin’. Alternatively, nuclei with 

an odd number are unstable. 

Importance And Applications of Pauli Exclusion Principle 



 

 

 The Pauli exclusion principle helps to explain a wide variety of 

physical phenomena such as the electron shell structure of atoms and 

the way atoms share electrons. 

 It helps in describing the various chemical elements and how they 

participate in forming chemical bonds. 

 The periodic table can also be defined with the help of this principle. 

 Solid-state Properties: Many electrical, optical, magnetic, 

mechanical and chemical properties of solids are the direct 

consequence of Pauli exclusion. 

 The principle helps in describing the stability of large systems with 

many electrons and many nucleons. 

 Apart from chemistry, the principle is a fundamental principle in 

quantum mechanics which is mainly studied in physics. 

 It is also used in astrophysics. 

6.9 SUMMARY: 

The four sets of quantum numbers are: 

Principal quantum number (n) – Signifies the size of the atomic orbital 

Azimuthal quantum number (l) – signifies the shape of the atomic orbital 

Magnetic quantum number (ml) – signifies the orientation of atomic orbitals in space. 

Spin quantum number (ms) – signifies the electron’s spin in the atomic orbital. 

1. Electrons are part of subatomic particles called fermions. 

2. Fermions are particles with half-integer spin. 

https://byjus.com/jee/chemical-bonding/
https://byjus.com/chemistry/subatomic-particles/


 

 

3. All fermions including neutrons and protons (derived particles) obey 

the Pauli exclusion principle. 

4. Pauli exclusion principle states that no two identical electrons 

(fermions) can have the same quantum state. 

5. Bosons, which have integer values of spin do not obey the Pauli 

exclusion principle. Photons, gravitons, gluons are an example of 

bosons. 

6.10 TERMINAL QUESTIONS: 

1.Explain Distinguishable and Indistinguishable Particles. 

2.Expalin Symmetric and Anti-symmetric Wave Function. 

3.Discuss Pauli Exclusion Principle. 

6.11 ANSWER AND SOLUTION OF TERMINAL QUESTION: 

1.Section 6.3 

2.Section 6.4 

3.Section 6.8 

6.12 SUGGESTED READINGS: 

1. Introduction to Quantum Mechanics: David J. Griffiths. 

2. Quantum Mechanics: Noureddine Zettili. 

3. Elements of Quantum Mechanics: Kamal Singh, S.P.Singh 

4. Quantum Mechanics: Chatwal and Anand  
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7.1 INTRODUCTION: 

There are three major approximation schemes: perturbation theory, 

variational methods and WKB approximation. Our interest is primarily in 

obtaining bound state energy and eigenstates. In perturbation theory, we 

deal with systems whose Hamiltonians are slightly different from systems 

which can be exactly solved. There are two distinct cases depending on 

whether the solution of the solvable Hamiltonian has degenerate 

eigenvalues. We will first consider the case where the exactly solvable 

problem has non-degenerate eigenvalues. Examples of systems where we 

employ non-degenerate perturbation theory are free particles in weak 

electric or magnetic field. The formalism is also known as Rayleigh 

Schrödinger perturbation theory 

7.2 OBJECTIVES: 

After studying this unit, student should able to: 

 Know about Perturbation Theory 

 Discuss about Time Independent Perturbation Theory 

 Explain the concept of Variation Method. 

 Discuss about Time Dependent Perturbation Theory   

7.3 STATIONARY PERTURBATION THEORY (NON-

DEGENERATE CASE) 

The stationary perturbation theory is concerned with finding the 

changes in the energy levels and eigen functions of a system when a 

shall disturbance is applied. In such cases, the Hamiltonian can be 

broken up into two parts, one of which is large and represents a 



 

 

system for which the Schroedinger equation can be solved exactly, 

while other part is small and can be treated as perturbation term. If 

the potential energy is disturbed by the influence of additional 

forces, the energy levels are shifted and for a weak perturbation, the 

amount of shift can be estimated if the original unperturbed states 

are known. 

Consider a physical system subjected to a perturbation which shifts 

the energy levels slightly : of course the arrangement remains this 

same : Mathematically the effect of perturbation is to introduce 

additional terms in the Hamiltonian of the unperturbed system (or 

unchanged system). This additional term may be constant or it may 

be a function of both the space and momentum co-ordinates. 

In other words, the Hamiltonian H in the Schroedinger equation can 

be written as the sum of two parts ; one of these parts H
0
 

corresponds to unperturbed system and other part H  corresponds to 

perturbation effect. Let us write Schroedinger wave equation 

………………………………1 

in which Hamiltonian    represents the operator 

 

Let E be the eigen value and ψ is eigen function of operator   .    is 

the sum of two H
0
 and H

 
 already defined 

 



 

 

where H
 
 is small perturbation term. 

Let   
  and   

 . be a particular orthonormal eigen function eigen 

value of unperturbed Hamiltonian H
0
, i.e., 

 

If we consider non-degenerate system that is the system for which 

there is one eigen function corresponding to each eigen value. In the 

stationary system, the Hamiltonian H  does not depend upon time 

and it is possible to expand H in terms of some parameter λ yielding 

the expression 

 

in which λ has been chosen in such a way that equation (1) for λ = 0 

reduces to the form 

………………………………………2 

It is to be remembered that there is one eigen function ψ and energy 

level E
0
 corresponding to operator H

0
. Equation (2) can be directly 

solved. This equation is said to be the “wave equation of 

unperturbed system” while the terms 

               are called the perturbation terms. 

The unperturbed equation (2) has solutions 

 

called the unperturbed eigen function and corresponding eigen 

values are  



 

 

 

The function   
   forma complete orthonormal set, i.e., they satisfy 

the condition 

…………………………………3 

where     is Kronecker delta symbol defined as 

 

Now let us consider the effect of perturbation. The application of 

perturbation doe not cause large changes : hence the energy values 

and wave function for the perturbed system will be near to those for 

the unperturbed system. We can expand the energy E and the wave 

function ψ for the perturbed system in terms of λ, so 

…………………………4 

…………………………..5 

If the perturbation is small, then terms of the series (4)  and (5) will 

become rapidly smaller i.e., the series will be convergent. 

Now substituting (3), (4) and (5) in equation  (1), we get 

 

On collecting the coefficients of like power of λ. 



 

 

 

If this series is properly convergent i.e., equal to zero for all possible 

values of λ, then coefficients of various powers of λ must vanish 

separately. This equation will have successively higher orders of the 

perturbation. The coefficient of λ
0
 gives 

…………………….6a 

The coefficient of λ gives the equation 

or …………….6b 

……………………………………………..6c 

Similarly, the coefficient of λ
3
 yield 

………………………………………………………6d 

But is we limit the total Hamiltonian H upto     , i.e., if we put 

         , then equations (7) will be modified as 

…………………………………………………………..7 



 

 

First order perturbation : Equation (7b) is 

 

To solve this equation we use expansion theorem. As perturbation is 

very small, the deviations form unperturbed state are small, therefore 

the first order perturbation correction function   
  can be expanded 

in terms of unperturbed functions   
      

      
      since   

  

form a normalized orthonormal  set.  

Hence we write 

………………………….8 

Substituting   
   from (8) in (7b), we get 

i.e.  

Using     
    

    
  , we get 

 

Multiplying above equation by    
    and integrating over 

configuration space, we get 

 



 

 

Using the condition of orthonormalization of     , 

i.e.  

we get  

 

Using the notations 

 

we get 

…………………….9 

Evaluation of first order energy   
 : Setting m = k in eqn. (9), we 

observe that 

 

 or  

This expression gives first order perturbation energy correction. 

Accordingly the “first order perturbation energy correction for a 

non-degenerate system is just the expectation value of first order 



 

 

perturbed Hamiltonian (H’) over the unperturbed state of the 

system”. 

Evaluation of first order correction to wave function: 

Equation (9) may be expressed as 

……………………10 

For m   k, equation (10) gives 

or  

Setting ……………………..11 

If we retain only first order correction terms, then 

………………………….12 

⸫ Keeping in view equation (8) and (11), we get from (12b), 

……………….13 

where prime (or dash) on summation indicates that the term l = m 

has been omitted from the summation (or it reminds that l   k). 



 

 

The value of constant ak may be evaluated by requiring that ψk is 

normalized, i.e., 

 

Substituting ψk from (13) and retaining only first order terms in λ we 

get 

 

or  

This equation indicates that the real part of ak is zero and still it 

leaves an arbitrary choice for the imaginary part. 

Let us take ak = i y. 

The wave function ψk can then be expressed as 

………………………14 

The term containing y merely gives a phase shift in the unperturbed 

function    
    and for normalization, this shift can be put equal to 

zero, so that equation (14) gives. 

 



 

 

The arbitrary λ can be put equal to 1 and it may be included in 

symbols, i.e.                λ H’→ H’ ; then eigen values and eigen 

functions of the system upto first order perturbation correction terms 

are expressible as  

 

Second Order Perturbation : The  second order perturbation 

equation (7c) is 

 

Expanding second order wave functions    
   as a linear combination 

of unperturbed  orthonormal wave functions   
    by expansion 

theorem, i.e., 

 

 

Using unperturbed Schroedinger equation  

 



 

 

Multiplying by   
  and integrating  over all space, we get 

 

Using orthonormal property of unperturbed wave function ψ
0
’s, we 

get 

 

………………………………15 

Evaluation of second order energy correction : 

Setting n = k in (15), we get 

 

…………………………………16 

…………………17 

Considering the second term in equation (17), we note that term is 

zero  since ---- for all values of l except for l = k and this term is not 

included in the summation. Then equation (17) gives 

 



 

 

 

This equation gives second order energy correction term   
 . The 

prime on summation reminds the omissional of the term l = k in the 

summation. 

Evaluation of second order correction to wave function : 

For m   n, equation (15) gives. 

 

This gives 

 

Setting n = m, we get 

 

This equation determines all coefficients bm’s but not bk. The 

coeffimient  bk is determined by the normalization condition for ψk 

retaining only terms upto second order in λ. 

………………………………………………18 



 

 

The normalization condition for ψk gives 

 

Substituting ψk from (18); we get 

 

 

     

 

As λ
2
   0, therefore, we have 

or  

The real part of bk is fixed by this equation but the imaginary part is 

arbitrary. The choice  of imaginary part simply affects the phase of 



 

 

the unperturbed wave function and it does not affect the energy of 

the system. Hence the imaginary part of bk may be equal to zero. 

Thus, we have 

 

Then  

 

Thus the complete eigen values and eigen function corrected upto 

second order perturbation terms are given by  

 

and  

 

If we choose arbitrary λ = 1 or include λ in symbols, i.e. λH  → H  ; 

the above equations take the conventional form 

 



 

 

 

7.4 THE VARIATION (RAYLEIGH-RITZ) METHOD 

There are many problems of Quantum Mechanics which cannot be 

conveniently solved either by direct solution of wave equation or by 

the use of perturbation theory. The Helium atom is such a system. 

No direct method of solving the wave-equation has been found for 

this atom and the application of perturbation theory is unsatisfactory 

because the first order approximation is not accurate enough while it 

is troublesome to calculate the higher order approximations. An 

approximation method, which is conveniently used for such system 

is variation method. The variation method is specially applicable for 

the interest in chemical problems. In special cases variation method 

can be extended to the state of the system other than lowest one. The 

variation method may also be applied to the lowest to the lowest 

state of the given resultant angular momentum and of given electron 

spin multiplicity. 

The expectation value of energy innormalised state ψ is given by 

……………………………….19 

If we choose the wave function ψ as variable function, then the 

integral (19) is known as variation integral and gives an upper limit 

to the energy E0 of the lowest state of the system. The function ψ is 



 

 

the variation function and its choice may be quite arbitrary, but more 

wisely, it is chosen such that E approaches more  closely to E0. 

If the variation function ψ equals the function ψ0 of the lowest state, 

then energy E will be equal to E0, i.e., 

 

If ψ   ψ0, then by expansion  theorem ψ may be expanded in terms 

of a complete set of orthonormal functions ϕ0, ϕ1, ϕ2 …. obtaining 

…………………………..20 

Substituting this in equation (1), we get 

 

But   

we have 

 

 



 

 

………………………………21 

Subtracting ground state E0 from both sides, we get  

 

As |an|
2 
 is positive and En   E0 (always) for all values of n; therefore 

right hand side is positive or zero. Thus we have proved that < E > is 

always an upper limit to E0, i.e. 

 

This theorem is the basis of the variation method for the calculation 

of the approximate eigen value of the system. If we choose a number 

of wave functions ψ1, ψ2, ψ3, ……. and calculate the values E1, E2, 

E3, …. corresponding to them, then each of these values of E is 

greater than the energy E0, so that the lowest one is the nearest to E0. 

Often the functions ψ1, ψ2, ψ3, ……. are only distinguished by 

having different values of some parameter λ the process of 

minimizing E with respect to this parameter may then be carried out 

in order to obtain the best approximation to E0, which from the trial 

function ψ will follow. If the trial function ψ is so chosen that it 

involves the variation parameter which may vary considerably, E0 

e.g. in the case of helium atom this been applied with great success. 

If function ψ is not normalized, equation (19) can be written as 

……………………..22 



 

 

Evaluating the integral on R.H.S. of equation (19) or (22) with a trial 

function ψ that depends on the number of parameters and varying 

these parameters until the expectation value of the energy is 

minimum so that 

 

These parameters are such that the expectation value of the energy 

takes a value 

 

Application to the Excited State : The variation method can also 

be used to calculate an upper limit for one of the higher energy level 

if the trial function is orthogonal to the eigen function of all the 

lower states. Taking the energy levels in ascending series E0, E1, E2, 

…., then if ψ is orthogonal to ϕi for i = 0; 1, ….. , n, it is easily seen 

from (20) that the corresponding coefficient’s ai are all zero and an 

inequality can be obtained from (21). 

The technique of choosing the trial function for evaluation of energy 

for any excited is that this function must be orthogonal to the eigen 

functions of all the lower states (arranged in ascending order of 

energy). For nth excited state the trial function is chosen of the form 

 



 

 

where  X is an arbitrary function and ϕn’s (i.e. ϕ0, ϕ1, ϕ2, …. ϕn -1) 

represent the eigen function of lowest n-states. If we expand ψ in the 

complete of ϕn’s we find that 

 

Then we have 

 

This equation gives an upper limit to the energy of the nth state. 

There are several cases in which such a situation may arise. The 

simplest example is a one-dimensional problem in which 

independent variable x goes from           and the potential 

function is an even function of x, i.e. 

 

The wave function belonging to the lowest level of such a system is 

always an even function of x i.e.  

 

while the ϕ1 odd function, i.e. 

 

Therefore if we choose an even function for ψ we can only say that 

En   E0 ; but if it is an odd function a0 will be zero and the relation E 



 

 

  E1 will hold. For such a problem the variation method may be 

used to obtain the lowest energy levels. 

7.5 PHYSICAL APLICATIONS OF VARIATION METHOD 

Ground State of Helium: We use the variation method with a 

simple trial function to obtain an upper limit for the energy of the 

ground state of the helium atom. The helium atom consists of a 

nucleus of charge +2e and two electrons each of charge ‘-e’. If we 

consider the nuc leus at rest the Hamiltonian will be 

  

where   
  and   

  and Laplacian operators for the first and second 

electrons at a distance r1 and r2 from the nucleus, r12 = |r2 – r1| is the 

distance between two electrons. 

If the interaction energy 
  

   
 between two electrons were not present, 

the ground state eigen function of he would be product of two 

normalized hydrogen like wave functions u100 (r1) u100 (r2) given by 

 

with  

We shall use ψ(r1, r2) as a trial function and treat z to be the variation 

parameter, so that it is not necessarily equal to 2. 



 

 

 

 

The expectation value of Hemitonian H is the sum expectation 

values of kinetic energy and potential energy individually. 

H = K.E. + P.E. 

 

then  

Now the expectation values of hydrogen like atoms (having one 

electron) with z atomic number in general are 

 



 

 

But helium atom in ground state has two electrons, so will be twice 

of hydrogen like atom i.e. 

 

and  

Hence  

Electron Interaction Energy : The expectation value of the 

interaction energy between the electrons is  

 

Substituting, 

 

we get  

Solving the spherically symmetric integral by knowledge of 

electrostatics as in perturbation theory, we get 

⸫  



 

 

                           =
    

   
 

By solving we get z=1.69 

7.6 TIME DEPENDENT PERTURBATION THEORY 

It is generally impossible to obtain exact solution of the Schrodinger 

equation when the Hamiltonian depends upon time. Therefore, such 

an equation is solved by time-dependent perturbation theory also 

called the method of variation of constants. 

The total Hamiltonian is written as 

……………23 

where the unperturbed Hamiltonian H0 can be solved for its 

normalized eigen function  ϕn and its eigen value En i.e., we have 

 

Time dependent perturbation term H’ is small. Since H’ depends 

upon time, the stationary solution of the actual Schroedinger 

equation does not exist. The time dependent Schroedinger equation 

is  

…………………..24 

The energy eigen states of such a system are stationary; the time 

enters only in the phases according to  

………………25 



 

 

where an’s are time dependent constants and ϕ (r) is time 

independent. 

This equation represents solution of (24), therefore substituting 

value of ψ and H from (23) and (25) in (24), we get 

 

 

 

Multiplying both sides by ϕk* and integrating over configuration 

space, we get 

 

Now using orthonormality condition of ϕ’s i.e. 

 

we get  

Because in L.H.S. all terms will be zero excepted kth term due to the 

properties of Keonecker delta    , we have  



 

 

 

 

 

⸫ Time dependent constants an’s are given by 

……….26 

If we replace in equation (23) H’ by λH’ where λ is the parameter, 

then coefficient a’s can be expressed in parameter λ as follows : 

 

Substituting the value of an in equation (26) we get 

 

Comparing coefficients of different power of λ on both sides 

 

 



 

 

 

where  S = 0, 1, 2, ……     

 …………….. (27) 

 So we can get desired order in the perturbation. 

 Zeroth order calculation : from (27),  we have 

  

 Integrating, we obtain 

   
   
                   

 For convenience without loss of generality, we may put 

  

 according as the initial state m is one of a discrete or continuous set. 

 Accordingly  

 and  

 Thus in the sum we have only one term and equation (26) may be 

expressed as 

 ………………….28 

 Ist order perturbation. 



 

 

 Integration of (28), gives 

 …………………29 

The constant of integration is taken to be zero in order that   
   

 be 

zero at      (before the perturbation is applied). 

Perturbation constant in time : Let us consider a perturbation that 

is constant in time and that it operates only during the time o to t, i.e. 

……….30 

Substituting (30) in (29), we get 

 

Thus, to first order, the probability of the system from mth state kth 

state is given by 

………….31 

Using the relation 



 

 

 

or  

i.e.  

equation (31) takes the form 

 

Physical Interpretation: In order to interpret equation (32) 

physically, we plot 
            

   
   as a function of     and find the 

curve as shown is fig.  

The major maxima of probability curve occur at       i.e. for Ek 

= Em if we substitute       in  
    

    

 

   
   we note that  

 

 
 

  
 
  

 
 
 

 if higher powers of  
  

 
  are neglected due to their smaller 

values  
  

 
. 



 

 

 

7.7 SUMMARY: 

Though some simple problems in quantum mechanics can be solved 

analytically, those problems that most accurately represent the physical 

world almost invariably rely on approximation methods. For example, one 

can analytically solve for the eigenvalues and the eigenstates 

corresponding to the Hamiltonian of the finite square well potential, but 

this is not a very physically relevant problem. Instead, consider a system, 

like a hydrogen atom, and then expose this system to some outside force, 

like an electric field. The electric field alters the Hamiltonian of the initial 

system, which in turn alters the corresponding eigenenergies and 

eigenstates. To illustrate how this works, consider the simplified example 

of a finite square well potential in which there is a slight deviation (or 

perturbation) to the potential somewhere within the well. This perturbation 

alters the Hamiltonian and therefore the corresponding eigenvalues and 

eigenstates from what they were in the simple case of the unperturbed 

square well potential. Perturbation theory allows one to find approximate 

solutions to the perturbed eigenvalue problem by beginning with the 

known exact solutions of the unperturbed problem and then making small 

corrections to it based on the new perturbing potential. The limit of the 



 

 

infinite summation of corrections to the unperturbed solution is the exact 

solution to the perturbed problem. Of course, this infinite sum can never 

be calculated; the summation must be truncated at some point--hence the 

approximate nature of the solutions produced by perturbation theory. 

Luckily, subsequent corrections to the Hamiltonian become smaller and 

smaller, so the series can usually be truncated after only a few corrections. 

One must be careful when using perturbation theory that the perturbing 

potential does not change the number of bound states in the system. As 

will be shown, perturbation theory relies on the assumption that the 

unperturbed states form a complete set, so the corrected states may be 

expressed as linear combinations of the unperturbed states. For example, if 

the perturbing potential changes the Hamiltonian of the system such that 

the number of bound states is increased by one, this new state must have 

come from the unbounded region.  

Degeneracy in quantum mechanics refers to the situation when more than 

one eigenstate corresponds to the same energy. Conversely, non-

degeneracy occurs when each eigenstate corresponds to a unique energy.  

 

7.8 TERMINAL QUESTIONS: 

1. What do you mean by Perturbation  

2. Discuss the Perturbation theory for non-degenerate levels in first and 

second orders. 

3.Give the first order Perturbation theory for a non-degenerate case. 



 

 

4.State and Prove the Variational Principle for Obtaining approximation 

energies. 

5. Discuss the first order time independent perturbation theory for non-

degenerate stationary state. 

6. Discuss Time Dependent Perturbation theory  

7.9 ANSWER AND SOLUTION OF TERMINAL QUESTION: 

1. Section 7.3 

2 Section 7.3 

3. Section 7.3 

4. Section 7.4 

5. Section 7.3 

6. Section 7.6 

7.10 SUGGESTED READINGS: 

1. Introduction to Quantum Mechanics: David J. Griffiths. 

2. Quantum Mechanics: Noureddine Zettili. 

3. Elements of Quantum Mechanics: Kamal Singh, S.P.Singh 

4. Quantum Mechanics: Chatwal and Anand  
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8.1 INTRODUCTION 

We know that in an atom, electrons have discrete and specific energies. 

There are more energy states in an atom than there are electrons. When an 

electron transitions from one energy level to another, it emits light or 

photon with a specific wavelength. In any given set of conditions, the 

collection of all these specific wavelengths is what constitutes the atomic 

spectrum. Hence, atomic spectra are the spectra of atoms. Here, in this 

short piece of article, we will be looking at atomic spectra more in detail 

along with the Rydberg formula and the spectral series of the hydrogen 

atom. 

What are Atomic Spectra? 

Atomic spectra are defined as 

The spectrum of the electromagnetic radiation emitted or absorbed by an 

electron during transitions between different energy levels within an atom. 

When an electron gets excited from one energy level to another, it either 

emits or absorbs light of a specific wavelength. The collection of all these 

specific wavelengths of the atom in a given set of conditions like pressure, 

temperature, etc is the atomic spectra of atoms. There are three types of 

atomic spectra and they are emission spectra, absorption spectra, and 

continuous spectra. 

https://byjus.com/physics/wavelength-of-light/


 

 

 

From the image above, it is evident that the atomic hydrogen emission 

spectrum is divided into a number of spectral lines with wavelengths given 

by the Rydberg formula. The observed spectral lines in the hydrogen 

emission spectrum are due to the atomic transitions between different 

energy levels. The spectral series are important in astronomical 

spectroscopy. 

Atomic Spectroscopy 

Atomic spectroscopy is the study of the electromagnetic radiation 

absorbed or emitted by atoms. There are three types of atomic 

spectroscopy and they are: 

 Atomic emission spectroscopy: This involves the transfer of energy 

from the ground state to an excited state. The electronic transition 

can be explained in atomic emission. 

 Atomic absorption spectroscopy: For absorption to take place there 

should be identical energy differences between the lower and higher 

energy levels. The atomic absorption spectroscopy principle uses the 

https://byjus.com/physics/spectral-series/
https://byjus.com/physics/spectral-series/


 

 

fact that the free electrons generated in an atomizer can absorb 

radiation at a specific frequency. It quantifies the absorption of 

ground-state atoms in the gaseous state. 

 Atomic fluorescence spectroscopy: This is a combination of atomic 

emission and atomic absorption as it involves radiation of both 

excitation and de-excitation. 

Uses of Atomic Spectroscopy 

 It is used for identifying the spectral lines of materials used in 

metallurgy. 

 It is used in pharmaceutical industries to find the traces of materials 

used. 

 It can be used to study multidimensional elements. 

Characteristics of Atomic Spectra 

There are various characteristics of atomic spectra, such as: 

1. The atomic spectra should be a pure line spectrum. 

2. It should be an emission band spectrum. 

3. It should be an absorption line spectrum. 

4. Also, it should be the absorption band spectrum. 

 

8.2 OBJECTIVES 

After studying this unit student should able to: 



 

 

 Know about Atomic Spectra. 

 State and derive Lande -G factor. 

 Explain about Zeeman Effect. 

 Define Stark Effect 

8.3 LANDE-G FACTOR: 

In physics, the Landé g-factor is a particular example of a g-factor, 

namely for an electron with both spin and orbital angular momenta. It is 

named after Alfred Landé, who first described it in 1921.
[1]

 

In atomic physics, the Landé g-factor is a multiplicative term appearing in 

the expression for the energy levels of an atom in a weak magnetic field. 

The quantum states of electrons in atomic orbitals are normally degenerate 

in energy, with these degenerate states all sharing the same angular 

momentum. When the atom is placed in a weak magnetic field, however, 

the degeneracy is lifted. 

In the weak field limit, we assume that the magnetic dipole moment due to 

the electron in an atom is proportional to the total angular momentum J: 

https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/G-factor_(physics)
https://en.wikipedia.org/wiki/Electron
https://en.wikipedia.org/wiki/Angular_momentum_(quantum_mechanics)
https://en.wikipedia.org/wiki/Alfred_Land%C3%A9
https://en.wikipedia.org/wiki/Land%C3%A9_g-factor#cite_note-1
https://en.wikipedia.org/wiki/Atomic_physics
https://en.wikipedia.org/wiki/Atom
https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Quantum_state
https://en.wikipedia.org/wiki/Electron
https://en.wikipedia.org/wiki/Atomic_orbital
https://en.wikipedia.org/wiki/Degenerate_energy_level
https://en.wikipedia.org/wiki/Degenerate_energy_level


 

 

 

 



 

 

 

8.4 LAMB SHIFT: 

In physics, the Lamb shift, named after Willis Lamb, is a difference 

in energy between two energy levels 
2
S1/2 and 

2
P1/2 (in term 

symbol notation) of the hydrogen atom which was not predicted by 

the Dirac equation, according to which these states should have the same 

energy. 

Interaction between vacuum energy fluctuations and the hydrogen electron 

in these different orbitals is the cause of the Lamb shift, as was shown 

subsequent to its discovery. The Lamb shift has since played a significant 

role through vacuum energy fluctuations in theoretical prediction 

of Hawking radiation from black holes. 

https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Willis_Lamb
https://en.wikipedia.org/wiki/Energy
https://en.wikipedia.org/wiki/Energy_levels
https://en.wikipedia.org/wiki/Term_symbol
https://en.wikipedia.org/wiki/Term_symbol
https://en.wikipedia.org/wiki/Hydrogen_atom
https://en.wikipedia.org/wiki/Dirac_equation
https://en.wikipedia.org/wiki/Quantum_fluctuation
https://en.wikipedia.org/wiki/Hawking_radiation
https://en.wikipedia.org/wiki/Black_hole


 

 

This effect was first measured in 1947 in the Lamb–Retherford 

experiment on the hydrogen microwave spectrum
[1]

 and this measurement 

provided the stimulus for renormalization theory to handle the 

divergences. It was the harbinger of modern quantum 

electrodynamics developed by Julian Schwinger, Richard Feynman, Ernst 

Stueckelberg, Sin-Itiro Tomonaga and Freeman Dyson. Lamb won 

the Nobel Prize in Physics in 1955 for his discoveries related to the Lamb 

shift. 
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8.5 ZEEMAN EFFECT 

The atomic energy levels, the transitions between these levels, and the 

associated spectral lines discussed to this point have implicitly assumed 

that there are no magnetic fields influencing the atom. If there are 

magnetic fields present, the atomic energy levels are split into a larger 

number of levels and the spectral lines are also split. This splitting is called 

the Zeeman Effect. 

Zeeman Spectral Splitting: 

The pattern and amount of splitting are a signature that a magnetic field is 

present, and of its strength. The splitting is associated with what is called 

the orbital angular momentum quantum number L of the atomic level. 

This quantum number can take non-negative integer values. The number 

of split levels in the magnetic field is 2 * L + 1. The following figure 

illustrates the Zeeman effect. 

 



 

 

Atomic physicists use the abbreviation "s" for a level with L=0, "p" for 

L=1, and "d" for L=2, and so on (the reasons for these designations are of 

historical interest only). It is also common to precede this designation with 

the integer principal quantum number n. Thus, the designation "2p" means 

a level that has n=2 and L=1. 

In the preceding example the lowest level is an "s" level, so it has L=0 and 

2L + 1 = 1, so it isn't split in the magnetic field, while the first excited state 

has L=1 ("p" level), so it is split into 2L + 1 = 3 levels by the magnetic 

field. Thus, a single transition is split into 3 transitions by the magnetic 

field in this example. 

The Zeeman effect can be interpreted in terms of the precession of the 

orbital angular momentum vector in the magnetic field, similar to the 

precession of the axis of a spinning top in a gravitational field. 

 

 

http://www.pha.jhu.edu/~rt19/hydro/node10.html


 

 

Polarization of Spectral Lines : 

The lines corresponding to Zeeman splitting also exhibit polarization 

effects. Polarization has to do with the direction in which the 

electromagnetic fields are vibrating. This in turn, can have an effect on 

whether the spectral light can be observed. For example, polarizing 

sunglasses are often effective in suppressing ambiant glare because light 

reflected from surfaces has a particular polarization and polarizing 

sunglasses are designed to not pass that polarization of light. 

One practical example in astronomy of such polarization effects is that in 

the preceding example the middle transition is polarized such that it cannot 

be easily be obverved from directly over a surface perpendicular to the 

magnetic field. As a consequence, when looking directly down on 

a sunspot (which have strong magnetic fields) typically only two of the 

three transitions shown above can be seen and the line is observed to split 

into two rather than three lines (the missing transition could be observed 

from a different angle where its light would not be suppressed by the 

polarization effect, but it is very weak when observed from directly 

overhead). 

Types of Zeeman Effect 

1. Normal Zeeman Effect 

If the net spin of the optically active electron of an atom is equal to zero, 

then it exhibits a normal Zeeman effect. The normal Zeeman effect splits 

the spectral line of an atom into three major component lines. The 

explanation of the normal Zeeman effect is available in both Classical and 

quantum mechanics. In other words, when the splitting of a single spectral 

http://www.pas.rochester.edu/~blackman/ast104/sunspots.html


 

 

line of an atom into three component lines due to the action of the 

magnetic field is observed, then such a phenomenon is known as the 

normal Zeeman effect. For instance, if you consider the spectrum of a 

hydrogen atom, it consists of certain five spectral lines, namely, Lyman, 

Balmer, Paschen, Bracket, and Pfound. The Balmar line of the hydrogen 

spectrum lies in the visible range and can be observed when the electron 

jumps from n=3 to n=2 state. When the Balmar line of hydrogen atoms is 

placed under the influence of a magnetic field, it gets split into three 

component lines. The middle line is known as the pi component, while the 

other two lines, located on either side of the pi component line, denote the 

sigma components. The sigma components are equidistant from the pi 

component line. The vibration of the electric vector of the pi component of 

a spectral line is parallel to the applied magnetic field, while the vibration 

of the electric vector of the sigma component is perpendicular to the 

external magnetic field. 

2. Anomalous Zeeman Effect 

The net spin of the optically active electron of an atom exhibiting 

anomalous Zeeman effect is not equal to zero. The anomalous Zeeman 

effect causes the atomic spectral lines to get split into more than three 

component lines. This effect can be explained only with the help of 

quantum mechanics. The concept of spinning of electrons was not known 

when the Zeeman effect was discovered, which is why there was no 

perfect explanation available for the splitting of atomic spectral lines into 

multiple component lines at that time. Hence, the new elaborated theory 

given by Thomas Preston in 1897 was named the anomalous Zeeman 

effect. In other words, the phenomenon of splitting the fine structure of an 

atom into its components by placing it under the influence of an external 



 

 

magnetic field is known as the anomalous Zeeman effect. For instance, if 

you observe the fine structure of a sodium atom, it consists of two spectral 

lines, namely D1 and D2 lines. The wavelengths corresponding to both the 

spectral lines are 5896 A° and 5890 A° respectively. When such a fine 

structure of sodium atom is placed under a magnetic field, the D1 spectral 

line gets split into four component lines, two of which are the pi 

component lines, and the other two are sigma component lines. In a similar 

manner, the D2 spectral line splits into six component lines out of which 

two are pi component lines, while four are sigma component lines. In the 

case of the anomalous Zeeman effect, the distance between the component 

lines may or may not be the same, i.e., the component lines are not 

necessarily equidistant. 

 

 

https://studiousguy.com/wp-content/uploads/2021/07/Types-of-Zeeman-Effect.jpg


 

 

Applications of Zeeman Effect 

1. Zeeman effect helps the physicists to determine the energy levels of an 

atom and to study their angular momenta. 

2. It also expands the scope of studying atomic nuclei and phenomena like 

electron paramagnetic resonance. 

3. Zeeman effect is also used in the field of astronomy to study the 

magnetic field of the sun and other stars. 

4. Zeeman effect finds its prime application in various spectroscopy 

techniques such as nuclear magnetic resonance spectroscopy, electron spin 

resonance spectroscopy, Mössbauer spectroscopy, etc. 

5. Some medical imaging techniques such as magnetic resonance imaging 

(MRI) also make use of the Zeeman effect. 

6. Zeeman effect is also known to exhibit polarization effects. One of the 

best real-life examples of which are polarized sunglasses. The purpose of 

polarized sunglasses is to suppress ambient glare. 

 

8.6 PASCHEN BACK EFFECT 

In the presence of an external magnetic field, the energy levels of atoms 

are split. This splitting is described well by the Zeeman effect if the 

splitting is small compared to the energy difference between the 

unperturbed levels, i.e., for sufficiently weak magnetic fields. This can be 

visualized with the help of a vector model of total angular momentum. If 

the magnetic field is large enough, it disrupts the coupling between the 

https://studiousguy.com/nuclear-magnetic-resonance-explained/
https://studiousguy.com/magnetic-resonance-imaging-uses/
https://studiousguy.com/magnetic-resonance-imaging-uses/
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/zeeman.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/vecmod.html#c3


 

 

orbital and spin angular momenta, resulting in a different pattern of 

splitting. This effect is called the Paschen-Back effect. 

 

 

In the weak field case the vector model at left implies that the coupling of 

the orbital angular momentum L to the spin angular momentum S is 

stronger than their coupling to the external field. In this case where spin-

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hydfin.html#c2


 

 

orbit coupling is dominant, they can be visualized as combining to form a 

total angular momentum J which then precesses about the magnetic field 

direction. 

In the strong-field case, S and L couple more strongly to the external 

magnetic field than to each other, and can be visualized as independently 

precessing about the external field direction. 

 

 

 

 

 

 

 

 

 

8.7 ZEEMAN PATTERN FOR SODIUM LINES: 



 

 

 

 

 



 

 

 

 

8.8 STARK EFFECT 

The Stark effect is the shifting and splitting of spectral lines of atoms and 

molecules due to the presence of an external electric field. It is the electric-

field analogue of the Zeeman effect, where a spectral line is split into 

https://en.wikipedia.org/wiki/Spectral_line
https://en.wikipedia.org/wiki/Electric_field
https://en.wikipedia.org/wiki/Zeeman_effect


 

 

several components due to the presence of the magnetic field. Although 

initially coined for the static case, it is also used in the wider context to 

describe the effect of time-dependent electric fields. In particular, the Stark 

effect is responsible for the pressure broadening (Stark broadening) of 

spectral lines by charged particles in plasmas. For most spectral lines, the 

Stark effect is either linear (proportional to the applied electric field) or 

quadratic with a high accuracy. 

The Stark effect can be observed both for emission and absorption lines. 

The latter is sometimes called the inverse Stark effect, but this term is no 

longer used in the modern literature. 

The effect is named after the German physicist Johannes Stark, who 

discovered it in 1913. It was independently discovered in the same year by 

the Italian physicist Antonino Lo Surdo, and in Italy it is thus sometimes 

called the Stark–Lo Surdo effect. The discovery of this effect contributed 

importantly to the development of quantum theory and Stark was awarded 

with the Nobel Prize in Physics in the year 1919. 

An electric field pointing from left to right, for example, tends to pull 

nuclei to the right and electrons to the left. In another way of viewing it, if 

an electronic state has its electron disproportionately to the left, its energy 

is lowered, while if it has the electron disproportionately to the right, its 

energy is raised. 

Other things being equal, the effect of the electric field is greater for 

outer electron shells, because the electron is more distant from the nucleus, 

so it travels farther left and farther right. 

https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Spectral_line#Pressure_broadening
https://en.wikipedia.org/wiki/Plasma_(physics)
https://en.wikipedia.org/wiki/Johannes_Stark
https://en.wikipedia.org/wiki/Antonino_Lo_Surdo
https://en.wikipedia.org/wiki/Nobel_Prize_in_Physics
https://en.wikipedia.org/wiki/Electron_shell


 

 

The Stark effect can lead to splitting of degenerate energy levels. For 

example, in the Bohr model, an electron has the same energy whether it is 

in the 2s state or any of the 2p states. However, in an electric field, there 

will be hybrid orbitals (also called quantum superpositions) of the 2s and 

2p states where the electron tends to be to the left, which will acquire a 

lower energy, and other hybrid orbitals where the electron tends to be to 

the right, which will acquire a higher energy. Therefore, the formerly 

degenerate energy levels will split into slightly lower and slightly higher 

energy levels 

 

The stark effect is the shifting and splitting (reduction of 

degeneracy) of spectral lines in atomic or molecular species 

under the influence of an externally applied electric field. It 

is sometimes considered the electric analog to the reduction 

of degeneracy in atomic and molecular species due to an 

https://en.wikipedia.org/wiki/Degenerate_energy_level
https://en.wikipedia.org/wiki/Bohr_model
https://en.wikipedia.org/wiki/Electron_shell
https://en.wikipedia.org/wiki/Electron_shell
https://en.wikipedia.org/wiki/Orbital_hybridisation
https://en.wikipedia.org/wiki/Quantum_superposition


 

 

externally applied magnetic field, the Zeeman effect. I'm not 

fond of that characterization since the two phenomena are 

quite different, but it is a reasonable viewpoint. 

There are actually two types of stark effect: the linear 

stark effect and the quadratic version of the stark effect. As 

expected, the linear stark effect is linearly dependant on the 

applied electric field while the quadratic stark effect is 

smaller in the value of splitting and varies as the square of 

the applied electric field. 

 

 

The  splitting  of  spectral  lines  in  an  electric  

field is known as Stark effect.  

  

 The number of stark lines and the total width  

of the pattern increases with n.  

  

  

 The  π  components  show  greater  shift  than  

the Sigma component.  

 



 

 

 

8.9 SUMMARY 

In this unit we discussed about different atomic spectra in brief. 

This splitting of the p-orbital (and of higher orbitals) within an atom in the 

presence of an external magnetic field is known as Zeeman effect. 

The splitting of atomic spectral lines as a result of an externally applied 

electric field was discovered by Stark, and is called the Stark effect. 

ti   



 

 

 

8.10 TERMINAL QUESTIONS 

1.State and prove Lande-g Factor. 

2. Explain about Lamb Shift.  

3. Discuss briefly about Zeeman Effect 

4.What is Paschen Back Effect? 

5 Explain Zeeman Pattern for Sodium Lines. 

6. Discuss briefly about Stark Effect. 

 

8.11 ANSWER AND SOLUTION OF TERMINAL QUESTION 

1.Section 8.3 

2. Section 8.4 

3. Section 8.5 

4. Section 8.6 



 

 

5. Section 8.7 

6. Section 8.8 

8.12 SUGGESTED READINGS: 

1. Introduction to Quantum Mechanics: David J. Griffiths. 

2. Quantum Mechanics: Noureddine Zettili. 

3. Elements of Quantum Mechanics: Kamal Singh, S.P.Singh 

4. Quantum Mechanics: Chatwal and Anand  
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9.1 INTRODUCTION 

 Spectroscopy is the study of the interaction between light and matter 

where the absorption and emission of light or other radiation by the 

matter are studied and measured. 

 Spectroscopy mainly deals with the dispersion of light and other 

radiations that is caused by an object which allows the study of various 

properties of the object. 

 The measurement in spectroscopy is a function of the wavelength of the 

radiation being observed. 

 Spectroscopy has been widely exploited as it allows the determination of 

composition, physical and electronic structure to be determined of 

various particles of molecular or atomic levels. 

What is a spectrometer? 

 The spectrometer is a scientific instrument that is used to measure the 

variation or differences in various properties caused by an object over 

a particular range. 

 The property observed by a spectrometer varies with the type of 

spectrometer being used. 

 NMR spectrometer measures the variation in nuclear resonance 

frequencies, mass spectrometer measure the difference in mass to 

charge ratio whereas an optical spectrometer measures the variation in 

the electromagnetic radiation. 



 

 

 Based on the measurement of these variations, different properties of 

particles can be measured and observed. 

What is a spectrophotometer? 

 The spectrophotometer is a particular type of spectrometer that 

measures the interaction (absorption, reflection, scattering) of 

electromagnetic radiation from a sample or the emission 

(fluorescence, phosphorescence, electroluminescence) of 

electromagnetic radiation by various sample. 

 It is also termed electromagnetic spectrometer as it deals with the 

measurement of different properties of light and its interaction with 

matter. 

 These are commonly used in laboratories to measure the concentration 

of various samples on the basis of total light absorbed by the sample. 

What is a spectroscope? 

 A spectroscope or optical spectrometer is a device that measures 

different properties of light over a specific range in the spectrum used 

for the analysis of various objects. 

 The property measured is mostly the intensity of light, although 

polarization of light is also measured under some conditions. 

 Spectroscopes are commonly used in studies regarding astronomy and 

chemistry for the analysis of various samples. 

 Traditionally, prisms were used as spectroscopes, however, nowadays, 

diffraction gratings, mobile slit, and photodetectors are used. 



 

 

 These are mostly used to deduce the chemical composition of objects 

based on the radiation produced by different objects. 

What is a spectrograph? 

 The spectrograph is a scientific instrument that detects different light 

and separates them by their wavelength or frequencies which are 

recorded by multi detectors. 

 These are mostly used for obtaining and recording the astronomical 

spectrum. 

 Spectrographs are used for astronomical studies as telescopes. 

 In a spectrograph, the light rays transfer into the spectrograph through 

the telescope which is provided with a mirror that functions to makes 

all light rays parallel to each other. 

 The rays then reach the diffraction grating that disperses the light into 

different wavelengths which are passed to the detectors for the 

analysis of the individual wavelengths. 

 These are highly useful to analyze the incoming light from various 

astronomical objects for the analysis of the chemical composition of 

those objects. 

What are spectra? 

 Spectra, singular spectrum, in optics, are the colors observed when white 

light is dispersed through a prism. 

 Spectrum refers to the range of various variables associated with light 

and other waves. 



 

 

 In light, the electromagnetic spectrum is the most commonly used. The 

electromagnetic spectrum includes the range of frequencies of 

electromagnetic radiation that are used to characterize the distribution 

of electromagnetic radiation absorbed or emitted by an object. 

 Besides, the mass spectrum is also used in spectroscopy based on the ion 

abundance as a function of the mass to charge ratio. 

 Electron spectrum is another spectrum used in physics that is the number 

or intensity of particle beam depending on the particle energy. 

 

9.2 OBJECTIVES 

After studying this unit student should able to: 

 Know about Spectroscopy. 

 Different types of Spectroscopies. 

 Discuss Raman effect. 

 Explain Stokes and Anti stokes lines. 

 Know about selection Rules   

9.3 ELECTRONIC SPECTRO SCOPY 

Electron spectroscopy refers to a group formed by techniques based on the 

analysis of the energies of emitted electrons such 

as photoelectrons and Auger electrons. This group includes X-ray 

photoelectron spectroscopy (XPS), which also known as Electron 

Spectroscopy for Chemical Analysis (ESCA), Electron energy loss 

spectroscopy (EELS), Ultraviolet photoelectron spectroscopy (UPS), 

and Auger electron spectroscopy (AES). These analytical techniques are 

https://en.wikipedia.org/wiki/Photoelectric_effect
https://en.wikipedia.org/wiki/Auger_electrons
https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
https://en.wikipedia.org/wiki/Electron_energy_loss_spectroscopy
https://en.wikipedia.org/wiki/Electron_energy_loss_spectroscopy
https://en.wikipedia.org/wiki/Ultraviolet_photoelectron_spectroscopy
https://en.wikipedia.org/wiki/Auger_electron_spectroscopy


 

 

used to identify and determine the elements and their electronic structures 

from the surface of a test sample. Samples can be solids, gases or liquids. 

Electronic Spectroscopy: 

Transition energies between electronic states fall in the range of UV/vis 

photons. UV/vis or optical or electronic absorption spectroscopy 

determines the electronic energy levels and, therefore, electronic excited 

state structure and dynamics. Vibrational energy levels and structures of 

electronic excited states can be obtained from the Franck-Condon 

progression. We will also consider cases where the Franck- Condon 

principle breaks down and vibronic coupling must be taken into account. 

  

ORIGIN OF ELECTRONIC SPECTRA  



 

 

 

9.4 ROTATIONAL SPECTRO SCOPY 

Rotational spectroscopy is concerned with the measurement of the 

energies of transitions between quantized rotational states of molecules in 

the gas phase. The spectra of polar molecules can be measured 

in absorption or emission by microwave spectroscopy or by far 

infrared spectroscopy. The rotational spectra of non-polar molecules 

cannot be observed by those methods, but can be observed and measured 

by Raman spectroscopy. Rotational spectroscopy is sometimes referred to 

as pure rotational spectroscopy to distinguish it from rotational-vibrational 

spectroscopy where changes in rotational energy occur together with 

changes in vibrational energy, and also from ro-vibronic spectroscopy (or 

just vibronic spectroscopy) where rotational, vibrational and electronic 

energy changes occur simultaneously. 

https://en.wikipedia.org/wiki/Molecule
https://en.wikipedia.org/wiki/Gas_phase
https://en.wikipedia.org/wiki/Chemical_polarity
https://en.wikipedia.org/wiki/Absorption_(optics)
https://en.wikipedia.org/wiki/Emission_(electromagnetic_radiation)
https://en.wikipedia.org/wiki/Microwave
https://en.wikipedia.org/wiki/Far_infrared
https://en.wikipedia.org/wiki/Far_infrared
https://en.wikipedia.org/wiki/Raman_spectroscopy
https://en.wikipedia.org/wiki/Rotational-vibrational_spectroscopy
https://en.wikipedia.org/wiki/Rotational-vibrational_spectroscopy
https://en.wikipedia.org/wiki/Vibronic_spectroscopy


 

 

For rotational spectroscopy, molecules are classified according to 

symmetry into spherical top, linear and symmetric top; analytical 

expressions can be derived for the rotational energy terms of these 

molecules. Analytical expressions can be derived for the fourth category, 

asymmetric top, for rotational levels up to J=3, but higher energy 

levels need to be determined using numerical methods. The rotational 

energies are derived theoretically by considering the molecules to be rigid 

rotors and then applying extra terms to account for centrifugal 

distortion, fine structure, hyperfine structure and Coriolis coupling. Fitting 

the spectra to the theoretical expressions gives numerical values of the 

angular moments of inertia from which very precise values of molecular 

bond lengths and angles can be derived in favorable cases. In the presence 

of an electrostatic field there is Stark splitting which allows 

molecular electric dipole moments to be determined. 

 

 

https://en.wikipedia.org/wiki/Energy_level
https://en.wikipedia.org/wiki/Energy_level
https://en.wikipedia.org/wiki/Rigid_rotor
https://en.wikipedia.org/wiki/Rigid_rotor
https://en.wikipedia.org/wiki/Centrifugal_force
https://en.wikipedia.org/wiki/Centrifugal_force
https://en.wikipedia.org/wiki/Fine_structure
https://en.wikipedia.org/wiki/Hyperfine_structure
https://en.wikipedia.org/wiki/Coriolis_force
https://en.wikipedia.org/wiki/Moment_of_inertia
https://en.wikipedia.org/wiki/Stark_effect
https://en.wikipedia.org/wiki/Electric_dipole_moment


 

 

9.5 VIBRATIONAL SPECTRO SCOPY 

Vibrational spectroscopy is the measurement of the interaction of IR 

radiation with matter through absorption, emission, or reflection. This 

spectroscopic technique is useful in studying and identifying chemical 

substances or functional groups in solid, gas or liquid compounds. 

 Vibrational spectroscopy is governed by vibrational transitions. 

 

The vibrational transition of a molecule refers to the movement of the 

molecule from one vibrational energy level to another. We can also name 

it a vibronic transition. This type of transition occurs in between different 

vibrational levels of the same electronic state. In order to evaluate the 

vibrational transition of a particular molecule, we should know the 

dependence of the molecule-fixed components of the electric dipole 

moment on the molecular deformations. Generally, Raman spectroscopy is 

based on vibrational transitions. 

https://www.differencebetween.com/difference-between-ir-and-raman-spectra/#Raman%20Spectra


 

 

What is the Difference Between Rotational and Vibrational 

Spectroscopy? 

Rotational spectroscopy and vibrational spectroscopy are governed by 

electron transitions. The key difference between rotational and vibrational 

spectroscopy is that rotational spectroscopy is useful to measure the 

energy of the transitions that take place between quantized rotational states 

of molecules in the gas phase, whereas vibrational spectroscopy is useful 

in measuring the interaction of IR radiation with matter through 

absorption, emission, or reflection. 

 

9.6 SELECTION RULES OF VIBRATIONAL SPECTRA 

  



 

 

 

9.7 ENERGY AND FREQUENCY OF VIBRATIONAL SPECTRA: 

 

VIBRATION FREQUENCY IN      

 

 



 

 

 

 

 



 

 

 



 

 

 

  

9.8 SELECTION RULES OF ROTATIONAL SPECTRA 



 

 

 

 

9.9 RAMAN EFFECT: 

Raman spectroscopy is named after its discoverer ‘Sir C.V. Raman’, who 

discovered it in 1928. It is a Chemical analysis technique that provides 

detailed information about the molecular structure without causing any 

physical and chemical changes. It studies the vibrational modes along with 

translational and rotational modes of the molecule. In 1930, ‘Sir C.V. 

Raman’ received the Nobel prize in Physics for his work on the scattering 

of light and the discovery of the Raman effect. 

 

Raman scattering produces scattered photons with a different frequency 

depending on the source and the vibrational and rotational properties of the 

scattered molecules. Raman spectroscopy works on the principle of Raman 

scattering. It is used to study materials by chemists and physicists. In the 



 

 

olden days, to record spectra, a mercury lamp and photographic plates 

were used; in modern days, lasers are used. Sir CV Raman was awarded 

the Nobel Prize for Physics in the year 1930. C V Raman, along with his 

student K S Krishnan, discovered Raman’s scattering. 

 

What is Raman Scattering? 

Raman scattering is defined as the scattering of photons by excited 

molecules at higher energy levels. It is also known as the Raman effect. 

The photons are inelastically scattered, which means that the kinetic 

energy of an incident particle is either lost or increased and is composed of 

Stokes and anti-Stokes portions. 

Inelastic scattering of photons is similar to the concept of an inelastic 

collision, which states that the total microscopic kinetic energy is not 

conserved. In an elastic collision, the transfer of kinetic energy occurs, but 

the scattering will still be inelastic like in Compton scattering. 



 

 

 

 

Types of Raman Spectroscopy 

Following are the types: 

1. Resonance Raman Spectroscopy (RRS) 

2. Surface-enhanced Raman Spectroscopy (SERS) 

3. Micro-Raman Spectroscopy 



 

 

4. Non-linear Raman Spectroscopic Techniques 

Applications of Raman Effect 

 Raman amplification: this is based on the Raman scattering where 

the lower frequency photons are pumped to a high-frequency regime 

with a surplus amount of energy. This method is applicable to 

telecommunications. 

 Supercontinuum generation: In optics, supercontinuum is formed 

using the Raman spectra, which results in smooth spectra as the 

initial spectra are built spontaneously which is later amplified to 

higher energy. 

 Raman spectroscopy works on the basis of Raman effect and finds 

applications in various fields like in nanotechnology to understand 

the structure of nanowires, in biology and medicine where the low-

frequency DNAs and proteins are studied and chemistry to 

understand the structure of molecules and their bonds. 

 Raman scattering is used in remote sensing and planetary 

exploration. 

 Raman scattering is used to sense the minerals in Mars. 

 

9.10 STOKES AND ANTI STOKES LINES: 

The lines having frequencies lower than the incident frequency is 

called stokes lines and the lines having frequencies higher than the 

incident frequency are called Anti stokes lines. 



 

 

 

What are Stokes Lines? 

Stokes lines represent radiation of particular wavelengths present in the 

line spectra associated with fluorescence (emission of light from a 

substance that has absorbed energy previously) and the Raman effect 

(change in the wavelength of light that happens when a light beam is 

deflected by molecules). This was named after the 19
th
-century British 

physicist Sir George Gabriel Stokes. These stokes lines are typically 

longer wavelengths than the wavelength of the exciting radiation 

responsible for fluorescence or the Raman effect. 

Stokes lines can be described as scattered photons that are reduced in 

energy relative to the incident photons that can interact with the molecule. 

Moreover, the reduction of energy of the scattered photons is usually 

proportional to the energy of vibrational levels of the molecule. 

What are Anti-Stokes Lines? 

Anti-stokes lines represent the radiation of particular wavelengths present 

in fluorescence and in Raman spectra when the atoms or molecules of the 

material exist in an excited state. Therefore, it is the opposite of stokes 

lines. Here, the radiated line energy gives the sum of the pre-excitation 

energy and the energy absorbed from the exciting radiation. Therefore, 

anti-stoke lines typically have a shorter wavelength compared to the light 

that produces them. Moreover, the difference between the frequency of the 

emitted light and absorbed light can be named the Stokes shift. 



 

 

 

 

Raman spectroscopy works on the principle of Raman scattering. 

When a monochromatic radiation incident on the sample, the 

radiation gets reflected, absorbed, or scattered. The scattered light 

photons have a different frequency from the incident photon 

because of the change in the vibrational and rotational properties of 

the molecules, which results in the change of wavelength of the 

incident and the scattered light. This change in the frequencies of 

the incident photon and the scattered photon is known as the 

Raman shift. When the scattered photon has less energy, hence a 

longer wavelength than the incident photon, it is called Stokes 

scattering. When the scattered photon has more energy, hence a 

shorter wavelength than the incident photon, it is called anti-stokes 

scattering. 



 

 

 

 

  

 



 

 

What is the Difference Between Stokes and Anti-Stokes Lines? 

The terms Stokes lines and anti-stokes lines are important in spectroscopic 

detections. The key difference between stokes and anti-stokes lines is that 

stokes lines have a longer wavelength than the wavelength of exciting 

radiation that is responsible for the fluorescence or Raman effect, whereas 

Anti-stokes lines occur in fluorescence or Raman spectra when atoms or 

molecules are already in an excited state. While stokes lines are not in the 

excited state, anti-stokes lines are already in the excited state. 

 

 

9.11 INFRARED SPECROSCOPY 

Infrared spectroscopy, also termed vibrational spectroscopy, is a technique 

that utilizes the interaction between infrared and the sample. 



 

 

An IR spectrum is essentially a graph plotted with the infrared light 

absorbed on the Y-axis against. frequency or wavelength on the X-axis. An 

illustration highlighting the different regions that light can be classified into 

is given below. 

IR Spectroscopy detects frequencies of infrared light that are absorbed by a 

molecule. Molecules tend to absorb these specific frequencies of light since 

they correspond to the frequency of the vibration of bonds in the molecule. 

 

 

The energy required to excite the bonds belonging to a molecule, and to 

make them vibrate with more amplitude, occurs in the Infrared region. A 

bond will only interact with the electromagnetic infrared radiation, 

however, if it is polar. 

The presence of separate areas of partial positive and negative charge in a 

molecule allows the electric field component of the electromagnetic wave to 

excite the vibrational energy of the molecule. 

The change in the vibrational energy leads to another corresponding change 

in the dipole moment of the given molecule. The intensity of the absorption 

depends on the polarity of the bond. Symmetrical non-polar bonds in N≡N 

and O=O do not absorb radiation, as they cannot interact with an electric 

field. 

https://byjus.com/chemistry/dipole-moment/


 

 

Regions of the Infrared spectrum 

Most of the bands that indicate what functional group is present are found 

in the region from 4000 cm
-1

 to 1300 cm
-1

. Their bands can be identified 

and used to determine the functional group of an unknown compound. 

 

Bands that are unique to each molecule, similar to a fingerprint, are found 

in the fingerprint region, from 1300 cm
-1

 to 400 cm
-1

. These bands are only 

used to compare the spectra of one compound to another. 

IR Spectroscopy Instrumentation 

The instrumentation of infrared spectroscopy is illustrated below. First, a 

beam of IR light from the source is split into two and passed through the 

reference and the sample respectively. 

 

Now, both of these beams are reflected to pass through a splitter and then 

through a detector. Finally, the required reading is printed out after the 

processor deciphers the data passed through the detector. 



 

 

Graph of the IR spectrum 

Given below is a sample of typical Infrared Absorption Frequencies. 

 

Thus, IR spectroscopy involves the collection of absorption information and 

its analysis in the form of a spectrum. 

 

Principle of IR spectroscopy/ Vibrational spectroscopy 

 The wavelength utilized for the analysis of organic compounds ranges from 

2,500 to 16,000 nm, with a corresponding frequency range from 1.9×10
13

 to 

1.2×10
14

 Hz. 

 These rays don’t have enough energy to excite the electrons, but they do, 

however, cause the vibrational excitation of covalently bonded atoms or 

groups. 

 The vibration observed in the atoms is characteristic of these atoms and thus 

helps in the detection of the molecules. 



 

 

 The infrared spectrum is the fundamental measurement obtained in infrared 

spectroscopy. 

 The spectrum is a plot of measured infrared intensity versus wavelength (or 

frequency) of light. 

 IR Spectroscopy measures the vibrations of atoms, and based on this; it is 

possible to determine the functional groups. 

Steps of IR spectroscopy/ Vibrational spectroscopy 

 The IR spectrometer is turned on and allowed to warm up for 30 minutes. 

 The unknown sample is taken, and its appearance is recorded. 

 The background spectrum is collected to remove the spectrum obtained 

from natural reasons. 

 A small amount of sample is placed under the probe by using a metal 

spatula. 

 The probe is set in place by twisting it. 

 The IR spectrum of the unknown sample is obtained. The process is 

repeated, if necessary, to get a good quality spectrum. 

 The absorption frequencies that indicate the functional groups present are 

recorded. 

 The obtained spectrum is analyzed to determine the probable identification 

of the unknown sample. 

Uses of IR spectroscopy/ Vibrational spectroscopy 



 

 

 Infrared spectroscopy has been widely used for the characterization of 

proteins and the analysis of various solid, liquid, and gaseous samples. 

 IR spectroscopy can be used for the detection of functional groups which 

helps in the identification of molecules and their composition. 

 Applications of IR spectroscopic techniques allow identifying molecular 

changes due to bodily changes, understanding of the molecular mechanism 

of various diseases, and identifying specific spectral biomarkers that can be 

used in diagnosis. 

9.12  FLUORESCENCE SPECTRO SCOPY 

Fluorescence spectroscopy is a type of electromagnetic spectroscopy that 

utilizes the fluorescence produced by objects in a sample which is not 

necessarily in the visible range of the spectrum. 

Principle of Fluorescence spectroscopy 

 The principle of fluorescence spectroscopy is similar to emission 

spectroscopy, where the transition of electrons from one state to another 

causes the emission spectrum. 

 Fluorescence is an emission phenomenon where a transition from a higher 

to a lower energy state is accompanied by radiation. 

 Only molecules in their excited forms can emit fluorescence; thus, they 

have to be brought into a higher energy state prior to the emission 

phenomenon. 



 

 

 The emitted radiation appears as a band spectrum because there are many 

closely related wavelength values dependent on the vibrational and 

rotational energy levels attained. 

 The fluorescence spectrum of a molecule is independent of the wavelength 

of the exciting radiation and has a mirror image relationship with the 

absorption spectrum. 

 The probability of the transition from the electronic excited to the ground 

state is proportional to the intensity of the emitted light. 

 The fluorescence properties of a molecule are determined by features of the 

molecule itself and thus help in the determination of the composition of the 

molecules. 

Steps of Fluorescence spectroscopy 

 Two samples of known and unknown concentrations are taken in a transport 

vessel, also termed as a cuvette. 

 The vessels are then placed, one after the other, in the spectrofluorometers 

that is provided with light source and detectors. 

 The spectrofluorometers is operated that passes light of a particular 

wavelength through the sample. 

 The photosensitive detectors present in the spectrophotometer detect the 

light passing through the sample, which is then converted into digital 

values. 



 

 

 A graph of the fluorescence measured against the concentration of the 

sample is plotted, which can then be used for the determination of the 

unknown concentration of the sample. 

Uses of Fluorescence spectroscopy 

 Fluorescence spectroscopy is used in biomedical, medical, and chemical 

research for the analysis of organic compounds. 

 This has also been used to differentiating malignant tumors from benign 

tumors. 

 Atomic fluorescence spectroscopy can also be used for the detection of 

metals in various environmental samples like air, water, and soil. 

 In analytical chemistry, fluorescence detectors are used along with HPLC. 

https://microbenotes.com/high-performance-liquid-chromatography-hplc/


 

 

 

The probability by which excitation and emission events occur 

at different wavelengths (depicted by arrow width) define the 

fluorescence spectra of a molecule. 

 

9.13 PHOSPHORESCENCE SPECTRO SCOPY 

What is Phosphorescence? 

When molecules absorb light and go to the excited state, they have two 

options. They can either release energy and come back to the ground state 

immediately or undergo other non-radiative processes. If the excited 

molecule undergoes a non-radiative process, it emits some energy and 



 

 

come to a triplet state where the energy is somewhat lesser than the energy 

of the exited state, but it is higher than the ground state energy. Molecules 

can stay a bit longer in this less energy triplet state. 

Unlike fluorescence, after excitation of a molecule, the excited electron 

first undergoes an intersystem crossing into a triplet state.  In some cases 

an electron in a singlet excited state is transformed to a triplet excited 

state (the initial spin of the electron in its ground state is flipped in the 

opposite direction) in which its spin is no longer paired with the ground 

state. This means that the release of light from this excited state will now 

require a “spin-forbidden” transition from this triplet state to the singlet 

state. Emission between a triplet excited state and a singlet ground state—

or between any two energy levels that differ in their respective spin states–

is called phosphorescence. This type of emission process is much less 

likely to occur and is slower than the singlet-to-singlet transitions that led 

to light emission in fluorescence. Because the average lifetime for 

phosphorescence ranges from 10
−4

 – 10
4
 s (in the range of microseconds to 

minutes), phosphorescence may continue for some time after removing the 

excitation source. A spectroscopic technique that utilizes 

phosphorescence to characterize or measure chemicals is 

called phosphorescence spectroscopy. 

As the measurement of phosphorescence requires low-temperature 

condition, which is usually maintained by liquid nitrogen, it is much more 

difficult to measure than fluorescence. The reason for the requirement of 

low temperature is that the lifetime of an excited triplet state (typically, 

10
−4

 – 1 s or longer) is much greater than an excited singlet state (10
−9

 – 

10
−8

 s). This longer lifetime means the probability of energy loss through 

collisions and heat loss is also much greater in phosphorescence than in 

https://www.sciencedirect.com/topics/chemistry/intersystem-crossing-singlet-triplet
https://www.sciencedirect.com/topics/chemistry/triplet-state
https://www.sciencedirect.com/topics/chemistry/excited-singlet-state
https://www.sciencedirect.com/topics/chemistry/excited-triplet-state
https://www.sciencedirect.com/topics/chemistry/excited-triplet-state
https://www.sciencedirect.com/topics/chemistry/singlet-state
https://www.sciencedirect.com/topics/chemistry/singlet-state
https://www.sciencedirect.com/topics/chemistry/phosphorescence


 

 

fluorescence. Maintaining low temperatures for this measurement will 

minimize the molecular motion around the analyte and make its collisions 

with the solvent or other sample components less likely to occur. 

 

 

  

During intersystem crossing into excited triplet state (T1) the 

spin of the involved electron is flipped. Triplet states are 

metastable and relaxation by phosphorescence is delayed. The 

chance of alternative relaxation by non-radiative events 

defines the quantum yield for both fluorescence and 

phosphorescence 



 

 

 

 

What is the Difference Between Fluorescence and Phosphorescence? 

Fluorescence is the emission of light by a substance that has absorbed light 

or other electromagnetic radiation while phosphorescence refers to the 

light emitted by a substance without combustion or perceptible heat. When 

we supply light to a sample of molecules, we immediately see the 

fluorescence. Fluorescence stops as soon as we take away the light source. 

But phosphorescence tends to stay little longer even after we remove the 

irradiating light source. 



 

 

 

 

9.14 SUMMARY: 

In this unit we studied about spectroscopy and its different types. 

Stokes lines and anti-stokes lines are also described in this unit.  The key 

difference between stokes and anti-stokes lines is that stokes lines have a 

longer wavelength than the wavelength of exciting radiation that is 

responsible for the fluorescence or Raman effect, whereas Anti-stokes lines 

occur in fluorescence or Raman spectra when atoms or molecules are 

already in an excited state. 



 

 

 

         

 



 

 

 

9.15 TERMINAL QUESTIONS 



 

 

1.Define Rotational Spectroscopy. 

2.Explain Raman Effect 

3.Discuss Stokes and Anti Stokes Lines 

4.Explain Infrared Spectroscopy 

5.what is Fluorescence Spectroscopy? 

9.16 ANSWER AND SOLUTION OF TERMINAL QUESTION 

1.Section 9.4 

2. Section 9.9 

3. Section 9.10 

4. Section 9.11 

5. Section 9.12 

9.17 SUGGESTED READINGS: 

1. Introduction to Quantum Mechanics: David J. Griffiths. 

2. Quantum Mechanics: Noureddine Zettili. 

3. Elements of Quantum Mechanics: Kamal Singh, S.P.Singh 

4. Quantum Mechanics: Chatwal and Anand  
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10.1 INTRODUCTION: 

Spectroscopic techniques employ light to interact with matter and thus 

probe certain features of a sample to learn about its consistency or 

structure. Light is electromagnetic radiation, a phenomenon exhibiting 

different energies, and dependent on that energy, different molecular 

features can be probed. The basic principles of interaction of 

electromagnetic radiation with matter are treated in this chapter. There is 

no obvious logical dividing point to split the applications of 

electromagnetic radiation into parts treated separately. The justification for 

the split presented in this text is purely pragmatic and based on ‘common 

practice’. The applications considered in this chapter use visible or UV 

light to probe consistency and conformational structure of biological 

molecules. Usually, these methods are the first analytical procedures used 

by a biochemical scientist. 

An understanding of the properties of electromagnetic radiation and its 

interaction with matter leads to an appreciation of the variety of types of 

spectra and, consequently, different spectroscopic techniques and their 

applications to the solution of biological problems. 

the spectrum of electromagnetic radiation organized by increasing 

wavelength, and thus decreasing energy, from left to right. Also annotated 

are the types of radiation and the various interactions with matter and the 

resulting spectroscopic applications, as well as the interdependent 

parameters of frequency and wavenumber. Electromagnetic phenomena 

are explained in terms of quantum mechanics. The photon is the 

elementary particle responsible for electromagnetic phenomena. It carries 

the electromagnetic radiation and has properties of a wave, as well as of a 



 

 

particle, albeit having a mass of zero. As a particle, it interacts with matter 

by transferring its energy E: 

 

In this unit we will discuss about spectroscopy, Study of the absorption 

and emission of light and other radiation by matter, as related to the 

dependence of these processes on the wavelength of the radiation. Usually, 

spectroscopy is devoted to identifying elements and compounds and 

elucidating atomic and molecular structure by measuring the radiant 

energy absorbed or emitted by a substance at characteristic wavelengths of 

the electromagnetic spectrum on excitation by an external energy source. 

However, spectroscopy also includes the study of particles (e.g., electrons, 

ions) that have been sorted or otherwise differentiated into a spectrum as a 

function of some property (such as energy or mass). The instruments used 

are spectrometers. Experiments involve a light source, a disperser to form 

the spectrum, detectors (visual, photoelectric, radiometric, or 

photographic) for observing or recording its details, devices for measuring 

wavelengths and intensities, and interpretation of the measured quantities 

to identify chemicals or give clues to the structure of atoms and molecules. 

Specialized techniques include Raman spectroscopy (see Chandrasekhara 

Venkata Raman), nuclear magnetic resonance (NMR), nuclear quadrupole 

resonance (NQR), microwave and gamma-ray spectroscopy, and electron 

spin resonance (ESR).  

 

https://www.britannica.com/summary/chemical-element


 

 

 

 



 

 

 

10.2 OBJECTIVES: 

After studying this unit, student should able to: 



 

 

 Know about Electronic Spectra and Electronic Transitions 

 Explain Frank-Condon Principles. 

 Discuss about NMR. 

 Define ESR. 

  

10.3 WHAT IS SPECTROSCOPY? 

Spectroscopy is the investigation and measurement of spectra produced by 

matter interacting with or emitting electromagnetic radiation. Originally, 

spectroscopy was defined as the study of the interaction between radiation 

and matter as a function of wavelength. Now, spectroscopy is defined as 

any measurement of a quantity as a function of wavelength or frequency. 

During a spectroscopy experiment, electromagnetic radiation of a specified 

wavelength range passes from a source through a sample containing 

compounds of interest, resulting in absorption or emission. During 

absorption, the sample absorbs energy from the light source. During 

emission, the sample emits light of a different wavelength than the 

source’s wavelength. 

In absorption spectroscopy, the sample’s compounds are excited by the 

electromagnetic radiation provided by a light source. Their molecules 

absorb energy from the electromagnetic radiation, become excited, and 

jump from a low energy ground state to a higher energy state of excitation. 

A detector, usually a photodiode, on the opposite side of the sample 

records the sample’s absorption of wavelengths, and determines the extent 

of their absorption. The spectrum of a sample’s absorbed wavelengths is 

known as its absorption spectrum, and the quantity of light absorbed by a 

sample is its absorbance. 



 

 

Each molecule within a sample will only absorb wavelengths with 

energies corresponding to the energy difference of the present transition. 

In simpler terms, this means that a molecule that jumps from ground state 

1 to excited state 2, with an energy difference of ΔE, will allow other 

wavelengths to pass through until it can absorb radiation from a 

wavelength that corresponds to ΔE. Light that passes through to the 

photodiode without any absorption is called Stray Radiant Energy, or stray 

light. Absorption that occurs due to an energy difference between the two 

states is called an absorption line, and a collection of absorption lines 

creates an absorption spectra. The frequency of each absorption line in an 

absorption spectra tells us about the sample’s molecular structure, and can 

be influenced by factors such as stray light, environmental temperature, 

and electromagnetic fields. 

 

Types of Spectroscopies 

Since spectroscopy deals with the estimation of interaction between 

electromagnetic radiation and samples; hence, either absorption, emission, 

or the scattering process is observed, classifying spectroscopy into three 

types. 

 



 

 

 

Absorption spectroscopy 

Absorption spectroscopy is a spectroscopic method of absorbing 

electromagnetic radiation when the sample and the radiation display 

interaction. The wavelength or frequency is used as a function. The 

spectrum obtained from absorption is called an absorption spectrum. 

The examples of absorption spectroscopy are as follows: 

 Atomic Absorption (AA) Spectroscopy. 

 Ultraviolet (UV)/ Visible Spectroscopy. 

 Infrared (IR) Spectroscopy. 

 Nuclear Magnetic Resonance (NMR) spectroscopy. 

Emission spectroscopy 

Emission spectroscopy is a spectroscopic method in which 

atoms/molecules emit photons while undergoing an electronic transition, 

that is, from a lower to a higher energy state. The photon’s wavelength can 

be captured and examined to discover the sample’s composition. The 



 

 

emission and absorption spectra differ from one another as the emission 

spectra consist of colored lines while the absorption spectra consist of dark 

lines. 

The examples of emission spectroscopy are as follows: 

 Atomic Emission (AE) spectroscopy. 

 Flame photometry. 

 Fluorimetry. 

Scattering spectroscopy 

Scattering spectroscopy is a spectroscopic method by which a molecule’s 

vibrational and rotational states are attained when light scattering occurs, 

leading to the excitement of the atoms. It rectifies the groups in the 

sample, which further helps to detect its composition. This process is the 

fastest compared to absorption and emission processes. 

The example of scattering spectroscopy is as follows: 

 Raman Spectroscopy. 

 



 

 

  

 

What is Spectroscopy Used For? 

Spectroscopy is used in physical and analytical chemistry to detect, 

determine, or quantify the molecular and/or structural composition of a 

sample. Each type of molecule and atom will reflect, absorb, or emit 

electromagnetic radiation in its own characteristic way. Spectroscopy uses 

these characteristics to deduce and analyze the composition of a sample. 

Examples of Spectroscopy Applications 

 Determining the atomic structure of a sample 

 Determining the metabolic structure of a muscle 

 Monitoring dissolved oxygen content in freshwater and marine 

ecosystems 

 Studying spectral emission lines of distant galaxies 

 Altering the structure of drugs to improve effectiveness 

 Characterization of proteins 

 Space exploration 

 Respiratory gas analysis in hospitals 

 



 

 

 

  

10.3.1 ELECTRONIC SPECTRA 

 Electron spectroscopy is an analytical technique to study the 

electronic structure and its dynamics in atoms and molecules. In 

general, an excitation source such as x-rays, electrons or synchrotron 

radiation will eject an electron from an inner-shell orbital of an atom. 



 

 

 

 

 



 

 

 

 



 

 

 

Electronic spectra of molecules 

 When the molecules possess sufficiently large amount of energy, the 

electronic states of the molecule can be excited. This gives rise to the most 

general type of transitions, rotation-vibration-electronic transitions. These 

produce photons of frequency 

 

It is the outermost electrons of the atoms composing the molecule that are 

involved. These transitions are energetic enough that they produce 

electronic bands in the visible and ultraviolet regions. All molecules 

exhibit electronic spectra, since a dipole moment change always 

accompanies a change in the electronic configuration of a molecule. 

Scattering of light 



 

 

 The phenomenon in which the particles of the medium deviate light in a 

lateral direction is called scattering of light. The particles of the medium 

absorb light and then emit light in all directions. Types of scattering  

1. Coherent scattering or elastic scattering  

2. Incoherent scattering or inelastic scattering  

Coherent scattering  

The phenomenon of scattering in which the scattered light has the same 

wavelength as that of incident light is called coherent scattering. In 

coherent scattering, the incident light does not suffer any change in its 

energy. Hence it is also called as elastic scattering. Eg. Rayleigh scattering 

and Tyndall scattering.  

Rayleigh scattering  

 When the dimensions of the scattering particles is very small compared to 

the wavelength of the incident radiation, the scattering is called Raleigh 

scattering. According to Raleigh, the intensity of the scattered radiation is 

inversely proportional to the fourth power of the wavelength of the 

incident light. i.e, 

 

Let a be the size of the particle scattering light and  the wavelength of the 

incident light. If a << , Rayleigh’s scattering takes place and light of 

shorter wavelengths get scattered to greater extent.  

If a >> , Tyndall scattering takes place and light of all wavelengths get 

scattered nearly equal  

Blue colour of sky:  

The blue colour of the sky is due to Rayleigh scattering of sunlight by the 

air molecules in the atmosphere. Sunlight contains all colours, from violet 

to red. According to Raleigh, the intensity of the scattered radiation is 



 

 

inversely proportional to the fourth power of the wavelength of the 

incident light. Thus, in the daytime when sun light enters earth’s 

atmosphere, violet and blue colours are the most scattered since 

wavelength is small. Red and orange are the least scattered since 

wavelength is large. When we look at the sky far away from the sun, the 

sky appears blue because we receive the most scattered colours, namely, 

violet and blue. 

Note : 1.Near the sun it appears white because we get direct light from the 

sun. 

 2.The blue colour of the sea is due to reflection of light from the sky. 

Raman proved that the blue colour of sea water is due to the scattering of 

incident sunlight by water molecules.  

3.In the absence of the atmosphere, the sky would appear black. 

Red colour at sunrise and sunset  

The orange red colour of the sky at sunrise and at sunset is due to Rayleigh 

scattering of light by air molecules in the atmosphere. According to 

Raleigh, the intensity of the scattered radiation is inversely proportional to 

the fourth power of the wavelength of the incident light. At sunrise and 

sunset, the light from the sun travels a longer distance through the earth’s 

atmosphere before reaching the observer. Therefore, much of the blue is 

taken away by scattering. The light that reaches the earth ‘s surface is 

orange red colour. Thus, sky appears orange red colour.  

Incoherent scattering: The phenomenon of scattering in which the 

scattered light has different wavelength compared to that of incident light 

is called incoherent scattering. In incoherent scattering, the incident light 

suffers a change in its energy. Hence it is also called as inelastic scattering. 

Eg. Raman scattering and Compton scattering.  



 

 

Raman effect  

The phenomenon in which there is a change in wavelength of the incident 

light due to scattering by particles of material medium is called Raman 

effect. Raman in the year 1928 observed that when a beam of 

monochromatic light is passed through organic liquids such as benzene, 

toluene etc, the scattered light was found to consist of lines corresponding 

to the higher wavelengths as well as lower wavelengths in addition to the 

incident wavelength. These lines are called Raman lines. When photons 

are scattered from an atom or molecule, most photons are elastically 

scattered (Rayleigh scattering), such that the scattered photons have the 

same energy (frequency and wavelength) as the incident photons. A small 

fraction of the scattered photons (approximately 1 in 10 million) are 

scattered by an excitation, with the scattered photons having a frequency 

different from, and usually lower than, that of the incident photons. In a 

gas, Raman scattering can occur with a change in energy of a molecule 

due to a transition to another (usually higher) energy level. The spectrum 

of the scattered light is called Raman spectrum as shown 

Experimental study of Raman Effect  

The apparatus used for the study of Raman effect in liquids was first 

developed by Wood. It consists of a glass tube AB containing the pure 

liquid under study. The tube is closed at one end by an optically plane 

glass plate Wand at the other end end it is drawn into a horn Hand 

blackened on the outside.Light from a Mercury arc S is passed through a 

filter Fwhich allows only monochromatic radiation of   = 4358 Å  to pass 

through it. The tube is surrounded by a water jacket J through which water 

is circulated to prevent overheating of the liquid. A semi cylindrical 

aluminium reflector R is used to increase the intensity of illumination. The 



 

 

scattered light coming out of W is condensed on the slit of a spectrograph. 

A short focus camera is used to photograph the spectrum. The spectrum 

appears as shown 

 

 

Features of Raman lines  

1. The spectrum consists of intense central line of wavelength 0 same as 

that of incident light called Raleigh line. 

 2. It consists of a number of low intensity lines of linger wavelength 

called stokes lines.  

3. It also consists of very faint lines of lower wavelengths called anti 

stokes line. 

 4. The Raman lines are almost symmetrically placed wavelengths both 

above and below the incident light wavelengths. 5. Stokes lines were 

found to be more intense than the anti-stokes lines.  

6. Raman lines are polarized.  



 

 

7. The change in wavelength are characteristic of the scattering material 

and does not depend on the wavelength of incident light. 

Quantum theory of Raman Effect  

Raman effect is due to the interaction between a light photon and a 

molecule of the scatterer. Quantum theory is applied to explain Raman 

effect. Suppose a photon of frequency  1 is incident on a molecule and 

there is a collision between the two. Let m be the mass of the molecule,  1 

and  2 its velocities before and after impact,  1 and  2 the intrinsic 

energies of the molecule before and after collision. Let  2 be the frequency 

of the scattered photon. Applying the principle of conservation of energy,  

 

Assuming that the kinetic energy of the molecule is unaltered during the 

process, the above equation becomes 

 

Three cases arise 

1. When the incident photons undergo elastic scattering with the 

molecules of the medium, the scattered photons have the same energy 

as that of the incident photons. This results in unmodified line of same 

wavelength as that of the incident light. Here 

 

2. Some photons are absorbed by molecules in the lower energy state. 

When the photons are reemitted, their energy will be less than that of 

the incident photons. This gives rise to lines having longer wavelength 

or shorter frequency called stokes lines. Here  2 >  1. The molecule 



 

 

gains energy from the photon and jumps to higher state so that  2 −  1 

is positive. 

Thus equation ( ) 

  

Thus, the frequency of the scattered photon is  

.  

The collision is inelastic. 

3. Some photons are absorbed by molecules which are already in the 

excited state. When the photons are reemitted, their energy will be 

more than that of the incident photons. This gives rise to lines having 

shorter wavelength or higher frequency called anti stokes lines. 

 

The molecule loses energy to the photon and jumps to a lower energy 

state so that  2 −  1 is negative from equation (), we have  

 

 



 

 

 

Applications of Raman effect  

1. Raman effect is used in the study of molecular structure. 

 2. The geometrical configuration of a molecule of the substance can be 

determined using Raman spectra and infrared spectra of a substance,  

3. The study of Raman spectra gives information about the nature of 

the chemical bond existing between the atoms.  

4. Raman spectrum gives information about the structure of water 

(H2O) molecule which is nonlinear or bent having angle of bend as 120 

 5. Raman effect gives information about the binding forces in crystals. 

10.4 ELECTRONIC TRANSITIONS: 

 

Electronic transitions occur in atoms and molecules due to the 

absorption or emission of electromagnetic radiation (typically UV or 

visible). The energy change associated with a transition is related to the 

frequency of the electromagnetic wave by Planck's equation,  



 

 

                                   E = h  

 

The term “electronic” connotes electron, and the term “transition” implies 

transformation. In a molecule, the electrons move from a lower to a higher 

energy state due to excitation. The two energy states, the ground state and 

the excited state are the lowest and the highest energy states, respectively. 

An energy change is observed with this transition, which depicts the 

various data related to the molecule. 

 

What are the types of electronic transitions? 

The three kinds of electrons responsible for electronic transitions are: 

 Sigma (σ) electrons in saturated molecules 

 Pi (π) electrons in unsaturated molecules  

 Nonbonding (n) electrons in nonbonded elements 

These electrons absorb ultraviolet radiation, which causes excitation. The 

movement from the ground state to a higher energy state is categorized 

into four types of electronic transitions. They are as follows: 

σ→σ* transition 

In this transition, the electrons in a molecule move from a bonding (σ) 

orbital to its comparable anti-bonding (σ*) orbital. This transition takes 

place due to the electromagnetic radiation that gets absorbed. The highest 

quantity of energy is needed to undergo this transition. It can be observed 

in the methane molecule due to the presence of only C-H bonds. 



 

 

n→σ* transition 

In this transition, the electrons from a nonbonding orbital (n) move to an 

anti-bonding (σ*) orbital. The lowest quantity of energy is needed to 

undergo this transition. Halogens and elements like sulfur, oxygen, and 

nitrogen display this transition. 

n→π* transition 

In this transition, the electrons from a non-bonding orbital (n) move to an 

anti-bonding (π*) orbital. The lowest quantity of energy is needed to 

undergo this transition. Halogens and elements like sulfur, oxygen, or 

nitrogen display this transition. 

π→π* transition 

In this transition, the electrons move from a bonding orbital (π) to an anti-

bonding (π*). Its energy requirement ranges in between the energies 

required for (n→π*) and (n→σ*). Organic compounds like the aromatic 

ones, alkenes, alkynes, nitriles, and carbonyl compounds display this 

transition. 

Some transitions between energy levels are radiative, and some are 

nonradiative. The photon absorption involved between two energy levels 

is a radiative transition, whereas a transition involving no photons between 

two energy levels is a nonradiative transition. 
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The following selection rules are predicted for electronic transition in  

electron absorption spectroscopy.  

1.  

Simultaneous excitation of more than one electron is forbidden.  

2.  

Spin selection rule: Transition between states of different spin 

multiplicity  

(S.M. = 2S +1) is forbidden. That is, electronic transition in which the spin 

of an  

electron changes are forbidden. The selection rule is S=0 i.e., only states 

of  

same multiplicity combines with each other.  

3.  

Laporte rule: In a molecule which has centre of symmetry, transition 

between  

two grade or two ungraded state (i.e. g  g or u  u ) are Laporte 

forbidden. 

The allowed transition is g  u and u  g. That for allowed 

electronic transition there must be change in parity. The allowed transition 

gives intense band where forbidden transition results in weak band. Thus, 

the conclusion may be drawn as table 1 



 

 

 

 



 

 

 

 



 

 

  

 

 



 

 

 

10.5 FRANK-CONDON PRINCIPLES 

 

 

STATEMENT OF FRANK-CONDON PRINCIPLES 

 

 

The Franck-Condon principle is a rule in spectroscopy and quantum 

chemistry or Physics  that explains the intensity of vibronic transitions. 

Vibronic transitions are the simultaneous changes in electronic and 

vibrational energy levels of a molecule due to the absorption or emission 

of a photon of the appropriate energy. The principle states that during 

an electronic transition, a change from one vibrational energy level to 

another will be more likely to happen if the two vibrational wave functions 

overlap more significantly. 

The Franck-Condon principle has a well-established semiclassical 

interpretation based on the original contributions of James Franck [Franck 

1927]. Electronic transitions are essentially instantaneous compared with 

the time scale of nuclear motions, therefore if the molecule is to move to a 

new vibrational level during the electronic transition, this new vibrational 

https://www.chemeurope.com/en/encyclopedia/Spectroscopy.html
https://www.chemeurope.com/en/encyclopedia/Quantum_chemistry.html
https://www.chemeurope.com/en/encyclopedia/Quantum_chemistry.html
https://www.chemeurope.com/en/encyclopedia/Photon.html
https://www.chemeurope.com/en/encyclopedia/Electronic_transition.html
https://www.chemeurope.com/en/encyclopedia/Energy_level.html
https://www.chemeurope.com/en/encyclopedia/Electronic_transition.html


 

 

level must be instantaneously compatible with the nuclear positions 

and momenta of the vibrational level of the molecule in the originating 

electronic state. In the semiclassical picture of vibrations (oscillations) of a 

simple harmonic oscillator, the necessary conditions can occur at the 

turning points, where the momentum is zero. 

Classically, the Franck–Condon principle is the approximation that an 

electronic transition is most likely to occur without changes in the 

positions of the nuclei in the molecular entity and its environment. The 

resulting state is called a Franck–Condon state, and the transition 

involved, a vertical transition. The quantum mechanical formulation of 

this principle is that the intensity of a vibronic transition is proportional to 

the square of the overlap integral between the vibrational wavefunctions 

of the two states that are involved in the transition. 
 

 

What is Franck Condon Principle? 

The electronic transitions occur so quickly that a vibrating molecule does 

not change its internuclear distance appreciably during the transition. 

It can be explained as below- 

https://www.chemeurope.com/en/encyclopedia/Atomic_nucleus.html
https://www.chemeurope.com/en/encyclopedia/Momentum.html


 

 

 

Consider a potential energy diagram where E0 is the energy of the ground 

state and E1 of the excited electronic state. The two curves show the 

variation in electronic energy with internuclear separation in the two 

states. The vibrational energy levels are shown as horizontal lines. 

If a molecule absorbs quantum in the ground state E0, then its transition to 

excited state must occur along a straight line. 

This is because nuclei are heavy and sluggish as compared to electrons. An 

electron undergoes a transition in about 10-16 sec, which is very short as 

compared to the period of vibration of atomic nuclei (i.e., 10-13 sec). So, 

the internuclear distance in the excited electronic state remains the same as 

it was in the initial ground state before the time of electronic transition. So 

the transition is shown by a vertical line. An upward arrow is drawn for 

absorption of energy and a downward arrow for emission of energy. 

 



 

 

 

 

 

 



 

 

 

 

 

In general transitions to upper levels depend upon the difference between 

equilibrium separations in the lower and upper states. 

(3) Third Possibility- In this case, the upper excited state has a slightly 

larger internuclear separation than the ground state. The resulting 

transitions and spectrum are similar as above. 



 

 

 

4) Fourth Possibility- In this case, the upper excited electronic state has 

considerably greater separation than that in the lower electronic state. In 

such a case transition will occur to a higher vibrational level (V’) of the 

upper electronic state (E1) from the lower electronic state (E0). 

 

 



 

 

 

 



 

 

  

10.6 SINGLET AND TRIPLET STATES 

The terms singlet and triplet states are discussed under quantum 

mechanics. We can describe these terms regarding the spin of the system, 

i.e., atom. In quantum mechanics, spin is not a mechanical rotation. It is a 

concept that characterizes a particle’s angular momentum. 

The electronic states of most organic molecules can be divided into singlet 

states and triplet states. 

Singlet state: All electrons in the molecule are spin paired. It is called a 

singlet because there is only one possible orientation in space. 

Triplet state: One set of electron spins is unpaired. It is called a triplet 

because there are three possible orientations in space with respect to the 

axis 

 

What is Singlet State? 

A singlet state is a system in which all the electrons are paired. The net 

angular momentum of the particles in this type of system is zero. 

Therefore, we can say that the overall spin quantum number, s is zero 

(s=0). Furthermore, if we take the spectrum of this system, it shows one 

spectral line, and thus, got the name “singlet state”. Moreover, almost all 

the molecules that we know exist in the singlet state, but molecular 

oxygen is an exception. 

https://www.differencebetween.com/difference-between-quantum-physics-and-vs-quantum-mechanics/
https://www.differencebetween.com/difference-between-quantum-physics-and-vs-quantum-mechanics/
https://www.differencebetween.com/difference-between-linear-momentum-and-vs-angular-momentum/
https://www.differencebetween.com/difference-between-atomic-oxygen-and-molecular-oxygen/#Molecular%20Oxygen
https://www.differencebetween.com/difference-between-atomic-oxygen-and-molecular-oxygen/#Molecular%20Oxygen


 

 

 

As an example, the simplest possible bound particle pair having singlet 

state is positronium, which has an electron and positron. These two 

particles are bound by their opposite electrical charge. Moreover, the 

paired electrons of a system having a singlet state have parallel spin 

orientations. 

What is Triplet State? 

Triplet state of a system describes that the system has two unpaired 

electrons. The net angular momentum of the particles in this type of 

system is 1. Therefore, the spin quantum number is 1. Moreover, this 

allows three values of the angular momentum as -1, 0 and +1. Hence, the 

spectral lines that we obtain for this type of system split into three lines, 

and thus, got the name triplet state. 



 

 

 

 Difference Between Singlet and Triplet State 

A singlet state refers to a system in which all the electrons are paired. 

Whereas, the triplet state of a system describes that the system has two 

unpaired electrons. The key difference between singlet and triplet state is 

that singlet state shows only one spectral line whereas triplet state shows 

the threefold splitting of spectral lines. 

Moreover, a further difference between singlet and triplet state is that the 

spin quantum number of a singlet state is s=0 while it is s=1 for a triplet 

state. Besides, almost all the molecules that we know exist in singlet state 

except for the molecular oxygen. Whereas, molecular oxygen occurs at 

triplet state. 



 

 

 

 



 

 

 

 

  

10.7 FINE STRUCTURE AND HYPER FINE STRUCTURE 

 Fine structure describes the splitting of the spectral lines of atoms 

due to electron spin and relativistic corrections to the non-relativistic 

Schrödinger equation. Hyperfine structure, with energy shifts typically 

orders of magnitudes smaller than those of a fine-structure shift, results 

from the interactions of the nucleus (or nuclei, in molecules) with 

internally generated electric and magnetic fields. 

Spin–orbit coupling is an interaction of a particle's spin with its motion. 

This interaction leading to shifts in an electron's atomic energy levels, due 

to electromagnetic interaction between the electron's spin and the magnetic 

field generated by the electron's orbit around the nucleus. This is 

detectable as a splitting of spectral lines, which can be thought of as a 

Zeeman effect due to the internal field. 

The hyperfine structure is caused by interaction between magnetic field 

(from electron movement) and nuclear spin 
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Fine structure: 

1 Spin orbit interaction  



 

 

2 Relativistic kinetic energy correction  

Hyperfine structure: 

1 The lamb Shift  

2 Nuclear Moments  

 

 

 

 

Fine structure, in spectroscopy, the splitting of the main spectral lines of 

an atom into two or more components, each representing a slightly 

different wavelength. Fine structure is produced when an atom 

emits light in making the transition from one energy state to another. The 

split lines, which are called the fine structure of the main lines, arise from 

the interaction of the orbital motion of an electron with 

the quantum mechanical “spin” of that electron. An electron can be 

thought of as an electrically charged spinning top, and hence it behaves as 

a tiny bar magnet. The spinning electron interacts with the magnetic 

field produced by the electron’s rotation about the atomic nucleus to 

generate the fine structure. 

https://www.britannica.com/science/spectroscopy
https://www.britannica.com/science/atom
https://www.britannica.com/science/light
https://www.britannica.com/science/energy-state
https://www.britannica.com/science/electron-spin
https://www.merriam-webster.com/dictionary/quantum
https://www.britannica.com/science/spin-atomic-physics
https://www.britannica.com/topic/top
https://www.britannica.com/science/magnetic-field
https://www.britannica.com/science/magnetic-field


 

 

The amount of splitting is characterized by a dimensionless constant called 

the fine-structure constant. This constant is given by the equation α 

= ke
2
/hc, where k is Coulomb’s constant, e is the charge of the 

electron, h is Planck’s constant, and c is the speed of light. The value of 

the constant α is 7.29735254 × 10
−3

, which is nearly equal to 1/137. 

In the atoms of alkali metals such as sodium and potassium, there are two 

components of fine structure (called doublets), while in atoms of alkaline 

earths there are three components (triplets). This arises because the atoms 

of alkali metals have only one electron outside a closed core, or shell, of 

electrons, while the atoms of alkaline earths have two such electrons. 

Doublet separation for corresponding lines increases with atomic number; 

thus, with lithium (atomic number 3), a doublet may not be resolved by an 

ordinary spectroscope, whereas with rubidium (atomic number 37), a 

doublet may be widely separated. 

 

 

https://www.britannica.com/science/fine-structure-constant
https://www.britannica.com/science/Plancks-constant
https://www.britannica.com/science/speed-of-light
https://www.britannica.com/science/alkali-metal
https://www.britannica.com/science/alkaline-earth-metal
https://www.britannica.com/science/alkaline-earth-metal
https://www.britannica.com/science/triplet-spectroscopy
https://www.britannica.com/dictionary/alkaline


 

 

 

 

                                            

Hyperfine structure (HFS), in spectroscopy, the splitting of a spectral 

line into a number of components. The splitting is caused by nuclear 

effects and cannot be observed in an ordinary spectroscope without the aid 

of an optical device called an interferometer. In fine structure (q.v.), line 

splitting is the result of energy changes produced by electron spin–orbit 

coupling (i.e., interaction of forces from orbital and spin motion of 

electrons); but in hyperfine structure, line splitting is attributed to the fact 

that in addition to electron spin in an atom, the atomic nucleus itself spins 

about its own axis. Energy states of the atom will be split into levels 

corresponding to slightly different energies. Each of these energy levels 

may be assigned a quantum number, and they are then called quantized 

levels. Thus, when the atoms of an element radiate energy, transitions are 

made between these quantized energy levels, giving rise to hyperfine 

structure. 

The spin quantum number is zero for nuclei of even atomic number and 

even mass number, and therefore no HFS is found in their spectral lines. 

https://www.britannica.com/science/fine-structure
https://www.britannica.com/science/atom
https://www.britannica.com/science/quantum-number
https://www.britannica.com/science/quantized-level
https://www.britannica.com/science/quantized-level
https://www.merriam-webster.com/dictionary/quantum
https://www.britannica.com/science/atomic-number
https://www.britannica.com/science/mass-number


 

 

The spectra of other nuclei do exhibit hyperfine structure. By observing 

HFS, it is possible to calculate nuclear spin. 

A similar effect of line splitting is caused by mass differences (isotopes) of 

atoms in an element and is called isotope structure, or isotope shift. These 

spectral lines are sometimes referred to as hyperfine structure but may be 

observed in an element with spin-zero isotopes (even atomic and mass 

numbers). Isotope structure is seldom observed without true HFS 

accompanying it. 

 

 

 

https://www.britannica.com/science/isotope-effect


 

 

 

 

 

10.8 NMR 

NMR Spectroscopy is abbreviated as Nuclear Magnetic Resonance 

spectroscopy. 

Nuclear magnetic resonance (NMR) spectroscopy is the study of 

molecules by recording the interaction of radiofrequency (Rf) 

electromagnetic radiations with the nuclei of molecules placed in a strong 

magnetic field. 



 

 

Zeeman first observed the strange behaviour of certain nuclei when 

subjected to a strong magnetic field at the end of the nineteenth century, 

but the practical use of the so-called “Zeeman effect” was only made in 

the 1950s when NMR spectrometers became commercially available. 

It is a research technique that exploits the magnetic properties of certain 

atomic nuclei. The NMR spectroscopy determines the physical and 

chemical properties of atoms or molecules. 

 

Basis of NMR Spectroscopy 

Nuclear Magnetic Resonance (NMR) was first detected experimentally at 

the end of 1945, nearly concurrently with the work groups Felix Bloch, 

Stanford University and Edward Purcell, Harvard University. The first 

NMR spectrum was first published in the same issue of the Physical 

Review in January 1946. Bloch and Purcell were jointly awarded the 1952 

Nobel Prize in Physics for their research of Nuclear Magnetic Resonance 

Spectroscopy. 

Nuclear magnetic resonance (NMR) spectroscopy is a crucial analytical 

tool for organic chemists. The research in the organic lab has been 

significantly improved with the aid of the NMR. Not only can it provide 
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information on the structure of the molecule, it can also determine the 

content and purity of the sample. Proton (1H) NMR is one of the most 

widely used NMR methods by organic chemists. The protons present in 

the molecule will behave differently depending on the surrounding 

chemical environment, making it possible to elucidate their structure. 

 

NMR Spectroscopy Principle 

Many nuclei have spin, and all nuclei are electrically charged, according to 

the NMR principle. An energy transfer from the base energy to a higher 

energy level is achievable when an external magnetic field is supplied. 

 All nuclei are electrically charged, and many have spin. 

 Transfer of energy is possible from base energy to higher energy 

levels when an external magnetic field is applied. 

 The transfer of energy occurs at a wavelength that coincides with the 

radio frequency. 

 Also, energy is emitted at the same frequency when the spin comes 

back to its base level. 

 Therefore, by measuring the signal which matches this transfer the 

processing of the NMR spectrum for the concerned nucleus is yield. 

NMR Spectroscopy Working 

 Place the sample in a magnetic field. 

 Excite the nuclei sample into nuclear magnetic resonance with the 

help of radio waves to produce NMR signals. 

 These NMR signals are detected with sensitive radio receivers. 

 The resonance frequency of an atom in a molecule is changed by the 

intramolecular magnetic field surrounding it. 



 

 

 This gives details of a molecule’s individual functional groups and 

its electronic structure. 

 Nuclear magnetic resonance spectroscopy is a conclusive method of 

identifying monomolecular organic compounds. 

 This method provides details of the reaction state, structure, 

chemical environment and dynamics of a molecule. 

Chemical Shift in NMR Spectroscopy 

A spinning charge generates a magnetic field that results in a magnetic 

moment proportional to the spin. In the presence of an external magnetic 

field, two spin states exist; one spin up and one spin down, where one 

aligns with the magnetic field and the other opposes it. 

Chemical shift is characterized as the difference between the resonant 

frequency of the spinning protons and the signal of the reference molecule. 

Nuclear magnetic resonance chemical change is one of the most important 

properties usable for molecular structure determination. There are also 

different nuclei that can be detected by NMR spectroscopy, 1H (proton), 

13C (carbon 13), 15N (nitrogen 15), 19F (fluorine 19), among many more. 

1H and 13C are the most widely used. The definition of 1H as it is very 

descriptive of the spectroscopy of the NMR. Both the nuts have a good 

charge and are constantly revolving like a cloud. Through mechanics, we 

learn that a charge in motion produces a magnetic field. In NMR, when we 

reach the radio frequency (Rf) radiation nucleus, it causes the nucleus and 

its magnetic field to turn (or it causes the nuclear magnet to pulse, thus the 

term NMR). 

 

NMR Spectroscopy Instrumentation 

This instrument consists of nine major parts. They are discussed below: 

https://byjus.com/chemistry/functional-groups/
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 Sample holder – It is a glass tube which is 8.5 cm long and 0.3 cm 

in diameter. 

 Magnetic coils – Magnetic coil generates magnetic field whenever 

current flows through it 

 Permanent magnet – It helps in providing a homogenous magnetic 

field at 60 – 100 MHZ 

 Sweep generator – Modifies the strength of the magnetic field 

which is already applied. 

 Radiofrequency transmitter – It produces a powerful but short 

pulse of the radio waves. 

 Radiofrequency – It helps in detecting receiver radio frequencies. 

 RF detector – It helps in determining unabsorbed radio frequencies. 

 Recorder – It records the NMR signals which are received by the 

RF detector. 

 Readout system – A computer that records the data. 

NMR Spectroscopy Techniques 

1. Resonant Frequency 

It refers to the energy of the absorption, and the intensity of the signal that 

is proportional to the strength of the magnetic field. NMR active nuclei 

absorb electromagnetic radiation at a frequency characteristic of the 

isotope when placed in a magnetic field. 

2. Acquisition of Spectra 

Upon excitation of the sample with a radiofrequency pulse, a nuclear 

magnetic resonance response is obtained. It is a very weak signal and 

requires sensitive radio receivers to pick up. 

 



 

 

NMR Spectroscopy Applications 

1. NMR spectroscopy is a Spectroscopy technique used by chemists 

and biochemists to investigate the properties of organic molecules, 

although it is applicable to any kind of sample that contains nuclei 

possessing spin. 

2. For example, the NMR can quantitatively analyze mixtures 

containing known compounds. NMR can either be used to match 

against spectral libraries or to infer the basic structure directly for 

unknown compounds. 

3. Once the basic structure is known, NMR can be used to determine 

molecular conformation in solutions as well as in studying physical 

properties at the molecular level such as conformational exchange, 

phase changes, solubility, and diffusion. 

 

 

10.9 ESR 

 ESR Full Form: Electron spin resonance (ESR) is a spectroscopic 

technique that is used to detect the transitions induced by electromagnetic 

radiation between the different energy levels of electron spins in the 

presence of а static magnetic field. 

 Also called EPR Spectroscopy or Electron Paramagnetic Resonance 

Spectroscopy. 

 Non-destructive technique 

 Extensively used in transition metal complexes 

 Deviated geometries in crystals 
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The full form of ESR is Electron Spin Resonance Spectroscopy. It is a 

branch of absorption spectroscopy in which radiation having a frequency 

in the microwave region is absorbed by the paramagnetic substances to 

induce a transition between the magnetic energy levels of electrons with 

unpaired spins. Mаgnetiс energy sрlitting is dоne by аррlying а stаtiс 

mаgnetiс field. Absorption spectroscopies operate at microwave frequency 

10
4
-10

6 
MHz. 

PRINCIPLE OF ESR 

ESR spectroscopy is based upon the absorption of microwave radiation by 

an unpaired electron when exposed to a strong magnetic field.  

 The electronic energy levels of the atom or molecules will split into 

different levels. Such excitation is called magnetic resonance 

absorption. 

 With an ESR instrument, a static/magnetic field and microwave are 

used to observe the behavior of unpaired electrons in the material 

being studied. 



 

 

 In principle, ESR finds paramagnetic centers (e.g., radicals) that may 

or may not be radiation-induced. 

 A solid external magnetic field generates a difference between the 

energy levels of the electron spins, ms = +½, and ms = –½, which 

results in resonance absorption of an applied microwave energy 

figure below. 

 

 

Fig. Showing a Strong external magnetic field generates a difference 

between the energy levels of the electron spins, ms = +½, and ms = –½ 

 The study of the behavior of electrons in a condition of the sample. 



 

 

 ESR is used to observe and measure the absorption of microwave 

energy by unpaired electrons in a magnetic field as an electron's 

energy levels. 

Working Principle of ESR 

Electron Spin Resonance Spectroscopy working principle is explained in 

the points given below. For more understanding, check the points given 

here. 

 The gap between the energy states is widened until it matches the 

energy of the microwaves. This is done by increasing an external 

magnetic field. 

 At this роint, the unраired eleсtrоns саn mоve between their twо 

sрin stаtes. 

 Absorption lines are detected when the separation energy level is 

equal to the energy of the incident light. 

 It is this absorption that is monitored and соnverted into а spectrum. 

 

 

ESR is Shown by the Following: 

 An atom has an odd number of electrons. 

 Ions have partly filled inner electron shells. 



 

 

 Free radicals have unpaired electrons etc. 

APPLICATIONS OF ESR SPECTROSCOPY 

STUDY OF FREE RADICALS 

 With the help of this, we can study free radicals. Even in low 

concentrations, we can check free radicals using ESR 

SPECTROSCOPY. 

 The structure of organic and inorganic free radicals can be identified. 

 We can also investigate molecules in the triplet state. 

 The spin label gives information about the polarity of its 

environment. 

 With the help of ESR Spectroscopy, several types of irradiated food 

can be identified. 

 It can detect paramagnetic ions and free radicals in a variety of 

materials. 

STRUCTURAL DETERMINATION 

 In сertаin саses, ESR provides information аbоut the shарe оf the 

rаdiсаls. 

 

10.10 SUMMARY: 

 In this unit we discussed about different techniques Spectroscopy. 

 Spectroscopy is the science of studying materials by measuring their 

response to different frequencies of radiation. It should be noted that while a 

few forms of spectroscopy use other forms of radiative energy, such as 

acoustic or matter waves, spectroscopy is virtually always understood to 

use electromagnetic radiation to probe matter. 

Spectroscopy is a fundamental tool of scientific study, with applications 

ranging from materials characterization to astronomy and medicine. 



 

 

Spectroscopy techniques are commonly categorized according to the 

wavelength region used, the nature of the interaction involved, or the type of 

material studied. 

  

10.11 TERMINAL QUESTIONS: 

Q1: Which type of electronic transition do aromatic compounds undergo? 

(a) (σ→σ*) 

(b) (n→σ*) 

(c) (n→π*) 

(d) (π→π*) 

Q2: On which of the following factors does absorbance depend? 

(a) Molar concentration of the sample 

(b) Path length 

(c) Molar absorption coefficient 

(d) All of the above 

Q3: Nuclear Magnetic Resonance (NMR) spectroscopy is an example of 

which type of spectroscopy? 

(a) Absorption spectroscopy 

(b) Emission spectroscopy 



 

 

(c) Scattering spectroscopy 

(d) None of the above 

Q4: Which type of spectra display colored lines? 

(a) Absorption spectra 

(b) Emission spectra 

(c) Scattering spectra 

(d) All of the above 

Q5: What is the unit of absorbance? 

(a) Liters per mole per cm (L/mol.cm) 

(b) Moles per liter (mol/L) 

(c) Unitless 

(d) Centimeters (cm) 

10.12 ANSWER AND SOLUTION OF TERMINAL QUESTION: 

1.d 

2.d 

3.a 

4.b 

5.c 
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