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Block-1

Complex variables and Power series

In the first Unit, we discussed function of complex variables which are
useful in evaluating a large number of new definite integrals, the theory of
differential equations, the study of electric fields, thermodynamics and
fluid mechanics. The Functions of that depend only on the combination are
called functions of a complex variable and functions of this kind that can
be expanded in power series. They are vectors in this two-dimensional
complex number space, each with a real and an imaginary part (or
component). Since we can multiply z by itself and by any other complex
number, we can form any polynomial in z and any power series also. Since
all the operations that produce standard functions can be applied to
complex functions, we can produce all the standard functions of a complex
variable by the same steps as go to producing standard functions of real

variables.

In the second unit we shall introduce the series representation of a complex
valued function . We shall show that if f is analytic in some domain then it
can be represented as a power series at any point in powers of (- which is
the Taylor series of f about . If f fails to be analytic at a point , we cannot
find Taylor series expansion of f about that point. However, it is often

possible to expand f in an infinite series having both positive and negative



powers of series. This series is called the Laurent series. In order to obtain
and analyse Taylor and Laurent series, we need to develop some concepts
related to series. We shall start the unit by discussing basic facts regarding
the convergence of sequences and series of complex numbers in we have
introduced the concept of radius of convergence of a power series and
given the conditions for absolute and uniform convergence of the power

series in relation to its radius of convergence.



UNIT-1: Complex Variable

Structure
1.1 Introduction
1.2  Objectives
1.3 Concept of a Complex Variable
1.4 Properties
1.5 Continuity of Complex Functions
1.6 Uniformly Continuous
1.7 Derivative
1.8  Analytic Functions
1.9  The Necessary and Sufficient Condition for f(z) to be Analytic
1.10 Milne’s Thomson Method
1.11  Harmonic Functions
1.12 Summary

1.13 Terminal Questions



1.1 Introduction

In this Unit, we discussed function of complex variables which are
useful in evaluating a large number of new definite integrals, the theory of
differential equations, the study of electric fields, thermodynamics and
fluid mechanics. the Functions of f(x,y)that depend only on the
combination (x + iy) are called functions of a complex variable and
functions of this kind that can be expanded in power series in this variable
are of particular interest. This combination (x + iy) is generally called z,
and we can define such functions as z", exp(z), sin z, and all the standard
functions of z as well as of x. They are defined in exactly the same way the
only difference being that they are actually complex valued functions, that
Is, they are vectors in this two-dimensional complex number space, each
with a real and an imaginary part (or component). Since we can multiply z
by itself and by any other complex number, we can form any polynomial in
z and any power series as well. We define the exponential and sine
functions of z by their power series expansions which converge
everywhere in the complex plane. Since all the operations that produce
standard functions can be applied to complex functions, we can produce all
the standard functions of a complex variable by the same steps as go to

producing standard functions of real variables.

1.2 Objectives

After reading this unit the learner should be able to understand about:



Continuity of Complex Functions

Uniformly Continuous

Derivative

Analytic Function

Necessary and Sufficient Condition of function
Milne’s Thomson Method

1.3 Concept of a Complex Variable

A number of the form x + iy, where x and y are real numbers and i =

v—1 is called a complex number. x is called the real part of x + iy and is
written as R(x +iy) and y is called the imaginary part and is written

I(x + iy). Itis represented by z = x + iy.

A pair of complex numbers x + iy and x — iy are said to be conjugate of

each other

Ifz=x+iythenz =x —iy.

1.4 Properties

. The sum, difference, product and quotient of two complex numbers is a
complex number.

. If a complex number is equal to zero then its real and imaginary parts are
separately equal to zero. Thusx +iy=0=x=0andy=0

. If two complex numbers are equal, then their real and imaginary parts are
separately equal. Thusx +iy =a+ib=>x=aandy=Db

. If two complex numbers are equal, then their conjugates are also equal



a.a+ib=c+id 2a—ib=c—id

(i)
(ii)
(iii)

Note: Let R be the set of real number then an element (x,y) € R X R is
called a complex number if it satisfies

(x1,y1) = (X2,¥2) =2 x1 = %, &Yy = ¥,

(x1,¥1) + (x2,¥2) = (X1 + X2, 51 + ¥2)

(1, ¥1)- (X2, ¥2) = (X1X2 — Y1Y2, X1Y2 + X2¥1)

If we take z; = (xq,y,) & z, = (x,,y,) thenwe get z, = z,; z, +

Z, & 274.2,

Every complex number x + iy can always be expressed in the form r (cos
0 +1sin 0)

Put x =7rcosf ..................... (1)

l.e. z=x+ iy =r(cosb + isinh)
squaring and adding
r? =x?% + y?
Or 1 =./x2 + yZ (take +ve root only)
Dividing (2) by (1)

tan@ =

RIR



(1)

(i1)
(iii)

thus x + iy = r(cosf + isinf) where r = \/x? + y?

and 0 =tan =

the number r = \/x? + y?2 is called the modulus of x + iy and is written as
mod(x + iy) or |x + iy|

The angle 0 is called the amplitude or argument of x + iy and is written as

amp (x + iy) ororg (x + iy)

Geometrical Representation of Complex Number:

Plane representing complex number as ordered pairs of real number (X, y)

is called the complex plane or argand plane or gaussian plane.

If z; and z, are two complex number, then addition of two complex number
are |z, + z,| < |z4| + |2,].
Difference of two complex number are |z; — z,| = |z;| — |z, |

zi| _ lzl - _
o Iy (V) |z1.23] = |z1]. |2, |




V) |2y + 2312 + |2y — 23| = |24 |* + |2,]?
De Moivre’s Theorem:
If n is any integer +ve or -ve then (cosf + isinf)™ = cosné + isinnf and

If n is a fraction +ve and -ve, then one of the values of (cos0 +

isin@)™ is cosn0 + isinné
Function of complex variable:

If for each value of the complex variable z = x 4+ iy in a given region R

we have one or more value of
w=u-+Iiv
Then w is said to be a complex functions of z and we write
w=u(x,y) +wxy) = f(2)
Orw = f(2)
Where u and v are real functions of x and y.
Fore.g. if w = z2
w=f(z)=u+ivandz = x + iy
Thenu + iv = (x + iy)?
= x2 —y% + 2ixy

= u=x%—y?



v = 2xy

Thus u and v are the real and imaginary part of w are functions of the real

variables x and y.
Limit of f(2):- lim,_,o f(2).1
Definition:

A function w = f(z) is said to tend to limit | as z approaches a point z if

for every real € we can find a +ve real § s.t.
If(z) —l| <efor|z—2zy| <6

I.e. for every z # z, in the §-disc of z-plane f(z) has a value lying in the

disc of w-plane.

We write lim,_,,  f(z) =1

y
e
— ‘> )
(‘—" —— Y -~ -".:\
< S__fff’"" I E .
«t—




Note:- In real variable x — X, implies that x approaches along the number

line either from left or from right.

But in complex variables z — z, implies that z — approaches z, along any
path straight or curved since the two points representing z and zy in a

complex plane can be joined by an infinite number of curves.

T

~20 >
Means (i) along real axis (ii) image axis (iii) along the path y = mx.
Continuity of f(z):

A function w = f(z) is said to be continuous at z = z, if lim,_,,  f(z) =
f(20).

Further f(z) is said to be continuous in any region R of the z-plane, if f(z) is

continuous at every point of that region.

1.5 Continuity of Complex Functions

In order to perform operations such as differentiation and integration of
complex functions. We must be able to verify of the complex function is

continuous. A complex function f(z) is said to be continuous at a point z,



If as z approaches z, (from any direction) then f(z) can be made arbitrarily

close to f(z,).

1.6 Uniformly Continuous

A function f(z) is said to be uniformly continuous in a domain D if
Given € > 0, (however small),3 6§ > 0 (depending upon & only).
st f(z1) — f(z)| <&V 2,2, €D

whenever 0 < |z, — z,| < 6

Z,, Z, being any two points of the domain D.

Example: Show that f(z) = Ziz is uniformly continuous in the region

N | =

<|z| < 1.

Solution: Here f(z) = =

ZZ
Suppose f(z) = ziz is uniformly continuous in the region % <|z| £ 1.

Then for a given € > 0,we can choose § > 0

Such that |f(2) — f(zy)| =

11
— — —| <€ whenever |z — z,| < §
zZ2 7y

When § depends only on € and not on the particular choice of the point z,,

. . .1
if z and z, are only point in p |z| <1



2 2

1

1 Zo“—Z
z%2  zy2

_ _ lz+zollz—2z0|

Then

2
z2z, 1z|2 |20 |?

|z + zy|1z — 2|

< 2|z — zy|[4 X 4] = 32(z — z,)

12]?] 2o |?

Since |z| E%and || Z%Hi<2andi<2

lz| |zol ~

1 1

2<€

Now if we choose § = % it follows that

z2 z

This ensure that f(z) = ziz is uniformly continuous in the region % <|z| <

1.

Bounded Function: A function f defined on some set X with real or
complex values is called bounded if the set of its values is bounded. In
other words, there exists a real number M such that for all x in X. A

function that is not bounded is said to be unbounded.

Multivalued Function: If w takes two or more values for some values or
all values of z in the region D,then w is said to be multivalued function of

Z.

Example: we have w? = z = x + iy
If we take x = 5;y = 12

Thenw? =z =5+ 12i

= (3 + 2i)?



=>w = £(3 + 2i)
Hence function is called Multivalued.

Branch: A branch of a multi-valued function is a single-valued analogue

which is continuous on its domain.

Branch Cut: The set of points that have to be removed from the domain of

a multivalued function to produce a branch of the function.

Branch Point: The point in the complex plane which lies in every branch

cut of a complex function. It is often the origin.

1.7 Derivative

Let w = f(z) be a single values function of the variable z = x + iy, then

the derivative or differential coefficients of w = f(z) is defined as

f,(Z) — limz—>zo f(2)—f(20)

Z—Zo

D _ 1y = iy [0S

85z-0 0z

Provided the limit exists and unique when 6z — 0 along different paths

dw B Ju N iov

dz 9dx Ox
Or

dw _ Jdv idu

E_ay dy



dy _ . fx+h)—f@)
im

dx h—0 h

dy y 5y
dx  61506%

Cauchy-Riemann Equations:

A necessary condition for w = f(z) = u(x,y) + iv(x, y) to be analytic in
domain D is that u and v satisfy the Cauchy-Riemann Equations

ou _ av

u ov .
% = anda = ——atevery pointD.  .............. (1)

If these partial derivatives (1) are also continuous, then Cauchy-Riemann

Equations are sufficient condition for f(z) to be analytic in D.

(i)  Necessary Conditions for f(z) to be analytic
We have z = x + iy
=>Az = Ax + iAy.
Letw = f(z) = u(x,y) + iv(x, y) be analytic function inside a region D.

It means differentiable of w exist at any point of this region i.e., Z—‘;’ =

. Aw f(z+Az)—f(2)
limy,,_, ~ = limy, o= e ies e e e (1)

Az

Exist and unique along whatever path Az may across to zero.
Now, we take Az — 0 along two paths x — axis and y — axis.
Along x — axis, there is no change in y i.e., Ay = 0 therefore Az = Ax +

Ay = Ax



Using equation (1), we have — limAZ_,OA—W T ¢
dz Ax
And when the motion is parallel to y — axis then there is no change in x.

So Ax = 0, therefore Az = Ax + iAy = iAy.

By equations (1) and (2) Z—VZV = limAzaoiAA—V; R <))
Now by equations (2) and (3), Z—VZ" = g—: = ;—V; NN )
Wehavew = u + iv

And g—‘; = Z_; + iZ—;

w _ du v
idy - iody 0dy
ow

) ow ow
By equation (4) we have, ox = oy

Equating real and imaginary parts, we get

ou _ v
6x_6y

and &= —Tor_ %
ax dy ay_ dx

These are the necessary condition for a function of analytic.



(i)  Sufficient Condition: Sufficient condition of f(z) to be analytic

. . du ou Jdv Jdv
assume the existence and continuity of o 3 9% 7y

The Sufficient condition for the function f (z) to be analytic required other

the continuity four partial derivatives of u and v. Since u is a function of

x and y.

So, u=u(x,y) = u+ Au =u(x + Ax,y + Ay)
~ou=ulx+0x,y+09y) —u(x,y)

= u(x + Ax,y + Ay) —u(x + Ax,y) + u(x + Ax, y) —u(x,y)

u(x + Ax,y + Ay) —u(x + Ax, y)
Ay
u(x + Ax,y) —u(x,y)
Ax ]

Au = Ay

Ax|

=>Au = Ay.u,(x + Ax,y + 6;Ay) + Axu, (x + 6,Ax,y)

0<6,<1and0<06,<1

Au = Ay(uy + &) + Ax(uy, + &)

£1,€2,83,84 > 0asAz— 0



Now by C-R equations
Au = Ay(—v, + &) + Ax(uy, + &)
And Av = Ay(u, + &3) + Ax (v, + &4)
Or Av =iAy(u, + &) + iAx(v, + &4)
On adding last two equation and simplify, we get
Au + iAv = (Ax + iAy)(u, + iv,) + nAx + n'Ay
nN= &+iég
n' =g +ig

Dividing by Ax + iAy, we get

Au+idv . éf ’éZ
axtidy (ux+”7x)+rlAZ+rl e
AW_ . A_x ,A_y 3 _ )
I:>E—(ux‘|‘”7x)‘|‘ N, +t1n <Az = Ax + iAy
A
S 2] < Inl +In'l - 0 ol <1
rlAz n Azl — n 1 Ay
—| <1
Az
; . Aw  Odu , 0V
Therefore, in the lim,,_, = i
dw 6u+_6v
_— 11—
dz 0dx  Ox

aw . ou v .
Hence == exist because =, == exists.
dz dx 0x



1.8 Analytic Functions

If a complex function f(z) is a single valued and differentiable at any point
Z =z, in the given region R then f(z) is called an analytic or regular or

holomorphic function of z at the point z = z,.

The point at which the function is not differentiable is called a singular

point of the function.

A function f(z) which is single valued and possesses a derivative w.r.t. z at

all parts of a region R, is called an analytic function.

Theorem: - The necessary and sufficient conditions for the derivatives of

the function.

w =u(x,y) + iv(x,y) = f(2) to exist for all values of z in a region R are

. du du dv Jv . . ;
(1) o' 3’ 9% 7y are continuous function of x and y in R.
.. ou ov ou v
(i) (a) oy (b) %~ o
Or u, =v, Uy = Uy

The relation (i) are known as Cauchy Riemann equation or C-R equation.

Example. If f(z) = u + iv is analytic functionand u — v = e*(cosy —

siny), findf (z)in the term of z.

Solution-we have f(z) = u + iv,then iu — v = if (2)



Addingwe have u + iv+iu —v = f(z) + if (2)

u—v+(utv)=1+ifz=Fzsay

u—v=Uand u+ v =V then F(z) = U + iV is analytic function.
U =e*(cosy —siny)

Now Z—Z = e*(cosy — siny)or Z—Z = e*(—siny — cosy)

dV—an +6Vd = aUd +aUd
_axx ayy_ ayx axy

dV = e*(siny + cosy)dx + e*(cosy — siny)dy
Integrating, we have V = e*(siny + cosy) + ¢
F(z) = U+ iV = e*(cosy — siny) + ie*(siny + cosy) + ic
F(z) =e*+ie*+ic
1+Df(2) = +iDe*+ic

ic
1+

f(z) =e?+

f(z2) =e?+¢

Example. Using C-R equations show that f(z) = |z|? is not analytical at

any point.

Solution- we know that u = x* + y?,v =0



au_z ou ) av Oav_o
ox xay Yoox "oy

By C-R equation

ou ov ou ov . . .
Pl 3 and % * - (C — R equation are satisfied only at origin )

Since differentiable at origin but not at neighbourhood point. it is nowhere

analytic.

1.9 The Necessary and Sufficient Condition for f(z) to be Analytic

The necessary condition for a function f(z) = u + iv to be analytic at all

the points in a region R are

u ou —-0v .
( ) a = E (b) 5 = W prOVIded
v o 8 00 i
ox' 0y’ 9x’ dy

Sufficient condition for f(z) to be analytic: -

The sufficient condition for a function f(z) = u + iv to be analytic at all

the points in a region R are

(i) ou _ov  du_ —Ov
ax dy ' a9y  ox

.\ Ou du dv 0
(i) = au -, a—v are continuous function of x and y in region R.

C-R equation in polar form



a_u — la_v and a_u — _r@
ar  rae 90 or
Remember:

. If a function is analytic in a domain D, then u , v satisfy C-R conditions at
all points in D.
. C-R conditions are necessary but not sufficient for analytic function.

. C-R conditions are sufficient if the partial derivative continuous.

Example .1 If w = logz find ‘:i—vzv and determine where w is?
Solution:- We have w = u + iv = log (x + iy)

u+iv= %log(x2 +y%) + itan‘li
Equating real and imaginary parts.
u = %log(x2 + y2), v=tan 1=
General value logz = log|z| + i(0 + 2nm)

Preverbal value logz = log|z| + i6




ou y

oy x2+y?
9 _ 1 (—y) _ Y
ox 1+ y?/x?\x? x?% + y?

av_ 1 (1)_ X
631_1+yz/x2 X _x2+y2

a_u—a_v anda_u—_a_v
ax_ay ay_ dx

The Cauchy — Riemann equation are satisfied and the partial derivatives

are continuous except at (0, 0).

Hence w is analytic everywhere except at z = 0.

dw Jdu —0dv X o =y
A +i )
dz 0dx 0dx  x?+y? x?% 4+ y?
o x—1iy
C x2+y2
x —1y

T+ i —iy)
B 1
C (x—iy)

Z

Example .2 Show that the function z|z| is not analytic anywhere.



Solution.:- Letw = z|z|. Herew = u + ivand z = x + iy
u+iv=(x+iy)yx?+y?
U = X4/ x% + y?, v =1yx%+y?

ou 2 x? + x? +y?

—_— x.—
dx 2 /x2_|_y2

dy '2\/x2+y2 Jx?+y?
B x? + 2y?
Jx?2 4+ y?
QoY when x =y
ox dy
a_u Xy v xy

dy  JxZ+y?’ ax  \[x2+y2

a_u —-0v
dy ax

Hence C — R conditions are not satisfied at any point. The function z|z| is

not aualy til anywhere.

Example.3 Show that the function f(z) = /|xy| equation is not regular at

the origin although C — R equation are satisfied.



Solution:- Let f(2) = u(x,y) + iv(x,y) = /|xy|

Thenu(x,y) =+/lxyl, v(x,y)=0

At the origin (0, 0) we have

ou 1 u(x,0)-u(0,0) _ ;. 0-0 __
( )(0’0) = lim,_,, — = lim,_,, — = 0

0x
. a_u T u(x+h, y)-u(x,y)
e llmh_>0 h
6_u 1 u(0,y)—u(0,0) _ 1 0-0 —
(63’)(0,0) llmy_,o 5 llmy—>0 > 0
v o v(x,0)—v(00) . 0-0
(—) = lim = lim =0
ax (0[0) x—0 X x—0 X
v - v(0,y)—v(0,0)  0-0
<_> = lim =lim——=0
9y 0o 70 Y ey

Clearly C — R equations are satisfied at the origin.

.au_au&au_ ov
“ox dy Ody = 0x

Now, f7(0) = lim, o L2LE = jm, , Y22

If z —» 0 along the line y = mx we get



|mx?| |m|

f'(0) = lim

— = 11m
y-mxx(1l+im) x-01+1im

Now this is not unique since it depends on m therefore f'(0) does not

exist.
Hence the function f(z) is not regular at the origin.

Example.2 Examine the nature of the function

2y (x+i
y4( y);zio
x* + y10

f2) =

f(0) =0 Intheregion including the origin.

x2y®(x+iy) |

Solution- we have f(z) =u +iv = prave T E ANl

Equating real and imaginary parts , we get

. x3y5 . x2y6
x4+y10 ! x4-+y10

ou . u(x,0)—u(0,0)
— = lim =0
dx x-0 X

ou  u(0,y)—u(0,0)
— = lim =0
dy  x-0 y

ov . v(x,0)—v(0,0)
— = lim =0
dx x-0 X




ov . v(0,y) —v(0,0)
— = lim =0
dy x-0 X

From the above results that , it is clear that

du v ou v
—=—and—=——
0x dy ady ox

Hence , C-R equations are satisfied at the origin.

[xzyS(x+iy) 0] 1
y—0

x* + y10 X+ iy

y x2y5
= 1IMn——--=
y—0

Let z — 0 along the radius vector y = mx,then

£ 2 m°x”’ _ x3m
= 11m =1mm-——m-———-

5




Which show that £'(®does not exist. here f(z)is not analytic at origin

although Cauchy-Riemann equations are satisfied there.

Example.6 If f(z) is an analytic function with constant modulus show that

f(z) is constant.

Solution: Let an analytic function be f(z) = u + iv
Taking modulus
|f (2)| = Vu? + v2 squaring both sides
If@I? =u? +v?

Given |f(z)| = constant = ¢ (say) and ¢ # 0,

2=ul+v% (1) diff. w.r.t. X
ou ov
ZUa + 2 a =0
ou v
a + a =0 i (11)

Diff. (i) partially w.r.y.y

ou v
u—+v—=20
dy T dy
ov 0

—UuUu—T v =
6x+ d0x

Squaring and adding (ii) and (iii)



= {(g—z)z+(g—1)2}=0 W ur+vi=c?#0
= If'(@I° =0 () =i (Z) =242 =0

[+ r@ =5+ ig]

= f'(2)=0

= f(z) = constant.

1.10 Milne’s Thomson Method

This method is used to find f(z) = u(x,y) + iv(x,y) in terms of z when

u(x,y) and v(x, y) are given.
Wehave z =x+iyand zZ = x — iy

.'.z+Z=2xorx=%2andz—z_=2iy0ry=21i(z—z_)



z 1 z 1
f(2) =ulx,y) +ivix,y) = u{Z;Z,Z—i(z—z‘)}+ iv{z-zl_z,z—i(z—z')}

This being an identity in two independent variables and 7 .

(1)  When u(x, y) is real part is given then f(z) is obtained as follows.

f(2) = [[0,(z,0) — i0,(z,0)]dz + c

ou

Where @, (x,y) = Z—’; and @, (x,y) = ™

(i)  When v(x, y) is imaginary part is given then f(z) is obtained as
follows.

f(2) = [[Y1(z,0) + ip,(z,0)]dz + ¢
ov

Where lpl(xr y) = Z_;i l/)z(x, y) = 6_

Example 1 Determine the analytic function where real part is

log\/ﬁy2

Solution: Let u(x,y) = log/x? + y?

ou _ 2x _ x
Ox  2\/x2+y2  \[x2+y2

ou _ _y
dy  Jx2+4y?

f(@) = [[8:(z,0) — iB,(z,0)]dz + c

=fzizdz+c



= logz + ¢
Example.2 Find the regular function whose imaginary part is e*siny.

Solution: Let v(x,y) = e*siny

w_ e*sin v _ e*cos
ax y o dy y

f(2) = [[$1(2,0) + ip,(2,0)]dz + ¢
= [e?dz+c
=e’+c

Example.3 Find the analytic function f(z) = u+ivif2u+v =

e*(cosy — siny).
Solution: Let f(z) =u+iv

OF  2f(2) = 22U+ 02V eooeeeeeeeeeeee (1)

Subtract (2) from (1)
2-Df(2) = Qu+v) +iQv —u)
Let 2 —-0)f(z) =F(2)
2ut+v=u

And 2v—u =v then



fz)=u+iv

~ f(z) is analytic because f(z) is analytic and u be the real part

ou

— = e*(cosy — siny) = ¢1(x,y)

u

Foi e*(—siny — cosy) = ¢,(x,y)

F(z) = [[e%cos8 — ie?(—cos0)]dz + ¢
= [[e?cosB + ie?]ldz + c
=[e?(1+i)dz+c
=(1+ie“+c
> 2-0Df(@2)=1+De?+c¢

(1+i)e? n c

2—i 2—i

= f(2)=

_ (14D (2+0)

VA
T (2-0)(2+0) e”+ 4

2+i+2i—-1
- ez + C1
4+1

3i+1
== e’ + ¢ Ans.

1.11 Harmonic Function: -




Any function which satisfies the Laplace equation is known as a Harmonic

functions. A function f(z) = u + iv is said to Laplace equation is

0%u . 9%u
Xz + ﬁ = 0 etc.

Theorem: If f(z) = u + iv is an analytic function then u and v both are

harmonic function.

Proof: Let f(z) = u + iv be an analytic function then

ou _ av

We have G gy e (1)
du v
By ax e (2)

Diff partially equation (1) w.r.t. X

9%u 92%v
ke Bxdy e 3)

Diff. partially equation (2) w.r.t. y

9%u _ -0%v

397 = axdy e (4)
Adding (3) and (4)

0%u 9%u _

it o = 0 i (5)

Similarly by diff. partially (1) w.r.t.y and (2) w.r.t. x and subtracting we

obtain



0% 0% _

T eE =0 6)

Thus both the functions u and v satisfy the Laplace equation in two
variables. For this reason they are known as harmonic functions and their
theory is called potential theory. Such functions u and v are called

conjugate harmonic function as u + iv is also analytic function.

Example.1 If u(x,y) = x2 — y?, prove that the u satisfies Laplace

equations.
Solution: we have u(x, y) = x2 — y?

au_z dau_z
Fyvi X an ay_ y

0%u 0%u
Thenﬁ— 2 and a_yz_ 2

9%u
2

5=2—2=0

. . 02
Hence Laplace equation is ﬁ +

Example.2 Prove that u = x2 — y? and v = y/x? + y? are harmonic

function of (x, y) but are not harmonic conjugates.

ou _ ou _

e 2 a2 — - —
Solution: u = x* — y~, o 2x, % 2y

0%u 9%u
axz dy?



0%u . 90%u
Now ﬁ + 32 =0

~ U(x, y) satisfy Laplace equation, hence u(x, y) is harmonic function

v=y/x*+y*

ov __ -y2x _ —2xy
ax  (x2+y2)2  (x2+y?2)2

v (x2+y?)1-y2y  x2-y?
dy  (Z+yD?2 (a+y?)?

9%v (x2+y2)2(—2y)—(—2xy)2(x2+y2)(2x)
0x? [(x24+y2)2]?

_ (x%+y?)[-2x%y—2y3+8x%y|
B [(x2+y?2)2]2

_ 6x%y-2y3
(x2+y2)3

0%v (x2+y2)2(—2y)—(x2—y2)2(x2+y2)(2y)
9y [(x2+y?2)2]?

_ (x%+y?)|-2x?y—2y3—ax?y+4y3|
- (x2+y2)%

_2y3-6x2y
- (x2+y2)3

0%v . 0%v
Hence, ﬁ-l_ ﬁ =0

v(X, y) also satisfy Laplace equation.

Hence v(X, y) is also harmonic function.



ou v ou ov
Butaia anda#—' %

Therefore u and v are not harmonic conjugates.

Example.3 If f(z) is a regular function of z prove that (aa_; + aa_yzz) If(2)| =
4lf'(2)1*.
Solution: Let f(z) = u(x,y) + iv(x, y) so that

f(@)] = Vuz +v?

and |f(2)|? = u? +v? = ¢(x,y) say,

9 _ ., Ou [
ax_2u6x+2v6x
2¢p 02u  [(ou\> 92y [9v\?2
ﬁ_2[4ﬁ+(5) +”m+(a)]
imilarly 22 = 2 [22%% 4 (20)* 4 , @0 | (ov)°
Similarly e 2[463/2 + (ay) tvost (ay) ]
Adding
62¢+62¢
0x?  0y?

B 62u+62u N 62v+62v +(6u>2+(6u)2
— "\ 9x2 dy? Y\ ax2 dy? 0x dy

Ny



Since u and v have to satisfy C-R equation and the Laplace equation.
=2|(3) + ) + )+ G ]
=4[ + ]

= 4lf'(2)|*

Example.4 Define a harmonic function. Show that the function
u(x,y) = x* — 6x%2y? + y*

is harmonic. Also find the analytic function
f@) =ulx,y) +iv(x,y).

Solution- A function u(x, y) of x,y which processes continuous partial

derivatives of the first and second orders and satisfies

u(x,y) = x* — 6x2y? + y*

% _ 4x% —12xy? putting x - zand y - 0

ax

then 9,(z,0) = 4z3



% = —12x%y + 4y3 putting x - zand y - 0

then ©,(z,0) =0

9%u

ou _ 2 _ 2
i 12x° — 12y (1)
azu - _ 2 2

37 = 12x° + 12y (2)

Adding equation (1) and (2) we have

0%u  9%u ) ) )
— 4+ — = 0 hence, u is a harmonic function.
0x2 = 0y?2

f(@) = [[8:(z,0) =i §,(z,0)]dz+c  (3)

Putting value @,(z,0) and ©,(z,0) then

f(z)=[4z3+¢

1.12 SUMMARY

We shall formally define the definition of the limit of a complex function
to a point and use this definition to define the concept of continuity in the
onctext of a complex function of a complex variable. A variable that can

take on the value of a complex number. In basic algebra, the variables x



and y generally stand for values of real numbers. The algebra of complex
numbers (complex analysis) uses the complex variable z to represent a

number of the form a + bi.

We conclude with summarizing what we have covered in this unit.
= Analytic function

= Cauchy-Riemann equations

= Milne Thompson Method.



1.13 Terminal Questions

8.
9.
10.

(i)

(i)

(iii)

Prove that f(z) = z?2 is uniformly continuous in the region |z| < 1.

The function f(z) = (z — 3)/?has a branch point at z = 3.

Construct a function f(z) which has a real function u(x, y) =

e*(x cosy — y siny) for its real part, satisfying Laplace’s equation.
Prove that w = |z|? is continuous everywhere but nowhere differentiable

exceptat z = 0.

Prove that the function f(z) = xy + iy is everywhere continuous but
not analytic.
Prove that analytic function with constant real part is constant.

If u = %log(xz + y?), find v such that f(z) = u + iv is analytic.
Determine f(z) in terms of z.
Show that the following functions are not analytic (i) |z|? (ii) z
Show that the following functions are not analytic (i) z3(ii) eZ
Continuity of functions of a complex variable .
Let g(z) = j_;ifor z #+ 1land g(1) = 1if g continuous at 1? Is g
continuous at 0?

Let h(z) = zis for z # 0, can h be defined at 0 so that the new function

Is continuous at 0.
It the function f(z) = z — Z continuous at every point where it is

defined?
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2.1 Introduction

In this unit we shall introduce you to the series representation of a
complex valued function . We shall show that if f is analytic in some domain
D, then it can be represented as a power series at any point z,eD in powers
of z-z, which is the Taylor series of f about z,. If f fails to be analytic at a
point z,, we cannot find Taylor series expansion of f about that point.
However, it is often possible to expand f in an infinite series having both
positive and negative powers of z-z,. This series is called the Laurent series.
In order to obtain and analyse Taylor and Laurent series, we need to develop
some concepts related to series. We shall start the unit by discussing basic
facts regarding the convergence of sequences and series of complex numbers
in we have introduced the concept of radius of convergence of a power series
and given the conditions for absolute and uniform convergence of the power

series in relation to its radius of convergence.

2.2 Objectives

After studying this unit, you should be able to:
« discuss the convergence of sequence of complex numbers;

 use the properties of convergence and absolute convergence of infinite
series of complex numbers in order to check the convergence of any

given series;



« obtain the Taylor series representation of a complex-valued function

about a point at which the function is analytic;

« Obtain a series representation of a complex-valued function about a

point at which the function is not analytic in terms of Laurent series;

 Obtain the radius of convergence of a power series.

2.3 Power Series

A series of the types Yo - a,,(z — z,)™, whose terms are variable, is called a
power series about zo, where z is a complex variable, a,, zo are complex

constants and a, is independent of z.

By substituting z — ¢ + z,, the above power series becomes Y.>>_, a,,{",
where ¢ is the new complex variable. Since the first form of the power series
can be reduced to the second form merely by changing the origin, it is

sufficient to consider the series of the form .., a,z".

2.4 The circle of convergence of power series

The circle |z| = R such that the power series ), a,,z" is convergent for every

z within it is called the circle of convergence of the series.

2.5 Power series and analytic function

Sum function of a power series- If f(z) = Y. a,,z™, then f(2) is called the sum

function of the power series ), a,,z".



In the following theorem we show that the derivative of a power series has

the same radius of convergence as the original series.

Theorem 1: The power series Y, na,,z" ! obtained by term by term
differentiation of the power series }; a,,z™ has the same radius of

convergence as the original series ). a,,z".

Power series as an analytic function, the following important theorem says
that every power series can be treated as an analytic function by means of its

sum functions.

Theorem 2: The sum function f(z) of the power series }.._,a,z" represents

an analytic function inside its circle of convergence.

Further, every power series processes derivative of all orders within its circle
of convergence and these derivatives are obtained through term by term

differentiation of the series.

2.6 Radius of convergence of power series

Consider the power series ), a,z™. Here U, (z) = a,,z™. By nth root test, this

series is convergent if lim,,_,, |U,(2)|¥/" < 1

e, lim,,oela,.z" <1 ie.  lim|a,|Y™|z] < 1
n—->o0o
i.e. |z|lim|a, '™ <1, ie. |z| <R,
n—oo

where R is given by



The relation (1) is known as Hadamard formula for radius of convergence.
Thus ) a,,z™ is convergent or divergent according as

|z| <R, or|z|l>R
The above discussion leads to the following result.

Radius of Convergence: The number R such that the power series ) a,,z™ is

convergence of the series.

Thus, of the radius of the circle of convergence is the radius of

convergence of the series.
There are three possibilities for R:

I. R=0 In this case, the series is convergent only atz =0
Il. R s finite and positive. In this case, the series is convergent at every
point within the circle |z| < R.

iii.  Risinfinite. In this case, the series is convergent for all values of z.

Note:- If the given power series ) a,,(z — a)™ and % = lim |a,|*/™, then the
n—->0o

circle of convergence is |z — a| < R.

Examplel- Find the radius of convergence for each of the following power

series:



(ii)  X(logn)"z"

Solution: (i) Comparing the given ); Tzl—z with the standard form ); a,,z", we

have

1. 1n _ 1 R A U
So, - = rllli?olanl = lim,,_, (nn) =lim-=0
This gives R = oo

Hence the radius of convergence of the given series is .

(iii) Here a,, = (logn)™. We have

1

|1/n |1/n

= lim |a, = lim,,_, | (logn)™
n—>00

= lim |logn| = lim,,_,,, logn = o
n—oo

Thusizoo SothatR=0

Example 2: Find the radius of convergence of the power series ), b} z",

where for each n:

n
Solution:- Here a,, = b;; = (1 +14+=+- ... + %) . Therefore



%= lim |a,|Y™ = lim,,_,c, (1+1+%+--- ...... +—
n—-oo !

Hence R (radius of convergence) = 1/e.
Example 3. Find the radius of convergence for
(44 30)"z"

Solution:- Here a,, = (4 + 3i)™. Therefore

] = 14+ 30| = {{@ + 3} =5

Now — = 1im |a,|"/" = limy,o(5™)Y/™ = lim5 = 5
n—00 n—0o

Example.4 Find the radius of convergence of the power series

27ngzn

1+in?

. 27
Solution:- Here a,, = P We have

= 1im{

n—->oo

- 1/n

2 n

= lim |a, |*/™ = lim ; ( )
| nl N>\ |1+in2?|

1
R n—-oo
1 1 1

- 1111_{& 2(1+n)izn 51111_{20 (n*)1/2n(141/n%)1/2n

1. 1
- E%l—rf:lo (n2)1/n(1+1/n*)-1/2n

1 ,. 1 1
= 57111_1)1;10 {(nl/n)z (1 ~ o5 S RLLI )}

2—7'1

(1+n*)1/2

}1/n



=1><1><1=l AnS.
2 2

Example 5.:- Find the radius of convergence of the power series:

w2+i\
z:(1+2in)z '
- 2+i
Solution:- Here a,, = ™2 We have
+2in
| = |m/i+i| B (2n2+1)1/2 B (E)l/z (1+1/2n2)1/2
nt l142inl  \4n2+1 ~ \4n2 1+1/4n2
1/2n
1_ . 1n _ 1 1 (1+1/2n2) _1 1 _
S0, R ylll_{?olanl o %1_{?0 21/2n (141/4n2)1/2n — 2071 1.

Thus R = 1. Here the radius of convergence of the given power series is 1.

Example 6: Find the radius of convergence of the power series.

(-D™(z=2)"
n

X

Solution: Comparing the given series with the standard form ), a,,(z — a)™,
we find that a = 2i, which is the centre of the circle of convergence. Also,

_ ="

n n

omr/n

n

n—->oo

1, .
So, = = lim|a,|'" = lim |
R n—oo

Thus R = 1. Hence the radius of convergence is 1 i.e., the given power series

is convergent in the circle |z — 2i| < 1.



An+1

. 1 .
Theorem: lim ree lim,,_,

n

Example 7.: Find the radius of convergence of the series:

1 1.3 1.3.5
“+ =z =23 4
2 2.5 2.5.8

Solution:- The coefficient of z" in the given series will be:

_ 135m..(2n-1)

n 258 (30-1)
1.3.5.ccn(2n—1)(20+1)

So a =

’ N+l ™ 558 (3n—1)(30+2)
1 . a . 2n+1 2
Whence == lim [22*| = lim ==
R n-ooo | an n—-oo 3n+2 3

. . . 3
Therefore the required radius of convergence is >

Example 8: Find the radius of convergence for each of the following power

series
2

. Zn . 1 n 2
0 2(zm) ixE(1+;) =

Solution: (i) H = and —— S

olution: (i) Here a,, = g and anyq = 557 SO

1 ) ) 2N+l ) 2+1/2" 240
= = lim |- =11m( )=11m( / )=—=2
R n—-oo lan41 n—oo 241 n—oco \1+1/2M 140

Hence the radius of convergence of the given series is 2.



.. 1 n?

(i) Herea, = (1 + ;) . S0,
1 _ _ 1\"
— = lim |a|*"™ = lim (1 +—> =e
R n

n—-oo n—-oo

Thus R = 1/e. Hence the radius of convergence of the given series is 1/e.

2.7 Exponential Function of a complex variable

When x is real, we are already familiar with the exponential function

2 x3 xn

=l Xttt Tt . 0
2 B" [n

Similarly, we define the exponential function of the complex variable z = x +

Iy as
—exp(z)—1+z+|2+|3+ +T—;+oo
...... (1)
Putting x =0 in (1) we get
e = oV =1 4 iy + (lr)z + (l'y—;s bt (i|y13n + - o

1-L 42Xy, ]+[+ +2- +]
2" Te HY B

= cosy + isiny

Thus e? = e*.e™” = e*(cosy + isiny) = re*



Also x + iy = r(cos@ + isinf) = re'®
Changing i to —i, e~% = cosy — isiny

Example.1 Split up into real and imaginary parts etz

,TT

) i T T ., . T .
Solution:- e°tz = e5.¢'z = 5 [cos; + Lsmz] = je®

Tt
5+lz

Real part of e =0

.TT
5+15 5

Imaginary part of e =e

Circular function of a complex variable
Since e = cosy + isiny and e™Y = cosy — isiny
The circular functions of real angles can be written as

eV _p—iy el ey

siny = ——, cosy = ——— and so on.

It is therefore natural to define the circular function of the complex variable z

by the equation.
iZ_p—iz iz+e iz
sinz = , CO0SZ =
l 2
sinz elZ_eg~iz
tanz = -

Example.1 Prove that [sin(a — 8) + e~“sinf]™ = sin"ae~"¢

Solution.:- L.H.S. = [sin(a — 0) + e"“*sin8]"



= [sinacosO — cosasinf + (cosa — isina)sinf]"™

= [sinacosf — cosasinf + cosasinf — isinasind]"
= sin"a[cosO + isinf|"

= sin"a(e”0)"

—inf

= sin"«ae

=R.H.S.

2.8 Hyperbolic Functions

If x be a real or complex

—-X

(1)ex—e

- is defined as hyperbolic sine of x and written as sinhx

eX+e™X
2

(2)

Is defined as hyperbolic cosine of x and written coshx.

sinh0Q = 0, coshQ =1, tanh0 =0

2.9 Trigonometric Functions

The definitions of sine and cosine are unacceptably vague because they
involve measuring of an angle without giving a precise algorithm for
doing so. We are now in a position to remedy this defect. Namely, we
take the Taylor expansions

k,2k
-1)*x
CoS X = 8°( )

' - 0
(2k)! (2k+1)!



Relation between hyperbolic and trigonometry circular function

) ] elf_p—if o0 4 p—if
Since for all values of @, sinf = — and cosf = —

Putting & = ix we have

o ei.ix_e—i.ix e X_eX
Sinix = , = ,
21 21
. _(ex_e—x)
- 2i
. l-Z(ex_e—X)
o 2i
__i(e*-e™¥)
- 2
= [sinhx
So, sinix = isinhx
, e X+eX
And cosix = ———= coshx

cosix = coshx
tanix = itanhx
Cor.: sinhix = isinx

coshix = cosx



tanhix = itanx
Fundamental formula

(i) cosh?x —sinh*x =1
(ii) sech?x + tanh?x =1

(iii) coth?x — cosech?x =1

Proof:- for all values of 8
cos?0 + sin?0 = 1 putting 8 — ix we get
cos?ix + sinix = 1
(coshx)? + i?(sinhx)? =1
cosh?x — sinh?x = 1

(ii) Since we know that cosh?x — sinh?x = 1 dividing by cosh?x
=1 — tanh®x = sech®x
= sech?x + tanh?*x =1

(iii) We know cosh?x — sinh?*x = 1 dividing by sinh?x
=coth’x — 1 = cosech®x
= coth®x — cosech’x =1

Inverse Hyperbolic function




If sinhu = z, then u is called the hyperbolic sine inverse of z and written as

u = sinh™ 1z
Similarly we define cosh™1z and tanh™1z.

The inverse hyperbolic function like other inverse functions are many values,

but we shall consider only their principle values.

Example.1 Prove that tan~z = élog (Hz)

i-z
Solution:- Let tan™ 1z =6
=tanf = z divide by I, we get

tanf _ z

i i

i i

tan®  z
By componendo and dividendo

i+tanf _ i+z

i-tan8  i-z

i+sin9 .
= cosf __ 1tz
., sin@ — ;i _
i— 1—Z

cosf

icos@+sinf _ i+z

icosf—sin@ i—z

i(cosf—isinf) i+z
= = —
i(cosO+isinf) i-z




etf i—z
- i+z
—e 210 —
i-z

= —2i0 = log, H—Z]

l—Z

=0 = —log, ||
21 -z
— [ [+
stan™'z = ~log, [i_—j hence proved.

Example.2 To show that sinh™'z = log,[z + Vz% + 1].
Solution:- Let sinh™ 'z =u

=>sinhu = z

We take only +ve sign then



el =z+Vz2 +1
>u = log, [z + Vz% + 1]
= sinh™'z = log, [z + V22 + 1] hence proved
Example.3 If u = logtan G + g) Prove that
(1) tanh% = tang (il) coshu = sec6

Solution:- Since, we have u = logtan G + 9)

6
=>e”=tan(£+—)
4 2

] ]

eU/2 tan+tan= 1+tan—

= = 4 2 9 = 9
e~U/2 1- tang.tang 1-tan—

By componendo and dividend

eU/2_p—u/2 1+tan§—1+tang

2
et/2te~u/2 1—tan§+1+tan§

2]
2 tanE

2

= tanh% =
0

= tanh> = tan-
2 2

hence proved

Example.4: If y = logtanx, prove that sin h xy =

N[ =

[tan™x — cot™x].

Solution: We have y = logtanx



=eY = tanx
e = tan"x and e ™ = cot™x

eV —e W = tan™x — cot™x

ey —e~ Ny

2

N |-

[tan™x — cot™x] hence proved.

Example.5 Prove that (cosh8 + sinhf)™ = coshnf + sinhn6.

Solution: (coshf + sinho)" = (cosi6 +2sinif)"
= (cosi@ + i%sini@)n
= (cosif — isinif)™
= cosnif — isin ni6
= coshnf — i(isin hn@)
= coshn@ + sin hn6 hence proved.

Example.6 Find tanhx if 5sinhx — coshx = 5

Solution: Give 5sinhx — coshx =5

L[ [ - g

2 2

=>5e¥ —5e*-e* —e™* =10

=4e* —6e™*—-10=0



=>4e2¥ — 10e™* — 6 = 0

_ 10F,/100—4(4)(=6)
o 2x4

ex

=—— and e* =

IfeX* =3

e¥*—e ™ 3-1/3 9-1 8
Then tanhx = — = /3 _ =—
eX+e™X 3+1/3 9+1 10

-1
Ife* =—
2

Real and imaginary parts of circular and hyperbolic function

(i) sin(x + iy) = sinxcosiy + cosxsiniy
= sinxcoshy + icosxsinhy

cosiy = coshy



siniy = isinhy
(ii) cos(x + iy) = cosx.cosiy — sinx.siniy

= cosx.coshy — isinx.sinhy

Example.l If sin(A + iB) = x + iy. Prove that

2 2 2 2

x y x

cosh?B  sinh2B

yo oo _
sin2A  cos?A

Solution: It is given that sin(4 + iB) = x + iy
=SinA.cosiB + cosA.siniB = x + iy

=sinAcoshB + icosAsinhB = x + iy

Equating real and imaginary parts

X = sinAcoshB; y = cosAsinhB
— i . y _
= sinA ; . = cosA
coshB sinhB
x2 y2

= sin?A + cos*A =1

" cosh?B ' sinh2B

= coshB : Y_ = sinhB
COSA

Now, .
SinA

2 2

Y __ = cosh?B + sinh?B = 1

sin?A  cos?A

X

Example.2 If tan(4 + iB) = x + iy, prove that

(i) x2 + y% + 2xcot24 = 1



(i) x* + y* — 2ycoth2B+1 =0
Solution:- Given tan(4 + iB) = x + iy
Now changing i to —i
x —iy =tan (A — iB)
Now, tan2A = tan [(A + iB) + (A — iB)]

tan(A+iB)+tan (A—iB)
1-Tan(A+iB)tan (A—iB)

_ x+iy+x-iy
1-(x+iy)(x—iy)

1 2x
cot2A  1—(x2%2+y?2)

=1 —x% —y? = 2xcot2A
=x% + y? + 2xcotA =1
(iii) Now, tan(2iB) = tan [(A + iB) — (A — iB)]

__ tan(A+iB)—tan (A—iB)
1+tan (A+iB)tan (A—iB)

_ x+iy—(x-iy)
14 (x+iy) (x—iy)
1 _ X+iy—x+iy
7 cot2iB 1+x2+y2

=>x2+y%+ 1 = 2iycot2iB

=x2 + y2 — 2iycot2iB+1 =0

=>x2 +y% - 2iy.%coth28 +1=0 hence proved



Example.3 If tan(6 + i¢p) = tana + iseca. Prove that
e2® = FcotZ and 26 = (n+l)7r + a.
2 2
Solution: We have tan(6 + i¢p) = tana + iseca
Replacing i as —i

tan(6 — i¢p) = tana — iseca

__ tan(6+i¢)-tan(6-i¢p)
o 1+tan(0+i¢) tan(6—i¢)

tana+tiseca—tana+iseca

1+(tana+iseca)(tana—iseca)

2iseca

1+tan?a—i2sec?a

2iseca
sec?a+sec?a

itanh2¢ = 2lseca

2sec?a
= [cosa

e2i_o=2id (o5
— — —

Te2ibe-2id T g
e2®_e—2¢
e2¢+e—2¢ =
Apply componendo and =
dividendo

tan26 = tan[(6 + i¢p) + (6 — ip)]

tan(0+ip)+tan(6—ip)
1-tan(0+i¢p).tan(6—ip)

tana+iseca+tana—iseca

1-(tana+iseca)(tana—iseca)

2tana
1-tan?a-sec?a

2tana

T 1-tan2a-1-tan?a

2tana

" 2tan2a

= —cota




_\ezi¢+e—2i¢+62i¢_e—2i¢ __ cosa+1
— A A A - -_
e2ip 4 o—2ip_p2id 4 o—2i¢p —cosa+1

a
2
—_— . — R a

2e~2i¢ Zssz

2219 2cos?
— —

=etld = cotzg

=e2id = $cot% hence proved
~ tan26 = tan (g + a)

260 =nn+§+a= (n+%)n+a

Example.4 If cos(a + i) = r(cosO + isin®). Prove that

623 __sin (a—0)

sin (a+6)
Solution: Give cos(a + if3) = r(cos8 + isin®).
= cosa.cosif — sinasiniff = rcos + irsinf
=cosacoshf — isinasinhfs = rcosf + irsinf
Equating real and imaginary parts
cosacoshfy =rcos@  ................. (1)

—sinasinhf =rsinf  .................. (2)

Dividing (2) by (1)



—sinasinhff _ sinf

cosacoshf cosf

=>—tanatanhf = tanf

tanf
stanhf =

tana
_\e[’)—e‘ﬁ __ —sinf cosa
T eByre=B T cosh sina

Now, Apply componendo and dividend

eP—e=BireBie—B —sinf.cosa+cosf.sina

eB—e—B—eB—e—B —sinf.cosa—cosf.sina

2eP __ sin(a-0)
—2¢~B = —sin (a+0)

—_—

sin (a—0)

=e2h ==
sin (a+0)

Hence proved

Example.5 If tan(x + iy) = sin(u + iv). Prove that

sin2x __ tanu

sinh2y " tanhv

Solution: We have tan(x + iy) = sin(u + iv) ...........
Changing i as —i in (1)
tan(x — iy) = sin(u — iv) ........... (2)
Dividing (1) by (2)

sin(u+iv) _ tan(x+iy)

sin(u—iv) - tan(x—iy)



_.sin(u+iv) _ sin(x+iy).cos (x—iy)

qsin(u—iv) - cos(x+iy).sin (x—iy)
Apply componendo and dividend

_.sin(u+iv)+sin(u—iv) _ sin(x+iy).cos(x—iy)+cos(x+iy).sin (x—iy)
qsin(u+iv)—sin(u—iv) - sin(x+iy).cos(x—iy)—cos(x+iy).sin (x—iy)

sinA + sinB = 2sin (%) cos (%)
sinA — sinB = 2cos (A%B) sin (A%B)

. (utiv+u—iv u+iv-u+iv . . .
2sin(*TETEEE) cos(ETE) _ sin (x+iy+x—iy)
u+w;—u—w)lsin(uﬂv;uﬂv) sin (x+iy—x+iy)

—
—

ZCOS(

sinu.cosiv sin2x
— —

i - I3 - - I3
cosu.sinv sin2iy

sinu.coshv sin2x
— —

i . . - Il Il
icosu.sinhv isinh2y

tanu sin2x
—

= = — hence proved
tanhv sinh2y

Example.6 If sin™*(u + iv) = a + if3, Prove that sin®a and cosh?B are the

roots of the equation
x> —x(1+u?+v3)+u?>=0
Solution: We have sin™!(u + iv) = a + if
=u + iv = sin (a + if)

=u + iv = sinacosif + cosa.sinifi



= sinacoshf + icosasinhf
Equating real and imaginary parts
u = sinacoshf
v = cosasinhf
Now,
1+ u?+v?=1+sin®acosh?p + cos?asinh?f
=1+ sinacosh?p + (1 — sin®a)(cosh?p — 1)
= 1 + sinacosh?B + cosh?p — 1 — sin*acosh?p + sin*a
= sin*a + cosh?p
= sum of roots.
Hence required equation is
x? — x(sum of roots) + (product of root) = 0
=>x2—x(1+u>+v3)+u?=0 [.sin®acosh?f = u?]

Hence proved

2.10 Logarithmic functions of a complex variable

If z=x+iyandw = u + iv be so related that e" = z then w is said to a

logarithmic of z to the base e and writtenas w = log,.z ............ (1)



Also ew+2inrr — ewleZinn
=z1 v @2 = cos2nm + isin2nw = 1
=z
logz=w+2inm ........................ (11)

I.e. the logarithm of a complex number has an infinite number of values and
is therefore a multivalued function. The general values of the logarithm of z
Is written as logz so as to distinguish it form its principle value which is

written as logz. This principal value is obtained by taking n =0 in logz.

log(x + iy) = 2inm + log (x + iy) [put x = rcos8,
y = rsinf]

= 2inmt + log [r(cosO + isinf)]
= 2inm + log,(re'®)

= 2inm + log,r + log,e™®

= 2inmt + log,7r + 16

= 2inm + log./x? + y? + itan_1£

= log/x?* + y% +1i [Zmr + tan™? %]
= log|z| + i(2nm + 6)

logz = log|z| +i0 = log/x? + y? + itan‘li



a+ib

Example.1 Prove that log (
costog (422)

Solution: Put a = rcosf, b = rsinf sothat = tan‘lg

i _1Db
) = 2itan 1;. Hence evaluate

a—ib

Now. lo (ﬂ) _ rcosO+ising) _ ; 0i0
| J a-ib) e(cosO—ising) ge—ie
= 2i6
., _q1b
= 2itan~ ! -
a

Thus, cos [ilog (Zt—ii)] = cos[i(2i0)] = cos26

__ 1-tan?6
"~ 1+tan26

aZ_bz

" a2+b2

Example.2 Prove that tan [ilog (“‘”’)] — _2ab

a+ib a2-b2

Solution: Let a + ib = r(cosO + isinf) = re®®

Then equating real and imaginary parts



a = rcosf

b = rsinf

Also a — ib = r(cosf — isinf) = re™"

L.H.S. = tan [ilog (a_ib)]

a+ib

= tan [ilOQ (r:e_z;e)]

—2i0]

= tan[iloge
= tan [i(—2i0)]

= tan20

__ 2tan®
1-tan20

__ 2b/a
"~ 1-b2/a?

__ 2b/a
— a2-p2
a?

__ 2ab
a2—-p2

=L.H.S. Hence proved
Example.3 If i**# = q + iB. Prove that a? + p? = e~“4n+1mB

Solution: We have



. . . .a+iﬁ . .
a + l,B — la+1ﬁ — elogl — e(a+lﬁ)l0gl
— ea+iﬁ_ elogi

Letz =i 0 =tanly/x = tan"11/0 =

tan~loo
|z| = 1 = tan‘ltang

logi = logli| +i(6 + 2nn) =

N

= logi + i G + Znn)

=0+im (4n2+1)

. 4in+1
= ir ()
2
4n+1)

a+if = eatiB_oim(*

_ p™/2.(a+iB)(4in+1)

i T
— 67.(4n+ 1)a—,8(4n+1)5

_ o —Bln+D] e%’.(4n+1)a

= g Flantl); [cos(4n +1) gaf + isin(4n + 1)%&]

T s
= ¢ PUMD3 cos(4n + 1) %a +ie PO Dagin(4n 4 1) %a



Equating real and imaginary parts

—B(an+1)Z

a=e 2.cos(4n+1)ga

s

B = e PU™Dasin(4n + 1)%6(
Squaring and adding
a?+ p? = e 2BUn+1; [cosz(4n + 1) %a + isin?(4n + 1)%6{]
= e~Bln+Dm[y)
_ p—Bln+1)m

Example.4 If (a + ib)? = m**Y then prove that

y _ 2tan"1(b/a)
x log(a?2+b?)

Solution: We have
(a + ib)P = m*+t¥
Taking log both sides
= plog(a + ib) = (x + iy)logm
=p Elog(a2 + b?) + itan‘l(b/a)] = xlogm + iylogm

Equating real and imaginary parts



xlogm = glog(a2 +b%) (1)

ylogm = ptan™*(b/a) ............... (2)
Dividing (2) by (1)

y _ 2tan"1(b/a)

x  log(a2+b2)

Example.5 If tanlog(x + iy) = a + ib where a? + b% # 1, show that

2a
1-a?-b?

tanlog(x? + y?) =

Solution: Since tanlog(x +iy) =a+ib ...... (1)
tanlog(x —iy) =a—ib ....... ()
Changing i as —i

Now, tanlog(x? + y?) = tan [log(x + iy) (x — iy)]

= tan [log(x + iy) + log (x — iy)]

tanlog(x+it)+tanlog(x—iy)

1-tanlog(x+it).tanlog(x—iy)

a+ib+a—ib
1-(a+ib)(a—ib)

2a
1-(a%+b?)

_ 2a
"~ 1-a?-b2

Example.6 If sin™1(x + iy) = log(A + iB), show that



2 2

——2— =1, where 4% + B? = e?¥

sin?u  cos?u

X

Solution: We have
sin~Y(x + iy) = log(4 + iB)
Let log(A+iB) =u+iv
Then given equation becomes
sinY(x+iy) =u+iv
=x + iy = sin (u + iv)

= Sinu.cosiv + cosu. siniv

sinu.coshv + icosu. sinhv
x = sinu coshv and

y = cosu.sinhv

— = coshv and Y —sinhv .........
sinu cosu

We know that

cosh?v — sinh?v =1

x2 2

= 4 =1........... (3)

sin2u  cos?u

Now, log(A+iB)=u+iv



%log(A2 +B?) +itan"t-=u+iv

> | W

u= %log(/l2 + B?)
= 2u = log(A* + B?)
>eX=A24+B%2 ... (4)
Hence the equation (3) holds only when equation (4) is true.
® B

Example.7 if ii = A + iB prove that tan”z—A = —and A’ + B? = ¢ TB

0

Solution: We have it = A + iB
=i{4*8 = A +iB
=(A + iB)logi = log (A + iB)
=A+iB = e(A+iB).logi
— e(A+iB).i§
_ pimA/2 ,-TB/2
=A + iB = e TB/2, [cos% + isinnz—A]

— TA _ . TA
A=¢e ”3/20057; B=e ”B/Z.sm7

B A
== tan% hence proved



Il
®

And A% + B? = e 7B, [cos2 % + sin? %]

1 . .
Example.8 Expand D@ in the regions |z| < 1.

1

Solution- we have f(2) = ————=

f(z):%[zil_ziB]

If the regions |z| < 1

f(@)=2[1+2) = B +2)7"] then |z| < 1and 2 <1

1 B 1 Z_
f2)=5(1+2) 1—3[1+§] !

1 1 7
FR=50-z+22 =7 +m) = (-2t == )

1 1 z z 72 77 z3  Z3
f@=(G-9)+ 3+ )+ (z-5)* (-5 =)

1 4 13 40
= — — — —_y2 _ __ 53
f(2) 2 9z+27z g1Z -

Example.9 Expand f(z) = ) forl1<|z| <2

1
(z-1)(z-2

1 1 1

(z—-1)(z-2) - z=2 z-1

Solution-f(z) =



In first bracket |z| < 2,we take out 2 as common and from second bracket z

is taken out common as 1 < |z|.

1_ 1 1 1 1 -1 1 1\t
f(Z):_E_l—gl‘EL_z] --30-9 -3(-3)

f(z):—;1+—+—+—+---

Example.10 Expand the function Sin~1z in powers of z.
Solution- Let w = Sin~ 1z

dw 1
dz  \1—2z2

= (-2 )

On expanding the R.H.S. of binomial theorem, we have

d 1 =(-3)
aw L ey 2\ 2 av2
dZ—l 2(z)+ T (—z%)* +
dW—1+ZZ+3 4
dz 2 " g7

3 5
On integrating, we have w = z + Zz + 34% +--+c



Putting z = 0 thenw =sin"1z=0

i.e. ¢c=0

. 3 35
We have sin™1z = z+%+%+-.-

2.11 SUMMARY

In this unit, we have covered the following:
1. fZ, =x,+iy, forn=12,..and z = x + iy then

limZ,=ze limx,=x and limy, =y
n—->0o

n—oo n—-oo

2. If Z, =x, +iy, forn=12.ands=x+iy then); z" =s &
Y= Xt =Xand YL, y" =Y

3. If f analytic in a domain D, Then it can be represented as a power
series at any point z, € D in powers of z — z, which is the Taylor
series of f about z,. If f fails to be analytic at a point z,. It is possible
to expand f in an infinite series having both positive and negative
powers of z — z, using the Laurent series.

4. If f is an analytic function in the disk |z — z,| < p. Then f has the
f™(z0)

n!

power series representation f(z) = Yp-o (z—2zy)", |z — 2| <

p.
5. To every power series Y., a, (z — z,)™ there corresponds 0 < R <

oo, for the series



(1) Converges absolutely in [z — z,| < R,if 0 < R < oo,
(i) Converges absolutely in |z — z,| < r < R,if 0 < R < co.

(iii) Converges absolutely in |z — z,| > R,if 0 < R < co.

The number R is called the radius of convergence of the power series and the

circle |z — zy| = R is called its circle of convergence.

6. A power series always converges inside and diverges outside the circle
of convergence |z — z,| = R . But a power series may converge at

all, none, or some of the points on the circle of convergence.

2.12 Terminal Questions

1. Find the radius of convergence of the series Y o_,(n + 2™)z".

2. Find the radius of convergence R of the following power series:
DTN () DI EA N (11) DI
Discuss the behaviour of each series at the points z = R and z = —R

3. Find the radius of convergence of the power series

50 (22) (2 - 2

4in+1

4. Find the radius of convergence of the power series }.;_, a,z" where
a, =2"ifnisevenand a, = —3" if nis odd.

5. Find the radius of convergence of the following power series



DI () Zgntz”
6. Show thatif 7,2z, =s,then Y ,z, =5

7. Does the series Y., z™ converges if |z| = 1? Justify your answer.
in
8. Determine whether there the series Yo-; ;—2 converges.

9. To prove cosh™'z = log,|z + Vz? — 1]. Try yourself.

10. To prove tanh™1z = %lo g i—i Try yourself.
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Block — 2

Complex Integration and Expansion of series

In the first unit we will introduce complex integration. We begin by
discussing the integration of complex valued function of a real variable. We
also discuss some basic results regarding differentiation of such functions. we
introduce contour integration which is a powerful tool in Complex Analysis,
discuss the existence of anti-derivatives, Cauchy-Goursat theorem which is

an important result in complex analysis.

In this unit, we shall study a result called Cauchy integral formula (CIF) and
use it to evaluate certain integrals along simple closed contours. In this
section, we shall also discuss Morera’s theorem, a converse of Cauchy’s
theorem, Liouville’s theorem. We shall also prove here the fundamental
theorem of algebra as a consequence to Liouville’s theorem. Finally, we shall
show that moduli of analytic functions behave strangely if we talk about their

maximum or minimum.

In the second unit we shall introduce the series representation of a complex
valued function f. We shall show that if f is analytic in some domain D., then
it can be represented as a power series at any point €D in powers of which is
the Taylor series of f about . If f fails to be analytic at a point , we cannot find

Taylor series expansion of f about that point. However, it is often possible to



expand f in an infinite series having both positive and negative powers of .

This series is called the Laurent series.

This leads up to study of Morera’s theorem, Cauchy’s inequality, Liouville’s
theorem, maximum Modulus theorem. The study of complex integration will
be incomplete without the study of Taylor’s series and Laurent’s series,

which we also kept up in this unit.



Unit-3: Complex Integration

Structure
3.1 Introduction
3.2  Objectives
3.3 Complex line Integral
3.4  Jordan Arc
3.5 Rectifiable Arc
3.6 Contour
3.7  Complex Integration
3.8  Some elementary properties of complex line integrals
3.9 Cauchy’s Theorem
3.10 Extension of Cauchy’s theorem on contours
3.11 Defining multiply connected regions
3.12 Cauchy’s integral formula
3.13 Derivative of an analytic function
3.14 Morera’s Theorem
3.15 Summary

3.16 Terminal Questions



3.1 INTRODUCTION

In the earlier units you have studied differentiation of complex analytic
functions. In this unit we will introduce you to complex integration. We
begin by discussing the integration of complex valued function of a real
variable. We also discuss some basic results regarding differentiation of such
functions. In we introduce you to contour integration, a powerful tool in
Complex Analysis, discuss the existence of antiderivatives. In we prove

Cauchy-Goursat theorem an important result in complex analysis.

In this unit, we shall study a result called Cauchy integral formula (CIF) and
use it to evaluate certain integrals along simple closed contours. we shall start
with proving the formula and discuss its applications in the remaining
sections of this unit. It has been shown in that an analytic function is
infinitely differentiable and all its derivatives are again analytic. In this
section, we shall also discuss Morera’s theorem, a converse of Cauchy’s
theorem, which you studied in Unit 4. As an application to Cauchy integral
formula, we shall prove, Liouville’s theorem and show that an entire bounded
function has to be a constant. We shall also prove here the fundamental
theorem of algebra as a consequence to Liouville’s theorem. Finally, we shall
show that moduli of analytic functions behave strangely if we talk about their

maximum or minimum.

3.2 Objectives

After studying this unit, you should be able to:

» find the derivatives of complex valued functions of a real variable;



» state and apply the chain rule for differentiation of complex valued

functions;

* define the concepts of arc, contour, rectifiable arc and the arc length of a

rectifiable arc;

* define, state and apply the properties of complex valued functions of a real

variable;

» define the integral of a function over a contour and state its basic

properties; and

» state the Cauchy-Goursat theorem and apply it to evaluate contour integrals

whenever possible.

3.3 Complex line Integral:

Consider a continuous function f(z) of the complex variable z = x + iy
defined at all points on a curve ¢ having end points A & B. Divide c into n

parts at the points z, z3, 25, z, ....... Zn.
Let A=2zy,and B = z,

We choose a point &£ /k on each are joining z,_, t0 z,

From the sum én = Y72, f(&/r)(z, — z,_1)

Suppose maximum value of (z,, — z,_;) - 0 asn — oo.



Then the sum én bends to fixed limit which does not depend upon the made

of sub division and denote this limit by

Lbf(z)dz orfc f(z)dz

Which is called the complex line integral or line integral of f(z) along c. an

evaluation of integral by such method is also called ab-initio method. In case
of real variable the path of integration of f: f(z)dz is always along the x-

axis from x = ato x = b. but in case of complex function f(z) the path of the

definite integral f;f(z)dz can be along the curve fromz =atoz =bh. its

value depends upon the path of integration. But the value of integral from a to

b remains the same if the different curves from a to b are regular curves.

Note: By the symbol fc f(z)dz we mean the integral of f(z) along a

boundary c in the +ve sense. In case of closed path the +ve direction is

anticlockwise. The integral also c is often called contour integral.
If f(z) = u(x,y) + iv(x,y) thensince z = x + iy, dz = dx + idy
|, f@dz = | (u+iv)(dx + idy)
= fc (udx — vdy) + ifc (udx — vdy)

Which shows that the evaluation of the line integral of a complex function

can be reduced to the evaluation of two line integral of real functions.

3.4 Jordan Arc.:

A continuous are without multiple points is called a Jordan Arc.



Thus, for a point z on a Jordan are, z as expressed in equation (A), is one
valued and ¢ (+), Y (+) are also continuous. In addition, if ¢'(+),y’'(+) are
also continuous in the range a < +< B, then the arc is called a regular of a

Jordan curve.

A continuous Jordan Curve consists of a chain of finite number of

continuous arcs.

3.5 Rectifiable Arc:

Let z = z(+) = x(+) + iy(t) be any given curve and let t take up any value

betweenaand b, i.e.,a <t <b.

Let P = {t,, t;,t5, ... ..... t,} De a partition of [a, b]. if Pg, Py, Py, ...... ,
P be the points on the curve corresponding to the points t,, t;,t, ... ... ty,
then the lines Py, Py, Py, P3 ...... ,Pn1 Ph.

Let Zo, Z, Zo, ...... , Z, be the points on the curve corresponding to the
values t,, ty, t,, ... ..... t,,, i.e. Z(t,) = Z, then the length of the polygonal line
= Yr=1lZy — Zr_4|
Ly
Zy’—l Zn ZE
Zo=
Ly
LS

The value of this sum depends upon the made of the sub division and is

called the length of an inscribed polygon.



If the curve is such that this sum (the length of the inscribed polygon)
have a finite upper bound I, for all modes of the subdivision, the curve is said

to be rectifiable and | is called the length of the curve.

3.6 Contour:

By contour, we mean a continuous chain of a finite no. of regular arcs. If the

contour 18 closed and doesn’t intersect itself then it 1s called a closed contour.
Example: Boundaries of triangle and rectangle.

By Contour we mean a Jordan Curve consisting of continuous chain of a

finite number of regular arcs.
If A be the starting point of the first arc and B the end point of the last

arc, then integral along such a curve is written as fAB f(2)dz.

If the starting point A of the arc coincides with the end point B of the

last arc, then the contour AB is said to be closed.

The integral along such closed contour is written as fc f(z)dz,and is

read as integral f(z) taken over the closed contour C. Although fc f(2)dz

does not indicate the direction along the curve, but it is conventional to take

the direction positive which is anticlockwise, unless indicated otherwise.

3.7 Complex Integration:




Let z = z(t) = x(t) + iy(t), a <t < b, be a given curve C joining aand b
and let f(z) be a function of a complex variable z defined and continuous on
C.

QL
_>

——

c;" - ———— -— B "'?

Consider the partition P = {a = t,, t;, t, ... ..... t,, = b} of the interval [a, b].
Let z, 21, 2, .....z, be the points on the curve corresponding to the values to
to, ty, ty e oo ty, 1.6, Z(t,). ON each are joining z,_, to z,, choose a point
e, = z,.. Wherer=1, 2, ....., n, on the arc joining z,_, and z,. Form the

following sum S;, for the partition P;

Sy, =fle)(z —zp) + fex)(zz —z1) + o +f(ep) (2 — 2pq) +
+ f(en)(zn - Zn—l)
Le., Sp = Xr=1f(er) (zr — 2,-1)

Sp = r=1f(ey) Az,
Where Az, = z, — z,,_4

Asn — oo, i.e., the largest of the chord lengths |Az,.| approaches to

zero and if for every partition P and for every choice of points e,., the sum S,



tends to a uniue limit, then the function f(z) is said to be integrable from a to

b along C. this limit is denoted by

Lbf(z)dz orfc f(z)dz

And is called the complex line integral or briefly the line integral of f(z)

along the curve C.

It is also known as the definite integral of f(z) from a to b along the curve C.
Thus

| 1@z =1im > fe) -2
¢ r=1

It C happens to be a closed contour, then the line integral fc f(2)dzis

usually denoted by [ f(z)dz.

Example 1: Evaluate | dz.
Solution: By the definition of complex integral, we have

J, f@)dz =lim, e X7oi f(er) (Zr = Zpoq) wooeeonnnnns (1)
Here f(z) = 1, so that f(e,.) = 1. Now from (1), we have

J. f@dz =lim, o, X711 (2 — 2—1)

=lim,,[(z; —2p) + (2, — 2;) + -+ ... .+ (2, —

Zn-1)]

= lim (z, — z,) = b — a, Since z, = a and z,, = b.
n—->00



Note: If C is a closed curve, then the points a and b coincide, i.e., b = a.
Hence fc dz = 0, (for closed curve).

Example 2.: Evaluate fc |z|dz, where C is the upper half of circle |z| = 1.

Solution: By the definition of complex integral, we have

fc f(Z)dZ = lirnn—»oo Z?:l f(er) (ZT - ZT—l)’

Where e, is any point on the arc joining the points z,_; and z,..
Here f(z) = |z| sothat f(e,) = |le,| = 1

Since e, lies on the unit circle

Hence J, |zldz = lim,_, 7211 (2, — 2p_1)
= lim,,,[(z; —29) + (2, —2;) + -+ ..+ (2, —
Zn-1)]
= 1lli—r>lc;lo(zn —z,) = b —a, Since z, = —1 and
z, = 1.

= lim{1-(-1)}

=2

3.8 Some elementary properties of complex line integrals:

Property 1.: [ {f(2) + g(2)}dz =, f(2)dz+ [, g(2)dz.

This property can be generalized for any finite number of functions.



Property 2.: [ f(2)dz = — [ _f(2)dz

Where —c is the opposite arc of C.
Property 3.: fc1+c2 f(2)dz = fcl f(2)dz + fcz f(2)dz.
Where the end point of C, coincides with the initial point of C..

This property can be extended for a finite number of arcs provided the
end point of the preceding arc coincides with the initial point of the arc which

follows it.

Property. 4.: | Rf(z)dz =R [ f(2)dz,

Where R is any complex constant.
Property 5.: [ {R1f1(2) + Ryfo(2) + .. +R, f(2)}dz

=Ry J. 1(@Ddz+R, |, fo(2)dz+ . +R, [, fu(2)dz
Where Ry, Ry, ....R,, are complex constants.

This property is a direct consequence of properties 1 and 4.

Property.6: |fc f(z)dz| < [, If@lldz|

d .
Example.1 Evaluate fC ﬁ where c represents the circle |z —a| =r
Solution: Parametric equation of the circle |z — a| = r is
z=a+re where 0<0<n

Therefore, d, = ire‘?d6. Hence



f az _ f21tlre‘9d9 _ .f27td0

c z—-a retb 0

= i[0]3™ = 2mi

3.9 Cauchy’s Theorem:

If f(z) is analytic in a simply connected domain D, and C is any closed

continuous rectifiable curve in D, then

fc f(z)dz

Proof: First we shall prove the following lemma known as Goursat’s lemma.

Lemma, let f(z) be analytic within and on a closed contour C. Then for every
€ > 0, it is possible to divide the region within C into a finite number of
squares and partial squares whose boundaries are denoted by Si(i = 1, 2,

....... , n) such that there exists a point z; within each S; such that

M Fl(z)I< e o (1)

For each point z(# z;) withinoron S;(i=1,2, ....... , )

Proof of the Lemma. Suppose the lemma is false. It means the lemma does
not hold at least in one mesh, i.e., there exists on € > 0 such that in however
small meshes (squares and partial squares) we subdivide the region within C,
there will be at least one mesh (square are a partial square) where the

inequality (1) does not hold good.

Let R denote the region within and on the closed contour C. Cover the

region R by a network of finite number of meshes (squares and partial



squares) by drawing lines parallel to the co-ordinate axes. Then as per
assumption there is at least one mesh for which (1) does not hold. Let us
denote it by g,. It may be a square or a partial square. Then at least one of
these squares contains the points of R for which (1) is not true. Suppose it is
o,. Quadrisect o;and repeat the above process. If this process comes to an

end after a finite number of steps we arrive at a contradiction and the lemma

2]

R

- —>
© >

Is proved.

¥ A

On the other hand if the process is continued indefinitely, we obtain a nested
sequence of squares gy, g4, 05, ... ... , 0, .... €ach contained in the previous one,
for which lemma is not true. Consequently there exists a point z, which is the
limit point of the set of points in R. Also z, € R because R is closed. Since
f(z) is analytic at every point which lies within and on the closed contour C,

f(z) is differentiable at z,. So for € > 0, there exists a § > 0 such that

T@TED) _ 10, < e oo (2)

Z—Zj

For all z for which |z — z,| < 6.



We can choose a positive integer N so large that the diagonal of the square o,

IS less than §. Then all the squares a,,(n = N) are contained in the

neighbourhood.
s/ "\
2 |
, Z - Ze l< S °¢ Io-
Also z, € g,

Thus there exists a point z; (here z; is z,) within each S; for which

inequality (1) is satisfied which contradicts the hypothesis. Thus the lemma is

true

Proof of the theorem: The inequality (1) can be written as

f@) =fz) —zf'(z)+z2f'(z) + (z—-z)n(2) ... €)

Since (3) also gives the value of f(z) at any point on the boundary of S;,

integrating (3) around S;, we get

fsi f(@)dz ={f(z) — z;f'(z)} fsi dz + f'(z) fsi zdz + fsi (z —
zi)ny(z)dz

=[5 (z = z)n(2)dz, since [ dz=0= [ zdz ... )

It is clear from the adjoining diagram that the integral around the closed

curve C is equal to the sum of the integrals around all the Si’s because the



line integrals along the common boundaries of every pair of adjacent meshes
cancel each other. We are left only with the integrals along the arcs which

from parts of C.

Hence [ f(2)dz = ¥I., fsi f(2)dz

From (4) and (5) we have
[, f@dz =3, [, (2 - z)ni(2)dz,
ie. |f f@az] = |2, f, @ - zm(2)dz|
<3 [, - zmi(2)dz|

< Xis1 fsi |z = z;[In;(2)|dz

The boundary S; of a mesh either completely or partially coincides with the
boundary of a square. Let a; be the length of a side of that square. The point z

lies on S; and z; lies either on the boundary of S; or inside §;. Therefore the



distance between the points z and z; cannot be greater than the length a;+/2 of

the diagonal of that square i.e.,

|z — z| < a;V2
So, fsi |z — z;| |dz| < ai\/ffsi |dz| ... (7)
We know that fc |dz| = length of Si

= 4aq;, if S; is a complete square; and fS_ |dz| < 4a; + ;, if

Si is a partial square, [; denotes the length of arc of C which forms a part of
Si.

Substituting these values in (7), we get
Js |1z = zi| |dz] < a2 =4a2 (8)
If S is a square

and [, |z — z]||dz| < aV2(4a; + 1) < 4afV2+ali N2
(9)

If S; is a partial square, where a denotes the length of the side of the
square which encloses the curve C together with the squares which are used
in covering C. obviously the sum of the areas a? of these squares cannot

exceed a?.

If | denotes the arc length of C, we have from (6), (8) and (9) that

|, f@dz| < XL (4v2a? +2Zal,)



< &(4V2a* + V2al)

= & (a constant)

Hence fc f(z2)dz=0

3.10 Extension of Cauchy’s theorem on contours:

The following result is regarded as an extension of Cauchy’s theorem.

Corollary 1: If f(z) is analytic in a simply connected domain D, then the
integral along any rectifiable curve in D joining any two given points of D is

the same, i.e. it does not depend upon the curve joining the two points.

Proof: suppose the two points A(z,) and B(z,) of the simply connected
domain D are joined by the curves C and C, as shown in the figure given

below. Then by Cauchy’s theorem, we have

.[ f(2)dz=0
APBQA

—

) OB

¢ 8

i.e., Jypp f(2)dz + fBQAf(z) =dz=0

i.e., fcl f(2)dz — fcz f(2)dz=0



(Using property 2 of section 5.3 in the second term)

ie., fcl f(2)dz =fC2 f(2)dz

3.11 Defining multiply connected regions:

The following corollary may be called Cauchy’s theorem for multiply

connected domain.

Corollary 2. If a closed contour C, contains another closed contour C, and
f(z) is analytic at every point lying in the ring-shaped domain bounded by C;
and C,, then

fcf(z)dzzjc f(z)dz

Proof: First we connect the outer contour C; to the inner contour C, by

making a narrow cross cut joining a point A on C; to a point P on C..

Now ABCDAPQRPA is a simply connected domain. Clearly f(z) is analytic
in this domain and is continuous on its boundary. Hence by Cauchy’s

theorem, we have



f(z2)dz=0

fABCDAPQRPA

e, fABCDAf(Z)dZ + fAPf(Z)dZ t fPQRPf(Z)dZ + prf(Z)dZ =0
fABCDAf(Z)dZ + fPQRPf(Z)dZ =0

Since fPAf(z)dz = —fPAf(Z)dz,

So, the second and fourth integrals cancel each other
ie., fcl f(2)dz + f_cz f(z)dz=0
i.e. fcl f(2)dz — fcz f(2)dz=0

ie., fcl f(2)dz = fcz f(2)dz

Deduction: If the contour C contains non-intersecting contours C4, C,,
...... C,, then

f f(z)dz = f(z)dz + f(z)dz+ .+ | f(2)dz
c Cn

o C,
Examplel: Evaluate: | Zd_—ZS, where C is |z| = 3

Solution: Since the point z = 5 is outside the simple closed curve C : |z| = 3,
the function ﬁ is analytic inside and on C. Hence by Cauchy’s theorem, we

have




Example2.: Evaluate fc Z‘i_—zl, where C is the circle |z] < 1.

Let |z| = r be the circle C, where r < 1, then the function i IS

analytic on and inside C. Hence by Cauchy’s theorem, we have

j dz _ 0
. z—1

Remark: We know that the complex integration is defined along a curve.

The inequality |z| < 1 taken in the statement of the question represents, in
fact, an open unit disc and not a circle, as stated. So we have taken |z| = r as

the equation of the circle.

Example 3.: Evaluate the integral f01+i22 dz.

Solution: Refer the figure of example 3 of the preceding section.

Let B be the point of affix 1 + i in the z-plane join OB. Here the given
function f(z) = z? is analytic for all finite values of z. therefore, its integral
between two fixed points will be the same irrespective of the path joining the

two fixed points.
We choose the straight-line OB as the path for integration.

OnOB: y=xsothatdy =dx ............... (1)
So, ["'72dz = [ (x+iy)2d(x+iy)

= [,;(x% —y? + 2ixy)(dx + idy)

= [, 2ix? (1 + i)dx, using (1)



=20+ 023 =2ia+D=2(-1+0

1
0

3.12 Cauchy’s integral formula:

In this section we prove Cauchy’s integral formula and several other
related theorems. These results are found to be of great help in solving

various problems of complex integration.

Theorem:

Let f(z) be an analytic function in a simply connected domain D enclosed by

a rectifiable Jordan curve C and let f(z) be continuous on C. Then

1 f@

2mi ), z— 2z,

f(zy) =

Where z, is any point of D.

Proof: With z, as centre draw a circle of radius r lying entirely within C.

Equation of the circle r is
lz—2z| =7 (1)

Consider a function ¢ (z) defined by
f(2)

Z_ZO

¢(2) =

Then ¢(z2) is analytic in the doubly connected region bounded by C

and r. By Cauchy’s theorem for multiply connected regions, we have



ch(z)dZ:L ¢(z) dz

When ¢ and r are both traversed in anticlockwise directions.

|e fc f(Z) dZ — fr f(Z) dZ

z—2, zZ—2y
: f(2) f(2) _ f(2)—f(20)
e, [ i J. 2= /. el AN (2)

Putting z — z, = re'®, dz — ie'?, we have

.10
f dz _ 21 ire d@zifozndQZZTEi

r z—2zg 0 reif

Substituting this value in (2), we have

e oy [ [@fG0)
[, sodz—2mif(z) = [, == =dz .. )

The function f(z) is continuous at z,. Therefore for a given € > 0, there exists

ad > 0 such that

If(2) = fz)l <& e )

For all z satisfying (z — z5) < &



Since r is arbitrary, we can choose r < § so that (4) is satisfied for all points

ontr.

Taking modulus of both sides of (2), we have

f@)—fz)

Z_ZO

f(2)

Z_ZO

dz — 2mif (z,)

C r

Sf f (2) — f(20)l

|Z_Zo|

|dz|

</ §|dz|, from (1) and (4)

<< |dz| ==2nr = 2me
rvr r

Since ¢ is arbitrarily small and positive, we have

Je

f(? dz — 2mif(z,) = 0,
0

Z—

ie, f(z)=— 1@ 4.

2wiYC z—z,

3.13 Derivative of an analytic function:

Theorem 4. If a function f(z) is analytic within and on a closed contour C
and ‘a’ is any point within C, then derivatives of all orders are analytic and
are given by

n! f(2)dz
2ni ), (z—a)™*?

™ (a) =

Proof: We known Cauchy’s integral formula



@) = n! f(z)dz

- 2mi . (z—a)?

This shows that the required result is true for n = 1 suppose that this

result is true for n = k so that

k! f(2)dz

1ni ), (z—a)k*?

F®(a) =

Let a + h be a point in the neighbourhood of a. then

f®a+h)-fO@ k! 1 1
h ~ 1mih c () (z—a— h)ktl  (z— q)k+l dz
ki f(2)dz ho~0*Y
~1mih ), (z — a)k? {(1 Cz— a) B 1} dz
K f(2) ((e+Dh (K+Dk+2)R2 1 )
 1mih ), (z—a)k“{ zZ—a * 2! (Z—a)2+m} z
_ k! f(2) k+1 k+Dk+2)h 1
B 1m’£ (z—a)k+1{z—a+ 2! (z—a)2+m}dz

Taking limit as h — 0, this gives

f(k)(a +h) — f(k)(a) k! f(2) {k +1 }
Hm h ni), G-apFilz—a T
_ (k+1) _ ki(k+1) f(2)
le. f (a) = 2mi fc (z—a)k*1.(z—a) "’

. i(k+1) f(2)
i.e., f(k+1)(a): p—- fc dz,

(Z_a)k+2



Thus the required result is true for n = k + 1 if it is true for n = k, Hence
by the principle of mathematical induction, it is true for all positive integral

values of n.

Problem. Prove that  f""(a) = 3_'f f(z)dz

2mi’c (z—a)?’

Where c is any contour containing z = a

This result follows by taking n = 3 in the above theorem.
Example 1: Evaluate fc % where Cis |z| = 2

Solution: Cauchy’s integral formula is:

fc ; (_Zzl dz = 2mif (a),

Where z = a is a point inside contour C and f(z) is analytic within and on C.

Here Cis |z| = 2, which represents a circle centred at z = 0 and having
radius 2. Also, a = 1, which lies inside C.
Taking f(z) — 1, it follows that

dz

[, == =2mif (1).

z—1 -
ie., /. Zd_—zl = 2mi, sincef(l)=1

Example 2: Using Cauchy’s integral formula, calculate the following

integrals:

J, Y _\where Cis (z + mi) = 1

z(z+Ti)

Solution: By Cauchy’s integral formula, we have



[ 224z = 2nif (a).

C z—-a

Where z = a is a point inside the contour C and f(z) is analytic within and on
C.

dz
z(z+mi)

Let] = fc take f(z) = § Then

I=[ —=—=2mif(-ni), by (1)

z—(—Ti) o

= 2mi (=) = -2

—1Ti

Here z = —mi lies inside C and f(z) is analytic within C.
Example 3: Evaluate fOHi(x —y +ix?)dz

1. Along the straight line fromz=0toz=1+1

2. Along the real axis from z =0 to z = 1 and then along a line parallel to
imaginary axisfromz=1toz=1+1.

3. Along the imaginary axis from z = 0 to z = | and then along a line

parallel to real axisfromz=1toz=1+i



Solution: Along the straight line OP joining O(z=0)and P(z=1+1)y =Kk

so that

dy = dx and x varies from 0 to 1.

f01+i(x —y+ix?)dz

=[x — y + ix?)(dx + idy)

= [i (= x + ix?) (dx + idx)
= [ i(1 + i)x2dx

1
0

= (- D[5]

_ -1
3

(i1) Along the path OAP where Alisz=1

1+i
j (x—y+ix)dz=| (x—y+ix?)dz+ | (x—y+ix?)dz
0 OA AP



Now along OA,y =0, alongAPz=1

=dy =0 =dz =0

1 1
j (x + ix?)(dx + idy) + J (x —y +ix?)(dx + idy)
0 0

1 1
:j (x + ix?)dx +j (1+i—y)(idy)
0 0

x?  ix3\"
_<7+?)0+(1+L)y——f 1+i—-y)dy)

—1+i+(1+) )
—273 ‘yzo

1 i i
=—4-—+i—-1—=

2 3 2

_ 3+2i+6i—6—23i

B 6
_5i-3
6

(iii) Along the path OBP where Bisz =1

1+1
j (x—y+ix?)dz=| (x—y+ix?)dz+ | (x—y+ix?)dz
0 OB BP
Now along OB, x =0, alongBP y=1
=>dy =0 =dy =0

=y +ix?)dz = [} —yidy + [} (x —y + ix2)dz



o291 2 .3
-l v e
2 0 2 20

i1,
==4-—i+-
2 2 3
_ —3i+3-6+2i
6
_ —i-3
6

—(i+1)

AnNS.

Example: Find the value of the integral fc (x + y)dx + x*ydy
(a) Along y = x2 having (0, 0), (3, 9) end points.
(b) Along y = 3x between the same points.
Solution: Along y = x?
= dy = 2xdx and x varies from 0 to 3

J, (& +y)dx + x*ydy = fog(x + x2)dx + x%.x2(2x)dx

— f03(x + x2 + 2x°)dx

(b) Along y = 3x

= dy = 3dx and x varies from 0 to 3



J, (c+y)dx + xPydy = f03(x + 3x)dx + x?(3x)3dx

= f03(4x + 9x3)dx

3
4x2%  ox*
=

0

2 4

= 200- AnS.

Example: Evaluate f02+i(z‘)2dz along
(a) Real axis to 2 and then vertically to 2 + i
(b) Along the line 2y = x
Solution: Let z = x + iy then
Z=x+1iy
= (2)?=(x+iy)? =x*—y?—i2xy
Along the path OAP where A(2,0) and P(2, 1)

31

Pl2,1)




2+i
f (x?2 —y2 —i2xy)dz
0

= | (2—=vy2—-i2xy)dz+ | (x?—y?—i2xy)dz
04 AP

Along OA; y=0; Along AP; x=0

dy =0 dx =0

2 1
— f x2dx + j (4 — yz — 4iy)idy
0 0

x3

2 1 . . 9
= (;)0 + [, (4i — iy? — 4y)dy

-2 - 2] o[,
—3+4L[y]0 1[30+4 3
=2 44i-L141

3 3 ' 2
 16+24i—2i+12

- 6

_ 11i+14
3

Ans.
(b) Along the OP, 2y =x ordx =2dy

And y varies from 0 to 1
2+i 1
| et =y =iz = [ 14y -y - 2i2y)ylizdy + idy)
0 0

= (i +2) [, (3y* — 4y*))dy

1

= (i+2)(y* - 4%)



=@+2)(1-3)

_ 3i+6+4-8i
3

_10-5i
3

Ans.

Example 4: Use the Cauchy’s integral formula to calculate
. 3z2+7z+1 . 1

() [, = —dz wherecis|z] =

2z+1 - 1
-—dz wherecis |z]| ==
+z 2

(i) J.

z

. z . 1
(iii) .4z wherecis |z — 2| =~

3z2+7z+1

Solution: [ ———dz

z+1

Since a = -1 which lies outside the circle cis |z| = % Hence
fc f(z2)dx =0

3z24+7z+1
= - - - =
j; — dz =0

2z+1 - 1
s—dz wherecis |z]| = =
z%+z 2

(ii) J,
Since z=0and z = -1 but z = -1 lies outside the circle and z = 0 is only point

lie inside the circle.

j22+1d _j 2+1(1 1)d
¢ Z°+z Z= c (22 ) z z+1 z

=[ Zdz— [Z2dz ......... (1)

V4 zZ+1




f(z)=2z+1ata=0

f(0)=0
_ 2Z+1
1 o ZTL'Lf z dZ
:>f 2z+1 dZ _ 27‘[l
AtZ——1 f22+1—0
Z+1
. from (1)
Hence fc Z(Z )dZ = 2mi Ans.
(iii) f —dz where cis [z — 2] = %

z
C z2-27—-2z+42

= —Z —dz herea=+1, a=+2
¢ (a-1)(z-2)

Now [z —2] =~
Slx+iy—2] ==
12
=>(x -2 +y* = (E)

Which is a circle having centre (2, 0) and radius % (x—h)?+(y—k)?=

r2 centre is (-h, k) and radius is r.

=l mamtz=1. 2(5-5) ¢



Ata=2 f(2)=2

:>2=if%2dz

2miY z
VA .
ﬁf;dZ = 411
At a = 1 which lies outside the circle.

[ Zdz=0

¢ z-1

z .
Hence fc md2—4ﬂl Ans.

Example 5: (i) Prove that |_ 22— 2mi

zZ—a
(i) [, (z—a)"dz = 0 (n, any integer # —1)
Where cis thecircle |z —a| =7

Solution: The parametric equation of cis z — a = re‘® where 8 varies

from 0 to 27 as z describes c once in the anticlockwise direction.

dz =ire®dd & |z—a|=r

iroll
(i) f ﬁ: 21 ire d6=1[9](2)n=27'[i

c z-a 0 reib
(i) [, (z—a)*dz=["(re?)"ie? d6
— jpntl fOZ”e(n+1)i9d9

(n+1)i6127

. e

— jpntl [ _ ]
(n+1)i 0



rn+1

_ [8 (n+1)i2m _ 1]

n+1

rn+1

n+1

=0

[1-1]

sinzdz
(=-%)°
6

Solution: f(z) = sin®z is analytic inside the circle c: |z| = 1 and the

Example 6: fc where cis the circle |z| = 1

pointa = % = 3'714 = 0.5app. lies within c.

By Cauchy’s integral formula

2mi ), (z —a)?*?

Now = f(Z) — SinZZ
=>f'(z) = 2sinzcosz = sin2z
=f"(z) = 2cos2z

f"(%) = 2cosz.g =2-=1

N |-

2 f sin®zdz

G

in 2
sin“zdz ,
f =i Ans.

(=2

Example 7: Evaluate using Cauchy’s integral formula fc m dz

2z

where cis a circle |z| = 3



Solution: we have f(z) = e?Z is analytic within the circle |z| = 3 and

two singular pointa = 1 and a = 2 lie inside c.
j e?? p j . ( 1 1 )d
z=| e — z
¢ Z=1)(z-2) ¢ (z—-2) (z-1)

- f e ((z i 2)) dz = f e* ((z i 1)) dz

= 2mif (2) — 2mif (1)

= 2mie* — 2mie?

= 2mi(e* —e?) Ans.

Example 8: Evaluate |_ Z;ii where c is the circle x? + y? = 4

1

Solution: Herez = +1

J‘ dz _1[ dz 1.[ dz
. z-D@E+1D 2), z—-1 2), z+1

When a = 1; whena=-1
dz . dz .
fc ; = 2mi fc ; = +2mi
dz

Hence [

1 , .
c m = E[an - 27'[l] = 0 Ans.

3.14 Morera’s Theorem:

The significance of the following theorem is that it is a sprt pf cpmverse

pf the celebrated Cauchy’s theorem.



Theorem (Morera’s theorem): If f(z) be continuous in a simply

connected domain D and

j f(2)dz=0

T

Where T is any rectifiable closed Jordan curve in D, then f(z) is analytic in
D.

Proof.: Suppose z is any variable point and zo is a fixed point in the
region D. also suppose T1 and 12 are ay two continuous rectifiable curves
in D joining zo to z and T is the closed continuous rectifiable curve

consisting of t1 and -t2. Then we have

jtf(z)dzzjtlf(z)dz+j f(z)dz

And J. f(2)dz =0 (given)

So ftl f(2)dz = — f_TZf(Z)dZ = ftz f(2)dz

i.e., the integral along every rectifiable curve in D joining zo to z is the

same.

Now consider a function f(z) defined by
zZ
f@ = [ roa
Z9

As we know that the integral (1) depends only on the end points z to z.

we have



R O KA O — )

From (1) and (2) we have
f+h) —f@ =" f®dt - [} f(©)dt
- fZZ:h f®dt + [ f(tdt

Z+h

=[ " f®dt ... (3)

Since the integral on the right hand side of (3) is path independent, it
may be taken along the straight line joining z to z+h, so that

Fet—f@ 1 )
@ =g rde-

=" Fwat - £ [ ]
=2 E© = F@]dE e 4)

The function f(t) is given to be continuous at z. therefore for a given

e > 0 there exists a & > 0 such that
If () — f(2)| <e¢,
Where |t —z| < §

Since h is arbitrary, choose |h| < § so that every point t lying on the line

joining z to z+h satisfies (5) from (4) and (5), we have

fz+h)-f(2)
h

—ﬂ)‘lm I - f@l e



1

<
||

e [7*"|dt], from (5)

< —elh]
—c¢l|h| = ¢
||

Since ¢ is small and positive, we have

fz+h) - f(2)
h

- f@|=0

im
h—-0

Le. limyo [ TE — £(2)| = £(2)

Hence f'(z) = f(2), i.e. f(z) is differentiable for all values of z in D.
consequently f(z) is analytic in D. Since the derivative of an analytic

function is analytic, it follows that f(z) is analytic in D.

3.15 SUMMARY

In this unit we have discussed:
* Integration and differentiation of complex valued function of a real variable;
» The concept of an arc and the concept of a contour;

* The concept of a rectifiable arc, some conditions for an arc to be rectifiable

and the concept of arc length of a rectifiable arc;

* Integration of a continuous function defined on a domain of the complex

plane along a contour;

* The concept of antiderivative of a function and conditions for the existence

of a function in a domain;



The results of this unit may be summarised as follows:

 An oriented curve is an ordered aggregate of points; the order being induced

by the manner in which the parameter of the curve varies.

* A continuous curve in the complex plane C is a continuous mapping from a

closed interval into C.
» If a continuous mapping is one-to-one, it is called a Jordan arc.
* A Jordan curve is a Jordan arc z (t) such that z (a) = z (b), when t € (a, b).

* Jordan curve z divides the complex plane into two parts: the interior and

exterior of z.
* A domain bounded by a Jordan curve is called a Jordan Domain.

« If two end points of a curve meet but it does not intersect at any other

point, the curve is called a Closed Curve.

* Acurve z (t) =x (t) + 1y (t) is called a Smooth Curve if x (t) and y (t) have
continuous derivatives at all points of its interval and the derivatives do not

vanish simultaneously in the interval.

* For a curve z (t) = x (t) + 1y (t), if x (t) and y (t) have continuous derivatives
at all points except at finite number of points, then the curve is called

Sectionally or Piece-wise Smooth Curve.
» Jordan arcs with continuously turning tangent are called Regular arcs.

* A contour is a continuous curve consisting of finite number of regular arcs.



A region in which every closed curve can be contracted to a point without
passing out of the region is called a Simply-connected Region, otherwise the

space is Multiply-connected.

3.16 Terminal Questions

2z
v dz,where C is |z| = 3

1. Evaluate [ (
2. Using Cauchy integral formula, calculate the following integrals.

(i) fc mdz where C is the circle |z| = 2 described in positive sense.

.. cos(mtz) : ; —
(i) fc 2 +) dz, where C is the circle |z| = 2

3. Evaluate [ Lwhere Cis|z+3i|=1
¢ z(z+mi)
4, Evaluatef03+izzdz along the line joining the points (0, 0) and (3, 1).

5. Evaluate fc (Zd_—za), where C is a closed curve and z = a is (i) outside ¢ and
(i1) inside c.

6. Evaluate fc Zd_—zz forn = 2,3,4...where z = a is a point inside the simple
closed curve c.

7. Evaluate fc Zd_—zz around (i) the circle |z — 2| = 4 and (ii) the circle

|z — 1| = 5.

8. Show that f(z) = fol e 2% dt is entire, and compute ' (z).



9. Evaluate fc Zd_—ZZ around the square vertices at 2 + 2i, —2 + 2i.

eZdz
241

10. Evaluate fc over the circular path |z| = 2

Z
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4.1 Introduction:

In this unit we shall introduce you to the series representation of a complex
valued function f . We shall show that if f is analytic in some domain D., then
it can be represented as a power series at any point Z,€ D in powers of
Z — Z,which is the Taylor series of f about Z,. If f fails to be analytic at a
point Z, , we cannot find Taylor series expansion of f about that point.
However, it is often possible to expand f in an infinite series having both
positive and negative powers of Z — Z, . This series is called the Laurent

series.

This leads up to study of Morera’s theorem, Cauchy’s inequality, Liouville’s
theorem, Maximum Modulus theorem. The study of complex integration will
be incomplete without the study of Taylor’s series and Laurent’s series,

which we also kept up in this unit.

You have already studied that the sum of a power series with non-zero radius
of convergence is an analytic function, regular within the circle of
convergence. We now prove the converse theorem, known as Taylor’s

theorem concerning analytic function of a complex variable.

4.2 Objectives:




After studying this unit, you should be able to

« obtain the Taylor series representation of a complex-valued function about a

point at which the function is analytic;

* obtain a series representation of a complex-valued function about a point at

which the function is not analytic in terms of Laurent series;
* obtain the radius of convergence of a power series.

» Learn the results of Morera’s theorem, Cauchy’s inequality, Maximum as

well as Minimum Modulus Theorem and Lioville’s theorem, and

* study the use of Taylor’s series and Laurent’s series for development of

series of complex functions.

4.3 Taylors series:

You may recall from your knowledge of real analysis that certain real-valued
functions can be approximated by polynomials using Taylor theorem. Under
certain conditions, an infinitely differentiable function in a neighbourhood of
a point Xo €R has a Taylor series expansion about that point. The Taylor
series about zero is referred as Maclaurin series. Some of the well-known

Maclaurin series expansions are:

2 3
ex=1+x+’;—,+’;—'+---,xeR



x3 5 7

. X X
sinx=x——+—+—..., X ER
31 51 71

4 6

2
cosx=1—x—+x—+x—...,xeR,
2 4l 6l

We shall now extend these series expansions for functions of complex
variables.

If a function f(z) is analytic within a circle ¢, with centre z, and radius to then
for every point z within ¢

(Z_Zo)2
f(2) =f(z¢) + (z—20)f"(20) + |—2f"(zo) +

(z — zp)"

+ L ) 4
In

Or

f(2) =¥% pa, (z—z,)™ where

n
an=f|(nZ°), r<§, |z —zy| =7
Ve
/7~
/
,“- — >1§
" ]
{ ‘ 7 ""\ =
\ \‘ j _-' iy
N Y /’,



Taylor’s Theorem:- If a function f(z) is analytic within a circle ¢ with its

centre z = a and radius R, then at every point z inside c.

f@) = B fr(@) =" e, f(2)=N%oau(z—a)"

Where a, = (@)

n!

[The series on the right-hand side is known as Taylor’s series of f(x).]

Proof: - Let f(z) be analytic within a circle ¢ whose equation is |t — a| =

Let z be any point within c such that |z — a| = r < R.

f(t)dt

2mi ), t—z

1 f()dt
B Znijc (t—a)—(z—a)

f(t) Z - a)]—l dr

Zm t—a t—a

f2) =




S G ON P

S 2mi), t—a’ t—a

= etc = Zf"(a). (z _! )

n

4.4 Cauchy’s Inequality:

Statement: If f (z) is analytic within and onacircle C: |z — z,| = R < p and

if |f(z)] < MonC,Then |[f™(zy)] < 7;!—;”
Proof: From the n™ derivative of an analytic function, we have

n nlm f(2)
|f"(z0)| < R™ | (z—Zo)"+1dZ

_nm |f(2)|ldz|

T 2m ), |z — zp|"*?

Which prove Cauchy’s Inequality.

For the special case, n = 0, Cauchy’s Inequality becomes |f(z)| < M.



which shows that on every circle around z,, no matter how small, | f (z) | has
a maximum value M which is at least as great as f (z,). This result is usually

referred to as the Maximum Modulus Theorem, which may stated as

The absolute value of non-constant function f (z) cannot have a maximum at
any point where the function is analytic. If f (z) is analytic at all points of a
closed region R, bounded by a simple closed curve C, then the real function |
f (z) | must have a maximum at some point of R. By the Maximum Modulus
Theorem, the maximum cannot occur in the interior of Ri hence it must occur

on the boundary C. This gives the following result:

Corollary of the Maximum Modulus Theorem If f (z) is a non-constant
function which is analytic over a closed region R bounded by a simple closed
occur C, then the maximum value of | f (z) | over R occurs on the boundary C.
A similar result is true for the minimum value of | f (z) | over R, provided f
(z) # 0 in R. This result is known as Minimum Modulus Theorem, which
states If f (z) is analytic inside and on a simple closed curve C, and f (z) # 0

inside C, then | f (z) | must assume the minimum value on C. This result can
1

be proved by applying the maximum modulus theorem to ey

Example: If f (z) be analytic within and on the boundary of a bounded
domain D, show that Re f (z) and Im f (z) attain maximum values on the

boundary of D.

Solution: Let f(z) = u(x,y) + iv(x,y) be an analytic function within and

on the boundary of D. Then g (z) = exp [f (z)] is analytic in D.



Hence, by maximum modulus theorem,
lg(2)| = |e/@| = |e**™| = e is attained on the boundary of D.

Since real exponential function is an increasing function, therefore Re f(z) =
u = u(x,y) also attains its maximum exactly at the same points at e* , i.e. on

the boundary of D.

Similarly, by considering g (z) =—1f (z), we can show that Im f (z) =v (X, y)

also attains its maximum on the boundary of D.

Another theorem, which can be readily deduced from Cauchy’s Inequality is

called Lioville’s Theorem, which we take up next.

4.5 Liouville’s Theorem: -

Bounded function: - A function f(z) analytic in a domain D is said to be

bounded if there exists a number M > 0 such that
lf(2)| £ M, vz €D

Theorem: - If a function (z) is analytic for all finite values of z and is

bounded, then it is a constant.
Or

If f(z) be an integral function satisfying the inequality |f(z)| < M for all

finite values of z, where M is a positive constant, then f(z) is constant.



Proof: - Let z;, z, be any two points of the z-plane take the contour C to be a
large circle, with its centre origin and radius R, enclosing the points z1 and

z2,sothat R > |z;| and also R > |z,|. By Cauchy’s integral formula, we

have
1 f(z)dz
f) = 2mi ), zZ— 2z,
d
Flz) = — [ L2

2ni ), z — z,

S0, f(z) = f(z) = 7 [, LB - =) L2

2mi Ve 2mi¥C  z—2zy

_ L[ m)@d
C

T 2mi (z—21)(z—23)

Whence

1~ 42 d
Fz) = )] = | [ a=2)f @)z

2mi ), (z—21)(z — z,)

j |21 — z,|1f (2)|ldz]

1
<L
2Tl |z — z,||z — z,]|

1 | le |dz|
<—l|z—2z
21 ! ¢ Uzl =1z D(z| = |z1)

_ 1 |Z1_22|M
2 (R — [z D(R = |22 J.

|dz|



1 |Zl _Zle 2n
_ L | rao
2t (R — [z D(R = |z2) J

Since z = Re'®, |dz| = Rd@

B |z, — z,|M2mR B |z, — z,|M
- 2n(R —|z.D(R = |z,|) _lzaly (g 1zl
(R —|z:D(R — |z, R( : )(1 )

R

4.6 Laurent’s Theorem

Suppose a function f(z) is analytic in the closed ring bounded by two

concentric circles C and C' of centre a and radii R and R'( R’ < R).

If z is any point of the annulus. Then f(z) =Yy qa,(z—a)™ +
Z?lozl bn(z - a)—n

1 f(t)dt 1 f()dt
_f AR — _f AN

2mi’c (t—a)™*1’ TN T 2mide (t—q)—nt1”

Where a,, =

Proof: Let f(z) be analytic in the closed ring bounded by two concentric

circles C and C’ of centre a and radii R and R'( R’ < R).

Then if z is any point within the ring space, then
R'<|z—a|l=r<R

By Cauchy’s integral formula

1 fdt 1 f(t)dt
2mi J, (t—z)_Zm' o (t—2)

f(2) =



I F(O)dt 1 f(@)dt
f(Z)_Z_ﬂijc t-0-G-a ), G-aE-0)
1 f(@) z—ay! 1 f@©) t—a™
f@=5m |, ol t=al “*iml, Goollimd *

10 =L L2 () (2 4 (22 (2 -

2wivC t—-a t—=a t-a e o

ﬂ]_1]+
t—a
2mi’c t-a z—a Z-a o o
t—a _1]
;] LA (1)

_ 1 f®at _ 1 4O =
We let an = 2mi /e (t—aq)nt1’ N o Zm'f Idt o

C (t_a)—n+1

Then by equation (1), we have

— — L) — n b1 b2
f@=la,+(z—a)a; ++a,(z—a)" + U,q] + [(Z_a) t e
bn
et Vn+1] ............ 2)

_ 1 f(t) [z—a]™t] z—a] 1 z—a]™!
Where Unis =20 ) o [E [1 - E] dt “1 =i

(=) =)

- [ L ()



fOE-a)™*!
= — — g At (3)
And
_ 1 f(t) a1 t-a]"1
Ve = Py c Z-a) lz—a [1 _Ta] dt
_ 1 fO—a)y"*
- 2mi . z—a)(z—a)"?
fOE-a)™*!
=— g A 3)

Let M = max.value of |f(t)| on C

M' = max.value of |f(t)| on C'.

From equation (3),

Tl+1 27Ti

(t-a)

1f If®)llz—a|™*?

2w Yc  |t—z||t—a|?t1

[Un+al =

fc JiG) [ ]Tl+1 dt

( |z—a| =71
|t —al =
el Ve—zl =1t -a) - - o)l =
\ |fc |dt| = 2nR

M Tn+1
= — dt
nL ® =R 19



M r*tt 1 M (1)""’1 1

= — .2TR = :
2TR™IR—1 " 1-L
. . ntl 1 r
lim, o |U, 41| = lim, M (%) s —0as -<1............ (5)
. 1 If ()] [t=a|™*?!
Now from equation (4), |V,,11] < Efw ek B |dt] {lz —t|
(z-—a)-(t—-a)|=r—-FR
Solving above
. . , (R’ n+l R’ r
lim, o |V 1q| < lim,, o M (7) 7> 0as —<lor >

=1

Now by equation (2), using equations (5) and (6), we have

f(Z) = Z;?:O an (Z - a)?’l + Z?le bn (Z - a)_n ................... (7)
_ 1 f(®at
Where Ay = 5— /. i

1 F(t)dt
=L _JOdr

n = onider (t—q)-nt1

4.7 Laurent’s Series: -




If f(z) is analytic in the ring-shaped region (annulus region) R bounded by

two concentric circles c¢; and ¢, with centre a and radius r; and r;, (r; > ) then

all zinR.
fD =) ay@-a"+ Y bz-a)™"
n=0 n=1
f(w)dw
Where Zm fcl (w—a)+1

_ if fw)aw

T omide; (w-a)~nHL

z be any point in the annulus region s.t. |z — a| = r, r; > r, and w be any

point on the circle c;.

~.

Remark 1 It should be noted that the coefficients of the positive powers of (z
— a) in Laurent’s expression, although identical in form with the integrals of

m)
Taylor’s Theorem, cannot be replaced by the derivative expressions f 4 n'( ) ,



since f (z) is not analytic throughout the entire interior of C, (or C) and hence
Cauchy’s generalised integral formula cannot be applied. Specifically, f (z)
many have many points of non-analyticity within C,; and therefore within C,
(or C).

Remark 2 The Laurent expansion of a function over a given annulus, if it
exists, is unique. Remark 3 As in the case of Taylor’s series, the Laurent
expansion of a given function in a given annulus is usually not found through
the use of Laurent’s Theorem but rather by algebraic manipulations
suggested by the nature of the function. Such procedures are correct because
Laurent expression, if exist, is unique. Thus if an expansion of the Laurent

form is found by any process, it must be the Laurent expansion.

Remark 4 The real importance of Laurent’s theorem rests in the fact that it is
an existence theorem. It shows that an analytic function can be expanded,
under certain circumstances, as a series of a given type, but it does not

necessarily provide the simplest method of calculating the coefficients.

Remark 5 It should be observed that Laurent’s theorem will not provide an
expansion of the logarithm of z as a series of positive and negative powers of
z — for log z is a many valued functions, whose principal value, log z, is
discontinuous along the negative half of the real axis and so is not regular in

any annulus with centre at the origin.

Example.1 Find the first four terms of the Taylor’s series expansion of the

z+1

complex variable function f(z) = e aboutz=2



Solution. We have

flz)=—22 —  atz=2, f(2)=3/2

(z-3)(z—4)
To make the differentiation easier let us

z+1 4 N 5
(z—=3)(z—4) z-3 z—4

FO =G5 oo
F=4-=o
F =G5 G
f@= 8—%=24—7
24 30

["® =5 " a—ae

T 30 177
f72) = 16 8

Then Taylor’s Series is

(z — a)?
|2

f(2)=f(a)+@z-a)f'(a)+ F'(@) +



3 11 (z—2)? 27 .59
_E-I_(Z_Z).T-I_T.T—I_(Z_Z) 1_6
1 . .
Example.2 expand f(z) = e oo ! the region
(@ |z <1 (b) 1<z <2
Solution: by Partial fraction
1 1 1
DD —az aoi e (1)
E 1 . 1
1 <1l= _2(1_5) -1(1-2)

Which is a Taylor’s series.

b1<lzl<2 ie. =<1 & Z<1

|z]

Il

I
N |
/N
—_

I
NN
N———"
I
=

I

N

VS
T

| =

N



Which i1s Laurent’s series.

Example.3 Obtain the Taylor’s & Laurent’s series which represent the

2

. z
function m

(i) |z] <2 (i2<]z] <3 (iii) |z| > 3
Solution: - if |z]| < 2

|z]

Oor =<1
2

5z+7 3 8
f@) =1 e =1t o

-1

f@=1+5(1+9) " =5(1+9)

— 1+§[1—§+§—§+---....]——[1——+—2——3+---....]

zZ

3 woo " 8w n
=1+ EanO(_l)nz_n - Eano(_l)nz_n

3 @ 3 8
=1+ Eano(_l)n [2n+1 - 3n+1] z"
Which is Taylor’s series valid in |z| < 2

(iwhen2 <|z| <3, =<1 & Z<1

|z]



. 32n gz
=1+ ano(_l)n [Zn+1 _ 3nZ+1]

Which is Laurent’s series in the annulus region.

(i) |z >3 or3<|zl or %<1

f@=1+_—5-—

Z+2 zZ+3

3w 2" 8w 3"
=1+ ;ano(—l)n — = ;Zn:O(_l)n Z_n

zn

2n .
+1 - 8 Zn:O(_l)n

zn

=1+3X (D"

ZN+1



= 1+ ¥7o(-D)" =5 [3.2" - 8.3"] Ans.

7z—-2

Example.4 Find the Laurent’s series expansion of f(z) = Ererell the
region1 < |z+ 1| < 3.

. . . . . . 7z—2
Solution: The given function is f(z) = G022
Lletz+1=u then

_ 7w-1-2 7u—9

f(z) = u(u-1)(u-1-2)  u(u—1)(u-3)

By partial function
-3 1 2

f@ =7+ o5
Sincel < |ul <3
> Lt<1, Moy

lul 3

-3 1 2
IR (o R
3 1 AN u\ "1
=2+ (-1 -i(-39)
-3 .1 1,1 1 2 u  u?  ud
=24 (14 st S ) (1434 5 D)
-2 1 1 1 2 u  u?  ud
=(Cratatwt) (i)

Hence



-2 1 1
f(z)_lz+1+(z+1)2+(z+1)3+"' """ |

2 (z+1) (Z+1D? (z+1)3

—§[1+ Tt +]

z%2-62z-1

Example.5 Find the Laurent’s series expansion of f(z) = NI

region
3<|z+2|<5

z%2-6z-1

Solution: The given function is f(z) = D@ D)

By partial fraction

1 1

1
f(Z) o z—1 N zZ-3 T Z+2

Since3<|z+2| <5 writing z+2=t

3<t]<5 <1 Yo
It] 5

1 1 1
f(2) = PP i

1 1 1
- 4=
t—-3  t-5 ¢t




2 3
=143+ 5+ 5+ o) (T4 o ) + 1
t t t t 5 5 25 125 t

2 3
=G+t a+o) (T4 ) 41
t t t 5 5 25 125 t

2
= (St ot o) o1+ 2 2y
z+2  (z+2)%2  (z+2)3 5 5 25

(z+2)3

125

Which is required Laurent’s series.

Example.6 Expand f(z) = ) forl<|z| <2

1
(z-1)(z-2

1 1 1

Solution-f(2) = —~——~=— — 7

In first bracket |z| < 2,we take out 2 as common and from second bracket z

is taken out common as 1 < |z|.

1] 1 11 1 1 -1 1 1\t
f(z):‘i[l_g]‘EL_z]:‘5(1‘5) -2 (1-2)

@) = —=|1+ REAa o PR ]
fz) = 2 2 4 8 z z z? Z3
2 73 1 1
f@)=—c————-— T T T T 3 =

1
Example.7 Expand GTDET)

) in the regions |z| < 1.



1

Solution- we have f(z) = ZiDE3)

1 1 ]

1
f(z)zflz+1_z+3

If the regions |z| < 1

f(@)=2[A+2) = B +2)7"] then |z| < 1and 2 <1

1 B 1 Z_
f2)=5(1+2) 1—3[1+§] !

1 1 7
FR=50-z+22 =7 +) = C(l— 2t == )

1 1 z z 72  Z? z3  Z3
f@=(5‘5)+(‘§+ﬁ)+(7‘a>+(‘?‘@>

1 4 13 40
= —_- — = 2 ___ 53
f(2) 2 9z+27z g1Z -

Example.8 Expand the function Sin~1z in powers of z.
Solution- Let w = Sin™1z

dw 1
dz /1 - z2

= (1-2%) (1)

On expanding the R.H.S. of binomial theorem, we have



1 (2 2 232
o 2(z)+ T (—z%)* +
dw +zz+3 ‘g
dz 2 T8’

3 5
On integrating, we have w = z + % + % +tc

Putting z = 0 thenw =sin"1z=0
i.e. ¢=0

. 3 35
We have sin™1z = Z+Zz+%+...

4.8 Singular point:

A point at which a function f(z) is not analytic is known as a singular point or

singularity of the function.
Fore.g. f(z) = i has a singular pointatz—-2=0o0rz=2

(1) Isolated singularity: -
If z=a is a singularity of f(z) such that f(z) is analytic at each point in
its neighbourhood (i.e. there exists a circle with centre ‘a’ which does
not contain other singularity), then z = a is called an isolated
singularity.
In such a case, f(z) can be expanded in a Laurent’s series around z = a,

giving



e.g. of non isolated singularity:-

f(z) = SLE is not analytic at the points where sing = 0 i.e. at the points

mn
zZ

= nm i.e., the points z =

S|k

(n=+1,+42,+3, ... .. ), thus z = +1, ¢%, +

) e e are all isolated singularities or there is no other singularity in their

wilrk NS

neighbourhood.

But when n is large, z = 0 is such a singularity that there are infinite number
of other singularities in its neighbourhood. Thus z = 0 is the non-isolated

singularity of f(z).
(i) Removable singularity: -

If all the negative powers of (z —a) in (1) are zero, then f(z) =
Ym—o an(z — a)™. There the singularity can be removed by defining f(z) at z
=a in such a way that it becomes analytic at z = a such a singularity is called

a removable singularity.
Thus if lim,_, f(z) exists finitely, then z = a is a removable singularity.
(iii) Poles:

If all the negative powers of (z—a) in (1) after the nth are missing, then the

singularity at z = a is called a pole of order n.



A pole of first order is called a simple pole.
(iv) Essential singularity: -

If the number of negative powers of (z —a) in (1) is infinite, thenz = a is

called an essential singularity. In this case lim,_, f(z) does not exist.

Example.1 Find the nature and location of singularities of the following

functions.

(I) Z_ZSZinZ (“) (Z t 1)Si7’l (i) ("I) cosz—sinz

Solution: (i) Here z = 0 is a singularity.

5

—qi 1 3 7
Also S;nzz—z{z—(z—z—+z—+z—+---.)}
z z BCTRET

Since there are no negative powers of z in the expantion z = 0 is a removable

singularity.

.. . 1 - _

(if) (z + 1)sin (Z) writingz -2 =t
=(t+2+ 1)sin%

1 1 1
=(t+3){?_ﬁ+ﬁ ...... }

=(1—L+i ...... )+{3—i+i ...... }

31t2  s5it4 t 2t3  5ItS



3 1 1 1
=14+>——-—-—+ —
t 6t2 2t3 120t4

3 1 1 1
— 1 + 7—2 - 6(2—2)2 - 2(2_2)3 120(2_2)4 —_— e

Since there are infinite number of terms in the negative powers of (z — 2), z =

2 is an essential singularity.

(iii) Poles of f(z) = — _are given by equating denominator to zero, i.e.

cosz—sinz

by

. T T - -
cosz—sinz=00r tanz=1 or z = clearly z = Sisa simple pole

of f(2).

4.9 Zeros of an analytic function: -

The zeros of analytic function: - The value of z for function f(z) becomes

zero is said to be the zero of f(2).
If f(z) is analytic in a domain D and z, is any point of D, then we can

expand f(z) as Taylar’s series about z = zy given by

(0]

F&) = an(z=2)"

n=0

Ifagp=a;=a,=.....=ap; = 0 and a, # 0, f(z) is said to have a zero of order m

atz =z,

In this case Taylor’s expansion of f(z) reduces to



oo (0]

f(2) = z a,(z — zy)" = z Ao (Z — Zp)T

n=m n=m
= (Z - ZO)m Z‘?lozm an+m(Z - ZO)n

A zero of order one (m=1) is said to be a simple zero, the following theorem

shows that the zeros.

Theorem1:- If f(z) is an analytic function in a domain D, then unless f(z) is
identically zero. There exists a neighbourhood of each point in D throughout

which the function has no zero except possibly at the point itself.
Or
The zeros of analytic function are isolated.

Proof:- Let z = zo be a zero of order m of the function f(z). then we can write

F(2) = (2= 20)™ 8 A (Z = Z)™ oo, (1)
= (z = 2))"¢(2), say

Where  ¢(2) = XnZo anm(z — 20)"

Clearly $p(z)=a,, #0

Now the series (1) is uniformly convergent and its each term is
continuous at z,. Therefore, ¢p(z) is also continuous at z. Hence for e > 0

there exists a & > 0 such that

|$(2) — P(z0)| < €



Where |z —2z,| <6
Let us choose € = % |am| and let §, be the corresponding values of §.

Then from (2) and (3), we have

19(2) ~ anl < 3la]

Where |z — z,| < 6;. Now if we set ¢(z) = 0, (4) will not hold. Thus
¢(z) = 0 can not be zero at any neighbourhood of z,. The argument also
holds good when m = 0 in which case ¢(z) = f(z) and f(z,) # 0,

Hence the zeros of an analytic function are isolated.

4.10 Limit Points of Zeros and Poles:

Limit point of zeros: - we prove here the following result concerning limit

point of the set of zeros of an analytic functions.

Suppose z = a is a limit point of the sequence of poles of an analytic
function f(z). then every neighbourhood of the point z = a containing poles
of the give function. Therefore the point z = a is a singularity of f(z). This
singularity cannot be a pole, since it is not isolated. Such a singularity is

called non-isolated essential singularity or essential singularity simply.

Theorem 1. If f(z) is an analytic function in a simply connected region D and

ai, az, as..... 1s a sequence of zeros of f(z), having a as its limit point, then



eighter f(z) vanishes identically or else has an isolated essential singularity at

Z=a.

Proof. Let E be the set of sequence of zeros a;, a,, as, ..... if a € E. Then we
would have f(a) = 0. Since a is a limit point of the set E, every neighbourhood
of a must contain infinitely many points of E. But this is contrary to the fact
that zeros are isolated. Hence a can not be a zero of the function f(z) unless

f(z) is identically zero in the region D.

On the other hand, if f(z) does not vanish identically in D, then a is not
a zero of f(z) while being surrounded by many zeros. This shows that a is a
singularity. This singularity can not be a pole since f(z) does not tend to
infinity in the neighbourhood of a, the function f(z) is analytic (tending to
zero everywhere in the neighbourhood). Hence a is an isolated essential

singularity.

Working Rule:- If we are to show that a certain point a is an isolated
essential singularity of f(z) it will do if we prove that a is the limit point of

zero of f(z2).
Limit point of Poles:- we prove below a useful result for limit point of poles.

Theorem 2. The limit point of a sequence of poles of a function f(z) is non-

isolated essential singularity.

Proof- Let a be the limit point of a sequence of poles so that f(z) becomes

unbounded there. Consequently, f(z) can not be analytic at a.



Thus a is a singularity of f(z) but is not isolated. Hence a must be a non-

isolated essential singularity of f(z).

Working Rule: - If we are to show that a certain point a is a non-isolated
essential singularity of f(z) it will do if we prove that a is the limit point of
poles of f(z).

Example: - Show that the function e~1/7* has no singularities.

Solution. We have f(z) = e~1/2*. The zeros of f(z) are given by e~1/2* = 0,

ie. z2=0

So z =0 is a zero of order two, since these zeros have no limit point, there is

no singularity of f(z).

Further, poles of f(z) are given e~1/2* = 0 which does not hold for any

z. so there exist no poles.

_ 2 . _
Hence e~1/#" has no singularities.

4.11 SUMMARY

The results of this unit may be summarised as follows:

Maximum Modulus Theorem: The absolute value of a non-constant function
f (z) cannot have a maximum at any point where the function is analytic.

Further, if f (z) # 0 inside C, then | f (z) | must assume its minimum value on

C.



* Lioville’s Theorem: If f (z) is an integral function which satisfies inequality

| f (z) | for all z, M being a constant, then f (z) is a constant.

* Taylor’s Theorem: If f (z) is an analytic function, regular in the
neighbourhood | z — a | < R of the point z = a, it can be expressed in that

neighbourhood as a convergent power series of the form f(z) = f(a) +

2in=1f"(@)

(z-a)™
!

n

The above expansion is uniformally convergent when |z —a | <Ry, provided

R: < R. When a =0, in the above expansion, it becomes
[0 0] ZTl
F@) = FO+ ) frO)=
n=1 '

which is called Maclaurin’s Series for f (z).

Laurent’s Theorem: If f (z) is analytic throughout the closed region bounded
by two concentric circles, then at any point of the annulus region bounded by

the circles, f (z) can be represented as  f(z) = Y.%, a,,(z — a)™

where a is the centre of concentric circles and

1 f(®)

= dt
2mi ). (t—a)™t?

an

each integral being taken in the counter clockwise direction around any curve
C lying in the annulus and encircling the inner boundary. The Laurent’s

expansion of a function over a given annulus, if it exists, is unique.



4.12 Terminal Questions

1. If f (2) is entire and satisfies an inequality |f(z)| < |z|™for some n and

sufficiently large | z |, then prove that f (z) must be a polynomial.
2. Find Taylor Series of f(z) = iabout z=-1,z=1and z = 2.

Determine the circle of convergence in each case.

3. Develop the function f(z) = into Taylor series about 0.

1—z—z2

4. Expand sin z in a Taylor series about the point z = g :

272 inthe

5. Find the Laurent’s expansion of the function f(z) = 2t @2)

annulus
1<|z+1|<3.

22241 . . .
ey find (a) Taylor’s series expansion valid
Z Z

6. For the function f(z) =

in the neighbourhood of the point z = i.
(b) Laurent’s series expansion within the annulus when centre is the

origin.

7. A rational function has a no Singularities other than poles.

2
8. Find zeros and poles of (Z++11)

72
9. What kind of Singularity has the function

1

(a) f(Z) = cos(l)

atz=0

(b)andcotzat z =



1
10. Show that the function e 22 has no Singularities.
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Block — 3

The Calculus of Residues (Integration)and Evaluation of real definite
integrals by contour integration

The calculus of residues (integration) is an important and useful tool in complex analysis. A zero
of analytic function is the value of for which. A point at which a function is not analytic is
known as a singular point or singularity of the function. Residue of at is defined as where the
integration is taken round in anti-clockwise direction, where is a large circle containing all finite
singularities of in the second unit we introduce Contour Integration of residue classes which is
an important and useful tool in complex analysis. It gives many important techniques for finding
the complex integration and it is useful to find many other important theories of complex
analysis which are necessary for the development in mathematics. A large number of real
definite integrals, whose evaluation by usual methods become sometimes very tedious, can be
easily evaluated by using Cauchy’s theorem of residues. For finding the integrals we take a
closed curve, find the pole of the function and calculate residues at those poles only which lie
within the curve. (Sum of the residues of at the pole within) We call the curve, a contour and the
process of integration along a contour is called contour integration.



Unit-5

THE CALCULUS OF RESIDUES (INTEGRATION)
5.1. Introduction
5.2. Objectives
5.3. Zero of Analytic function
5.4. Singular point
5.5. The residue at a pole
5.6. The residue at infinity
5.7. Method of finding residues
5.8. Applications

5.1. INTRODUCTION:

The calculus of residues (integration) is an important and useful tool in complex analysis. A
zero of analytic function f(z) is the value of z for which f(z) = 0. A point at which a function
f(z) is not analytic is known as a singular point or singularity of the function. For example, the

function i has a singular pointat z—-2=0o0rz =2. If z = a is a singularity of f(z) and if
there is no other singularity within a small circle surrounding to the point z = a,thenz = a is
said to be an isolated singularity of the function f(z); otherwise it is called non-isolated. Let a
function f(z) have an isolated singular point z = a, f(z) can be expanded in a Laurent’s series
around z = a, giving

f(2)=ay+a;(z—a)+a,(z—a)®+ -+ zb—_la + (Zi’z)z ot (zi:)m (Zi’:;nlm +
I (1)

In some cases it may happen that the coefficients b, .1 = bp,42 = b3 = 0, then (1) reduces to
f@)=a+a(z-a)+a(z—a)* + -+ zb—_1a+ (ZZ)Z (Zi):)m

f(Z) = Qay + Cll(Z — a) + aZ(Z — a)z + -

+ _(Z _1a—)m {bl(Z - a)m—l + bZ(Z — a)m_z + b3(Z _ a)m—z 4ot bm}

When z = a is said to be a pole of order m of the function f(z), when m = 1, the pole is said
to be simple pole. In this case f(z) = ay + a,(z — a) + ay(z — a)? + e 2

zZ—a



If the number of the terms of negative powers in expansion (1) is infinite, then z = a is called to
essential singular point of f(z). Let z = a be a pole of order m of a function f(z) and C;
circle of radius r with centre at z = a which does not contain any other singularities except at

z = athen f(z) is analytic within the annulus r < |z — a| < R and can be expanded within the
annulus. The coefficient b; is called residue of f(z) at the pole z = a. it is denoted by symbol,

Res.at (z = a) b;.Residue of f(z) at z = o is defined as —ﬁfc f(z) dz where the
integration is taken round C in anti-clockwise direction, where C is a large circle containing all
finite singularities of f(z).

5.2. Objectives
After studying this unit we should be able to:

° The definition of Zero and poles of Analytic function;
] Definition of Singular point ;

] Definition of the residue at a pole;

] The residue at infinity;

° Method of finding residues;

] Applications;

A point at which a function f(z) is not analytic is known as a singular point or singularity of
the function.

For example, the function ﬁ has a singular pointatz—-2=0o0rz = 2.

If z = aisasingularity of f(z) and if there is no other singularity within a small circle
surrounding to the point z = a, then z = a is said to be an isolated singularity of the function
f(2); otherwise it is called non-isolated. Let a function f(z) have an isolated singular point

Z = a, f(z) can be expanded in a Laurent’s series around z = a, giving

f@)=ay+a;(z—a)+a,(z—a)*+ -+ Zb_—la + (zf—fmz + o+ (:Z)m + (Zf’:;;l +

@f’;ﬁ F ot e, (1)

In some cases it may happen that the coefficients b,,,1 = btz = bz = 0, then (1) reduces to
f@)=ay+a,(z—a)+a,(z—a)*+-+ zb—_1a+(zf_f1)2+ et (zf:)m

f(Z) =ay+ al(Z— a) + a,(z — a)z + ...

+ ﬁ{bl(Z — a)m—l + bZ(Z — a)m—Z + bg(Z _ a)m—z ot bm}



When z = a is said to be a pole of order m of the function f(z), when m = 1, the pole is said
to be simple pole. In this case f(z) = ay + a,(z — a) + ay(z — a)? + Zli—la

If the number of the terms of negative powers in expansion (1) is infinite, then z = a is called to
essential singular point of f(z). Let z = a be a pole of order m of a function f(z) and C; be
circle of radius r with centre at z = a which does not contain any other singularities except at

z = athen f(z) is analytic within the annulus r < |z — a| < R and can be expanded within the

annulus. Laurent’s series:

f@=Yroa,Z—a)"+X7 1 by(z—a)™ (D

Where a, = — [ L®©% )

2mivc (z—a)nt1

And b, =——f JL®&L_ 3)

T 2mider (z—a)~mHl

|z — a| = r being the circle C;.

R
. 1
Particularly, b, = Efcl f(2)dz ‘
The coefficient by is called residue of f(z) at the pole z = a.
it is denoted by symbol, Res.at(z = a) b;.
C

Annul 2

Residue of f(z) at z = oo is defined as — Zim,fc f(z) dz where s the

integration is taken round C in anti-clockwise direction, where C is a large circle containing all
finite singularities of f(z).
5.3. Zero of Analytic Function:

A zero of analytic function f(z) is the value of z for which f(z) = 0,

Example 1: Find out the zeros and discuss the nature of the singularities of f(z) =
(z-2) . (L)
——Sln

z2 z—1

Solution: Pole of f(z) are given by equating to zero the denominator of f(z) i.e.z = 0Oisa
pole of order two.

Zeros of f(z) are given by equating to zero the numerator of f(z) i.e., (z - 2) sin (ﬁ) =0

= Eitherz- 2 = Oorsin(il)zo

Z—

1
>z =2 and — =nmn
z—-1

>2=2 z=—+1n=7F1, F2,.....
nm

Thus, z = 2 is asimple zero. The limit point of the zeros are given by



z=—+1, (n=7F1, F2,....)isz = 1.
nm
Hence z = 1 s an isolated essential singularity.

5.4 Singular Point:
A point at which a function f(z) is not analytic is known as a singular point or singularity of
the function.

For example, the function ﬁ has a singular pointatz—2=00rz =2,

Isolated singular point: If z = a is a singularity of f(z) and if there is no other singularity
within a small circle surrounding the point z = a, then z = a is said to be an isolated
singularity of the function f(z); otherwise it is called non-isolated.

Example 2: The function 3 has two isolated singular points, namely z = 1and z = 3.

(z-1)(z-3
[(z- 1)(z-3) = 00rz = 1,3].

Example 3: Non-isolated singularity. Function # is not analytic at the points where sing =

Oi.e. at the pointg = nm i.e., the points z = %(n =123, ....). Thus z = 1,%, e, Z =0are

[SSH T

the points of singularity. z = 0 is the non-isolated singularity of the function ﬁ because in the

neighbourhood of z = 0, there are infinite number of other singularities z = % where n is very
large.

Pole of order m: Let a function f(z) have an isolated singular point z = a, f(z) can be
expanded in a Laurent’s series around z = a, giving

= - — 2 vee & ba s bm bm+1
f@)=ao+a(z=a)+a(z—a)y 4+ z—a + (z—a)? o (z—a)™ + (z—aym+1 +
bmi2
T e (1)

In some cases it may happen that the coefficients b,,,1 = btz = bz = 0, then (1) reduces to

b1 bZ bm_
_ _ _ 2
f@=ata-at+a@=-a +-+ o+ m T o

f(Z) =ay+ al(Z— a) + a,(z — a)z + ...

+;{b z—a)" P+ by(z—a)™ 2+ b3(z— )" %+ -+ by}
(z—a)m 1 2 3 m

When z = a is said to be a pole of order m of the function f(z), when m = 1, the pole is said
to be simple pole. In this case f(z) = ay + a,(z — a) + ay(z — a)? + Zb_—la

If the number of the terms of negative powers in expansion (1) is infinite, then z = a is called to
essential singular point of f(z).



Example 4: Define the singularity of a function. Find the singularity (ties) of the functions
()  f(@)=sin- (i) g(2) = e?
Solution: (i). We know that

J1_1 1
sz_z 31z3  5lz5

+ o (=DM

(2n + 1)! z2n+1

Obviously, there is a number of singularity.
1. . 1
sin~is not analyticatz = 0. (; =ooatz = 0)

Hence sini has a singularity at z = 0.

Q) Here, we have g(z) = Ziz
We know that, (Ziz) (ei)=zi(1+ O +)

z 21z2  31z3 nlzn

==ttt ot b+t

z2  z3  21z%  31z5 nlzn+2

Here, f(z) has infinite number of terms in negative powers of z.

Hence, f(z) has essential singularity at z = 0.

Example 5: Find the pole of the function = i 6)12
. eTa _ (z- a) ..
Solution: —— = — a)2 [1 +(z—-a)+ + - ]

The given function has negative power 2 of (z - a).

So, the given function has a pole at z = a of order 2.

Example 6: Find the pole of f(z) = sin (Z a)

Solution: sin (L) 1t _r_1 i1
’ z—a)  z-a 3! (z—a)®  5!(z—a)°

The given function f(z) has infinite number of terms in the negative power of z - a. so f(z) has
essential singularity at z = a.

) . __sin(z—-a)
Example 7: Find the pole of f(z) = p—
. sin (z—a) _ (z— a)3 (Z_a)s _ (z-a)’
Solution: =°==F = — a)4 [(Z a) — 5 e ]

1 (z—a)? (z—a)* (z—a)6
=(z—a)3[1_ TI T +l



The given function has a negative power 3 of (z - a).

So, f(z) hasapoleat z = a of order 3.

1
Example 8: Prove that f(z) = lim,_,, ez—a does not exist.

1
Solution: lim,_,, ez-a

1 1 1 1
= I (1 e ——— )
At S Ty o v T Ry sy

Here z — oo, f(2) has infinite number of terms in negative power of (z - a).

Thus, f(2) has essential singularity at z = a.
1
Hence, f(z) = lim,_,, ez-a does not exist.

Example 9: Discuss singularity of 1—_1ez at z = 2mi.

1
1-e?

Solution: We have, f(z) =

The poles are determined by putting the denominator equal to zero.
ie,1—e?=0

= e? = 1 = (cos 2nm + i sin 2nw) = eV
=>z=2nni(n=0,%1,£2, ...... )

Clearly z = 2mi is a simple pole.

. . . t
Example 10: Discuss singularity of (CZO_;T)ZZ atz = aandz=
cotmz cotmz

Solution: Let f(z) =

(z—a)2 ~ sinmz(z—a)?

The poles are given by putting the denominator equal to zero,
i.e.,sinmz(z—a)?=0= (z—a)? =0o0rsinnz = 0 = sinnm
= z=a, nz =nn, (n €1)

> zZ=an

f(z) has essential singularity at z = oo.

Also, z = a being repeated twice gives the double pole.

1
Example 11: Show that e_(z_z) has no singularities.

Solution:  f(2) = e_(ziz) = 11



1
The poles are determined by putting the denominator e(z_z) =0
It is not possible to find the value of z which can satisfy equation (1).
Hence, there is no pole or singularity of the given function
Example 12: Define the Laurent series expansion of a function and expand f(z) = e(ﬁ) ina
Laurent series about the point z = 2.

Solution: Here, we have

f(2) = e5) = (55

ro

z 7% z3\? z 22 z23\°
_ 1___£_£+(5+:+E) G+5+%) L
2 4 8 2! 3!
I P z2 Z3+ZZ+Z4+Z3+Z4 z3
B 2 4 8 8 32 8 16 487"
z z? Z3
e e
2 8 48
Example 13: Find the nature of singularities of f(z) = Z_Zsinz atz = 0.
. z—sinz
Solution: f(z) = "
1 z3 z> Z7
Pl K e TR-TR T
_1[z2 7 1z 7
B G TR T
There is no negative power of z;
Hence, there is no pole.
Examplel4: Determine the pole of the function z, f(z) = 241+1

1
z4+1

Solution: f(z) =




The poles of f(z) are determined by putting the denominator equal to zero.

e, z*+1=0 = z*=-1
1 1
z = (—1)* = (cos(2n + 1) + i sin 2n + 1)m)+
1
= [cos(2n + 1) + isin 2n + 1)m]+

+ isin

= [ @nivm | i Qnﬂ)”][By De Moiver’s theorem]

Ifn=0,poleatz = [cos%+ isin g] = (—%-l- l%)

Ifn=1,poleatz = [cos%"+ isin %] = (—%‘F l%)

Ifn=2,poleat z = [cos%ﬂ+i5in %n] = (—%— l%)

Ifn=3,poleatz = [cos—+ isin —] (T_ l%)

Example 15: Show that the function e# has an isolated essential singularity at z = oo.
Solution: Let f(z) = e?. Putting z = % we get

(1) 1 1_|_1_|_ 1 4 1
— | = et = —
f ¢ t 212 T 313

+ .-
t

Here, the principal part of f (%) IS

ttamtaet

Contains infinite number of terms.
1
Hence t = 0 is an isolated essential singularity of et and
z = oo isan isolated essential singularity of eZ.
Check your progress

Find the poles or singularity of the following functions:

1

1. e Ans: 2 simple polesatz = 2and z = 3.
2. & Ans: Poleatz = 2 of order 3,
(z-2)3
3. —— Ans: Simple pole at z = =
sinz—cosz 4
4. coti Ans: Essential singularityatz = 0
5. zcosecz Ans: Non-isolated essential singularity
6. Sini Ans: Essential singularity



Theorem: If f(z) hasapoleatz = a,then |f(z)] > 0 asz=a

Proof: Letz = a be a pole of order m of f(z). Then by Laurent’s theorem
f@ =) az=a+ ) bpz-a)™
n=0 m=0

o)

:Za(z—a)n+ b1 + bz ++b—m
- " z—a (z—a)? (z—a)™

C 1
= 20: an(z —a)" + G—am [b1z—a)™ 1+ byz—a)™ 2%+ -+ by_1(z—a) + by

o)

B n, ¢@
= Z a,(z—a) +—(z — o

0
Now ¢(z) = b,asz - a
Hence |f(z)| > 0 asz=a
Example 16: If an analytic function f(z) has a pole of order mat z = a, then ]% has a zero of
order matz =a.

Solution: If f(z) has a pole of order mat z = a, then

f(z) = % where ¢(z) is analytic and non-zero at z = a.
o™
Hence, 75 = “oe

Clearly, — has a zero of order matz = a, since ¢(a) # 0.
f@)

5.5. The residue at a pole

Let z = a be a pole of order m of a function f(z) and C; circle of radius r with centre at
z = a which does not contain any other singularities except at z = a then f(z) is analytic
within the annulus r < |z — a| < R and can be expanded within the annulus. Laurent’s series:
f@=Yroa,Z—a)"+X7_1byz—a)™ (1)

f(z)dz (2)

1
Where a, =

2wic (z—a)™t?

And b, =—[ L@ 3)

T 2midey (z—a)~nHl

|z — a| = r being the circle C;.

Annulus



Particularly, b; = ﬁfq f(2)dz

The coefficient b; is called residue of f(z) at the pole z = a.
it is denoted by symbol, Res.at (z = a) b.

5.6 Residue at infinity

Residue of f(z) at z = oo is defined as — ﬁfc f(2) dz where the integration is taken round C
in anti-clockwise direction, where C is a large circle containing all finite singularities of f(z).

5.7. Method of Finding Residues
(a) Residue at simple pole
(i) if f(2) hasasimple pole at z = a, then

Res. f(a) =lim,_,(z —a)f(2)
Proof: f(z) =ap+a,(z—a)+a,(z—a)?+ - +—=
>@zZ-af@=a@-a)+az-a)*+a(z—a)*+-+b;
=>b,=0EZ—-a)f(2) —[a(z—a)+a,(z—a)* +a,(z—a)® + -]
Taking limitas z —» a, we have b; = lim,_,,(z — a)f (2)

(i) If £(2) is of the form f(z) = %where, w(a) =0,

butp(a) # 0. Res(atz = a) = j,((c;))

Proof: f(z) = $@ " pes (atz = a) =lim,_,(z—a)f(2) =lim,_,(z — a)

Y@’
(z-a)[p(a)+(z—a)P'(a)+]
a z-a)?
Y(@+(z-a)y' (@) + = —¢" (@)+

= lim,_, (By Taylor’s Theorem)

(z-a)[p(@)+(z-a)p'(@)+]
(z-a)y'(a) + %lp”(ay...

= lim,_,

[since Y(a) = 0]

p(@+(z-a)¢’ (@)+:

= lim,_,
1m, al/)’(a)+(zz_!a)1/)”(a)+"'
(@)
R tz = =
es(atz = a) V(@)

(b) Residue at a pole of order n,

If f(z) hasapole of ordernatz = a, then

Res(atz = a) = (nil)! [;Znn__ll [(z — a)nf(Z)]]Zza

@
(@)



Proof: If z = a is a pole of order n of function f(z), then by Laurent’s theorem

b b b
o4 2 oy —"
—a (z—a)? (z — a)”

f(Z)=a0+a1(Z—a)+a2(Z—a)2-|-..._|_Z

Multiplying by (z — a)™, we get

- f(@)=ayz—a)"+a,(z—a)"" '+ a,(z—a)"*? + -+ b (z—a)"!
+by(z—a)*" 2+ bs(z—a)" 2+ + by,

Differentiating both sides w.r.t. ‘z’(n - 1) times and putting z = a, we get

dn—l
{ il - a)"f(Z)]}Zza = (n -1ty

1 dn—l N
= bl = (n _ 1)| {dzn_l [(Z - a) f(Z)]}Zza

Residue f(atz = a) = (n_;l)!{jzn—n__ll [(z - a)nf(Z)]}Z=a

(c) Residue at a pole z = a of any order (simple or of order m)
Res f(atz = a + t) = coefficient of%

Proof: If f(z) has a pole of order m, then by Laurent’s theorem

b1 bZ bm_
_ B R
f@)=ap+a,(z—-a)+a,(z—a)* + +z—a+(Z—a)2+ +(Z_a)m

Ifweputz-a =t orz = a + t,then

by b, bim
- 2 p g2 22 4 Om
fla+t) =ao+art+ay(t) ++—+ UM

Res f(a) = by, Res f(at z = a) = coefficient of %

Rule: Putz = a + tinthe function f(z), expand it in powers of t. coefficient of% is the
residue of f(z) atz = a.

(d) Residue of f(z) atz = oo = lim,_{—zf(2)}
Or, The residue of £(z) at infinity = —— [ f(z) dz
Example 17: Find the residue at z = 0 of zcos i

Solution: Expanding the function in power of i we have



1 1 1

Zcoszzz 1——222+4!Z4—--- ]
1 1

AR

This is the Laurent’s expansion about z = 0

The coefficient ofﬁ initis — % So the residue of zcosi atz = 0is —%

z3

Example 18: Find the residue of f(z) =

——atz = oo,
zZ4—-1

Solution: We have, f(z) = z°

z2-1

f(Z)=%=Z(1—Z%)_1

1 1 1 1
=z(1+—+—+---)=z+—+—+---
z2  z* z z3

Residue at infinity = — (coeff. ofi) = —1.

Example 19: Determine the pole and residue at the pole of the function f(z) = Zf—l
Solution: The pole of f(z)are given by putting the denominator equal to zero
z—1=0=>z=1

The function f(z) hasasimple poleatz = 1

Residue is calculated by the formula, Residueat (z = a) =lim,_,(z — a)f(2)
Residue of f(z) at (atz = 1) =lim,,;(z—1) (;—1)
=lim(z) =1
z-1
Hence f(z) has a simple pole at z = 1 and residue at the pole is 1.

Example 20: Determine the pole and the residue at simple pole of the function f(z) =

72

(z-1D1@z+2)

Solution: The pole of f(z) are given by putting the denominator equal to zero.
(z-1%z+2)=0 z=1,1,-2

The function f(z) has simple poleat z = —2 and at z = 1 pole of second order.

Residue of f(z) atz = —2islim,,_,(z + 2)f(z) [Residue =lim,_,(z —2)f(2)]

2

(z— D2z +2)

= lim (z + 2)
zZ—>=2



— im z? B (—2)? _ 4
A GZ—1)2 (—2-1D2 9

. . . 4
Hence, residue at simple pole is -

-2z

Example 21: Find the order of each pole and residue at it of —1)(2 2

-2z

Solution: Let f(Z) m

The poles of f(z) are given by z(z — 1)(z—2) =0
= 0,1, 2 all are simple poles.

z(1-22)
02z(z-1)(z-2)

Residue of f(z) at (z = 0) =lim,_y(z—0) f(2) = hm
— lim 1-2z 1

~ 25 z(z—1)(z—-2) ~2

Residue of f(z)at (z = 1) =lim,,(z—1) f(2)

_ (z-1DA-22z) =~ 1-2z

- z2(z—1)(z—-2) zl—rgz(z -2)

Residue of f(z)at (z = 2) =lim,_,(z —2) f(2)

. (2-2)1-22z) <~ 1-2z 3

T2z —1)(z—2) r%z2iz-1 2

Hence, the residues of f(z)at z = 0, z = 1

and z = 2 are % 1 and —g respectively.

Example 22: Determine the residue of f(z) =

z3 ) imol |
D 23 at Its simple poles.

Solution: The poles of f(z) are determined by putting the denominator equal to zero.
ie. z—-D*(z-2)(z—-3)=0

=1,1,1,1andz = 2andz = 3
The simple poles of the function f(z) areatz = 2and z = 3.

Poleatz = 2

z3

2) (z-1)*(z—2)(z-3)

Residue R(2) = lim,_,,(z — [Residue (2) = lim,_,(z —2) f(2) ]
= lim(z — z = (2)°

L GOl sy Sl cp Ty Sl

Poleatz = 3



z3

Residue R(3) = lim,_3(z — 3) (z-1)*(z-2)(z-3)

Z3
(z-D*z-2)

~ (2)3 27
T (3B-D*3-2) 16

= lim(z — 2)
zZ-2

Hence, residueatz = 2andz = 3 are — 8and % respectively

Example 23: Evaluate the residues of .

z P
matZ = 1,2,3at Inflnlty and show that

their sum is zero.

— -z
Solution: Let f(2) = Z-1)(z-2)(2—3)

The poles of f(z) are determined by putting the denominator equal to zero.
(z-1D(z-2)(z-3)=0; z=1,23
Residue of f(z)at (z = 1) =lim,1(z—1)f(2)

— 3 Zz
=lim.(z - D) oS
= 1
((z-2)(z-3) 2

Residue of f(z) at (z = 2) = lim,_,,(z — 2)f (2)

=lim,_,

— 1 ZZ

2

i z _
=Mz D3

Residue of f(z) at (z = 3) =lim,_3(z—3)f(2)

72

=lim,_3(z — 3) (z-1)(z-2)(z—3)

z? 9

=lim, (z-1)(z-2) =3

Residue of f(z) at (z = w0) = lim,_,(—2) f(2)

—z 7?2

=m0 S e2e3)

_ l -1 _
T e aha)

Sum of the residues at all the poles of f(z)



= % — 4+ g — 1 = 0. Hence, the sum of the residues is zero.

(e). Residueof f(atz = a) =lim,_, m_;l)!{jznn__ll [(z — a)nf(z)]}z=a

Example 24: Find the residue of a function f(z) = at its double pole.

22
(z+1)2(z-2)

72

Solution: We have, f(z) = @2

Poles are determined by putting denominator equal to zero.
ie, (+1D%*(z-2)=0
z=—-1,-1landz = 2

The function has a double pole at (z = —1) then

Residueat (z = —1) = limz—)—lﬁ[i{(z + UZL}]

2(7—
d [ z> (z-2)2z-z2%1 : e
- (—)L__1 -5

_= 1)2 4(-1)
(z - 2) —1-2)2

Residue at (z = —1) = Eu s g
Example25: Find the residue of( " 1)3 atz =i
. A _ 1
Solution: Let f(z) = e

The pole of f(z) are determined by putting denominator equal to zero.
e; (z2+1)3=0
or, (z2+ )3z —i)>*=0 or, z=Fi

Here, z =i is a pole of order 3 of f(2)

. _ 1 a3t 31
Residueatz = i: lim,_; G 1),{d23 1[(2 ) (22+1)3]}

=lim,; 5 {dzz (Z+l)3]} - limz*‘é(%)

12 3 3 3i

1
—_ Y — = = = -
27 G+05 320 16i 16

Hence, the residue of the given functionatz =1 is — f—;



- _ o 9@
(). Residue (atz = a) @

Example 26: Determine the poles and residue at each pole of the function f(z) = cot z.

Ccosz

Solution: f(z) = cotz =

sinz
The poles of the function f(z) are given by sinz = 0, z = nw,wheren = 0,+1,+2,+3 ...

Residue of f(z) atz = nmis

Cosz Cosz

=0 =
——(sinz) ~ cosz

=1 [Res. at (z=a) = ¢(a)]

Y'(a)

Example 27: Determine the poles of the function and residue at the poles f(z) = prmo:

Solution: f(z) =

sinz

Poles are determined by putting sinz = 0 = sinnrwi.e. z=nn

Residue = ( -

) _ nm _ nm
- T (=1
cosz/) z—ng  cosSnm (-1

Hence, the residue of the given function atpole z = nmwis =

(9). Residue with Coefficient of % Where z = %

Example 28: Find the residue of at a pole of order 4.

Z3
(z—1)*(z-2)(z-3)
Solution: The poles of f(z) are determined by (z — 1)*(z—2)(z—3) =0, z = 1,2,3

Here z = 1isapole of order 4.

z3

f@) =y (1)

Puttingz- 1 = torz = 1 + tin (1), we get

B (1+1)3
fA+0) =D -2

-1

—1(t3+3t2+3t+1)1 t‘11<1 t)
4 1=-07"5 2

= (1+3+3+1)(1+t+t2+t3+ ) X 1+t+t2+t3
7 . St tg

T? 2 4 8
(1 9 211 151)

1

T2

141 3 3 1 3, 7, 15,
=§( ot )(1+—t +-t2+—t +..)

1

2

2t 7t 8:



114242401
2 2 4 8/t
_ 101

Coefficient of - = = (1 2424 1_5)
t 2 2 4 8 16

Hence, the residue of the given function at a pole of order 4 is %

Z

Example 29: Find the residue of f(z) = ﬁ at its pole.
Solution: The pole of f(z) is given by (z — a)3 = 0i.e.z = a
Here, z = ais apole of order 3.

Putting z = a + t where t is small.

ze?  (a+t)e*’
(z—a)3 t3

a 1 a 1
R

f(2) =

Coefficient of £ = e¢ (g + 1)
t 2

Hence the residue at z = a is e® (% + 1)

> at its poles inside the
0SZ

Example 30: Find the sum of the residues of the function f(z) =

ZC

circle |z| = 2.

sinz

Solution: We have, f(z) =

ZCoSsz

The pole can be determined by putting denominator

zcosz =0 3 )2 X
=z =0, $2,$3_n', .......
2 2
vY
Of these polesonlyz = 0, z = ig lie inside a circle |z| = 2
Residue of f(z) atz = 0islim, olz. f(Z)| = lim, 0222 = 0 oovvoeeeeeeeeeee . (1)

cosz

Residue of f(z) at z = Z.is



T -
(Z——) sinz

i _r = lim ~—24—~
hmz—% (Z Z)f(Z) Ll_)r% cosz
2

T .
(Z——) COS Z+sInz

— | 2 b . )
= ll_r)rzl p——— [by L’Hopital’s Rule]
2
1 2
===l )
Similarly, residue of f(z) at z = —gis% ................. (3)

-~ Sum of the residues = 0 — % + % =0.

Check your progress
1. Determine the poles of the following functions. Find the order of each pole.

z2

(I) m Ans. Slmple poIeS atz = a,z = b,z = ¢

(i) _(2=3) Ans. Pole at z = 2 of second order and z = 1 of first order.
(z—2)2(z+1)

i ze’” Ans. Polesat z = =+ ia order 1
2 2
zZ“+a

. 1 _ _

(IV) m Ans.z = 2,z =1

Find the residue of the followings:

3

z -
2. pERT sy at its poles. Ans. 27, -8
2
3. ——atz=ia Ans. = ia
z+a 2
1 . 1
4, m atz=1a Ans, PPE
5. tanz at its pole Ans. -1 at its poles f (n + g)
1
6. z2ezatthepointz = 0 Ans. 1/6
7. z%sin e) atz = 0 Ans. 1/6
1 .
8. pEyo atz = i Ans. -1
2z
9. —atits pole Ans. -1
10.—2 4tz = 0 Ans. 1
sinz+zcos z
11. —— at its poles Ans. 2
z(e?—1)

Choose the correct answers:

1
12. The function f(z) = {sin G)} has multiple poles all of which are isolated singularity.

Q) False (i) True (iii) Partially true (iv) None of these



13. The residue of a function can be evaluated only if the pole is an isolated singularity.
Q) False (i) True (iii) Partially true (iv) None of these
(ii)
Residue Theorem: If f(z) is analytic in a closed curve C, except at a finite number of poles

within C, then fc f(z)dz = 2mi (sum of residues at the poles
within C).

Proof: Let Cq, Cy, Cs, .....C, be the non-intersecting circle
with centres at aj, ay, as, .....a, respectively, and radii so small
that they lie entirely within the closed curve C. Then f(z) is
analytic in the multiple connected region lying between the
curves C and Cq, Cy, Cs, ...,Ch.

Applying Cauchy’s Theorem

jc f(z)dz=j;1 f(z)dz=jc2 f(z)alz+jc3 f(Z)dz+---..+L f(z)dz

n

= 2mi[Res f(a,) + Resf(a,) + Resf(az) + ---.+Resf (a,)] .

Rouche’s Theorem: Suppose that f and g are meromorphic in a neighborhood B(a. R) with
no zeroes or poles on the circle y = {z:|z — a| = R}. If Z; Z, (P, F,) are the number of
zeroes(poles) of f and g inside y counted according to their multiplicities and if |f(z) +

9z<fz+[ g(z)/on y, then Zf—Pf=Zg—Pg

;EZ; +1lony.If 1= f% ; and if A is a positive real
number then this inequality becomes A + 1 < A + 1 which is a contradiction. Hence, the

f( )

Proof: From the hypothesis |§§—2 + 1|

meromorphic functlon _, mapsy on A = C— 0, 00). If [ is the branch of logarithm on A them

1
) in a neighborhood of y.

l(f( )) is a well defined primitive for (f(z)) (@ )

5 (2)/ \g(2)
_ 1 @\ (r@\t _ 1 '@ _g'@
Thus 0 = —— fy (g(Z)) (g(Z)) - 2w fy 9@ 9@

5.8. Applications:

Example 31: Evaluate the following integral using residue

theorem f 14z dz Where C is the circle |z] = 1

A Y
C
Solution: The pole of the integrand are given by putting the »
denominator equal to zero. < =& 1
z(2—2)=00rz=0,2 KJ
Jv Y/

v X




The integrand is analytic on |z| = 1 and all points inside except z = 0, as a pole at z

inside the circle |z]| = 1.

Hence by residue theorem

, 2idz=2mi [Res f(O)] oo )

1+z . 1+z 1

Residue f(0) = lim,_, z.

z(2-2z) - z—02-2

Putting the value of Residue f(0) in (1), we get

f 1+z dz =2 _(1)_ )
-7 z = 2mi 5 = i

Example 32: Evaluate the following integral using residue theorem

[ —=%__dz. Where ¢ is the circle |z] = 2
c z(z-1)(z-2) :

Solution: The pole of the function f(z) are given by equating the
denominator is zero.

z(z—-1)(z-2)=0,z=0,1,2

The function has polesat z = 0,z = 1and z = 2 of which the
given circle encloses the poleatz = Oand z = 1.

Residue of f(z) at the simple pole z = 0'is

= limz -3z = lim 43z
70 z(z—1)(z—-2) z-0(z—1)(z—-2)
_ 4-0 _
(0-1)(0-2)
Residue of f(z) at the simplepolez = 1is
= lim z 43z

z—0 Z(Z— 1)(Z— 2)
4 —3z 4 -3
=i

M z—2 1a-2

By Cauchy’s integral formula

f f(z)dz = 2mi X sum of the residue within C
C

=2mi X (2—1) = 2mi

Example 33: Evaluate | % 227 __ 4z where C is the circle:

z—1)2(2z43)

0is




i lzl=2 (i) |z +i| =3
12z-7

Solution: We have f(2) = 7=

Pole are given by
z = 1 (double pole) and z = —; (simple pole) 4Y

Residueat (z = 1) is

= ﬁ [%{@ R —112;(;Z7+ 3>}L=1
- [% (122ZZ+_37)]2=1

3 l(Zz +3).12 - (12z - 7). 2]

(2z + 3)? _

_ 6010 _50 _ AY

25 25
Residue at simple pole (z = —%) is ‘x—fgj /o— o z %
R, = I ( +3> 12z -7 ® —i

27 z-»l—rrsl/z 277 (z—-1)?(2z+3) Yy, <

_ g L122-7 |
- z—>1—r1£’>1/2 2 (z—1)2 B vy

Q) The contour |z| = 2 encloses both the poles 1 and —%.

=~ The given integral = 2mi(R; + R,) = 2mi(2—-2) =0
(i)  The contour |z + i| = /3 is a circle of radius v/3 and centre at z = —i. the distances

of the centre from z = 1 and — % are respectively v/2 and \/% The first of these is
< /3 and the second is > /3.
=~ The second contour includes only the first singularity z = 1.
Hence, the given integral 2wi(R,) = 2mi(2) = 4mi.

cothzdz

Example 34: Evaluate the complex integral fc o’ C |z| =2
. cothzdz e?+e™%
Solution: [ e =/, e Y

The pole of the integration are given by (e? —e™%)(z—i) =0

ie. e2—e?=0andz—-i=0



ie.e?* =1 z=0andz=1i

Both the poles are inside C : |z| = 2.

. N s . ef+e %

Residue (atz = i) =lim,,;(z — i) e G=D

el +et _
=—F= cothi

el —e 1
To find the residue at z = 0, we apply % method

eZ+e% eZ+e%
(l)(Z) — zZ—1 (l)(Z) — Z—1
Y(z) e*—e?'Y'(z) e?+e?
= 1

Residue [at (z = 0)] = @ _ oot - _1_

T Yz 1+1 i

Sum of the residues = cothi + i

By Cauchy’s Residue Theorem fc f(z)dz = (2mi X Sum of the residues)

cothz
f dz = 2mi[cothi + i]
¢ Z—1
Example 35: Determine the poles of the following function and residue at each pole:

z? z%dz
f(z) = EETPy and hence evaluate [ where C : |z| = 3.

¢ (z-1)2(z+2)

Solution: f(z) = m
Pole of f(z) are givenby (z — 1)%(z+2) =0 ie. z = 1,1,-2

The poleatz = 1is of second order and the pole at z = —2 is simple.
Residue of f(z) at(z = 1)

_i 1 d (z—1)%z2
=Mz (2-1)'dz (z—1)2(z+2)
. d z?
~ dz (z+2)
(z+2)2z—1.2%
0 (z+2)2
z2 +4z 1+4 5

I 2?2 -~ (+27 9

z2

lim,,_, pEmeLY

2
Residue of f(z) (at z = -2) = lim,_,, —(ZEZSZZ?;Z) =



4 4
(-2-1)2 9

zt
Example 36: Using residue theorem, evaluate — [ e _dz

1
2mi V€ z2(z2%2+42z+42)

where C is the circle |z| = 3.

1 e?tdz Y
Solution: Here, we have— | ————
’ 2mi fC z2(22422+2) A

Pole are given by z = 0 (double pole)
And z = -1 +i (simple poles) @

all the four poles are inside the given circle |z| = 3

ezt

, - d
Residue (atz = 0)is lim,_,, a9z (2)* 22(22422+2)

ezt
= lim— v
z-0dz \z%(z? + 2z + 2) Y
(z% + 2z + 2)te? — (2z + 2)e?t
250 (z% + 2z + 2)?

_ 2te® — 2¢e° _@-1
4 2

(z+1-i)e?t
z2(z+1-0)(z+1+0)

Residueat (z = —1 + i) =lim,__;4;

eZt e (-1+D)t
= lim ~ = - - -
zo-1+iz2(z+14+10) (1+?(—1+i+1+10)
e (-1+D)t e (-1+D)t

“A-2i—-D@2) 4

e(—1+Dt

Similarly, Residueat (z = —=1-1) = "

zt

e . .
fm dz = 2mi (sum of the residues)

+ +

1 ozt t_ 1 e(-1+Dt  H(-1-Dt
dz =
sz(z2+2z+2) 7= 4 4

21
-1

_tml e it o pminy 2l e
—2+4(e +e )—2+4(2cost)

1:—1_|_e‘1 .
=——+—cos
2 4



Example 37: Evaluate gﬁc ﬁ dz, where C is the circle |z| = 4

1
sinh z

Solution: Here f(z) =

Poles are given by sinhz =0

sinhiz = 0 So, z = nmi where n is an integer.

Out of these, the poles z = —mi, 0 and mi lie inside the circle
|z| = 4
, . 1 $(2)
The given function e of the form v
. $(a)
It le at = —
spoleat(z = a) is
Resid t(7 = —mi) = 1 _ 1
esiduea (Z - T[l) - cosh(—mi) - cosi(—mi)
COST -1
Residueat (z=0)=——=1=1
esidueat (z=0) = ——=-=
1 1

Residue at (z = mi) = P = )

1 1 1

= = =—=-1

" cos (-m) " cosm -1

Residues at — i, 0, wi are respectively -1, 1 and — 1.

Hence, the required integral = 2mi(—1+ 1 —1) = —2mi

Example 38: Evaluate fc Z;ﬁ: C is the unit circle about origin.

. A 1 _ _
Solutlon.zsinz— IR g ]

1 [ 72 4 72 74 2
=—|14(——— —_

72 + 6 120>+<6 120)
1 [ +zz z* +z4+ _1+1 z2 oz
72 6 120 36 T z2 6 120 36




This shows that z = 0 is a pole of order 2 for the function ﬁ and the residue at the pole is

zero (coefficient of i). Pole at z = 0 lies within C.

/. L dz = 2mi (sum of residues) = 0

zsinz

Check your progress

1. Obtain Laurent’s expansion for the junction f(z) = o at the isolated singularity and

1
z2sinhz

hence evaluate jﬁc dz, where C is the circle |z — 1| = 2.

1

z2sinz

2. Evaluate §

dz where C is triangle with vertices (0, 1), (2, -2), (7, 1).
Evaluate the following complex integrals:
3. ¢, — 1722 4z, where C is the circle |z| = 1.5

z(z—1)(z-2)

2,2z

4. ¢ ZZ—dz, where C isthe circle |z| = 2
c +1

z2

z—1 i i
5.6 mdz, where C is the circle |z| = 2

2
6.6 224z, where Cisthecircle |z — 1| = 1
¢ z2-1

_1 - -
7. Sﬁc Z2—D 22D dz, where C is the circle |z| = 1.5

8.The residue at the pole of the function f(z) = cot z, equals,

(i) 0 (i) 1 (iii) -1 (iv) 2mi Ans (ii)
9.The function (z — 1)sin 1/z at z = 0 has

Q) A removable singularity (i) a simple pole

(iii) an essential singularity (iv) a multiple pole Ans. (iii)
Conclusion: After studying this unit we should be able to know the definition of Zero and

poles of Analytic function, definition of Singular point, definition of the residue at a pole, the
residue at infinity, Method of finding residues and its applications in brief.



Unit-6
Evaluation of Real Definite Integrals by Contour Integration

6.1. Introduction

6.2. Objectives

6.3 .Evaluation of real definite integrals by contour integration

6.4. Integration round the unit circle of the type: foznf(cos 6,sin8)do

o fi(x)
—® fo(x)

6.5. Evaluate of dx where f;(x) and f,(x) are polynomials in x

6.6. Rectangular contour

6.7. Indented semi- circular contour

6.1. INTRODUCTION

Contour Integration of residue classes is an important and useful tool in complex analysis.It
gives many important techniques for finding the complex integration and it is useful to find
many other important theories of complex analysis which are necessary for the development in
mathematics. A large number of real definite integrals, whose evaluation by usual methods
become sometimes very tedious, can be easily evaluated by using Cauchy’s theorem of residues.
For finding the integrals we take a closed curve C, find the pole of the function f(z) and
calculate residues at those poles only which lie within the curve C.

fc f(z)dz = 2mi (sum of the residues of f(z) at the pole within C)

We call the curve, a contour and the process of integration along a contour is called contour
integration.

6.2. Objectives
After studying this unit we should be able to:

U Evaluation of real definite integrals by contour integration;

] Integration round the unit circle of the type: fOan(COS 0,sin0)do ;
] Evaluate of f_t%dx where f; (x) and f,(x) are polynomials in x;
2

° Rectangular contour;



° Indented semi- circular contour;

Contour Integration of residue classes is an important and useful tool in complex analysis. It
gives many important techniques for finding the complex integration and it is useful to find
many other important theories of complex analysis which are necessary for the development in
mathematics. A large number of real definite integrals, whose evaluation by usual methods
become sometimes very tedious, can be easily evaluated by using Cauchy’s theorem of residues.
For finding the integrals we take a closed curve C, find the pole of the function f(z) and
calculate residues at those poles only which lie within the curve C.

fC f(z)dz = 2mi (sum of the residues of f(z) at the pole within C)

6.3. Evaluation of real definite integrals by contour integration

A large number of real definite integrals, whose evaluation by usual methods become sometimes
very tedious, can be easily evaluated by using Cauchy’s theorem of residues. For finding the
integrals we take a closed curve C, find the pole of the function f(z) and calculate residues at
those poles only which lie within the curve C.

fc f(z)dz = 2mi (sum of the residues of f(z) at the pole within C)

We call the curve, a contour and the process of integration along a contour is called contour
integration.

6.4. Integration round the unit circle of the type: foznf(cos 6,sin6)do

Where f(cos 8, sin 0) is a rational function of cos 6 and sin 6.
Convert sin 8, cos 6 into z.

Consider a circle of unit radius with centre at origin, as contour.

i0_,—if . . .

sing=4"2—=21 Z—l], z=re =1.¢ = ¢ i
21 21 4

el e 1 1 HZ=¢"

cos 6 =—=—[z+—]
2 2 z
' - dz X < 2 > X

Aswe know z = e, dz = e®idf or do = - 0
The integrand is converted into a function of z.
Then apply Cauchy’s residue theorem to evaluate the v

integral.

Some examples of these are illustrated below.



ae
5-3cos@’ Y

Example 1: Evaluate the integral: fozn

a0___ am___as t
04 ,—16
5—-3cosf 0 5_3(e +2e )

wC
fzn 249 t el .efdf = dz x L X
: : = . = 4 Oo—>
, 10—3el@ —3g-@ PUEE T2 LE z oy 2
3
= 2 =, [C is the unit circle |z| = 1]

Solution: f

= {'Y’
Bz—-1)(z—-3)
dz
Bz—-1)(z—-3)
dz
Bz—-1)(z—-3)
dz

LetI=21fC m

Poles of the integrand are givenby (32— 1)(z—3) =0 =z = % 3

There is only one pole at z = % inside the unit circle C.

- 1 _ i(z—%) T 2i
Residue at z = 3= llm (Z - _) f2) = 1 1 (32 1)(z-3) lzl_rg 3(z-3)
3

_ 20 o
T3(l_3) 4
3(5-3)
Hence, by Cauchy’s Residue Theorem

[ =2mi (Sum of the residues within Contour) = 2mi (— i) = g

f27t ae _T
0 5-3cos@ 2
. . . 2 ae

Example 2: Use residue calculus to evaluate the following integral fo " Py

. _ (2m  df _(r2m 1
Solution: Let = [, rarytewke Js —5_4(ei9_e_i9) dé

2i

_(m___d6 i i — _az
B fO 5+2ieif—2ie—i0 [putting e™ = z, d6 = iz]

1 dz . .
) — where c is the unit circle |z| = 1.

¢ 5+21.Z_ Liz




_ J‘ dz
), 5iz—2z2+2
Pole of integrand are given by

“SiFV-25 416 —Si¥3i_ i

—272 ] 2= = =
z* + 5iz + 0 orz ) > l,z

Only z = % lies inside C.

i.

Residue at the simple pole at z = 5 I8

i 1 1 1
z—»% 2 (ZZ - l)(_Z + Zl) z—>—2(_Z + 21) 2 (—% + Zi) 3i

) il
2
Hence, by Cauchy’s residue theorem

I = 2mi X Sum of residues within the contour = 2mi X % = 2?”

. . 2T
Hence, given integral = 5

Example 3: Evaluate fOZ" a+:fmg if a > |b|
Solution: Let] = f;”ﬁ
f Zn ! de[ 0 — 5 40 = 2
= 0_,-i0 e” =2z ==
0 a+b (L) iz
21

= %d—zz (where C is the unit circle |z| = 1)

2
= d
fc 2iaz + bz —b

_f 2 d_lf 2dz
=) bz +2iaz—-0"" b Zz_I_ZC;)_l'Z_l

1f 2 dz when bz + 2aiz — b b{2+2aiz 1}
= - Zwnen oz alz — = Z _—
b, z—a)(z—p) b

and a+,8=—27ai

4a?
aﬁ=—1l(a—,8)2=(a+,8)2—4a,8=—?+4l



la| < 1then|B] > 1
i.e., pole lies at z = a in the unit circle.

) o 2 b b

Residue atz = a =lim,_,(z — ) = a)(z B aB _ Vor-ar  Warope

fZ” 1 1 2dz o b _ 2m

o a+bsin® b)) ,2 +ﬂ_ 1 7nbi\/az —bp2 Vaz-—

Example 4: Evaluate f e by contour integration in the complex plane.
_1cm ae

Solution: [' o5 =3 Jo 57208

=2 3+(ei9+e—i9)

=1, o

¢ 3+z+

[putting e?® = z, dB = %]

d . .
= f - Z__ where c is the unit circle |z| = 1.
C z4+3z+1

Poles are givenby z2 +3z+1=00rz =

-3FV9-4 _ —-3F/5
22

There are two poles at z = ~3+V5 and z = 3;/§
3+\/—
Only one of these poles at z = is inside the circle
Residue at z = 25
. -3 ++5 1 B 1 1
Z_)lrsrl\/g z- 2 (Z _ —3+\/§) (Z _ —3—\/3) T 3445 _ =35 o E
2 2 2 2 2

Hence by Cauchy Residue theorem

1 dz ) ) —3++5 1 1 T

~ | =555 =5;|2mi X Residue at |z = ——— =—><27Tl><—=_

2i0), z24+3z+1 2i 2 5 5

4 ao b4

fO 3+2cosf \/_E ADS.

Example 5: Use the complex variable technique to find the value of the integral f 2+czS9
. __2m df 2w aoe _ (2w 2d6

Solution: Letl = fo >tcosd fo e @0re 0 fo 4t1ei01-10

2
Put el = z so that e (id@) = dzizd6 = dzdf = %
dz

2— . .
1= Z_  where c denotes the unitcircle |z] = 1
4 4+Z+E




_1]‘ 2dz
i), z2+4z+1

The poles are given by putting the denominator equal to zero.

—4?2@ —4+2\/—__2+\/—

z2+4z+1=00rz=

The pole within the unit circle C is a simple pole at z = =2 + V3 .
Now we calculate the residue at this pole.

1 (z+2-V3)2
z>(=2+v3) (z+2—V3)(z+2+V3)

2 2 1
=2+ i(z+2+V3) i(-2+V3+2++3) V3i

Hence by Cauchy’s Residue theorem, we have

Residue at z = —2 + /3 = lim

foz” 9O _ _ oni (sum of the residues within the contour)
2+cos @
.1 _ 2w
= 2mi BoA
Example 6: Using complex variable techniques evaluate the real integral fzn —;”; CQOZZ

Solution: If we put z = e®®

cosf =%(z+§), do =£

1z

Andso [ = fOZn gijfoiz B _fozmscfﬂ [where c is a circle of unit radius with centre z = (]
I = Real part Oflfzn (1 — cos26 — isin26) d6
2Jo 5—4cos6
1 (271 — 2% 4g
= Real part szfo Sy

-7z dz

= Real part of = f ml—z
z

— Real part 1] Lz,

= Realpartofo; ) si—2z2-2%
-1

= Real part of — jm



Pole are determined by 2z2 —5z+ 2 =00r (2z- 1)(z- 2) = Oorz = %,2
so inside the contour c there is a simple poleat z = %

Residue at the simple pole (z = %) = lim_ (Z - l) ﬁ

-1 B

2)
dz

= %Zni (sum of the residues)

1
z?2—1 "
= lim 4
z—»—Z(Z_Z) 2(1_
2

EN I

Real part of — f —

c 222 5z+2

Hence,

2T sin26 d6 B (1)
. 5—4cos8 " "\2) 1
2w cos@

Example 7: Using the complex variable techniques, evaluate the real integral f Py

2w cosé6
3+sin6

0 &
I—Realpartoff Td@

Solution: Let I = [

l
sin 8
819
=Realpart0ff —df
3

elf_p—if

> X

° 2i
Putting e!® = z so that e®id@ = dzizd6 = dz or df = % \ ~3+28)

~I = Real part of [ L —E

3+%(z—§) iz E
2z

dZ—Realpartoff —dz
. z22+6iz—1

= Real part of f
3iz + - = E

The poles are given by putting the denominator equal to zero
—6i ¥V-36+4
2
z = —3i + 2v/2i and —3i — 2/2i

722+ 6iz—1=0z =

The pole within the unit circle c is a simple pole at z = (=3 + 2v2)i

Now we calculate the residue at z = (—3 + 2\/7)1'

Residue = lim,_,(_,,,7);(z + 3i — 2v20)

22+6Lz 1



_ (z + 3i — 2v2i). 2z
(i 2 1 31— 2930 (2 + 31 + 2920)
lim 2—Z
z-(=3+2v2)i z + 3i + 2V/2i
2(=3 + 2V/2)i
—3i + 2/2i + 3i + 2V/2i
—6i +4/2i -3
W2 22

Hence by Residue theorem, we have

+1

2z
z2+6iz—1

Real part of |

-3
= Real part of 2mi (— + 1)
14 f Ny

jzn cos 8 46 =0
o 3+sing

. . . . 1+2 6
Example 8: Using contour integration, evaluate the real integral [ — zzz .

) 1+2cos6@
Solution: Let] = f:5+4zzze

1 (™14 2cosb
2)y 5+4cosb

1 (™ 1+2e%
= Real part szj md@
0
1+ 2e®

1 T
= Real part of Ejo 5 2(e 1 o ) do

Putting e?® =z, d@ = %Where C is the unit circle |z| = 1.

_ Real . 1f 1+2z dz
= Real par szc 5+2(z+§)iz’
—i(1+22)

1
=Realpartof§j m Z
c

—i(1+422)
2+ Dz+2) 7

1
= Real part Offj @
Cc



1d
Z+2Z

i
= Real part of _Ef

c
Poleisgivenbyz + 2 = Oi.e.,z = =2

Thus there is no pole of f(z) inside the unit circle C. hence f(z) is analytic in C.
By Cauchy’s Theorem [ f(z)dz = 0if f(z) is analytic in C.

| = Real part of zero = 0. Hence the given integral =0

ae

. . . . 2r 2
Example 9: Using complex variable, evaluate the real integral fo PRy where p* < 1.
. . r2m dao _ rr dao
Solution: [ s e = Js =) AY
1—2p27i+p2
21 dae
Let d fO 1+ip(etf—e~i0)+p2 Y Z=pi

d X € : » X

writing z = e', dz = ie'?df = izd6, d6 == Q/
1 dz . o )
I = fc ————~——— [where cis the unit circle |z| = 1]

1+ip(z—%)+p2 zi

_.f dz
). zi—pz? +p+p2zi

f dz _ j‘ dz
. —pzi+ipt+zi+p J. (iz+p)(izp+ 1)
Poles are given by (iz+p)(izp+1) =0

p_ . i,
z=——=lipandz= ——=—|ip| <1
l pt p

1
and |Z_7| >1lasp?<1

pi is the only pole inside the unit circle.

(z—pi)

Residue at (Z = pi) = limz_)pi m

I [ 1 ] _ 1 1
Spiliizp+ DI~ Ti(=p2 + 1)

Hence by Cauchy’s residue theorem

fzn do _, ,(1 1 )
o 1—2psin®+p2 i i1—p?




_ 2T
_1—p2

cos26df _ 2ma?
1-2acosf8+a?  1-a?

Example 10: Apply calculus of residue to prove that: fozn (a2 <1)

. 211_' 29d9
Solution: Let = ["— =222

B fZ" cos 26 d6

o 1—a(e?®+e )+ qa?
0210
i9)(1 — ae—0) do

ZZ

(1-az) (1 ——) iz

s
= Real t
eal par off0 1= ae

i dz
[put e = zsothatdf = —

= Real part of jg —

= Real part of §

. mdz [C is the unit circle |z| = 1]

Poles OfT are givenby (1 —az)(z—a) =0

Thus, z = E and z = a are the simple poles.

Only z = a lies within the unit circle Cas a < 1.
2
The residue of f(z) at (z = a) = lim,_,(z — a) m

i —iz? ia?

z-a (1 — az) 1-a?

Hence, by Cauchy’s Residue Theorem, we have

gﬁc f(z)dz = 2mi [Sum of residues within the contour]

. ia? 2ma? . ]
= 2mi (_ 11-‘1(12) = 17_T_zz , Which is purely real.
2ma?
Thus, |=Real partof ¢, f(z)dz =T—;
2m cos260d6 2ma?
Hence fo 1-2acos+a?  1-a?
2 29-2cos 6
Example 11: Using complex variable techniques, evaluate the integral [ "%da
Solution: fznwde — J‘ZH%_%COSZH—ZcosedG
2+cos 6 0 24c0s 0



27r1 _ eZi@ _ 4_ei9

B 1f2"1—c0529—20059
0

1
== df = Real =
> ¥ cos O 0 ea partofzjo

2 2+ cosf@

Put el® = z so that ie'?d6 = dz or izd = dz or d§ = %

1z
— Real th‘ 1—z? —4zdz
= Real part o _
)iz
+3(z+d)

1(1—2z%—-42)dz
—Realpartof; 7211

The poles are givenby 4z + z2 + 1 = 0

—4+vV16—4 —
z= > =-2FV3

The pole within the unit circle cis = —2 ¥ v/3

Residue at the simple pole z = —2 ++/3

1—2%—4z
=z—1>12T3(Z+2 \/_)(2+2—\/§)(2+2+\/§)

. [1—22—42
2G| (2 + 2 + V3)
_1—(—2+\/§)2—4(—2+\/§)_i
 (-2+V3)+2+v3 3

1 (1-z?%-42)d
Real part of;fc ﬁ Real part of ( )27‘[1 (Residue)
Real part of 2 ( ! ) =
= Real part of 2n(—) or [ = —
P V3 V3
. . 2
Hence, the given integral = NG
Example 12: Evaluate fO Sizsig 6,dH by using contour integration.
. __ [2m cos26
Solution: Let I = [, e

2T c0s 26 + isin 20

= Real part of j
0

5+ 4cosf
) Si6 e =zi.e.,
" e df = dz,
= Real part of j;) 5+ 2(c + o 19) deo dz dz

~ie® iz



2
= Real part of ¢ L

v —5+2( i); [C is the unit circle |z] = 1]

z2 dz

= Real part of % —_—
c 5z+2z2+2 i
—iz?

—Realpartof§ md

—iz?

Dzt 2%

= Real part of i 2z +
Poles are determined by putting denominator equal to zero,

1
z+1)(=z+2)=0, =z= —E,—Z

Only the simple pole at z = —% is inside the contour.

Residue at (z = — %) =lim__ 1 (z + %) f(2)
2

_ ( +1) —iz
~ o\ )z D+ 2)

. 2 1 1 2 .
—iz —\73 i

lir?_Z(Z+2) 2(_l+2):_ﬁ
2

2

By Cauchy’s Integral Theorem

J. f(2)dz = 2mi (Sum of the residues within C)

= 2mi (— i ) Z, which is real. Hence, [ =222 ==
12 5+4 cosf 6

. . . . 2m  cos 360
Example 13: Evaluate contour integration of the real integral fo c2o0ss

21 cos 360 e3if
Solution: [ ——=——d6 = Real part of f -

T e3i9
= Real part o . —d6
P ffo 5 — 2(e® + e 19)

On putting z = e’ and d6 = %

= Real part of | & where ¢ is the unit circle.

c D




3

1 z
= Real part of - | —————d
eal par ofl_fc o, 2,75 %
= Real - 4
= Reatpartof ~7 | e ds

C

Z3

= Real part ofif dz
c Cz-1)(z—-2)

Poles are givenby (2z—1)(z—2) =0

. 1
ie.,z=-,z=2

_E \

z= % is the only pole inside the unit circle.

) 1 :
Residue at z = 5= hmZ% (22-1)(z-2)

3

Y
1
i(z-3)2° o <;

l I3
8 l

iz
= lim = =—54
S12(z =2 1_ 24
z-3 ( ) 2 (2 2) ¥’
2w cos36 P i T
fo s d6f = Real part of 2mi (— Z) =7
. . 2 de _ _ 2ma
Example 14: Use the residue theorem to show thatf0 (@ibcos 82 (az—bz)%
0, 6>0, a>b.

. f2n do _r2m ae
Solution: fo (atbcos0)2 fo 0i0 401012
<a+b'T)

Pute'® = zso that e®(id0) = dz, izd0 =dz, do = dz

iz

1 d . . .
J. — — % where c is the unit circle |z| = 1

et

f 1 %_j‘ —4iz dz
X e By

2 .
bz b Lz
a+—+ —) —
2 2z 2z

f —4izdz
¢ (bz% + 2az + b?)?

—4i f zdz
b2 2 2az 2
¢ (Z + > + 1)

where a >



The poles are given by putting the denominator equal to zero.
e, (22+22+ 1) =0

(z —a)? (Z—ﬁ)zz=0

2a . [4a2

S5t —aw@p? X o

There are two poles at z= a and z = B, each of order 2.

Since |aB = 1| or |a||B]| = 1if |a] < 1then || <1

There is only one pole |a| < 1 of order 2 within the unit circle c.
—4iz

Residue (at the double pole z = a)) = lim,_,, % (z —a)? b2 —a)2(2—B)°

_ i d —4iz
~ 2oadzb?(z — B)?

B —4il_ (z—PB)21-2(z—-P)z

= h? 2% (z— B)*

—4il_ z—f—2z —4il_ —(z+p)
20 (Z=F) b7 2a - )

_g (@+p) 4 a+p
@B b¥((a + py2 — aap):
M Ty
b2 . :
(=22 —4(1)]
—8ai ai

(4a% —4b?)z  (a? - b?2):

21 dao —ai 2ma
Hence, ————— = 27 X =
fO (a+bCOS 9)2 (az_bz)% (az_bz)%
adé b
Example 15: Show by the method of residues, thatf e
s add __ rm  2adf 1 9ein2
Solution: Let] = fo g = Jo 3715535 05 20 = 1 — 2sin?0

= (P20 ___ ("_99%  Inutting 26 = ¢, 2d6 = d¢]

0 2a2+1—cos26 0 2a2+1-cos¢



_J‘" adg _J‘" 2ad¢
“Jo 202 +1-L(eit 4 e-it)  Jy 4a?+2— (el +e7iP)
2

Putting e = z, e (id¢) = dz or z(idp) = dz,dp = =

Z
Lz

2a dz . .
=) —————=.— [wher is unit circl =1
/. prevem o 1 [where, cis unit circle |z| = 1]

_Zaf dz _Zaf dz
o c (4a2 +2)z—22 -1 —i c 22— (4a2+2)z+1

5 f dz
= 2ai
c 22 —=(4a?+2)z+1

The poles are given by z2 — (4a2 + 2)z+1 =0

(4a® +2) F/(4a%2 +2)2 — 4
7 =
2

_ (4a® +2) ¥ V16a* + 16a?
B 2

=2a*+1%F2aa?+1

Let « =2a%4+1+2aVva?2+1

B=2a*+1—-2aya?+1

72— (4a2+2)z+1=(z—-a)(z—pB)

I = 2ai

dz
] (z—-a)(z—p)
Product of the roots=aff = 1 or |af| =1
But |a|>1|8l=1
Only B lies inside the circle c.

Now we calculate the residue at z =3

2ai 2ai

Residue at (Z = B) = limz—>ﬁ (Z - ﬁ) (z—a)(z—B) = limz_’ﬁ (z—a)

2ai 2ai
_(ﬁ_a)_(2a2+1—2aVa2+1)—(2a2+1+2a\/a2+1)

2ai i

 _4ava®+1 Wi +1

Hence by Cauchy’s residue theorem




I =2mi (Sum of the residues within the contour c)
—i 1
2mi =
2va?+1 va?+1

Hence, [f—2% - _Z
0 a2+sin20 VaZ+1

Example 16: Evaluate by contour integration fOZ" e°°9cos (sin 6 — nb)do

Solution: Let I = f02”ecose cos(sin @ — nf) + isin(sin@ — no)do

_ foznecoseei(sine—ne)dg — f02necose+15m9 —nlede J-Zn e‘9 _inede

- a
Putei® = z so that d6 = l—ZZ

1 dz eZ
— z - =
Then, I—fc ef—.—= fc —1dz

1z

Poleisatz = 0oforder (n + 1).Itlies inside the unit circle

. _ . _ 1 i n+1 —ie?
Residueof f(z) atz = Ois = oD [dzn {Z '_zn+1}]

—i

VA _l VA
dzn( )] = (€m0 =

—l

By Cauchy’s Residue theorem
—i) 2

I—Zm(
n!

n|

Comparing real part of foz c0s0 [cos(sin @ — nh) + isin(sin§ — nh)]do = =

n!
We have fOZFecose cos(sin@ —nf) do = i—’f

Check your progress

Evaluate the following integrals:

2 in%@ 2
L[ =—db Ans. 77 {a—VaZ —b?,a>b >0
21 (142 cos )™ cosnb
2. [rEERl s g Ans. —(3 V5hn >0
2T 4
3. fo 5+4sin9d9 Ans. 2 ?
T de bis
fO 17-8cos @ AN, 15
5. [F—2_ where a > |b|. Hence or otherwise evaluate fZ"L. AnS, ———;
0 a+bcos 6’ 0 +2-cos@ vaz—p2’

6.5. Evaluate off ;1E ;dx where f1(x) and f,(x) are polynomials in x.



Such integrals can be reduced to contour integrals, if

(i) f2(x) has no real roots o f
(i) The degree of f,(x) is greater than that of f; (x) / " c.
by at least two. / !
Procedure: Let f(x) = f(x) . IF : o X
' f2(%) X*—ps— > 0o = R

Consider fC f(z)dz, Where C is a curve, consisting of the upper half C of the circle |z| = R
and part of the real axis from —R to R.

If there are no poles of f(z) on the real axis, the circle |z| = R which is arbitrary can be taken
such that there is no singularity on its circumference Cgin the upper half of the plane, but
possibly some poles inside the contour C specified above.

Using Cauchy’s theorem of residues we have

fC f(z) dz = 2mi x(sum of the residues of f(z) at the poles within C)
i[5, f(x)dx + [, f(z)dz = 2mi (sum of residues within C)
R . . e
J o f)dx =~ fCRf(z) dz + 2mi (sum of residues within C)
s limpg_ e f_RRf(x) dx = — fCRf(z) dz + 2mi (sum of residues within C) ...(1)
Now, 1%1_1)1010 fCRf(z) dz = [ f(Re')Rie'dd

(1) reduces ffRf(x) dx = 2mi (sum of residues within C)

cosmx

Example 17: Evaluate [~ ———dx
- o0 cosmx 4 Y
Solution: [~ ——=dx e
Consider the integral fC f(z) dz, where ®Dz=i »Ce
eimz v - \
f(2) = ——, taken round the closed contour C Xe—g—> O‘..\Rj\’x

considting of the upper half of a large circle |z| = R

and the real axis from —R to R.

Poles of f(z) are givenby z2 + 1 =0 i.e. z2 = —1 i.e. z= Fi
The only pole which lies within the contour isatz =1 .

(Z_i)eimz eimz e—m

7241 22l 201 T 20

The residue of f(z) atz = i = lim,_;

Hence by Cauchy’s residue theorem, we have



f_RRf(z) dz = 2mi (sum of residues within C)

eimz e—m R eimz
dz = 2mi X dx = e ™™
,fczz+1 2i ,[-_Rx2+1

Equating real parts, we have

Te™ ™

dx = me™™ dx =
fO x2+1 2

0 cosmx

foo cosmx
—00 x241
oo xsinmx

Example 18: Evaluate f_w—x2+2x+5

oo xsinmx

Solution: Here, we have f_w—x2+2x+5

zsinmz
z2+2z+5

Let us consider [,

The pole can be determined by putting the denominator equal to zero.

22 4+22+5=0z7="2220_ 1%
2 YA
Out of two poles, only z = —1 + 2i is inside the
contour -1+ 2i
. _ ®
Residue at z = —1 + 2i ——

. 12 zsinmz =B =8
Z—>lr1n$2i(z D z2+2z+5 (—1? 2i)
_ 41— 2 zsinmz
=,hm, ¢ N T o T
_ zsinmz (=1 +2i)sinm (=1 + 2i)

Toeib2i(z 41420 (—1+2i+1+20)
(=14 2)sinm (-1 4 20)
B 4i
R zsinnz , .
Jop ~ooc 4z = 2mi (Residue)
=1+ 2i)sint(—1+2i T
= 2mi ( ) - ( ) = E(Zi — 1) sin(—m + 2mi)

4

(—m+8) = —sin(mr — 0)

7T . . . .
= —(2i — 1)(—sin 2mi) [sm L _cind

2

T T
= E(l — 2i)sin 2mi == E(l — 2i)isinh 27

T
= E(i + 2) sinh 2w



o xsinmx
0 x242x+5

Hence, |

= msinh 2 (Taking real parts)

-x+2
o0 (x4+10x2+9)

Example 19: Evaluate [

Solution: We consider |, s A I J; B AL dz = [ f(z)dz

(z4+10z2+9) (z2+1)(z2%+9)
Polesat z=+i and z = +3i

Simple poles at z =i and z = 3i lie in the given ontour.

The residue at (z = i) -
z2—z+2 Xl '.
I . "R —» X
=) D=0 +9) "
_ z2—z+42 i2—i+2
= hm - = —
zZ-i (Z+l)(Z2+9) 2i(—=1+4+9)

_—1—i+2_1—i_ 1 1

~2i(8)  16i 16i 16
The residue at (z = 3i)
. 3 z2—z+2 i z2—z+2  -9-3i+2  —7-3i
MGz =30 0@+ D NG+ + D (9+DGi+3) 48

7 N 1

480 16
By residue theorem,

1 7 1

J. f(2)dz = 2mi [Res f(i) + Res f(3i)] = 2mi |-t =t
_ (1 N 7 )_2 _(10)_5n
=™ \16 Y 281) = “™\a8i) T 12
. R 51
ie. [ f()dx+ fCRf(Z) dz =—
Now R — OO,fCRf(z) dz=0

x%—x+2 57'[
Hence, f o (x4+10x2+9) 12
Example 20: Use contour integration to evaluate the real integral f o m
Solution: ConS|derf f(z)dz, where f(z) = taken round the closed contour

C consisting of real axis and upper half Cy of a Iarge semi-circle |z| =

Poles of f(z) are given by



(1+2z3)3=0ie(z—0i)3(z+0)3*=0
i.e. z = Fi are the poles each of order 3.

The only pole which lies within C is z = i of order 3.

Residue of )3 (Zﬂ)g at (z =1)

3 _ 1 d ( 31 _ 3
[ 2 (0% (z—-1)3 (Z+l) dZ2(Z+l)l (z+1)5 _16i

Hence by Cauchy’s residue theorem, we have

ff(z)dz = 2mi X sum of residues within C.

R . 3 R 1 1 3
[2xfodx + [, f(2)dz = 2mi x 1—sif_Rmdx + fcRmdz = ?” (D)

T RdO
Now, |fcR 2+ dz| < | oo [ 1421 < Iy e 1421 = g (R2-1)?
[since z = Re'?, |z| = Rd6]
T -
—m,WhIChR—)OQSRQOO

Hence making R — oo, relation (1) becomes

oo 1 3w 00 1 3
f_oo—(x2+1)3 dx = — o J; D dx = Ans.

Example 21: Evaluate by the method of complex variables, the integral f

X
00 (1+x2)3

Solution: Consider [ dz where c is a closed contour

C (1 2)3
consisting of the upper half Cy of a large circle |z| = R and the
real axis from -R to R.

Pole of

2)3 are givenby (1+22)3 =0 orz?—1 z=

— X'
¥1 «—
~ z = iand z = —i are the two poles each of order 3.But only z = i lies within the contour.

Togetresidueatz = i,putz = i +¢t,then

zZ2 i+ —1+ 2it + t?
(1+22)3  (1+@{+1)2)3[1—1+2it+t2]3
=14 2it+ ¢ _—1+2it+t2( L1 t)‘3
B (2it)3 2i

(2it)3 (1 + %t)3 B



_ 1( 1+2i+1) NG GOLN
o8I\ 3 t? ¢t 2i 2 —4 '

= —= (—— L t) (1 — Z — ﬁ + - ) Hence coefficient of

Zis—— (E -3+ 1) or = (— 3) or — - which is therefore the residue at z = i
t 8i \2 2 16
Hence by Cauchy’s residue theorem we have

[ f(2) dz = 2mi x(sum of the residues within c)

ie. f_RR G dx + [, f(2)dz = 2mi (— 1)

fR dx +f 2 dz ==L (1)
R (1+x2)3 CR (1+Zz)3 g e
z? |22
NOW’ |fC (1+ZZ)3 - CR (|1+Zzl)3| | — (RZ 1)3f Rd@
Since, z = Re'®, |dz| = Rd6
m,Wthh—)O asR - o
2 s
Hence, by making R — oo, equation (i) becomesf o (T327)7 dx = 5

x2dx

Example 22: Evaluate | o ZID T

z%dx
Solution: We consider .. DGR = Jo f(@)dz

Where C is the contour consisting of the semi-circle Cy of radius R together with the part of the
real axis from —R to R.

The integral has simple poles at z = +i, z = +2i

Of which z = i, 2i only lie inside Crg.

72

The residue at (z =) = lim,-:(z = ) 5570

=lim zZ____ 1 _ 1
22U (z40)(22+4)  2i(—1+4) 6i

The residue at (z = 2i) = lim,_,,; (z —

. z
Zl) (z+20)(z—-20)(z2+1)
_ 72 ~ (20)?2 1
TNz +2)(22+ 1) Qit+20)(—4+1D) 3

By theorem of residue;



1

fc f(z)dz = 2mi [Res f (i) + Res f(2i)] = 2mi (—i + —.) = g ............ (D)

60  3i
e [° f(x)dx + Jo f@dz =7

Hence, by making R — oo relation (1) becomes
«© T
f f(x)dx+lim.f f(z)dz=§
—00 Z—00 CR

Now R — oo, fCRf(z) dz vanishes

For any pointon CR as |z| = oo, f(z) = 0

lim f f(z)dz=0,joof(x)dx=g

|z|-

x2dx T

Hence, J_; © (x2+1)(x2+4) _ 3
Example 23: Using the complex variable techniques, evaluate the integral f e dx
Solution: For [ 4+16 dx
Consider [ f(z) dzwhere f(z) = m -
Taken around the closed contour consisting of real axis and "
upper half of Cg, i.e.|z| = R. Poles of f(z) are given by Bails Bl .

. . . | o] Q III
z*+16 =0 i.e.z* = —16 = 16(cos + isin m) X'e——> — X

*=—16 = 16[cos(2n + V)7 + isin (2n + D)7]

1 T T . i
z = 2[cos(2n + 1w + isin (2n + )n]+ = 2 [cos(Zn +1) i isin(2n+1) Z] = l@ntly

Ifn = 0, 21=Zeig=2(cos%+ising) (\/_ \/_) V2 +iv2

37 3T 3n 1
n =1, 22—294—2<cosT+LsmT)—2<—T+1T>——\/_+l\/_
57t 5w 5t 1
n ,Z3 = e's (cos4 + isin 4> ( NG [ ) —V2 -2
n—3z4—234 —2(cos—+zsm—”)—2(\/—_—1\/i_) V2 —iV2

There are four poles, but only two poles at z; and z, lie within the contour.



Residue at (zl = Zeif) = [d - l [ 2ol L =

2(z*+16) (2 ll—r) 32¢'%
1 _= [ 37‘[+.. 3n 1( 1 _1)
T 4 = — —_— —l=—|l—"—=—1—=
3¢ 35 |cos 7 Fisin | = 35 5 l\/i
.37
Residue at (zz = 2elT) = lm = —
4<2eiT> 32¢"%
1 _jpom 1[ 9n+ o 1(1 1)
= —_— 4 —_— —_— = —_—— JES—
32¢ TRt T R\GF T

We know that fC f(z) dz = 2mi (sum of residues at poles within C)

f_RRf(z) dz + fCR f(2) dz = 2mi (sum of the residues)

R 1
| rmmedz+ g, 4+16 dz = 2mi (sum of the residues)

1 1

Now, |fCR z4+16 | fCR |z4+16]| | | - fCR |z#]+16 |dZ|

[since z = Re', |dz| = |Re®idf| = RdO]

Vs 1 R s
<| ———Rd9<———
—fo R* — 16 dQ_R4—16j do

Rm n/R3

S Biie T 1ieR which-> 0asR —» «

Hence, f dz = 2mi (sum of the residues within contour) As R — o

R416

Hence f dz = 2mi (sum of the residues within contour)
[ d—z-wl D a3
a6 T MR AT R TR\ 'S
_n,(1 11 1) n,(_2>_n_\/§n

l l l
6'\"vz Va2 216\ e 16
w 1 _V2m 0 1 _@
fO 16 X _1_6f0 x4+16 32
Example 24: Using the complex variable techniques, evaluate the integral f - 4+1 dx
Solution: foo e

Consider [. f(2)dz, where f(z) =

4+1



Taken around the closed contour consisting of real axis and upper half Cg, i.e. z=R.
Poles of f(z) are given by
z*+1=0ie2z*=—-1=(cosm+ isinm)

= (cos(2n + 1)m + isin (2n + 1)m)

1 T T
z = [cos(2n + ) + isin 2n + D)7]+ = [cos(Zn +1) 7 +isin(2n+1) Z]

If n =0, le(cos + isin ) (\/_+LT)—ei%

3 . . 3m 1 1 .37
n:]., Zz :(COST‘l‘lSln T):(__+l_):el4

V2 V2
) ( 57T+ o Sn) ( 1 1)
n = 2, Za=|cos—+isin —|=|———1—
’ 4 4 V2. V2
=3 _( 77T+__ 77r)_(1 1)
n = 3, Z4 = | cos 2 isin 2) = NG \/_
There are four poles, but only two poles at z; and z; lie within the contour.
Residue at z=ei§ = L == =—2 =%
( ) [%(z‘*ﬂ). .. o) 4T
[ 3mp 1 [ 1 1
= COS——lSln— ==l —"—=—1l—=
~ 1 41 4l 2 2
. AN 1 _[1 _ 1 1
Residue at (z =e 4) = [%(24“)]2:6_% = |23 z=ei34_n = 4<ei%ﬂ>3 = 481.%7:

= 4[cos——zsm— = [—— —

fC f(z)dz = 2mi (sum of residues at poles within c)

f_RRf(z)dz + fCRf(z)dz = 2mi (sum of the residues)

R 1
[ ormmdz+ fc 4+1 dz = 2mi (sum of the residues)

1
Now, |fCRZ4'_

1
= CRI 4+1|I | - fCR |z4|+1 |dz|

[since z = Re'?, |dz| = |Re®id6| = Ra]

[ 1 R V1
< Rdf <
_LR4_1 d9_R4_1f0d9




R m/R3

< [ —
R*-1 1-1/R*

which—> 0as R - «

R 1
Hence [ ,——

[me=ml(-3) (G5

T . 1 .1 1 .1 T . . 2 T . . _
—El(—ﬁ—zﬁ+ﬁ—15)—51(—15)—5. Hence the given integral =

dz = 2mi (sum of the residues within contour)

I
V2
Example 25: Using complex variable techniques, evaluate the real integral fow%

oo dz

Solution: Let f(z) = |

0 1+z6

dz
1+z6

We consider [,

Where C is the contour consisting of the semi-circle Cy of —L 1 L X
radius R together with the part of real axis from —R to R.

Poles of f(z) are given by
z+1=0i.e.2%°=—1= (cosm+ isinm)

z% = (cos(2n + D7 + isin (2n + 1m) = GO

z=e 6 "= [cos(Zn +1) % +isin (2n+1) g] where,n = 0,1,2,3,4,5

i

= T . . T i
If n=0, z=¢€% =(COS—+lSlTL—)=—+—
6 6 2 2
m T, .. T .
n=1 z=ez2 =(cos;+tsm5)=l
5mi .
2= 51 . . 5w -3 i
n=2, z=-¢es =(COS—+LSLTL—)=—+—
6 6 2 2
7T .
— 71T . . Im -3 i
n=3, z=es =(cos—+zsm—>=———
6 6 2 2
3mi
n=4 z=e: =(COS—+lSln—>=—l
1imi 11w, . 11w 3
n=25 z=ee =(cos—+isin—)=——-
6 6 2 2

mwi mwi 5mi
Only, first three poles i.e.e’s,ez, e s are inside the contour
5T

. iz . 1 . 1 1 —i2E
Residue at (Z = ele) =lim gg——= lim —=-e""s
z—e's —(z6+1) L6z 6
dz Z—e 6

. i . 1 . 1 1
Residue at (Z = eLZ) =lim =4 = lim —=-e 2
z—e 2 —(z%+1) Z 6z 6
dz zZ—e



.51 .25T
Residueat(z=el?)=lim srg——= lim —-=2e "6
7—e'6 E(Z6+1) N is?” 6z 6
Sum of residues = —[e o te zZ4et ]—1(—£—i+0—1+£—5)=1(—2i)=——
6 2 2 2 6
J‘dz 2i ( 'd)Z'(i) 21
= 2mi (residue) = 2mi|—=) = —
. 1+2° 3) 73
f‘” dz _27'[
ol +x6 3
oo dz T
Hence,f0 — =

cos3xdx

Example 26: Using complex variable, evaluate the real integral fomm

e3lZ

Solution: Let f(Z) = m
Poles are given by (z?2 + 1)(z2+4) =0
ie. z24+1=00rz=7Fi

z2+4=00rz= F2i X’

Let C be a closed contour consisting of the upper half -R " 0 R
Cg of a large circle |z| = R and the real axis from —R to R.the polesatz = i and z = 2i lie
within the contour.

. N s (z—e3z . e3iz _e3
Residue at (Z = l) = llmz_)i m = llmz_>i m = e

. oy 1 (z—20)e3% . e3iz _e®
Residue at (z = 2i) =lim,_,; m = lim,_,,; m =12

By theorem of Residue fC f(z)dz = 2mi [sum of residues]

R eSiZdZ e3ide e—3 e—6
+ = 2mi |[—+ —
f_R ZZ+ D22 + 4) fcR Z+ D2 +4) ™ l 6i 121']

e*dz 0 Re'® and R
= = — 00
R TeZE) R
jR e3ixdx B e—3 N e—6
L2 DEZ+d |3 76

f‘” cos 3x dx — Poal part 1f°° e3%dx
L @D Realpartofy | i DE T



= Real t z e‘3+e‘6
= Real par of2 3 2

. . w (e 3 e ®
Hence, given integral = - (T + T)

Example 27: Using the calculus of residues, evaluate the integral given by the following:

fOO cosax

0 mdx,a>0,b>0

Solution: Consider the integral [ f(z) dz

Where f(z) = e ’/ quh\‘?ﬁ

(22+b?)2 T \
Taken around the closed contour C consisting of the X _|H a0 Fl| > X
upper half of a large circle |z| = R and the real axis from —R to R.
Poles of f(z) are given by (z% + b?) = 0
i.e., z = iband z = —ib are two poles of order two. The only pole which lies within the

contour is z = ib of order two.

. . : d . e : d etez
Residue at (z = ib) = lim,;—(z — ib)? G lim,_;, 2 Gy
(z +ib)%iae'®” — e'¥2(z +ib) = [(z+ib)ia — 2]e'*
st (z + ib)* —2h T (z+ib)?
_[@2ib)ia — 2]e'**  (—2ab—2)e”® (ab+ 1)e
- (2ib)3 B —8ib3 © o 4ib3
Hence, by Cauchy’s residue theorem, we have
fc f(z) dz = 2mi xsum of the residues within C
R (ab + 1)e™%
f fdx+ | f(2)dz=2mi——F735—
_R Cr 4ib
R elaz elaz _ (ab+1)e~ab
Jop T X+ fcR oz =T (1)
eiazdz |€iaZ||dZ| |eiaz||dzl
Now, |fcR v R ey el W pr s
< ne—aRsinGRdQ < R fn —aRsin 9d9 < R .f —aRﬁdg
=), " ® D)2 T®RE+p22), ° “@®r+p22) ¢ "

0

R

- _ p,—aR H
= a(R2+b2)2 (1 e ) Wthh - O, as R - o



Hence, by making R — oo, (1) becomes.

f plaz _ (ab+1)eab
G b X T s

Equating real parts we have

f cos ax _ _(ab+1)e™®
Y D Chn T
f cos ax _ _(ab+1)e™
O D Chiak T
Example 28: Using complex variable techniques, evaluate the real integral [~ ———2% __qx

0 (x2+9)%2(x?%+16)

Solution: Consider the integral [ f(z) dz

Where, f(z) = e

(z249)2(z2%2+16)

Taken around the closed contour C consisting of
the upper half of a large circle |z| = R and the real
axis from —R to R.

Poles of f(z) are given by
(z2+9)%(z2+16) =0
=(z+30)%(z-30)*(z+4i))(z—4i) =0
i.e. z = 3i,—3i,4i,—4i

The poles which lie within the contour are z = 3i of the second order and z = 4i simple pole.
Residue of f(z) at z = 3i

11d . e2iz _ d et
1 {(Z T G s 16)}L=3i - IE{(Z +30%(z" + 16)}L=3L

[z +30)2(2% + 16)2ie*” — e?#[2(z + 3i) (2% + 16) + 22(z + 3i)2]l
z=31

(z + 3i)*(z? + 16)2

[z +30D)(2% + 16)2ie?” — e?#[2(z* + 16) + 22(z + 30)]
B (z + 3i)3(22 + 16)2 e

_6iX7xX2ie®—e 02X 7+6ix60) e °[-84+22]i e °(—62)i i3le”®
B (61)3(7)2 216 x47  216x49 108 x 49

eZlZ

Residue of f(z) at (z = 41) = lim,_4;(z — 4i)

(z249)2(z—41)(z+41)



e 8 e 8 —ie~8

T (16 +9)2(4i + 4i) 49x8i 392

i31e~° ie”8

108%x49 392

Sum of the residues =
Hence by Cauchy’s residue theorem, we have

fC f(z) dz = 2mi x(sum of the residues within C)

i.e. f_RRf(x)dx + fCRf(z) dz = 2mi x(sum of residues)

or, f_R ezix dx n fC eziz

R (x249)2(x2+16) R G192 (21 10) dz = 2mi X(sum of residues)  ...... (1)
Now let R — oo, so as to show that the second integral in above relation vanishes.
For any point on Cg. As |z| —» o

eZlZ

(1+%) (1+39)
¢ dz =0
o GEF2(EF16)

Let, f(z) = 216

2iz

|Zl|i£>noof (z2)=0

Hence, by making R — oo relation (1) becomes

0 eziz
"f—oo (22+9)2(22+16)

dx = Zni[

—i31e7® ,e78 2m [31e—6 e‘s]

I—| ===
108x49 392~ 196 27 2

Equating real parts, we have

o cos 2x m 31le ® 78
o (X2 4+9)2(x2+16) 98

27+2

f‘” cos 2x o 31e‘6_|_e‘8
o (x2+9)2(x2+16) 196 27 2
6.6. Rectangular contour

o edx

Example 29: Evaluate [_ ——dx

az

——dz= [, f(z)dz
Where C is the rectangle ABCD with vertices at (R, 0), (R, 2r), (—R, 2w) and (—R, 0)

Solution: We consider |,

f(z) has simple poles e? = —1
= cos (2n + Dm + isin (2n + 1) = !@n+L7

= z=(2n+ Dmi, wheren =0, £1, +2, ...



The only pole inside the rectangle is z = i. Therefore, By Residue theorem

fC f(z)dz = 2mi Residue f(mi) = 2mi %(eez;:-l) B [R(a) = %
. 4z ' ami - ami e™ = cosm + isinm
= 2mi [e_z]zzni = 2mi P —2mie [ ==_1__|_ 0 ]
Also fC f(z)dz = fABf(z)dz+fBCf(z)dz+fCDf(z)dz-i-fDAf(z)dz .......... (1)

= fozn f(R+iy)idy + fR—Rf(x + 2mi)dx + fZOE(—R + iy)idy + f_RRf(x)dx...(Z)

[z=R+iyalong AB,z = x + 2mi along BC,z = —R + iy along CD and z = x along DA].

Znea(R+iy) -R ea(x+2m') 0 ea(—R+iy) R e
e =i [Ty [ i [ Ly [
fC f( ) j;) eR+ly y R ex+2m Zne—R+1y +1 y _R ex +1

Now for any two complex number z;, z,, |z;| = |z,|
We have, |z; + z,| = |z,| — |2z,]
Sothat, [ef* + 1| = eR — 1. Also |e@R*D)| = gak

For the integrand of first integral in (2), we have

ea(R+iy) aRr

eR+ly +1

- e
“eR -1

which - 0asR — oo [+va> 1]

Similarly, for the integrand of the third integral in (2), we get
ea(—R+iy) —aRr

e Rty +1

- e
“1—e¢R

which also - 0as R - oo [+ a < 0]

Hence as R — since the first and third integrals in (2) approach zero, we get

ff(Z)dz:—eza”ifoo e dx+foo " ix
C _oe¥+1 _oe¥+1

— (1 _ eZani) f°° e

—00e¥+1

Thus, from (1) and (3) we obtain

dX e, 3)

(1 Zanl) jw eax d 2 ) aT[i JOO eax d an

—e x = —2mie“™ or X=—
X X amnt _ p—armit
_oe*¥+1 X +1 e e

ax

foo e _ s
—0 eX41 sin am



Example 30: By integrating e~Z" round the rectangle whose vertices are 0, R, R + ia, ia. Show

—a?
that (i). fone‘xz cos 2axdx = eT\/E and (ii). fone‘xz sin 2axdx = e~%* foa eV dy
Y

2

Solution: (i). Let f(z) = e~ %

Lf(z)dz=fc e 2" dz

Here C is the closed contour, a rectangle OABD.

Since f(z) is analytic within and on the contour. There is no pole within rectangle OABD. Hence
by Cauchy’s residue theorem we have

fOABD e7dz=0 or, Joa e~?dz + B e 7 dz + 8D e~?dz + Do e% dz = 0.....(2)

Since, on0A,z = x, dz = dx. AndOnAB,z = R + iy,dz = idy

Also,OnBD,z = x + ia, dz = dx andOn DO,z = iy,dz = idy

Hence (1) becomes

f: e dx + Jy e~ R+’ iy + f; e+ g 4 f; e~ idy = 0....(2)

Now, |an e_(R+iY)2idy| < |an e_(R+iy)2| lidy| < [ e R+ dy < [Fe R+ dy < e7RHe% g =0
ASR — oo

Hence by making R — oo equation (2) becomes
(o] [ee] a

] e~ @) gy =j e ™ dx — ij e¥ dy
0 0 0

:fooo e(_x2+a2—2aix)dx — g —_ L foa eyzdy

- a
] e(—x2+a2)_e—2aixdx=ﬁ—ij e’ dy
0 2 0

a

© Vm
] e(=x*+a%) (cos 2ax — isin 2ax)dx == iJ e’ dy
0 0

oo \/E a
f e(=x%), (cos2ax — isin 2ax)dx =7e‘“2 —je? f eyzdy
0 0
Now we equating real and imaginary parts we have
ﬁe_az

. 0 _.2
0) J, e cos2axdx = >

(ii) fom e~ sin2ax dx = e~ foa e’ dy



Check your progress

Evaluate the following:

1 f) —dx Ans. =
2. ffwﬁdx Ans. =
3. fooowjzj%dx Ans. Z(aZT:-bZ) [a%e™® — b%e™P]
4 J) S dx,a> b >0 Ans. T (22— 2)
5. Show that [[* "> dx = ”:;a
6. Evaluate [ w%d" Ans. g(? - 37_6)
7. Show that [ Oo("zi‘“j‘)d = —g(a —2)a % a>0
Evaluate the following
8. [ mx?:;:_nxz) dx,m>0,a>0 Ans. a—”2(2 — e M)
9 [~ x6+1 Ans.%
10. | °°"S4”1 =2 dx Ans. —e” ~fasint
1 f) s dx Ans, ﬂ a>0
12. [ “%dx Ans. 0
13, [ ST gy Ans. Zsind (m +2) e
14, [ 18T gy Ans. log 2
15. Usmg contour integration, show that [ xtdx __ 3V2m (a>0).

0 (a*+x%)2 16a

16. Using method of contour integration, evaluate [ xoin ~——dx  Ans.Ze %sina

17. Integration — along the boundary of the square defined by x 0,x R,y = 0,y = R.
Prove that (i) f 2y = [ xe ™

a}}+x2
oo smx o e”
(") f x+a - fO 1+x2

18. Evaluate using Cauchy’s integral formula _cﬁc Czozs_nlz dz around a rectangle

() 2%i 2i Ans.0 (i)-i,2-i,2%i andi

72

19. By mtegratlng round the rectangle with vertices +R + -, show that

j‘“’cos ax? cosh axd B 1 (a) J‘msin ax coshaxd B 1 (a) 0<ax<
0 cosh mx ¥ an 0 coshmx =2 sin O<as=m



6.7. Indented semi-circular Contour

When the integrand has a simple pole on real axis, it is deleted from the region by
indenting the contour (a small semi-circle having pole is drawn)

sinmx
dx ==

Example 31: By contour integration, prove that f0°°

X
Solution: Consider the integral | eT:—lZdz Y

When C is a large semi circle|z| = R indented at
z = 0 (pole), let r be the radius of indentation.

There is no singularity within the given contour.

Hence by Cauchy Theorem. Ke— R o R X

emiz
j dz=0
c VA

r emix

e, I

Substituting z for x in the first integral and combining it with the third integral, we get

X

de+ [, S—dz+ [fE—da+ [ Codz=0 . (1)

R emix _ e—mix emiz emiz ) )
f —dx+f dz+f dz = 0[Z=Re‘9, dz=Rie‘9d9]
. X c, Z c. Z
2 1

2i fR sinmxdx +J‘C25'TZ_LZdZ+ fc1er:_lzdz =0 ... 2)

X

elimx_q

Now, [, “=dz=[ idz+], dZ e, 3)

zZ

on C,: z=re'

i0;
Therefore, | idz = fow = f: ido = —im

T reib

ldz|
2 |z

M

elmx_1q
z

Also, |fc2 dz| <M|J

When M is the maximum value on C, of |e™* — 1| = |eimr(cosO+isin6) _ 1

Clearly, M =0asr = 0

Az = —ir &)

Z

From (3), fcz

Putting z = Re'? in the integral over C;, we get

eimz neimR(cos O+isin 6) T
f dz = f = Rellido = l-f elMmRcos 8 ,—mRsin6 jp
a Z 0 Re! 0

1



Since |e‘mReosf| <1

imz

f e
C1 zZ

ino . 2 .
Also, == continuously decreases from 1 to = as 6 increases from 0 to ~.

dZ| < fone—mRsin 9d9 =2 f(:fre—mRsin Ode

sin 8
2]

forOSGS%,

IS

As R - 00,— (1 —e ™R) 50
mR

) 20
=>— orsiné 27

QN

/2

0

imz

dZ| <2 fofe—sz 0/t 49 = [_%e—ZmRG/H]

_ T __ ,—mR
z _mR(l € )

imz

e
fcl —dz=0

Hence from (2), on taking the limitasr = 0 and R = 0, we get

(P sinmx ] “sin mx T
2i dx —im =0 or dx = —=
0 X X 2

0

sinx

Example 32: Evaluate [,” >

Solution: Consider the integral fc e;dz

Where C is a large semi circle|z| = R indented at z = 0 (pole), let r be the radius of
indentation. There is no singularity within the given contour.

Hence, by Cauchy theorem, | e;dz =0

A —r elZ iz R elz iz
ie. [[p—dz+ [ —dz+ [ —dz+ [ —dz=0...(])

eiz T eiR(cos O+isin 0) i0 i0
Now, fCR7dZ = fO T.Re ido [Z = Re ]

03
— l-f eiR(cosG+iSin9)d9
0

|eiR(c059+isin9)| — |e—Rcost9+iRsin9| — e—RsinB
VA
eiz i g g —2RO 0o < E
J —dz S] e"RS‘”9d6=2J e‘RsmedH:ZJ e df| g 2
Z Sin
CRr 0 0 0 >Z
0 T
=
-2 —2R6O 2 _
=—n[en] =Z(1—-eR®) =0 asR-ow
2R 0 R



eiz 0 si . (0
[ =dz=i[ er(cost+isinb)gg — ;[ dg  asr - o
Cr z 7T m
= —im

Equation (1) is reduced to

S0+ [ Sdx—im=0 [AsT >R~ ]

oo eix .
—dx =im
e X

f‘” cosx + isinx
x

dx =im

—00

Equating imaginary parts, we get

oo sinx 0o sin x T
I dx=m or | dx =-.
- x 0 x 2

Example 33: Show that, if a > b > 0 then f0°°6052axx+2bx

dx =n(b—a)

Solution: Consider the integral fc f(z2)dz
i2az_ei2bz
z2 /
And C is a large semi-circle |z| = R /
-

Where, f(z) =2

indented at z = 0 (pole), let r be the radius
of indentation. Now there is no singularity g R
within the given contour.

fc f(2) dz = 0 (By Cauchy Integral Theorem)
f__er(x) dx + fCRf(z) dz + erf(x) dx + fCRf(z) dz=0 ... (1)

Now, | [, f@ dz|

- f |eziaz _ e,2ibz| |d
< ————|dz|
Cc

2
AP

<f |eziaz|+|ezibz|
~Je |Z]2

|dz|

R

Rd6O

fn e—ZaRSlTl 0 + e—ZbRsm 0
2
0 R

T[ -4aRO —4bRO
[e

2 Z2aRf , :
=< fOZ n +e w ] do [By Jordan’s inequality]



21 T T
R _ p,—2ar _ __ ,—2bR
~R [4aR A—e™™D+g1 e )]

= 00orR > o

eZlaZ_eZLbZ}

z2

We have, lim,_,{z(f(2))} = lim,_, {Z

= Li_r)lg{Zi(a —b) —2(a* —b?»)z?...} = 2i(a—b)

li_r)r&f f(z)dz = —i(r — 0) X 2i(a — b) = —2n(b — a)

Hence, by making R — oo and r — oo, equation (1) reduces to

0

[ reax-2m0-a+ [ reac+o
- 0
=0 + foof(x)dx=2n(b—a)

o eziax _ eibe
j ———dx=2n(b—a)

—00

f‘” (cos 2ax + isin 2ax) — (cos 2bx + isin 2bx)

2 dx = 2n(b —a)

— 00

Equating real parts, we get

f‘” cos 2ax — cos 2bx

v dx = 2n(b — a)

— 00

Uaf(x)dx =2 jaf(x)dx,if f(x)is even function
—-a 0

00 COS 2axX—C0S 2bx
Hence, [, ——

dx =n(b—a)

Example 34: Using contour integration method, prove the integral

. 00 xa-1 -
(M fO 1+x dx = sinwa’ (O<a<l)
-1

a
(ii) fO“"Txdx = 1 cotma.

zZ

Solution: Let the integral be [ f(2) dz, where f(z) = a__l

1-z

Taken around the closed contour C consisting of real axis from - R to R, and upper half of a
circle |z]| = Rindented at z = 0,z = 1, the radii of indentations being r and r’ respectively.

The singularities of f(z) arez = 0,z = 1 which have been avoided by the indentation, so
there no singularities within the contour.



Hence, by Cauchy’s residue theorem, we have

[Rf@dx+ [, f@dz+ [ f@dx+ [, f@dz+ [, fG)dx+ [, f(2)dz=0 (1)

a—-1 a

Since lim,_q zf (2) = limz_wczzl — =lim, ,~—=0,0<a<1.

limR_,o(fCRf(Z)dZZ i(mr—0)0=0 Cr
Again lim, o{zf (2)} = lim, o {2} = .
hmz_>0 (é) = O, a> 0 . " ‘______,'_.__-./.D_‘\"_—“_ _f-_‘?_, = X

%Lf(z) dz = —i(r—0).0=0

Also, lim, ., {(z = Df(2)} = lim,, {(z - D=} = -1
lim | f(z)dz=—-(r—0)(—1) =in
r—0 cr
Hence making R — oo, — 0,7 — 0, we have from (1)
jocf(x) dx +j f(x)dz + mi + jocf(x) dx =0

— 0 1

or, f_o;f(x)dx +mi=0

= —Ti

[ = dx +f —dx——mor fo

X 1-x

Putting —x for x in the first integral, we have

oc(_l)a—lxa—l 4 xa—l
[ s [ =
0 0

1+ x 1—x
(elX)a 1 -1 oC xa—l
f — Y dx+ f dx = —mi
o 1—x
e Lxelaxxa 1 « xa—l
] —dx +] dX = —7mi
0 1+x o 1—x
__ylax A e H —ix _ __
e | T X ax +f dx— mi [since, e ™ = —1]

28 xa—l
—(cosam + isin an)f dx + f dx = —mi
0 0

1—x

Equating imaginary and real parts, we have



. o x@-1 o x4~ T
—sinar [ ——dx=-n = fo —dx=——...(])
oo x@ oo xa~ 1
— =, T [from (1)]

00 xa-1
Thus, fo — dx = mcotan

Check your progress

Using the method of contour integration, evaluate the following:

L [ = Fdx Ans. 0
foe) 2

2. [P gy, 0<a <1 Ans. 0

3. Jy s dx Ans. %
o] 1 A

4 s Ans. —
) x2 T
fm(xzﬂ)z dx Ans. -

6. [ —dx Ans. =
o logx L

7. Jy el Ans. —

Conclusion: After the study of this chapter we are able to get evaluation of real definite integrals

by contour integration, Integration round the unit circle of the type: foznf(cos 0,sin0)deo ,

f1(x)
® f2(x)

Indented semi- circular contour.

evaluate of f dx where f;(x) and f,(x) are polynomials in x, Rectangular contour and
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Block -4

Conformal Representation

Conformal mapping is an important and useful tool in complex analysis. To draw a curve of
complex variable on plane we take two axes i.e., one real axis and the other imaginary axis. A
number of point are plotted on plane, by taking different value of (different values ). The curve is
drawn by joining the plotted points. The diagram obtained is called Argand diagram in -plane.
But a complex function involves four variables A figure of only three dimensions is possible in a
plane. A figure of four dimensional regions for is not possible. So, we choose two complex
planes plane and plane. In the plane we plot the corresponding point By joining these points we
have a corresponding curve in plane.



Unit -7

Conformal Representation

7.1. Introduction

7.2. Objectives

7.3. Mapping

7.4. Conformal Mapping

7.5. Translationw =z + ¢

7.6. Rotation w = ze'?

7.7. Magnification

7.8. Magnification and Rotation w = cz

7.9. Inversion and Reflection

7.10. Mobius Transformation

7.11. Invariant points of Bilinear Transformation
7.12. Properties of Bilinear Transformation
7.13. Methods to find Bilinear Transformation
7.14. Inverse point with respect to a circle
7.15. Transformation w = z?2

7.1. INTRODUCTION



Conformal mapping is an important and useful tool in complex analysis. To draw a curve of
complex variable (x,y) on z —plane we take two axes i.e., one real axis and the other imaginary
axis. A number of point (x, y) are plotted on z —plane, by taking different value of z (different
values of x and y). The curve C is drawn by joining the plotted points. The diagram obtained is

called Argand diagram in z-plane.

But a complex functionw = f(z)i.e.,(u + iv) = f(x + iy) involves four variables

x,y and u, v.

A figure of only three dimensions (x, y, z) is possible in a plane. A figure of four dimensional

region for x, y, u, v is not possible.

So, we choose two complex planes z —plane and w —plane. In the w —plane we plot the
corresponding point w = u + iv. By joining these points we have a corresponding curve C’ in

w —plane.

7.2. Objectives
After studying this unit we should be able to:

o Define Mapping and Conformal Mapping ;

e  Translation w = z + c and Rotation w = ze'? ;
° Magnification and Rotation w = cz;

° Inversion and Reflection;

o Mobius Transformation;

° Invariant points of Bilinear Transformation;

o Properties of Bilinear Transformation;

o Methods to find Bilinear Transformation;

o Inverse point with respect to a circle;

e  Transformation w = z2;

Conformal mapping is an important and useful tool in complex analysis.To draw a curve of

complex variable (x,y) on z —plane we take two axes i.e., one real axis and the other imaginary



axis. A number of point (x, y) are plotted on z —plane, by taking different value of z (different
values of x and y). The curve C is drawn by joining the plotted points. The diagram obtained is

called Argand diagram in z-plane.

But a complex functionw = f(z)i.e.,(u + iv) = f(x + iy) involves four variables
x,y and u, v. We know that a figure of only three dimensions (x, y, z) is possible in a plane. A

figure of four dimensional region for x, y, u, v is not possible.

So, we choose two complex planes z —plane and w —plane. In the w —plane we plot the
corresponding point w = u + iv. By joining these points we have a corresponding curve C’ in
w —plane. For every point (x, y) in the z-plane, the relation w = f(z) defines a corresponding
point (u, v) in the w-plane. We call this “transformation or mapping of z —plane into

w —plane”. If a pointz, maps into the point w,, w, is also known as the image of z,.

If the point P(x, y) moves along a curve C in z —plane, the point P’(u, v) will move along a
corresponding curve C’ in w —plane, then we say that a curve C in the z —plane is mapped into

the corresponding curve C’ in the w —plane by the relation w = f(2).
7.3. Mapping

For every point (x, y) in the z-plane, the relation w = f(z) defines a corresponding point (u, v)
in the w-plane. We call this “transformation or mapping of z —plane into w —plane”. If a point

maps into the point w,, wy is also known as the image of z,.

If the point P(x,y) moves along a curve C in z —plane, the point P’(u, v) will move along a
corresponding curve C’ in w —plane, then we say that a curve C in the z —plane is mapped into

the corresponding curve C’ in the w —plane by the relation w = f(2).

Example 1: Transform the rectangular region ABCD in z-plane bounded by x =1, x=3;y=0

and y = 3.Under the transformationw = z + (2 + i).
Solution: Here, w=2z+((2+1
ut+tiv=x+iy+2+i)=xx+2)+i(y +1)

By equating real and imaginary quantities, we haveu = x+ 2andv =y + 1



z —plane w — plane z —plane w — plane
X u=x-+2 y v=y+1
1 =1+4+2=3 0 =0+1=1
3 =3+4+2=5 3 =3+1=4
Herethelinesx = 1,x = 3; y = 0andy = 1 inthe z —plane are transformed onto the line

u =3,u=>5 v =1andv = 4inthew —plane. The region ABCD in z —plane is

transformed into the region EFGH in w —plane.
Example 2: Transform the curve x? - y2 = 4 under the mappingw = z2.

Solution:w = z%2 = (x + iy)2u + iv = x%- y? + 2ixy

Thisgives u = x?2-y?andv = 2xy
Table of (x,y) and (u,v)
x 2 2.5 3 3.5 4 4.5 5
y= T2 —a 0 | #15 | +22 | 429 | +35 | +41 | +46
u=x?%—y? 4 4 4 4 4 4 4
v = 2xy 0 | 475 | +132 | 4203 | +28 | +360 | +46




. VvV ﬂu
) 50 - (4, 46)
40 — (4,36.0)
30 b (4, 28)
. 4.203)
20 (4,132)
10— (4,75)
R AN (W |
M=z 3 3 3 " 6 "
10 4,-1.
’ e 132
=0 4,-203)
-30 | }4, -28)
' —40+ (4,-36.0)
vy Z-Plane ) - 50 (4-’46)
r w-plane
‘ VI

\

Image of the curve x2 - y2 = 4 is astraight line, u = 4 parallel to the v-axis in w —plane axis.

7.4. Conformal Mapping

Let two curves C, C; in the z —plane intersect at the point P and the corresponding plane C’, C,’
in the w —plane intersect at P’. If the angle of intersection of the curves at P in z —plane is the

same as the angle of intersection of the curves of w —plane at P’ in magnitude and same then the
transformation is called conformal.

Conditions: (i) f(z) is analytic (ii) f'(z) # Oor

If the sense of the rotation as well as the magnitude of the angle is preserved, the transformation
is said to be conformal.

If only the magnitude of the angle is preserved, transformation is Isogonal.

Theorem: If f(2) is analytic, mapping is conformal

Proof: Let C; and C, be the two curves in the z —plane intersecting at the point z, and let the
tangents at this point make angles a; and a, with the real axis, Let z; and z, be the points on the

curves C; and C, near to z, at the same distance r fromz,, so that we have

z, — 2y =retf, z, —z, =relf2



As r—-0, 6; >a; and 6, - a,

Let the image of the curves C; and C, be €', and C’, in w —plane and image of z,, z; and z, be
Wy, wy; and w,. Let
w1 — Wy =Tei¢1, W2—W0=T‘ei¢2

W1 — Wy
"(zg) = lim ————
f'(20) Jm s =W,

(®]

(since, f'(zo) = Re')

, . . T .
Reir = Lpid1=i6y — L ,i(¢1-61)
T T

Hence lim,_,, [Tr—l] =R =|f"(zy)| and
lim (¢, —601) =4
:>|Im(],')1—|lm91 :/1 or ﬁl_al :/1 thatlS ﬁl = a1+A

Similarly, it can be proved 8; = a; + A curve C; has a definite tangent atw, making angles

a, + Aand a, + 4 s0 curve C,.
Angle between two curves C'; and C’,
=p1—Br=(a;+2) —(a; + 1) = (a; — a3)
So the transformation is conformal at each point where f’(z) = 0.
Note 1: The point at which f’(z) = 0 is called a critical point of the transformation. Also the

oints where £ = 0 are called ordinary points.
P dz

2.Let¢p = a; — a, Or a; = a, + ¢ shows that the tangent at P to the curve is rotated through an

2¢p = amp{f’'(z)} under the given transformation.



Angle of rotation = tan™?!

S S

3. In formal transformation, element of are passing through P is magnified by the factor |f'(2)|.

The area element is also magnified by the factor |f'(z)| or J = —g in a conformal

o(x
transformation.

du OJu ou ov
_0(wv) ox oy ax  ox|_ (Ou 2 on\?
T A(y) |ov ov| T |ov  ou | (ﬂ) T (ﬂ)
ax oyl lox ox

ou v

=15 iox =1f'@I* = If'(x + iy)|?

|f'(2)] is called the coefficient of magnification.

4. Conjugate functions remain conjugate functions after conformal transformation. A function
which is the solution of Laplace’s equation, its transformed function again remains the solution

of Laplace’s equation after conformal transformation.

Theorem: An analytic function f(z) ceases to be conformal at the points where f'(z) = 0
Proof: Let f' (z) =0and f'(zy) =0atz = z,

Suppose that f'(z,) has a zero of order (n — 1) at the point z,, then first (n - 1) derivative of

f(z) vanish at z, but f"’(z,) #0, hence at any point z in the neighbourhood of z,, we have by

Taylor’s Theorem.

f(2) = f(z0) + an(z —zp)" +

Where, a,, = G (0) .So, that a,, # 0

Hence, f(z1) = f(z0) = an(zy — z)" + -

i.e. wi; —wy = ap(zy —zg)" + -+

or pet®1 = |q,|.r"e!™01t) 4 .. where A = amp a,
hence limgp, = lim(nb; + 1) = na; + 1

Similarly, lim¢, = na, + 1



Thus the curves y, and y, still have definite tangents at w,

But the angle between the tangents = lim¢, — lim¢, = n(a, — a;) .
So magnitude of the angle is not preserved.

Also the linear magnification R = Lim(p,/r) = 0

Hence, the conformal property does not hold good at a point where f'(z) = 0

2
Example 3: If u = 2x? + y?andv = y? show that the curves u = constant and v =

constant cut orthogonally at all intersections but that the transformation w = u + iv is not

conformal.
Solution: For the curve u = 2x? + y?
2x% + y? =constant = k; (say) ............ (1)

Differentiating (1), we get

y2
For the curve, — = constant = k,(say)

= y2=kyx ... (3)

Differentiating (3), we get
dy _
2}’5 = k;

d k 2 1
> ==Y x_=-X 1
dx 2y x 2y 2x

From (2) and (4) we see that

mam, = (2)(2) = -1

Hence, two curves cut orthogonally

M_gx B

However, since — =
dx ay



ov y2 ov 2y
and —=-= — ==
dx x2 ay x

The Cauchy-Reimann equations are not satisfied by u and v.
Hence, the function u + iv is not analytic. So the transformation is not conformal.

Example 4: (i) for the conformal transformation w = z?2, show that

(a) The coefficient of magnificationatz = 2 + i is 25

(b) The angle of rotationat z = 2 + i is tan™10.5

(ii) For the conformal transformation w = z2, show that

(a) The co-efficient of magnificationatz = 1 + i is 2v2

(b) The angle of rotationatz = 1 + i is %-
Solution: (i) Letw = f(2) = z%, f'(z) =2z
f'R+i)=2Q2+i)=4+2i

(a) Coefficient of magnificationatz =2 +iis|f'(2+ )| = |4 + 2i| = V16 + 4 = 2V/5
(b) Angle of rotationatz =2 +iisamp f'(2 + i) = amp. (4 + 2i)

= tan~! (2) = tan"1(0.5)
(i) Here f(2)=w= 22, f'(z) =2z
And Frl+0)=2(1+0) =2 +2i

(a) The co-efficient of magnificationatz =1+ iis|f'(1+i)| = |2+ 2i| =V4+4 =22
(b) The angle of rotationatz =1+ iisamp f'(1 + i)

=amp.2(1+1i) =2+ 2i =tan™? (—) =—
Some Standard Transformations:

7.5. Translationw =z + C,
Where C = a +ib

u+iv=x+iy+a+ib



u=x+a and v=y+bor,x=u—a and y=v-b>b

On substituting the values of x and y in the equation of the curve to be transformed, we get the

equation of the image in the w —plane.

The point P(x, y) in the z —plane is mapped onto the point P’ = (x + a,y + b) in the w —plane.
Similarly other points of z —plane are mapped onto w —plane. Thus if w —plane is superimposed

on the z —plane, the figure of w —plane is shifted through a vector C.

AV D'

. N

I <%
| 1 A'
|

o X 0O U
In other words the transformation is mere translation of the axes.
7.6. Rotation w = ze®®
The figure in z —plane rotates through an angle 6 in anticlockwise in w —plane.

Example 5: Consider the transformation w = ze™™/* and determine the region R’ in w —plane
corresponding to the triangular region R bounded by the linesx = 0,y = Oandx + y = 1in

z —plane.

Solution: w = ze'™/*

3 7T - - 7T
w=(x+1iy) (cosz + isin Z>

:>u+iv=(x+iy)(%i>

1 .
=ﬁ[x—Y+l(x+y)]

Equating real and imaginary parts, we get

1
= u—\/—i(x—y), and



1
v=7(x+y)

Q) Putx = 0 u=71§y, v=%yor v=—-u
(i) Puty = 0 u=71§x, v=717x0r v=u
(iii)  Puttingx + y = 1in (1), we getv=%
Y
B
D
0 KT g

Z-plane

Hence the triangular region OAB in z —plane is mapped on a triangular region 0’CD of

w —plane bounded by the linesv =u, v=—u, v =

Sl

f@=%ﬂﬂ)

1

f2) =F[x=y) +i(x+y)
Amp. f'(z) = tan~1(1) = g
The mapping w = ze™* performs a rotation of R through an angle %

7.7. Magnification: w = cz, Where c is a real quantity

(1) The figure in w — plane is magnified c-times the size of the figure in z —plane.

(2) Both figures in z —plane and w —plane are singular.

Example 6: Determine the region in w —plane on the transformation of rectangular region

enclosedbyx = 1,y = 1,x = 2andy = 2 inthe z-plane. The transformation isw = 3z.

Solution: We have, w = 3zthatis u+ iv = 3(x + iy)



Equating the real and imaginary parts, we get, u = 3x andv = 3y

z — plane w — plane
x y u = 3x v = 3y
1 1 3 3
2 2 6 6
Vv
A
64 H v=6 c
5+ & ©
o S
Y * 2
- 3t B s F
2I ‘-D y—2 C v=3
I o 2+
14 A%
4 A y=1 B 1_..-
——t —» X —t—t—t+—+—+>U
0 2 O 1 2 3 4 5 6
7.8. Magnification and Rotationw =cz ............... (1)

Where, c, z, w all are complex numbers.
c = ae'e, z=re'?, w = Rel®
Putting these values in (1), we have
Re'? = (ae'®)(re??) = are!®*® R = ar and ¢ =0+a
Thus we see that the transform w = cz corresponding to a rotation, together with magnification.
Algebraically w =cz
or, u+iv = (a+ib)(x +iy)

=>u+iv=ax—by+i(ay+ bx)



or,u=ax—>by and v =ay + bx

On solving these equations, we can get the values of x and y.

__au+tbv __ —bu+bv
T a2+b2’ Y= a?+b?

Y AV

Dn
C r-__.-: Al
| I C
| I
| :_ I
A B B
- —>
0 x © -

On putting values of x and y in the equation of the curve to be transformed we get the equation

of the image.

Example 7: Find the image of the triangle with vertices at i,1 + i, 1- i inthe z —plane under

the transformation

Q) w=3z+4—2i,

5mi

(i) w=es.z—2+4i
Solution. (i) w = 3z + 4 — 2i,
s>u+iv=3x+iy)+4—2i

>u=3x+4, v=3y—2

z — plane w — plane
S.No. X y u=3x+4 v=3y—2
1 0 1 4 1
2 1 1 7 1
3 1 -1 7 -5




1 A'(4,1) B'(7,1)
1 2 3 3\5 6 |7
o) M —>u
1 -1
(0, ] B
1) A
0 \\» s
C(1s‘1) x ‘5 ’
Y" V" (71_5)0
5mi
(i) w=esz.z—24+4i
. S .. 5m . .
u+w=(cos?+lsm?)(x+1y)—2+4l
1 V3. . .
—<E—7l>(x+ly)—2+4l
x V3 [ V3 y
u—§—2+7y+l<—7x+5+4>
zu=£—2+£y and v=—£x+z+4
2 2 2 2
S. z — plane w — plane
No.| x y Point u Points v
x V3 V3 oy
u—E—Z-i-?y v —7X+§+4
1] o 1 A V3 A 9
—2+—-=-11 5 =45
2 1 1 B 3 3 B’ V3 9
—§+7—0.6 —7+§—36




3 1 -1 c 3 V3 C V3 7
_5_7__2_3 —?+5=26
AV
(1.1, 4.5)
AI
(0.6, 3.6
vk . B’ ( )
0. 1t (2.3, 2.6)
M HT
& »x
¢ - < ’
0 \ — : b
. c@1, 1
y’ v
v v’
7.9. Inversion and reflection: w=§ (D)

If z=re?and w=Re?

Putting these values in (1), we get

. 1 .
Rel® = — = _¢~10
rei® r

On equating, we get R =% and ¢ = —6

Thus the point P(r, 6) in the z —plane is mapped into the point P'(1/r, —0) in the w —plane.
Hence the transformation is an inversion of z and followed by reflection into the real axis. The
points inside the unit circle (|z| = 1) map into points outside it, and points outside the unit circle

into points inside it.

1
w

Algebraically w =§ or z=




u—iv _u-iv
(u+iv)(u—iv)  u2+v?

x+iy=$ >x+iy=

Let the circle x? + y2 + 2gx + 2fy + ¢ = 0....(1) be in z —plane.
On substituting the values of x and y in (1), we get

u? v? u (—v)

+ +29———+2f———4c=0
(u? +v2)?% ° (u? + v?)? gu2+v2 fu2+v2

This is the equation of circle in w —plane. This shows that a circle in z —plane transforms

another circle in w —plane. But a circle through origin transforms into a straight line.

Example 8: Find the image of |z — 3i| = 3 under the mapping w = i :

. 1
Solution: w = ;

1
S>z==
w
Sx + iV = 1 u—iv __u-—iv
Y= utiv (u+iv)(u—iv) T w242
u v
DX = —— =—— i 1
uz+p?’ y u2+p2 (1

The given curve is |z — 3i| = 3
=lx+iy—3i| =32x2+ (y—3)2=9....Q2)

On substituting the values of x and y from (1) into (2), we get

v ( d 3)2 —9
(u? + v?)? u? + v? B

u? N (—v — 3u? — 3v?)? B
(u? + v?2)2 (u? + v?2)2 B

= u? + (—v — 3u? — 3v?)? = 9(u? + v?)?



= u? +v? +9ut + 9w* + 6ulv + 6v3 + 18u?v?
= 9u* + 18u?v? + 9v*
= u?+v?+6uv+6v:=0
= u?+v2+6vu?+v?) =0
w?+v>)(6v+1)=0
6v + 1 = 0 is the equation of the image

1

Also |z — 3i| = 3, z=-
or  |--3i| =3=I1-3iw| = 3|w|
|1 —3i(u+iv)| =3lu+iv|
=|1 - 3iu+ 3v)| = 3|u + iv|
(1+3v)% +9u? = 9(u? + v?)
=1+ 6v+ 9v? + 9u? = 9(u? + v?)
Or,b1+6v=0
Another method: |z — 3i| = 3
=z — 3i = 3e"

=z = 3i + 3e'?

W = 1 1 3w = 1
Tz 3i+3eli® T itelf
, cosf—i(1+sinf) 1+sin6 1
3(u+iv) =——=3v = — =—- Ans.
( ) cos20+(1+sinf)? 2+42sinf 2

Example 9: Image of |z + 1| = 1 under the mapping w = i §

@2v+1=1 (O2v—-1=0 (C)2u+1=0 d)2u—1=0



. 1
Solution: w = -

. 1 x—i
SUu+iv=——-= Y
x+iy  x?+y?
X -y
S>Su = —- VvV =—
x2_+_y2’ x2+y2

Given |z+1|=1=|x+iy+1|=1
>+ 1)%2+y2=1

=>x*+y*+2x=0

=>x2+y? =-2x
)

2 x2+y?2

1
=>E=—u:>2u+1=0.

Hence c is correct answer.

Example 10: Show that under the transformation w = ithe image of the hyperbola x? + y%2 = 1

is the lemniscate R = cos2¢.

Solution: x2+y?=1

Putting X = rcosf and y =rsinf
= r2cos?0 —risin?6 =1

= 12(cos?0 —sin?6) =1

r?cos20=1 ... (1)




and 6 =-¢
Putting the values of r and 6 in (1), we get
%cosZ(—gb) = 1=R? = cos2¢
Check your progress

1. Find the image of the semi infinite, strip x > 0,0 < y < 2 under the transformation
w=1+iz
2. Determine the region in the w-plane in which the rectangle bounded by the lines x =

0,y = 0,x = 2and y = 1is mapped under the transformation w = +/2e™/*z.

3. Show that the condition for transformation w = a? + blcz + d to make the circle
|w| = |c| respond to a straight line in the z —plane is (a) = (c).

4. What is the region of the w-plane in two ways the rectangular region in the z-plane
bounded by the linesx = 0,y = 0,x = 1and y = 2 is mapped under the
transformation w = z + (2 — ¢).

5. For the mapping w(z) = i find the image of the family of circle x* + y* = ax, where a
is real.

6. Show that the function w = gtransforms the straight line x = cinthe z —plane into a
circle in the w —plane.

7. f(w+1)? = g then prove that the unit circle in the w-plane corresponds to a parabola
in the z-plane, and the inside of the circle to the outside of the parabola.

8. Find the image of |z — 2i| = 2 under the mapping w = é

9. Determine the region in the z-plane by 4 < |z + i| < 8.

7.10. Bilinear transformation (Mobius Transformation): w =——...... )

is known as bilinear transformation if then d—"ZV # 0 i.e. transformation is conformal.

d

From (1), z = —2*2 This is also bilinear except w = <
cw—a Cc



Note: From (1) every point of z —plane is mapped into unique point in w —plane except z = %
From (2) every point of w —plane is mapped into unique point in z-plane except w = %
7.11. Invariant points of Bilinear Transformation:

az+b

We know that w = e (1)

If z maps into itself, thenw = z

az+b

(1) becomes z = prpr SRRRRIS (2)

Roots of (2) are the invariants of fixed points of the bilinear transformation.

If the roots are equal, the bilinear transformation is said to be parabolic.

Cross Ratio: If there are four points z;, z,, z+, z, taken in order, then the ratio Z1=222#724) ;4
p 1022,23,Z4

(22—-23)(24—21)

called cross ratio of zy, z,, z3, z4.

Theorem: A bilinear transformation preserves cross ratio of four points.

az+b

Proof: We know that w = )
cz+d

As wy, w,, w3, w, are image of z;, z,, z3, Z,

az,+b az,+b azz+b aza+b
wq = y Wy = ,W3=_andW4=
czy+d czy+d czz+d CczZy+d
_ (ad-bc)
Wi =Wy = e at D (Z1 = 2Z3) e, (1)
.. _ (ad-bc)
Slmllarly Wy — W3 = m(zz = Z3) i (2)
_ (ad-bc)
W3 Rl v ——— (Z3—=2Z4) i, 3)
(ad—bc)
Wy — W = (Z4, - Zl) ..................... (4)

(CZ4+d)(CZl+d)



From (1), (2), (3) and (4), we have

Wy —wy)(ws —wy) (21 — 23)(23 — 2,)
Wy — wy) (Wz —w,) B (21 — 24) (23 — 23)

= (Wy, Wa, W3, Wy) = (24, 23, Z3, Z4)

7.12. Properties of bilinear transformation:

1. A bilinear transformation maps circles into circles.

2. A bilinear transformation preserves cross ratio of four points.

If four points z;, z,, z;, z, of the z —plane map onto the points w;, w,, ws, w, of the w —plane

respectively.

(wi—w3)(wz—w,) — (21—22)(23—24)
(Wi—wg)(Wz—w3) (21-24)(z3—22)

Hence under the bilinear transform of four points cross ratio is preserved.

7.13. Methods to find bilinear transformation:
1. by finding a, b, ¢, d for w = % with the given conditions.

2. with the help of cross-ratio

w —wy)(w, —wz) _ (z —21)(22 — 23)
W —=w3)(wy —wy)  (2—23)(22 — 71)

Example 11: Find the bilinear transformation which maps the points z = 1, i, -1 into the points

w = i,,0,—i . Hence find the image of |z| < 1.

] . i +b
Solution: Let the required transformation be w = j; -
a2 + b
— a’a — bz+q [ = 2 = - = S]
Or, w £Z+1 _TZ+1 ................. (1) p d’q d’ r d

d

On substituting the values of z and corresponding values of w in (1), we get



i:%:m+q=ir+i ........ 2

0=% >pi+q=0..... 3)

—i=tdsprg=ir—i (4
z w
1 i
i 0
-1 [

On subtracting (4) from (2), we get 2p = 2iorp = i
On putting the value of p in (3), we have i(i) + ¢ = Oorq = 1
On substituting the values of p and g in (2), we obtain

i+1=ir+i orl =ir orr = —i

iz+1
—iz+1

by using the values of p, q,r and (1), we have w =

ix+iy)+1  (x—y+Dx+y+1) —x*—y>+1+2ix

+iv = = =
urt —ix+iy)+1 (ix+y+D(ix+y+1) x%+ (y+ 1)
. . . _ —x?-y?41 _ 2x
Equating real and imaginary parts, we get u = T2 and v = iR

But |zl <1=>x2+y?<1=21—-x2—y2>0
From (5) u > 0 as denominator is positive

Example 12: Find a bilinear transformation which maps the points i, —i, 1 of the z —plane into

0, 1, o of the w —plane respectively.

Example 13: Find the bilinear transformation which maps the points z = 0,—1,i into



w = i,0,00. Also find the image of the unit circle |z| = 1.
Solution: On puttingz = 0,—1,iintow = {i,0, co respectively in

W —wy))(wWy, —w3) (2 —21)(2; — z3)
(w —ws3)(wy —wy) B (z —23)(22 — 21)

WWDGED ez z-z)

Gy DWa—w1) — (2-23)(z2=21)

L, WoDED _ m01m) (E) _ z(+)
—DO-)  (z-D(-1-0)

—i z—i

_ (1=Dz+iz+1 _z+1

:w—i:ﬂﬁw:(l+i?z+i - > wW=— ... (2)
zZ—1 zZ—1 zZ—1 zZ—1
From (2), z = Wl (3) [ Inverse transformations is z = _dWH’]
w—1 cw—a
And 2l =12 22 = 151 + iw| = lw — 1

=>1+i(u+iv)| =lu+iv—1|
sS1-v+iu=lu—-1+iv|=>A+v)?+u?>=(u-1)>2+v?
>1+vi-2v+ul=ut+1-2u+v’=su—-v=0=>v=u

Example 14: Find the fixed points and the normal form of the following bilinear transformations

@.w= % and (b) w= g Discuss the nature of these transformations.

Solution: (a) The fixed points are obtained by

z=222 or, 22—4z+4=0 or, (z—=2)2=0> z=2

z—1

Z = 2 s the only fixed point. This transformation is parabolic.

Normal form:

1
— 3z-4 1 374 _ z-1

z—1
o z—2

z-1  w-2 (z-1) T 3z-4-2z+2



Example 15: Show that w = 5 maps the real axis of the z —plane into (i). The circle |[w| = 1

and (ii) the half plane y > 0 into the interior of the unit circle |w| < 1 in the w —plane.

Solution: We have w = 5

ol |i—Z li—2z| |i—x—iy]
w = = =

i+zl |i+zl |i+x+iy]
o = |—x+i(1—y) _ x2+(1-y)?

ity 1 © T Eraey?

Now the real axis in z —plane i.e., y = 0 transform into

VET1

Gaer et

lw| =

Hence the real axis in the z —plane is mapped into the circle, |w| = 1.

(ii) The interior of the circle i.e., |w| < 1 gives.

x?+(1-y)?
x2+(1+y)?

<1

<1=2x2+(1-y)2<x?2+(1+y)?

1+y2-2y<1+4+y2+2y=>—-4y<0, =y>0

Thus the upper half of the z —plane corresponds to the interior of the circle |w| = 1.

Example 16: Show that the transformation w = j_;z transforms the circle with centre(g, 0) and

radius %2 in the z —plane into the imaginary axis in the w-plane and the interior of the circle into

the right half of the plane.

. _ 3z . 3—x-ly , . — 2 N
Solution: w = —outiv= 2 >u+iv)(x+iy—2)=3—x—1iy



Suxt+iuy—2utivk —vy—2iv=3—x—1y
sSux—2u—vy+i(uy+uvx—2v)=3—-x—1iy
Equating real and imaginary quantities, we have
ux—vy—2u=3—xand vx +(u+ 1)y =2v
>u+Dx—vy=2u+3andvx + (u+ 1)y =2v

On solving the equation for x and y, we have

_ 2u?+2v2+5u+3 _ -v
T uZ+4vZ42u+l T uZ4v242u+l
: : o 5\, 5, 1
Here, the equation of the given circle is (x - 5) Ty =S (1)

Putting the values of x and y in (1), we have

<2u2+2v2+5u+3 5>2 ( —v )2:1

—=) +
u+v24+2u+1 2 u+v2+2u+1

2

> (o) + ) =

= (—u? —v?2 4+ 12 +4v?% = (W? + v? + 2u + 1)?
SW4+vi-1)2+4v2=[Ww?+v -1+ Qu+2))?

SW4rvi—-1)2+4v2 =W+ v - D+ Qu+2)22+2Ww?+v?—-1)Qu+2)
= v2=(u+ 1>+ @+v -1Du+1)

> vi=uwr42u+1+ud+uwv?—u+ut+vi-1

= O=ud+2u+u+uv?’= u(@?+2u+1+v3=0

= u = 0 i.e. equation of imaginary axis.

2
Equation of the interior of the circle is (x — 2) +y2< %.



Then corresponding equation in u, v, is

u(w?+2u+1+v3) >0 Or, u[(u+1)?+v%] >0

As (u+ 1)% +v? > 0,s0, u> 0 i.e. equation of the right half plane.
7.14. Inverse point with respect to a circle:

Two points P and Q are said to be the inverse points with respect a circle S if they are collinear
with the centre C on the same side of it, and if the product of their distances from the centre is

equal to r2where r is the radius of the circle.

Thus when P and Q are the inverse points of the circle, then the three points C, P, Q are collinear,
and also CP.CQ = r?

Example 17: Show that the inverse of a point a, with respect to the circle |z — ¢| = R is the

. R?
point (¢ + aTc')
Solution: Let b be the inverse point of the point a’ with respect to the circle |z — ¢| = R.
Condition I: The points a, b, ¢ are collinear. Hence arg(b — ¢) = arg(a — ¢) = —arg (@ — ¢)
>arg(b—¢)=arg(@a—¢c)=0 or, arg(lb—¢)(@—¢)=0
~(b—=¢)(@a—c)isreal, sothat, (b—¢c)(@a—¢)=|(b—c¢) (@a-o)|
Condition II: |b—¢|la—¢|l =R?=|b—¢l|la— ¢| = R?

RZ

o|(b-¢)@-¢)|=R*=>(b—¢)(@a—c)=R*=>b—c=-—

a—

]

2
S>b=c+-—

a—c
Example 18: Find a Mobius transformation which maps the circle |w| < 1 into the circle

|z—1| <1and mapsw = 0,w = 1 respectively into z = % z = 0.

Solution: Let the transformation be, w = :H’ ........ (1)




. . 1
Since, w = 0 maps into z = - 7z lw
From (1) we get B |0
_ 3tb 0 [1] _ja,,_
O—gm =-+b=0... (2)
Sincew = 1mapsintoz = 0, from (1), we get
0+b
1= ord =4 b=d........ (3)
Here |w| = 1 correspondingto |z —1| =1

Therefore points w, % inverse with respect to the circle |w| = 1 correspond to the points z,

1+ ﬁ inverse with respect to the circle |z — 1| = 1.

2
[zand a + ZR_—a are the inverse points on the circle|z — 1| = R]

. 1 1 1
Particular w = 0 and « correspond to z = > 1+ T =z=3, -1

Since, w = Omaps into z = —1 from (1), we getw = :C+d

a

From (2), (3),and (4) we getb = Y b=c=d

az+b _ —-2bz+b _ -2z+1
cz+d ~ bz+b  z+1

From (1),w =

Example 19: Show that the transformation w = i;—fz transform the circle |z| = 1 into a circle

of radius unity in w — plane and find the centre of the circle.

. 5—-4
Solution: Here. w = - z

2w+5
=
4w+4

=z =

2w+5|

|Z| - |4W+4

= |2w + 5| = |4w + 4|

= 2u+ 5+ 2iv| = |[4u+ 4+ 4iv| [w=u+iv]



= (2u + 5)% + 4v? = (4u + 4)* + (4v)? ....... (1)
= 4u? + 25 + 20u + 4v? = 16u® + 16 + 32u + 16v2
=120 + 1202 + 12u =9 =02 u + V2 +u—==0 ....... )

This is the equation of circle in w — plane.
Now we have to find its centre

u?+v2+29u+2fv+c=0...... (3)

From (2) and (3) g =

Centreis (—g,—f) i.e. (—% 0) and Radius = /g? + f? —c = E+0+z= 1

Thus (2) is circle with its centre at (— % 0) and of radius unity in w —plane.

Example 20: Find the image of x? + y? — 4y + 2 = 0 under the mapping w = ;1
Solution: w = %:W(iz— 1) =z—ithatisx? +y2—4y+2=0....... (1)
:z:i‘;vl:ilzx+iy:% ......... (2)

=>x—iy= % .............. 3)

Multiplying (2) and (3) we get = x2 + y2 = % ................. @)
Subtracting (3) from (2), we get 2iy = % ................ (5)

Putting the values of x2 4+ y2 and y in (1), we get ZE:EZ;BE Zi:g:;) 2=0

Su?+wW-1D2+4u?+ @2 -D]+2[u2+w+1?] =0



= 7(u® + v?) + 2v — 1 = 0. This is the image of x? + y? — 4y + 2 = 0 under the mapping

10.

zZ—1
iz—1
Check your progress
Find the bilinear transformation that maps the points z; = 2,z, = i,z; = —2intothe
pointsw; = 1,w, = i,and w; = —1 respectively. Ans. w = 22

iz+6
Determine the bilinear transformation which maps z; = 0,z, = 1,z3 = oo onto
z—1

w; = i,w, = —1,w; = —i respectively. Ans. w =

iz—
Verify that the equation w = %ZZ maps the exterior of the circle |z| = 1 into the upper half
plane v > 0.

Find the bilinear transformation which maps 1, i, —1 to 2, i, —2 respectively. Find the fixed
and critical points of the transformation. Ans. i, 2i

Show that the transformation w = % maps the circle |z| = 1 into the real axis of the

w —plane and the interior of the circle |z| < 1 into the upper half of the w —plane.

Show that the transformation w = fz—:zl transforms the real axis in the z —plane into circle in

the w —plane. Find the centre and the radius of this circle. Ans. (0, g)g

If z, is the upper half of the z-plane show that the bilinear transformation w = e'® (ﬂ)

z-7g
maps the upper half of the z —plane into the interior of the unit circle at the origin in the

w —plane.

Find the condition that the transformation w = % transforms the unit circle in the

w —plane into straight lines the z —plane.

Prove that w = i maps the upper half of the z —plane into the upper half of the w —plane.

What is the image of the circle |z| = 1 under this transformation?

Show that the map of the real axis of the z —plane on the w —plane by the transformation

1 . . . . .
w=— is a circle and find its centre and radius.



2z+4i

. ) Prove also that these two
iz+1

11. Find the invariant points of the transformation w = — (

points together with any point z and its image w, form a set of four points having a contant

cross ratio.
12. Show that under the transformation w = % the real axis in z —plane is mapped into the

circle |w| = 1. What portion of the z —plane corresponds to the interior of the circle?

(Ans. the half z —plane above the real axis corresponds to the interior of the circle jw| = 1.)
13. Discuss the application of the transformation w = % to the areas in the z —plane which are

respectively inside and outside the unit circle with its centre at the origin.
14. What is the form of a bilinear transformation which has one fixed point o and the other fixed

point co?

Choose the correct alternative:
The fixed points of the mappingw = (5z + 4)/(z + 5) are

(8 -3, =5 (b) 2, 2 ©) -2, -2 d)2, -2
The invariant points of the bilinear transformation are

@ 1+2i (b) =1 + 2i (c) +2i (d) invariant point does not exist
7.15. Transformation w = z2
Solution: w = z2 thatisu + iv = (x + iy)? = x2 — y2 + 2ixy
Equating real and imaginary parts, we get u = x2 — y2, v = 2xy
()(@). Any line parallel to x —axis, i.e., y = ¢, maps into
u=x%-c% v=2cx
Eliminating, x, we get v2 = 4c?(u + c?)....... (1) which is a parabola.
(b). Any line parallel to y —axis, i.e., x = b, maps into a curve

u=b%?—y? v=2by



Eliminating, y, we get v? = —4b?(u — b?), ........ (2) which is a parabola

(c). The rectangular region bounded by the linesx = 1,x = 2andy = 1,y = 2 maps into

the region bounded by the parabolas.

By Puttingx = 1 = bin(2) we get v = —4(u — 1)

I
N
I

By putting x bin (2) we get v2 = —16(u — 4)

I
[u=y
I

By putting y cin (1) weget v? = 4(u + 1)
By puttingy = 2 = cin (1) we get v? = 16(u + 4)
(i) (a). In polar co-ordinates: z = re'®,, w = Re?

w = z2, Rel® = 12,20

AY

Then R=71% @=26



In z —plane a circle r = a maps R = a? in w —plane.

Thus, circles with centre at origin map into circles with at the origin.

(b). if6 = 0,0 = 0, i.e. real axis in z —plane maps into real axis in w —plane.

If 6 = g @ = m, i.e. the positive imaginary axis in z —plane maps into negative real axis in
same. Thus, the first quadrant in z —plane 0 < 0 < g maps into upper half of w — plane

0<@9<m.
The angle in z — plane at origin maps into double angle in w —plane at origin.

Hence the mapping w = z2 is not conformal at the origin.

It is conformal in the entire z —plane except origin. Since, Z—‘Z =2z =0forz = 0, therefore

critical point of mapping.

Example 21: For the conformal transformation w = z%. Show that the circle |z — 1| = 1

transforms into the cardioid R = 2(1 + cos®) where w = Re® in the w —plane.
Solution: |[z—1|=1..................... (1)

Equation (1) represents a circle with centre at (1, 0) and radius 1.

Shifting the pole to the point (1, 0), any point on (1) is 1 + e%

Transformation is under w = z2.

i0 — iez:ieg B e 0\\2 _ 4,0 ...2(8
Re (1+e¥) =e(ez+e 2) =e (ZCOS(Z)) = 4e'cos .

This gives that R = 4cos? (g) = R = 2(2cos? (g)) = R = 2(1 + cos®)

Summary

After studying this unit we will be able to define Mapping and Conformal Mapping ,translation
w = z + c and Rotation w = ze'?, magnification and Rotation w = cz, inversion and reflection,

Mobius transformation, invariant points of Bilinear transformation, properties of Bilinear



transformation, methods to find Bilinear transformation , inverse point with respect to a circle

and transformation w = z2.



